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ABSTRACT

Congestion is a common failure mode of markets, where consumers compete inef-
ficiently on the same subset of goods (e.g., chasing the same small set of properties
on a vacation rental platform). The typical economic story is that prices decongest
by balancing supply and demand. But in modern online marketplaces, prices are
typically set in a decentralized way by sellers, and the information about items is
inevitably partial. The power of a platform is limited to controlling representations—
the subset of information about items presented by default to users. This motivates
the present study of decongestion by representation, where a platform seeks to learn
representations that reduce congestion and thus improve social welfare. The techni-
cal challenge is twofold: relying only on revealed preferences from the choices of
consumers, rather than true preferences; and the combinatorial problem associated
with representations that determine the features to reveal in the default view. We
tackle both challenges by proposing a differentiable proxy of welfare that can be
trained end-to-end on consumer choice data. We develop sufficient conditions for
when decongestion promotes welfare, and present the results of extensive exper-
iments on both synthetic and real data that demonstrate the utility of our approach.

1 INTRODUCTION

Online marketplaces have become ubiquitous as our primary means for consuming tangible goods as
well as services across many different domains. Examples span a variety of commercial segments, in-
cluding dining (e.g., Yelp), real estate (e.g., Zillow), vacation homestays (e.g., Airbnb), used or vintage
items (e.g., eBay), handmade crafts (e.g., Etsy), and specialized freelance labor (e.g., Upwork). A key
reason underlying the success of these platforms is their ability to manage an exceptionally large and
diverse collections of items, to which users are given immediate and seamless access. Once a desired
item has been found on a platform then obtaining it should—in principle—be only ‘one click away.’

But just like conventional markets, online markets are also prone to certain forms of market failure,
which may hinder the ability of users to easily obtain valued items. One prominent type of failure,
which our paper targets, is congestion. Congestion occurs when demand for certain items exceeds
supply; i.e., when multiple users are interested in a single item of which there are not sufficiently-many
copies available. E.g., in vacation rentals, the same vacation home may draw the interest of many
users, but only one of them can rent it. This can prevent potential transactions from materializing,
resulting in reduced social welfare—to the detriment of users, suppliers, and the platform itself.

In conventional markets, the usual economic response to congestion is to set prices in an appropriate
manner (e.g., [26]). In our example, if the attractive vacation home is priced correctly, then only
one user (who values it most, relative to other properties) will choose it; similarly, if other items
are also priced correctly in relation to user valuations, then prices can fully decongest the market and
the market can obtain optimal welfare, defined as the sum of users’ valuations to their assigned items.

But for modern online markets, this approach is unattainable for two reasons. The first reason is that
many online platforms do not have control over prices, which are instead set in a decentralized way by
different sellers. The second reason is more subtle, but central to the solution we advance in this paper:
we argue that an inherent aspect of online markets is that users make choices under limited information,
and that this limits the effectiveness of price. Online environments impose natural constraints on
the amount of information consumed, due to technical limitations (e.g., restricted screen space),
behavioral mechanisms (e.g., cognitive capacity, attention span, impatience), or design choices (e.g.,
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what information is highlighted, appears first as a default, or requires less effort to access). As such, the
decisions of users are more affected by whatever information is made more readily available to them.
From an economic perspective, this means they are making decisions under ‘incorrect’ preference
models, for which (i) prices that decongest (or clear) at these erroneous preferences are incorrect,
and (ii) prices that decongest at correct preferences still leave congestion at erroneous preferences.1

Partial information is therefore a reality that platforms must cope with—a new reality which requires
new approaches. To ease congestion and improve welfare, our main thesis is that platforms can—and
should—utilize their control over information, and in particular, on how items are represented to users.
The decision of representation—the default way in which items are shown to users—is typically in
the hands of the platform; and while providing equal access to all information may be the ideal, reality
dictates that choosing some representation is inevitable.2 Given this, we propose to use machine
learning to solve the necessary design problem of choosing beneficial item representations.

To this end, we present a new framework for learning item representations that reduce congestion and
promote welfare. Since congestion results from users making choices independently according to their
own individual preferences, to decongest, the platform must act to (indirectly) coordinate these id-
iosyncratic choices; and since representations affect choices by shaping how users ‘perceive’ value, we
will seek to coordinate perceived preferences. The basic premise of our approach is that, with enough
variation in true user preferences, it should be possible to find representations for which choices made
under perceived values remain both valuable and diverse. For example, consider a rental unit rep-
resented as having ‘sea view’ and ‘sunny balcony’ and draws the attention of many users but does not
convey other information such as ‘noisy location’; if users vary enough in how they value quietness,
then showing ‘quiet’ instead of ‘balcony’ may help reduce congestion and improve outcomes.

From a learning perspective, the fundamental challenge is that welfare itself (and its underlying
choices) depends on private user preferences. For this, we develop a proxy objective that relies on ob-
servable choice data alone, and optimizes for representations that encourage favorable decongested so-
lutions through users’ choices. A technical challenge is that representations are combinatorial objects,
corresponding to a subset of features to show. Building on recent advances in differentiable discrete
optimization, we modify our objective to be differentiable, thus permitting end-to-end training using
gradient methods. To provide formal grounding for our approach of decongestion by representation,
we theoretically study the connection between decongestion and welfare. Using competitive equilib-
rium analysis, we give several simple and interpretable sufficient conditions under which reducing con-
gestion provably improves welfare. Intuitively, this happens when it is possible to present item features
across which user preferences are more diverse, while at the same time hiding features that are not too
meaningful for the users. The conditions provide basic insight as to when our approach works well.

We end with an extensive set of experiments that shed light on our proposed setting and learning
approach. We first make use of synthetic data to explore the usefulness of decongestion as a proxy
for welfare, considering the importance of preference variation, the role of prices, and the degree
of information partiality. We then use real data of user ratings to elicit user preferences across a
set of diverse items. Coupling this with simulated user behavior, we demonstrate the susceptibility
of naïve prediction-based methods to harmful congestion, and the ability of our congestion-aware
representation learning framework to improve economic outcomes. Code for all experiments can be
found at: https://github.com/omer6nahum/Decongestion-by-Representation.

1.1 RELATED WORK

There is a growing recognition that many online platforms provide economic marketplaces, and
considerable efforts have been dedicated to studying the role of recommender systems in this
regard [7,25,27]. Some work, for example, has studied the effects of learning and recommendation
on the equilibrium dynamics of two-sided markets of users and suppliers [5,21,13], exchange markets
[10], or markets of competing platforms [6,14]. The main distinction is that our paper studies not what
to show to users, but how. One study examined the effect of the complete absence of knowledge about
some items on welfare [8]; in contrast, we study how welfare is affected by partial information about
items. There are also studies on the role of information in the form of recommendations in enhancing

1Economic theory has many examples of other ways in which partial information hurts markets (e.g., [1]).
2In the influential book ‘Nudge’, Thaler and Sunstein (2008) argue similarly for ‘choice architecture’ at large.
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system-wide performance with learning users; e.g., the use of selective information reporting to
promote exploration by a group of users [18,20,3]. Again, this is quite distinct from our setting.

Conceptually related to our work is research in the field of human-centered AI [24] that studies
AI-aided human decision making, and in particular prior work that has considered methods to learn
representations of inputs to decision problems to aid in single-user decision making [12]. Related,
there is work on selectively providing information in the form of advice to a user in order to optimize
their decision performance [23]. It has also been argued that providing less accurate predictive
information to users can sometimes improve performance [4]. These works, however, do not consider
interactions between multiple users which are at the center of the types of markets we consider here.

Though underexplored in online markets, several works in related fields have considered how represen-
tations affect decisions. For example, [17] aim to establish the role of ‘simplicity’ in decision-making
aids, and in relation to fairness and equity. Works in strategic learning have emphasized the role of
users in representations; i.e., in learning to choose in face of strategic representations [22], and as con-
trolling representations themselves [19]. Here we extend the discussion on representations to markets.

2 PROBLEM SETUP

The main element of our setting is a market, where each market is composed of m indivisible items and
n users. Within a market, items j are described by non-negative feature vectors xj ∈ Rd

+ and prices
pj ≥ 0. Let X ∈ Rm×d denote all item features, and p ∈ Rm denote all prices, which we assume
to be fixed.3 We mostly consider unit supply, in which there is only one unit of each item (e.g., as in
vacation homes), but note our method directly extends to general finite supply, which we discuss later.

Each user i in a market has a valuation function, vi(x), which determines their true value for an item
with feature vector x. We use vij to denote user i’s value for the jth item. We model each user with
a non-negative, linear preference, with vi(x) = β⊤

i x for some user type, βi ≥ 0. The effect is that
vi(x) ≥ 0 for all items, and all item attributes contribute positively to value. We assume w.l.o.g. that
values are scaled such that vi(x) ≤ 1. Users have unit demand, i.e., are interested in purchasing a
single item. Given full information on items, a rational agent would choose y∗i = argmaxj vij − pj .

Partial information. The unique aspect of our setup is that users make choices on the basis of
partial information, over which the system has control. For this, we model users as making decisions
on an item with feature vector x based on its representation z, which is truthful but lossy: z must
contain only information from x, but does not contain all of the information. We consider this to be
a necessary aspect of a practical market, where users are unable to appreciate all of the complexity
of goods in the market. Concretely, z reveals a subset of k ≤ d features from x, where the set of
features is determined by a binary feature mask, µ ∈ {0, 1}d, with |µ|1 = k, that is fixed for all items.
Each mask induces perceived values, ṽ, which are the values a user infers from observable features:

ṽi(x) = β⊤
i (x⊙ µ) = (βi)

⊤
µ z, (1)

where ⊙ denotes element-wise product, and (β)µ is β restricted to features in µ. For market items xj

we use ṽij = β⊤
i (xj ⊙ µ). Given this, under partial information, user i makes choices yi via:4

yi(µ) = choice(X, p; viµ) := argmaxj ṽij − pj , (2)

where ṽij − pj is agent i’s perceived utility from item j, with yi(µ) = 0 encoding the ‘no choice’
option, which occurs when no item has positive perceived utility. Note Eq. (2) is a (simple) special
case of [30]. When clear from context, we will drop the notational dependence on µ. We use y ∈
{0, 1}n×m to describe all choices in the market, where yij = 1 if user i chose item j, and 0 otherwise.

Under Eq. (2), each user is modeled as a conservative boundedly-rational decision-maker, whose per-
ception of value derives from how items are represented, and in particular, by which features are shown.
Note that together with our positivity assumptions, this ensures that representations cannot be used to
portray items as more valuable than they truly are—which could lead to choices with negative utility.

3For example, this is reasonable when sellers adapt slowly (or not at all; e.g., as in ad auctions [9,2]), or
when prices are set for a broader aggregate market. For discussion on adaptive prices, see Appendix A.

4In Appx. F.1 we experiment with an alternative decision model, which shows qualitatively similar results.
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Figure 1: Values, prices, and choices. (A) A matrix V of user-item values vij in a market. User
choices naturally congest (red squares), but at full information can be decongested with prices ((B);
black squares). Partial information may distort values only mildly ((C), vs. (A)), but still deem prices
as ineffective (D). Nonetheless, some representations are better than others—and those we seek (E).

Allocation. To model the effect of congestion we require an allocation mechanism, denoted
a = alloc(y1, . . . , yn), where a ∈ {0, 1}n×m has aij = 1 if item j is allocated to user i, and 0
otherwise. We will use a(µ) to denote allocations that result from choices y(µ). We require feasible
allocations, such that each item is allocated at most once and each user receives at most one item.
For the allocation mechanism, we use the random single round rule, where each item j in demand
is allocated uniformly at random to one of the users for which yi = j. This models congestion: if
several users choose the same item j, then only one of them receives it while all others receive nothing.
Intuitively, for welfare to be high, we would like that: (i) allocated items give high value to their users,
and (ii) many items are allocated. As we will see, this observation forms the basis of our approach.

Learning representations. To facilitate learning, we will assume there is some (unknown) distri-
bution over markets, D, from which we observe samples. In particular, we model markets with a
fixed set of items, and users sampled iid from some pool of users. For motivation, consider vacation
rentals, where the same set of properties are available each week, but the prospective vacationers
differ from week to week. Because preferences βi are private to a user, we instead assume access to
user features, ui ∈ Rd′

, which are informative of βi in some way. Letting U ∈ Rn×d′
denote the set

of all user features, each market is thus defined by a tuple M = (U,X, p) of users, items, and prices.

We assume access to a sample set S = {(M (ℓ), y(ℓ))}Lℓ=1 of markets Mℓ = (U (ℓ), X, p(ℓ)) ∼ D and
corresponding user choices y(ℓ). Note this permits item prices to vary across samples, i.e., p(ℓ) can
be specific to the set of users U (ℓ). Our overall goal will be to use S to learn representations that
entail useful decongested allocations, as illustrated in Figure 1. Concretely, we aim for optimizing
the expected welfare induced by allocations, i.e., the expected sum of values of allocated items:

WD(µ) = ED

[∑
ij
a(µ)ijvij

]
, a(µ) = alloc(y1, . . . , yn), yi = choice(X, p; vi, µ) (3)

where expectation is taken also w.r.t. to possible randomization in alloc and choice. Thus, we wish
to solve argmaxµ WD(µ). Importantly, note that while choices are made based on perceived values
ṽ, as shaped by µ, welfare itself is computed on the basis of true values v—which are unobserved.

3 A DIFFERENTIABLE PROXY FOR WELFARE

We now turn to describing our approach for learning useful decongesting representations.

Welfare decomposition. The main difficulty in optimizing Eq. (3) is that we do not have access to
true valuations. To remove the reliance on v, our first step is to decompose welfare into two terms.
Let WM =

∑
ij āijvij be the expected welfare for a single market M , where āij = 1

nj
yij denote

expected allocations with nj =
∑

i yij , and defining āij = 0 when nj = 0. We can rewrite WM as:

WM =
∑
ij

1
nj
yijvij =

∑
j

(1− 1 + 1
nj
)
∑
i

yijvij =
∑

ij
yijvij︸ ︷︷ ︸

(I)

+
∑

j
( 1
nj
− 1)

∑
i
yijvij︸ ︷︷ ︸

(II)

(4)

In Eq. (4), term (I) encodes the value users would have gotten from their choices—had there been no
supply constraints. Term (II) then corrects for this, and appropriately penalizes excessive allocations.5

5Note that no penalty is incurred if an item is chosen by at most one user, since either 1
nj

−1 = 0 or yij = 0.
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Figure 2: A schematic illustration of our proposed differentiable learning framework.

Proxy welfare. Absent the vij , a natural next step is to replace Eq. (4) with a tractable lower bound
proxy. For term (I), note that if yij = 1 then ṽij > pj (Eq. (1)), and since β, x ≥ 0, it also holds
that vij ≥ ṽij (since masking can only decrease perceived value). Hence, we can replace vij with
pj . For term (II), since 1

nj
− 1 ≤ 0, and since we assume v ≤ 1, using nj =

∑
i yij we can write:

W̃M =
∑

ij
yijpj︸ ︷︷ ︸

= selection(y,p)

−
∑

j
max{0, nj − 1}︸ ︷︷ ︸

= decongestion(y)

≤WM (5)

which removes the explicit dependence on values, and relies only on choices. The two terms in W̃M

can now be interpreted as: (I) selection, which expresses the total market value of users’ choices,
as encoded by prices; and (II) decongestion, which penalizes excess demand per item. Notice that
n − decongestion(y) is simply the number of allocated items, |alloc(y)|. To extend beyond
unit-supply, we can replace nj − 1 with a more general nj − cj when there are cj copies of item j.

Eq. (5) still depends on values implicitly through choices y. Our next step is to replace these with pre-
dicted choices, ŷi(µ) = f(X, p;ui, µ), where f is a predictive model pretrained on choice data in S:

f̂ = argmin
f∈F

∑
(M,y)∈S

∑
i∈[n]
L(yi, f(X, p;ui, µ)) (6)

for some model class F and loss function L (e.g., cross-entropy), which decomposes over users. Plug-
ging the learned f into Eq. (5) and averaging over markets in S obtains our empirical proxy objective:

W̃S(µ) =
1

N

∑
M∈S

[∑
ij
ŷij(µ)pj −

∑
j
max

{
0, n̂j(µ)− 1

}]
(7)

where n̂j(µ) =
∑

i ŷij(µ). We interpret this as follows: In principle, Eq. (7) seeks representations µ
that entail low congestion by optimizing the decongestion term; however, since there can be many
decongesting solutions, the additional selection term reguralizes learning towards good solutions.

Differentiable proxy welfare. One challenge in optimizing Eq. (7) is that both predicted choices ŷ
and masks µ are discrete objects. To enable end-to-end learning, we replace these with differentiable
surrogates. For ŷ, we substitute ‘hard’ argmax predictions with ‘soft’ predictions ȳi(µ) using softmax.
For masks, instead of optimizing over individual (discrete) masks, we propose to learn masking
distributions, πθ, that are differentiable in their parameters θ. A natural choice in this case is the multi-
nomial distribution, where θ ∈ Rd assigns weight θr to each feature r ∈ [d], and masks are constructed
by drawing k features sequentially without replacement in proportion to (re)normalized weights, r ∼
softmaxτ (θ), where τ is a temperature hyper-parameter. Our final differentiable proxy objective is:

θ̂ = argmaxθ∈Rd W̃S(πθ), where W̃S(πθ) = Eµ∼πθ

[
W̃S(µ)

]
(8)

To solve Eq. (8), we make use of the Gumbel top-k trick [29,15]: by reparametrizing πθ, variation in
masks due to θ is replaced with random perturbations ε; this separates θ from the sampling process,
which then permits to pass gradients effectively. We then use the method from [31] to smooth the
selection of the top-k elements. For the forward step, the expectation in Eq. (8) is approximated
by computing an average over samples µ ∼ πθ. Once θ̂ has been learned, at test time we can either
sample from πθ̂ as a masking policy, or commit to µθ̂, defined to include the k largest entries in
θ̂. See Figure 2 for an illustration of the different components of our proposed framework.
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Practical considerations. One artifact of transitioning from Eq. (4) to Eq. (5) is that the different
terms may now become unbalanced in terms of scale. As a remedy, we propose to reweigh them
as (1 − λ)· selection + λ· decongestion, where λ is a hyper-parameter that can be tuned via
experimentation; practically, our empirical analysis suggests that learning is fairly robust to the choice
of λ. In addition, we have also found it useful to add a penalty on non-choices, i.e., −

∑
i 1{ŷi = 0},

also weighted by λ. This can be interpreted as also reducing congestion on the ‘no-choice’ item, and
as accentuating the reward of choosing real items (since no choice gives zero utility; see Appx. G.4).

4 THEORETICAL ANALYSIS

The core of our approach relies on minimizing congestion as a proxy to maximizing welfare. It
is therefore natural to ask: when does decongestion improve welfare? Focusing on an individual
market, in this section we give simple conditions under which allocating more items guarantees an
improvement in welfare. Here we consider p to be competitive-equilibrium (CE) prices of the market
under full information, meaning that under full information, every item with a strictly positive price is
sold and every user can be allocated an item in their demand set. Proofs are deferred to Appendix B.

We start from the strongest type of relation between congestion and welfare, in which allocating more
items is always better, irrespective of which items and to which users.
Definition 1. A market with valuations vij is congestion monotone if for all s ∈ [m], any allocation
of s items gives (weakly) better welfare than any allocation of s′ < s items.

Our first result shows that monotonicity holds in economies in which users’ valuations for the items
are close, as expressed in the following sufficient condition.
Proposition 1. In a market with n users, m items, and valuations vij , denote vmin = minij vij and
vmax = maxij vij . If vmax−vmin

vmin
≤ 1

m−1 , then the market is congestion monotone.

Such monotonicity provides us with very strong guarantees: it will sustain under any user behavior,
allocation rule, and randomized outcome. However, this property is demanding in that it considers all
allocations—whereas some allocations may not be admissible, i.e., result from users choosing on the
basis of some representation. We now proceed to pursue this case.
Definition 2 (Admissible allocation). An allocation a is admissible, denoted ã, if agents are only
assigned their best-response items defined with respect to perceived values ṽ at prices p.
Definition 3 (Restricted optimality). An allocation a is restricted optimal if a is welfare-optimal
at true valuations v in the economy E = (Ga, Na), where Ga and Na denote the items and agents,
respectively, that are allocated; i.e., the economy restricted to the items and agents that are allocated.

This property, which in effect defines optimality on a restricted economy, can be established through
a set of sufficient conditions by reasoning with suitable notions of competitive equilibrium that arise
when working with admissible allocations. To model the way we handle congestion, let A denote
a randomized allocation, with a product structure defined as follows. Let G(A) denote the set of
items allocated.6 The product structure requires that for each item j ∈ G(A), some set Nj of agents
compete for j with Nj ∩Nj′ = ∅, for all j ̸= j′. Each agent i ∈ Nj is allocated item j uniformly
at random, so that PrA[i] = 1/|Nj | is the probability that i is allocated. We say that a randomized
allocation A is admissible if it is a distribution over admissible allocations, and restricted optimal if it
is a distribution over restricted optimal allocations. Define W (A) as the expected total welfare at true
values, considering the distribution over allocations. We say that a randomized allocation B extends
A if G(B) ⊃ G(A) and PrB [i] ≥ PrA[i] for all agents i ∈ [n] (i.e., no agent faces more congestion).
Theorem 1. Given two randomized allocations, A and B, where B extends A and B is restricted
optimal, then W (B) ≥W (A), with W (B) > W (A) if vij > 0 for all i, j.

The main idea behind this result is that, together with the extension property, and in a way that
carefully handles randomization, restricted optimality provides an ordering on welfare.

We now seek conditions under which an admissible allocation is restricted optimal: If these conditions
hold for any admissible allocation in the support of a randomized allocation B, then by Thm. 1,

6As explained in Section 2, throughout the paper we consider unique best responses for the users.
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B improves welfare relative to all randomized allocations which it extends. We parametrize these
conditions by the margin of an admissible allocation, which is defined as follows.

Definition 4 (Margin). Let ã be an admissible allocation with allocated items and agents G̃ and Ñ ,
resp. Then the margin of ã is the maximal ∆≥0 s.t. ṽiãi

−pãi
≥ maxj ̸=ãi,j∈G̃[ṽij−pj ]+∆, ∀i ∈ Ñ .

Denote agent i’s hidden valuation given mask µ as vHij = vij− ṽij .7 Each of the following conditions
is sufficient for restricted optimality and thus the improving welfare claim of Theorem 1:

• Condition 1: Item heterogeneity is captured in revealed features. A first property, sufficient
for restricted optimality, is that items G̃ allocated in admissible allocation ã have similar hidden
features, with |(1−µ)⊙ (xj −xj′)|1 ≤ ∆, ∀j, j′ ∈ G̃, where ∆ is the margin of the admissible
allocation, µ is the mask, and xj and xj′ the features of allocated items j and j′, respectively.

• Condition 2: Agent indifference to hidden features. A second property is that the agents Ñ
allocated in admissible allocation ã have relatively low preference intensity for hidden features,
with |(1− µ)⊙ βi|1 ≤ ∆, ∀i ∈ Ñ .

• Condition 3: Top-item value consistency and low price variation. A third property relies on the
item that is most preferred to an agent considering revealed features also being, approximately, the
most preferred considering hidden features. In particular, we require (1) top-item value consistency,
so that if item j satisfies ṽij ≥ maxj′∈G̃ ṽij′ , ∀i ∈ Ñ (i.e., it is top for i considering revealed
features), then vHij + ∆ ≥ maxj′∈G̃ vHij′ (i.e., it is approximately top for i considering hidden
features); and (2) small price variation, so that |pj − pj′ | ≤ ∆, for all items j, j′ ∈ G̃.

• Condition 4: Items have small hidden features. A fourth property that suffices for restricted
optimality is that items have small hidden features, with |(1− µ)⊙ xj |1 ≤ ∆, ∀j ∈ G̃.

• Condition 5: Agent preference heterogeneity is captured in revealed features. A fifth property
is that the agents Ñ allocated in addmisible allocation ã have similar preferences for hidden
features, with |(1− µ)⊙ (βi − βi′)|1 ≤ ∆, ∀i, i′ ∈ Ñ .

5 EXPERIMENTS

5.1 SYNTHETIC DATA

We first make use of synthetic data to empirically explore our setting and approach. Our main aim is
to understand the importance of each step in our construction in Sec. 3. Towards this, here we abstract
away optimizational and statistical issues by focusing on small individual markets for which we can
enumerate all possible masks, and assuming access to fully accurate predictions ŷ(µ) = y(µ). The
following experiments use n = m = 8, d = 14, k = 6, and CE prices, with results averaged over 10
random instances. Additional results for an alternative decision model can be found in Appendix F.1.

Variation in preferences. In general, congestion occurs when users have similar preferences, and
our first experiment studies how the degree of preference similarity affects decongestion and welfare.
Let Vhet, Vhom ∈ Rn×m be value matrices encoding fully-heterogeneous and fully-homogeneous
preferences, respectively. We create ‘mixture markets’ as follows: First, we sample random
item features X . Then, for each of the above V(i), we extract user preferences B(i) by solving
minB≥0 ∥BX⊤ − V(i)∥2. Finally, for α ∈ [0, 1], we set Bα = (1 − α)Bhet + αBhom to get
Vα = BαX

⊤. Thus, by varying α, we can control the degree of preference similarity.

Fig. 3 (left) presents welfare obtained by the optimal masks for the following objectives: (i) a welfare
oracle (having access to v), (ii) a predictive oracle (maximizing ŷij(µ)vij per user), (iii) selection,
(iv) decongestion, (v) the welfare lower bound in Eq. (5) (namely selection minus decongestion), and
(vi) our proxy objective in Eq. (7). As expected, the general trend is that less heterogeneity entails
lower attainable welfare. Prediction and selection, which consider only demand (and not supply) do
not fair well, especially for larger α. As a general strategy, decongestion appears to be effective; the
crux is that there can be many optimally-decongesting solutions—of which some may entail very low
welfare (see subplot showing results for all k-sized masks in a single market). Of these, our proxy

7Here we assume w.l.o.g. (given that 0 ≤ v ≤ 1) that β ∈ [0, 1]m and x ∈ [0, 1]m.
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Figure 3: Results on synthetic data. (Left:) Welfare obtained by the optimal mask for different
objectives, on average and for a single market (inlay). (Center:) Performance for increasingly smaller
valuation gaps. (Right:) Relations between distorted values, welfare, and preference heterogeneity.

objective encourages a decongesting solution that has also high value; results show its performances
closely matches the oracle upper bound, despite using p instead of v as in the welfare lower-bound.

Perceptive distortion. Partial information can decrease welfare if it causes preferences to shift.
This becomes more pronounced if preference shift increases homogeneity, which leads to increased
congestion. Since what may cause preferences to shift is the perceptive distortion of values, it would
seem plausible to seek representations that minimize distortion. This is demonstrated empirically in
Fig. 3 (right). The figure shows evident anti-correlation between perceptive distortion (measured as
1
m∥p̃−p∥1) and welfare across al k-sized masks (here we set α = 0.2). A similar anti-correlative pat-
tern appears in relation to preference homogeneity from perceived values (measured using Kendall’s
coefficient of concordance), suggesting that masks are useful if they entail heterogeneous choices.

Value dispersion. Although heterogeneity is important, it may not be sufficient. As noted, markets
with smaller margins should make our method more susceptible to perceptive distortion. To explore
this, we study the effects of ‘contracting’ the higher-value regime of v, achieved by taking powers ρ <
1 of v (since v ∈ [0, 1], we have v ≤ vρ ≤ 0). Fig. 3 (center) shows results for decreasingly smaller
powers ρ. As expected, since smaller ρ generally increase values, overall potential welfare increases as
well. However, as values become ‘tighter’, this negatively impacts the effectiveness of our approach.

5.2 REAL DATA

We now turn to experiments on real data and simulated user behavior. We use two datasets: Movie-
Lens, which we present here; and Yelp, which exhibits similar trends, and hence deferred to Appx. G.1.

Data. We use the Movielens-100k dataset [11], which contains 100,000 movie ratings from 1,000
users and for 1,700 movies, and is publicly-available. Item features X and users preferences B
(dimension d) were obtained by applying non-negative matrix factorization to the partial rating
matrix. User features U (dimension d′) were then extracted by additionally factorizing preferences
B as UT⊤ ≈ B, where the inferred T can be thought of as an approximate mapping from features
to preferences. We experiment in two latent dimension settings: small (d = 12), which permits
computing oracle baselines by enumeration; and large (d = 100). In both we set d′ = d/2.

Setup. To generate a dataset of markets S, we first sample m = 20 items uniformly from X , and
then sample L = 240 sets of n = 20 users uniformly from U . Masks µ are sampled according to a
‘default’ masking policy π0 that elicits feature importance from prices, but ensures full support (see
‘price predictive’ baseline below). For prices p we mainly use CE prices computed per market, but
also consider other pricing schemes. Choices y are then simulated as in Eq. (2). Given S, we use a
6-fold split to form different partitions into train test sets. Results are then averaged over 6 random
sample sets and 6 splits per sample set (total 36, 95% standard error bars included).

Method. For our method of decongestion by representation (DbR), we optimize Eq. (8) using Adam
[16] with 0.01 learning rate and for a fixed number of 300 epochs. When k > d/2, we have found
it useful to set k ← d− k and learn ‘inverted’ masks 1− µ. For λ, our main results use λ = 1− k

2d ,
with the idea that smaller k require more effort placed on decongestion, but note that this very closely
matches performance for λ = 0.5, and that results are fairly robust across λ (see Appendix G.3). For
f in Eq. (6) we train a bi-linear model (in u and x) for 150 epochs using cross-entropy. We consider
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Figure 4: Experiments using real data. (Left + center:) Gain in welfare for increasing mask size k,
for the Movielens dataset using d = 12 (left) and d = 100 (center) hidden features. Plot lines gain
relative to random, numbers show absolute welfare values. (Right:) Welfare (absolute) obtained for
different prices schemes: (i) buyer- vs. seller-optimal prices, and (ii) increasing additive noise.

three variants of our approach that differ in their test-time usage: (i) DbR(π̂), which samples masks
from the learned policy µ ∼ π̂; (ii) DbR(µ̂), which commits to a single sampled mask µ̂ ∼ π̂ (having
the lowest objective value); and (iii) DbR(θ̂), which constructs and uses a mask µθ̂ composed of the
top-k entries in the learned θ̂. For further details on implementation and optimization see Appendix E.

Baselines. We compare the above to: (iv) price-pred, a prediction-based method that uses the top-
k most informative features for predicting prices from item features, with the idea that these should
also be most informative of values; (v) choice-pred, which aims to recover the top-k most important
features for users by eliciting an estimate of T (and hence of preferences β) from the learned choice-
prediction model f ; (vi) an oracle benchmark that optimizes welfare directly (when applicable);
and (vii) a random benchmark reporting average performance over randomly-sampled k-sized masks.

Results. Figure 4 (left, center) shows results for increasing values of k. Because overall welfare
quickly increases with k for all methods, for an effective comparison across k we plot the relative gain
in welfare compared to random, with absolute values depicted within. For the d = 12 setting (left),
results show that our approach is able to learn effective representations attaining welfare that is close to
oracle. Relative gains increase with k and peak at around k = 8. Prediction-based methods generally
improve with k, but at a low rate. The inlaid plot shows a tight connection to the number of allocated
items, suggesting the importance of (de)congestion in promoting welfare (or failing to do so). For
d = 100 (center), performance of our approach steadily increase with k. Here choice-pred preforms
reasonably well for k ≈ 50, but not so for large k, nor for small k, where price-pred also fails.

The role of prices. Because our proxy welfare objective relies on prices for guiding decongestion
(for which CE prices are especially useful), we examine the robustness of our approach to differing
pricing schemes. Focusing on d = 12 and k = 6, Figure 4 (right) shows performance for (i) CE
prices ranging from buyer-optimal (minimal) to seller-optimal (maximal), and (ii) increasing levels
of noise applied to mid-range CE prices. Results show that overall performance degrades as prices
become either higher or noisier, demonstrating the general importance of having value-reflective
prices. Nonetheless, and despite its reliance on prices, our approach steadily maintains performance
relative to others. Appendix G.2 shows similar results for additional variations on pricing schemes.

6 DISCUSSION

In this paper, we have initiated the study of decongestion by representation, developing a differentiable
learning framework that learns item representations in order to reduce congestion and improve social
welfare. Our main claim is that partial information is a necessary aspect of modern online markets,
and that systems have both the opportunity and responsibility in choosing representations that serve
their users well. We view our approach, which pertains to ‘hard’ congestion found in tangible-goods
markets, and on feature-subset representations, as taking one step towards this. At the same time, ‘soft’
congestion, which is prevalent in digital-goods markets, also caries many adverse effects. Moreover,
there exist various other relevant forms of information representation (e.g., feature ranking, or even
other modalities such as images or text). We leave these, as well as the study of more elaborate user
choice models, as interesting directions for future work.
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ETHICS STATEMENT AND BROADER PERSPECTIVES

Our paper considers the effect of partial information on user choices in the context of online market
platforms, and proposes that platforms utilize their control over representations to promote deconges-
tion as a means for improving social welfare. Our point of departure is that partial information is
an inherent component of modern choice settings. As consumers, we have come to take this reality
for granted. Still, this does not mean that we should take the system-governed decision of what
information to convey about items, and how, as a given. Indeed, we believe it is not only in the power
of platforms, but also their responsibility, to choose representations with care. Our work suggests
that ‘default’ representations, such as those relying on predictions of user choices, may account for
demand—but are inappropriate when supply constraints have concrete implications on user utility.

Soft congestion. Although our focus is primarily on tangible-goods, we believe similar arguments
hold more broadly in markets for non-tangibles, such as media, software, or other digital goods.
While technically such markets are not susceptible to ‘hard’ congestion since there is no physical
limitation on the number of item copies that can be allocated, still there is ample evidence of ‘softer’
forms of congestion which similarly lend to negative outcomes. For example, digital marketplaces
are known to exhibit hyper-popularization, arguably as the product of rich-get-richer dynamics, and
which results in strong inequity across suppliers and sellers. Some recent works have considered
the negative impact of such soft congestion, but mostly in the context of recommender systems; we
believe our conclusions on the role of representations apply also to ‘soft’ congestion, perhaps in a
more subtle form, but nonetheless carrying the same important implications for welfare.

Limitations. We consider the task of decongestion by representation in a simplified market setting,
including several assumptions on the environment and on user behavior. One key assumption relates
to how we model user choice (Sec. 2). While this can perhaps be seen as less restrictive than the
standard economic assumption of rationality, our work considers only one form of bounded-rational
behavior, whereas in reality there could be many others (our extended experiments in Appendix F.1
take one small step towards considering other behavioral assumptions). In terms of pricing, our
theoretical analysis in Sec. 4 relies on equilibrium prices with respect to true buyer preferences,
which may not hold in practice. Nonetheless, our experiments in Sec. 5 and Appendix G.2 on varying
pricing schemes show that while CE prices are useful for our approach—they are not necessary. Our
counterexample in Sec. A suggests that, in the worst case, partially-informed equilibrating prices do
not ‘solve the problem’. For our experiments in Sec. 5.2, as we state and due to natural limitations,
our empirical evaluation is restricted to rely on real data but simulated user behavior. Establishing
our conclusions in realistic markets requires human-subject experiments as well as extensive field
work. We are hopeful that our current work will serve to encourage these kinds of future endeavours.

Ethics considerations. Determining representations has an immediate and direct effect on human
behavior, and hence must be done with care and consideration. Similarly to recommendation, decon-
gestion by representation is in essence a policy problem, since committing to some representation
at one point in time can affect, through user behavior, future outcomes. Our empirical results in
Sec. 5 suggest that learning can work well even when the counterfactual nature of the problem is
technically unaccounted for (e.g., training f once at the onset on π0, and using it throughout). But this
should not be taken to imply that learning of representations in practice can succeed while ignoring
counterfactuals. For this, we take inspiration from the field of recommender systems, which despite
its historical tendency to focus on predictive aspects of recommendations, has in recent years been
placing increasing emphasis on recommendation as a policy problem, and on the implications of this.

While our focus is on ‘anonymous’ representations, i.e., that are fixed across items and for all users—
it is important to note that the effect of representations on users is not uniform. This comes naturally
from the fact that representations affect the perception of value, which is of course personal. As such,
representations are inherently individualized. And while this provides power for improving welfare, it
also suggests that care must be taken to avoid discrimination on the basis of induced perceptions; e.g.,
decongesting by systematically diverting certain groups or individuals from their preferred choices.

Finally, we note that while promoting welfare is our stated goal and underlies the formulation
of our learning objective, the general approach we consider can in principal be used to promote
other platform objectives. Since these may not necessarily align with user interests, deploying our
framework in any real context should be done with integrity and under transparency, to the extent
possible, by the platform.
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A A NOTE ON ADAPTIVE PRICES

Our settings makes the assumption that prices are fixed. This is motivated by settings in which sellers
are slow to adapt (or do not adapt at all), and in which representations can be adjusted to take effect
more quickly. In this sense, we see representations as adapting to prices—rather than vice versa.

Adaptive prices. An alternative would be to consider prices that adapt to revealed demand, and
in particular, prices p̃ that attain competitive equilibrium under perceived values ṽ; i.e., “partially-
informed competitive equilibrium prices," or “partially-informed prices." These prices would clear
the market, but nonetheless have several significant drawbacks:

• First, such prices would completely ignore true valuations v, and the actual values that users obtain
from items would have no effect on the market. We find this to be unrealistic; a more plausible
alternative would be to have (past) true values propagate to influence (future) prices in some manner
(e.g., via users posting reviews). Fixed prices can be seen as one (indirect) way to achieve this.

• Second, and relatedly, while partially-informed prices do solve congestion, they do so without any
guarantees on welfare; in fact, in our setting, welfare under such prices can be arbitrarily low (see
below). This is in contrast to fully-informed prices, which simultaneously minimize congestion
and maximize welfare.

• Third, in our setting, such partially-informed prices would likely be much lower than prices at
full information. This may push sellers to leave the platform if they have an external option, or
if prices fall below production costs, this reducing welfare.

• Fourth, and most importantly, partially-informed prices still depend on what information is
revealed, i.e., they will be different under different masking schemes. Thus, the problem of
choosing what information to convey would remain and in fact become more difficult, as learning
must now anticipate not only choices, but also induced prices, under possible representations.

Therefore, while learning representations for adapting prices is an intriguing direction, we feel it is
deserving of designated future work.

A constructive example. We now show how in our setting, partially-informed prices can give
arbitrarily-bad welfare (in the worst case) as a result of their dependence on representations. We
prove this by constructing an example in which one representation yields approximately optimal
welfare, whereas another yields (approximately) only a small constant fraction, under corresponding
partially-informed prices. The construction works by setting half of the features to encode most of
the true values of items, and the other half to encode noise. The former subset corresponds to a ‘good’
representation, for which prices need not adapt much, and hence preserves optimal choices. The latter
subset corresponds to a ‘bad’ representation, which is highly uninformative of values; this causes
prices to adapt in a way that entails a ‘random’ decongested allocation providing very low welfare.

Figure 5 illustrates the values and choices under the different representations and pricing schemes for
our example. The precise numerical values used in the example can be found in our code base.
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Figure 5: An example market in which different representations entail very different allocations at
partial-information market-clearing prices. (Left:) The true valuation matrix V , with corresponding
allocations (red squares) for choices made under full information and CE prices p∗. (Center:)
Perceived values Ṽ1 under representation µ1, minus corresponding partial-information CE prices
p̃1. Resulting allocations are optimal. (Right:) Perceived values Ṽ2 minus partial-information prices
p̃2 under µ2. Resulting allocations are highly sub-optimal.
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B THEORETICAL ANALYSIS

COMPETITIVE EQUILIBRIUM

Let p = (p1, . . . , pm) denote item prices, a denote a feasible allocation (i.e., each item is allocated at
most once and each user to at most one item), and vi agent i’s true valuation. Let ṽi denote agent i’s
perceived valuation given mask µ, and vHij = vij − ṽij denote agent i’s hidden valuation. We make
the technical assumption that each user has a unique best response, but note the analysis extends to
demand sets that are not a singleton by heuristically selecting an item from the demand set.8

Definition 5. (a, p) is a competitive equilibrium if (1) ai ∈ argmaxj [vij − pj , 0] for all i, and (2)
any item with pj > 0 is allocated.

Competitive equilibrium requires that allocation a is (1) a best response for each agent, and (2)
maximizes revenue. The following is well known, the proof is included for completeness.
Theorem 2. A CE is welfare optimal.

Proof. The primal assignment problem is

max
a

∑
i

∑
j

aijvij (9)

s.t.
∑
i

aij ≤ 1 ,∀j [dual pj ]∑
j

aij ≤ 1 ,∀i [dual πi]

xij ≥ 0

The dual is
min
π,p

∑
j

pj +
∑
i

πi (10)

s.t. πi + pj ≥ vij ∀i, j [dual aij ]
πi, pj ≥ 0.

The optimality of CE (a, p), along with πi = maxj [vij − pj , 0] to complete the dual, is established
by checking complementary slackness (CS). The primal CS condition is aij > 0⇒ πi + pj = vij ,
and satisfied since agent i receives an item in its best response set when non-empty (CE), and by the
construction of πi. The dual CS conditions are πi > 0 ⇒

∑
j aij = 1 and pj > 0 ⇒

∑
i aij = 1,

and satisfied by the CE properties, since every agent with a non-zero demand set gets an item and
every item with positive price is allocated.

CE prices form a lattice, in general are not unique, and price the core of the assignment game [26].
Amongst the set of CE prices, the buyer-optimal and seller-optimal prices are especially salient.

CONGESTION MONOTONICITY

Proof. (Proposition 1.): Let As denote the set of all feasible allocations of exactly s items, such that
every set A ∈ As is a set of user-item pairs that represents an allocation of s items. Value matrix
(vij) is congestion monotone if and only if for every s ≤ m it holds that

max
A∈As−1

∑
(i,j)∈A

vij ≤ min
A∈As

∑
(i,j)∈A

vij .

Next, we define δij = vij − vmin and write every value in (vij) as vij = vmin + δij . Using these
notations, the congestion monotonicity condition is:

vmin ≥
(

max
A∈As−1

∑
(i,j)∈A

δij

)
−

(
min
A∈As

∑
(i,j)∈A

δij

)
.

8Alternatively, one can infinitesimally perturb the preference vectors and obtain a unique best response.
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Since s ≤ m and since the last summation is of positive terms, we have that a sufficient condition is:
vmin ≥ (m− 1) ·max(δij) = (m− 1)

(
vmax − vmin

)
, as required.

RESTRICTED OPTIMALITY

We start by discussing deterministic allocations and then proceed to the proof of Theorem 1 and
the proofs for the sufficient conditions for restricted optimality. Let welfare W (a) =

∑
i

∑
j aijvij .

Let Ga and Na denote the items and agents, respectively, that are allocated in allocation a. Say
that a is restricted optimal if and only if a is welfare optimal at true valuations v in the economy
E = (Ga, Na); i.e., the economy restricted to the items and agents that are allocated. Say that an
allocation b extends a if Nb ⊃ Na and Gb ⊃ Ga (i.e., b allocates a strict superset of items and agents).

Lemma 1. Given two allocations, a and b, where b extends a and b is restricted optimal, then
W (b) ≥W (a), with W (b) > W (a) if vij > 0 for all i, all j.

Proof. Allocation a is feasible in economy Ea = (Ga, Na) and thus feasible in economy Eb =
(Gb, Nb), and so W (b) ≥ W (a) since b is optimal on Eb. Moreover, if items have strictly positive
value then W (b′) > W (a) for allocation b′, feasible in Eb, that extends a through an arbitrary
assignment of items Gb \Ga to Nb \Na. With this, we have W (b) ≥W (b′) > W (a), and b strictly
improves welfare over a.

Proof. (of Theorem 1.) Consider some deterministic allocation a in the support of A, and let
P1 = PrA[a] denote the probability of assignment a. Define P2 =

∑
b∈sup(B),b extends a PrB [b],

which is the marginal probability of assignments that extend a. We have

∑
b∈sup(B),b extends a

PrB [b] =
∑

b∈sup(B),b extends a

∏
i∈a

PrB [i] ·
∏

i∈b,i/∈a

PrB [i]

=
∏
i∈a

PrB [i]
∑

b∈sup(B),b extends a

∏
i∈b,i/∈a

PrB [i] =
∏
i∈a

PrB [i] · 1 ≥
∏
i∈a

PrA[i],

where the product structure is used to replace the marginalization over the part of the assignment that
extends a by probability 1, and the inequality follows since B extends A. For any such b that extends
a, we have W (b) ≥W (a) by Lemma 1, where we use the property that B is restricted optimal and
thus each b in the support of B is restricted optimal. Then, since P2 ≥ P1, and considering all such a
in the support of A, we have W (B) ≥W (A). By considering the case of vij > 0 for all i, all j, then
W (b) > W (a) by Lemma 1, and we have W (B) > W (A).

By Theorem 1, to argue that randomized allocation B provides more welfare than randomized
allocation A it suffices to argue that (1) each assignment in the support of B is restricted optimal, and
(2) B extends A which means that B allocates a superset of the items and each agent is allocated
something with at least as much probability in B than A (i.e., no agent faces more congestion).

The first set of conditions, namely Conditions 1, 2, and 3 in the main text, follow from reasoning
about the following consistency property, that needs to hold between perceived and true valuations.

Definition 6 (Pointing consistency.). An admissible allocation ã satisfies pointing consistency if, for
every agent i ∈ Ñ , the allocated item ãi is the best response of i at true valuations vi.

In other words, agent i continues to prefer item ãi at prices p when moving from perceived valuation
ṽi to true valuation vi. The following is immediate.

Lemma 2. Admissible allocation ã is restricted optimal if the pointing consistency condition holds.

Proof. (ã, p) is a CE (defined with respect to true valuations) in economy (G̃, Ñ).

Lemma 3. Admissible allocation ã with margin ∆ satisfies pointing consistency (and therefore by
Lemma 2 is restricted optimal), when vHiãi

≥ vHij −∆, for all j ∈ G̃, all i ∈ Ñ .
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Proof. For agent i, and any j ̸= ãi, we have viãi
−pãi

= ṽiãi
−pãi

+vHiãi
≥ ṽij−pj+∆+vHij −∆ =

vij − pj , and pointing consistency, where we substitute ṽiãi
− pãi

≥ ṽij − pj +∆ (margin condition)
and vHiãi

≥ vHij −∆ (indifference assumption).

Considering a matrix with agents as rows and items as columns, the property in Lemma 3 is one of
“row-dominance" for ∆ = 0, such that the value of an agent for its allocated item is weakly larger
than that of every other item. For this property, it suffices that there is little variation in the hidden
value for any items, which is in turn provided by the set of five conditions.

Proof. (of Condition 1) This condition is sufficient for the hidden-value similarity of Lemma 3, since
vHij − vHiãi

= β⊤
i (1−µ)⊙ (xj −xãi) =

∑
k:µk=0 βik(xjk−xãik) ≤

∑
k:µk=0 |βik(xjk−xãik)| ≤∑

k:µk=0 |xjk − xãik| = |(1 − µ) ⊙ (xj − xãi
)|1 ≤ ∆, where the penultimate inequality follows

from 0 ≤ βik ≤ 1.

Proof. (of Condition 2) This condition is sufficient for the hidden-value similarity of Lemma 3 since
vHij − vHiãi

= β⊤
i (1−µ)⊙ (xj −xãi

) =
∑

k:µk=0 βik(xjk−xãik) ≤
∑

k:µk=0 |βik(xjk−xãik)| ≤∑
k:µk=0 |βik| = |(1− µ)⊙ βi|1 ≤ ∆, where the penultimate inequality follows from 0 ≤ xj′k ≤ 1,

for all item j′ and features k.

Proof. (of Condition 3) By the margin property, we have ṽiãi
− pãi

≥ ṽij − pj +∆, for any j ∈ G̃,
and adding pãi

≥ pj −∆ (price variation) we have ṽiz̃i ≥ ṽij , and so ãi is the top item for i given
revealed features. Given this, we have vHiãi

+∆ ≥ vHij , for all j ∈ G̃ (top-item value consistency),
which is the hidden-value similarity condition of Lemma 3.

The second set of conditions, namely Conditions 4 and 5 in the main text, come from considering an
approximate column dominance property on hidden valuations. Considering a matrix with agents as
rows and items as columns, column dominance means that the agent to which an item is allocated has
weakly larger value for the item than that of any other agent.
Definition 7 (Approximate column dominance). An admissible allocation ã with margin ∆ satisfies
approximate column dominance if, for each item j ∈ G̃ and agent i allocated item j, we have
vHij ≥ vHi′j −∆, for all i′ ∈ Ñ .
Lemma 4. Admissible allocation ã with margin ∆ is restricted optimal if the approximate column
dominance condition holds.

Proof. First, given margin ∆ then∑
i∈Ñ

∑
j∈G̃

ãij ṽij ≥
∑
i∈Ñ

∑
j∈G̃

a′ij ṽij + |G̃|∆, all a′, (11)

since we can reduce ṽiãi
by ∆ to each agent i, leaving the rest of the perceived values unchanged,

and this item will still be in the demand set of the agent, and thus (ã, p) would be a CE for these
adjusted, perceived values (perceived, not true values). Thus, the total perceived value for ã is at least
|G̃| ·∆ better than the total perceived value of the next best allocation, considering economy (G̃, Ñ).

Second, we argue that approximate column dominance implies that ã approximately optimizes the
total hidden value. First, suppose we have exact column dominance, with vHij ≥ vHi′j , for all i′ ∈ Ñ ,
item j ∈ G̃, and agent i allocated item j. Then, allocation ã would maximize hidden values. To
see this, consider the transpose of this assignment problem, so that agents become items and items
become agents. This maintains the optimal assignment. ã is optimal in the transpose economy by
considering zero price on each agent and items bidding on agents: by column dominance, each agent
is allocated its most preferred agent. By approximate column dominance, we have∑

i∈Ñ

∑
j∈G̃

ãijv
H
ij + |G̃|∆ ≥

∑
i∈Ñ

∑
j∈G̃

a′ijv
H
ij , all a′, (12)

and ã approximately optimizes total hidden value. This follows by considering the transpose economy,
and noting that if we increase vHiãi

by ∆, to each agent i, leaving the other hidden values unchanged,
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we have exact column dominance and optimality of ã. This means that ã is at most |G̃| ·∆ worse
than any other allocation. Combining (11) for perceived values and (12) for hidden values, we have∑

i∈Ñ

∑
j∈G̃

ãij(ṽij + vHij ) + |G̃|∆ ≥
∑
i∈Ñ

∑
j∈G̃

a′ij(ṽij + vHij ) + |G̃|∆, all a′, (13)

and thus ã is restricted optimal, since ṽij + vHij = vij .

It suffices for approximate column dominance that there is little variation across agents in their
hidden value for an item, which is in turn provided by the following properties (approximate column
dominance is also achieved by Condition 2).

Proof. (of Condition 4) When this condition holds, we have |vHij − vHi′j | = |β⊤
i (1 − µ) ⊙ xj −

β⊤
i′ (1 − µ) ⊙ xj | = |(βi − βi′)

⊤(1 − µ) ⊙ xj | =
∑

k:µk=0 |(βik − βi′k)xjk| ≤
∑

k:µk=0 |xjk| =
|(1−µ)⊙ xj |1 ≤ ∆, where the penultimate inequality follows from 0 ≤ βi′′k ≤ 1, for any i′′, any k.
This establishes that all pairs of agents have similar hidden value for any given item, and in particular
approximate column dominance and vHi′j − vHij ≤ ∆ for agent i allocated item j in ã and any other
agent i′ ∈ Ñ .

Proof. (of Condition 5) With this, we have |vHij − vHi′j | = |β⊤
i (1 − µ) ⊙ xj − β⊤

i′ (1 − µ) ⊙
xj | = |(βi − βi′)

⊤(1 − µ) ⊙ xj | = |
∑

k:µk=0(βik − βi′k)xjk| ≤
∑

k:µk=0 |(βik − βi′k)xjk| ≤∑
k:µk=0 |βik − βi′k| = |(1−µ)⊙ (βi− βi′)|1 ≤ ∆, where the penultimate inequality follows from

0 ≤ xjk ≤ 1 for any item j. This establishes that all pairs of agents have similar hidden value for
any given item, and in particular approximate column dominance and vHi′j − vHij ≤ ∆ for agent i
allocated item j in ã and any other agent i′ ∈ Ñ .

C METHOD: ADDITIONAL DETAILS

Although our approach makes use of prediction, in essence, the problem of finding optimal repre-
sentations is counterfactual in nature. This is because choosing a good mask requires anticipating
what users would have chosen had they made choices under this new mask; these may differ from
the choices made in the observed data. As such, decongestion by representation is a policy problem.
This has two implications: on how data is collected, and on how to predict well.

C.1 DEFAULT POLICY

To facilitate learning, we assume that training data is collected under representations determined
according to a ‘default’ stochastic masking policy, π0. The degree to which we can expect data to
be useful for learning counterfactual masks depends on how informative π0 of other representations.
In particular, if there is sufficient variation in masks generated by π0, then in principle it should be
possible to generalize well from π0 to a learned masking policy, π̂ (which can be deterministic).
We imagine π0 as concentrated around some reasonable default choice of mask, e.g., as elicited
from a predictive model, or which includes features estimated to be most informative of user values.
However, π0 must include some degree of randomization; in particular, to enable learning, we require
π0 to have full support over all masks, i.e., have Pπ0

(µ) ≥ ϵ for all µ and for some ϵ > 0. In our
experiments we set π0 to have most probability mass concentrated around features coming from a
predictive baseline (e.g., price-pred), but with some probability mass assigned to other features.

C.2 COUNTERFACTUAL PREDICTION

Representation learning is counterfactual since choices at test time depend on the learned mask. At
train time, counterfactuality manifests in predictions: for any given µ examined during training,
our objective must emulate choices y(µ), which rely on v, via predictions ŷ(µ), which rely only
on observed features u,X and prices p. As such, we must make use of choice data sampled from
π0 to predict choices to be made under differing µ. There is extensive literature on learning under
distribution shift, and in principle any method for off-policy learning should be applicable to our
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case. One prominent approach relies on inverse propensity weights, which weight examples in the
predictive learning objective according to the ratio of train- to test-probabilities,

wπ(µ) =
Pπ(µ)

Pπ0
(µ)

for all masks µ in the training data, which are then used to modify Eq. (6) into:

f̂ = argmin
f∈F

∑
(M,y)∈S

∑
i∈[n]

wπ(µ)L(yi, f(X, p;ui, µ)) (14)

For the default policy, propensities ρ = Pπ0
(µ) are assumed to be collected and accessible as part

of the training set. For the current policy π, Pπ(µ) can be approximated from the Multivariate
Wallenius’ Noncentral Hypergeometric Distribution, which describes the distribution of sampling
without replacement from a non-uniform multinomial distribution. . This makes the predictive
objective unbiased with respect to the shifted target distribution, and as a result, makes Eq. (8)
appropriate for the current π.

In our case, because the shifted distributions are not set a-priori, but rather, are determined by the
learned representations themselves, our problem is in fact one of decision-dependent distribution
shift. Our proposed solution to this is to alternate between: (i) optimizing ft in Eq. (6) to predict well
for data corresponding to the current mask µt−1, holding parameters θt−1 fixed; and (ii) optimizing
µt by updating parameters θt in Eq. (8) for a fixed ft. That is, we alternate between training the
predictor on a fixed choice distribution, and optimizing representations for a fixed choice predictor.

Nonetheless, in our experiments we have found that simply training f to predict well on π0—without
any reweighing or adjustments—obtained good overall performance, despite an observed reduction
in the predictive performance of f on counterfactual choices made under the learned µ (relative to
predictive performance on π0).

D EXPERIMENTAL DETAILS: SYNTHETIC

Experiments were implemented in Python. See supplementary material for code.

Prices. For computing CE prices we used the cvxpy convex optimization package to implement
Eq. (10). This give some price vector in the core. To interpolate between buyer-optimal and seller-
optimal core prices, we adjust Eq. (10) by: (i) solving the original Eq. (10) to obtain the optimal dual
objective value; (ii) adding a constraint for the objective value to obtain the optimal value; and (iii)
modifying the current objective to either minimize prices (for buyer-optimal) or maximize prices (for
seller-optimal).

Preferences. To generate mixture value matrices, we first sample two random item features matrices
X(1), X(2) ∈ [0, 1]n×d with entries sampled independently from the uniform distribution over
[0, 1]. Next, we generate a fully-heterogeneous value matrix V(1) = Vhet, and a fully-homogeneous
matrix V(2) = Vhom. The heterogeneous matrix is constructed by taking the preference vector
(m,m−1, . . . , 1), normalized to [0, 1], and creating a circulant matrix, so that user i most prefers item
i, and then preferences decreasing in items with increasing indices (modulo m). The homogeneous
matrix is constructed by assigning the same preference vector to all users.9 Finally, to obtain the
corresponding B(i), we solve for the convex objective minB≥0 ∥BX⊤ − V(i)∥2, and for α ∈ [0, 1],
set Bα = (1− α)Bhet + αBhom and X = X(1) +X(2), which gives the desired Vα = BαX

⊤.

Optimization. Because we consider small n,m, d, and because as designers of the experiment we
have access to v, in this experiment we are able to compute measures that rely on v. In particular,
by enumerating over all d-choose-k possible masks, we are able to exactly optimize the considered
objectives, compute the welfare oracle upper bound, and obtain all optimal solutions in case of ties
(as in the case of the decongestion objective).

9We also experimented with adding noise to each V(i) (small enough to retain preferences), but did not
observe this to have any significant impact on results.
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input parameters objectiverepresentation

Figure 6: A schematic illustration of our choice prediction model.

E EXPERIMENTAL DETAILS: REAL DATA

E.1 DATA GENERATION

Data and preprocessing. The Movielens 100k dataset is available at https://grouplens.org/da
tasets/movielens/100k/. NMF on partial rating matrix was done by surprise10 python package
For Movielens, as rating vlues range from 1 to 5, we normalize then into [0, 1] by dividing the user
preferences matrix B by a factor of 5.

Prices. CE prices p∗ were computed by solving the dual LP in Eq. (10), similarly to the synthetic
experiments. For varying prices between buyer-optimal (pbuyer) and seller-optimal (pseller) CE prices,
we interpolate between pbuyer and p∗ for γ ∈ [0, 0.5], and between p∗ and pseller for γ ∈ (0.5, 1],
this since interpolating directly between pbuyer and pseller is prone to exhibiting many within-user
ties as an artifact, and since p∗ is often very close to the average price point (pbuyer + pseller)/2.

Default masking policy. As discussed in Appendix C.1, our method requires training data to be
based on masks generated from a default masking policy, π0. We defined π0 to be concentrated
around the features selected by the price-pred predictive baseline, but ensure all features have
strictly positive probability. In particular, let µ0 be the mask including the set of k features as chosen
by price-pred. Then θ for π0 is constructed as follows: first, we assign θi = 1 for all i /∈ µ0;
then, we assign θi = 3 for all i ∈ µ0; finally, we normalize θ using a softmax with temperature 0.05,
this resulting in a distribution over features that strictly positive everywhere but at the same time
tightly concentrated around µ0, and in a way which depends on k (since different k lead to different
normalizations). An example π0 is shown in Fig 7 (left).

E.2 OUR FRAMEWORK

Choice prediction. The choice prediction model f is trained to predict choices (including null
choices) from training data. For the class of predictors F = {f}, we use item-wise score-based
bilinear classifiers parameterized by W ∈ Rd×d′

, namely:

fW (X, p;u, µ) = argmax
x∈X

u⊤W (x⊙ µ)− p

There are implemented as a single dense linear layer, and for training, the argmax is replaced with a
differentiable softmax. We found learning to be well-behaved even under low softmax temperatures,
and hence use τf = 5e−4 throughout. For training we used cross entropy loss as the objective. For
optimization we Adam for 150 epochs, with learning rate of 1e−3 and batch size of 20. See Figure 6
for a schematic illustration. Training data used to train f includes user choices y made on the basis
masks µ sampled from the default policy, µ ∼ π0. Nonetheless, as described in C.2, recall that we
would like f to predict well on the final learned mask µ, but also on other masks encountered during
training, and more broadly—on any possible mask. Figure 7 (center+right) shows, for d = 12 and
d = 100 and as a function of k, the accuracy of f on (i) data representative of the training distribution
(i.e., masks sampled from π0), and (ii) data which includes masks sampled uniformly at random from
the set of all possible k-sized masks. As can be seen, across all k, performance on arbitrary masks

10https://surpriselib.com/
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Figure 7: (Left): An example for default policy π0 (d = 12, k = 6). Each feature (in x-axis) is
assigned with a probability (y-axis) to be drawn from the categorical distribution. High probability is
assigned to predictive features from price-pred. (Center+right): Accuracy of our choice predictor
f , for Movielens with d = 12 (center) and d = 100 (right).

closely matches in-distribution performance for d = 12, and remains relatively high for d = 100 (vs.
random performance at 5% for m = 20).

Representation learning. The full-framework model consists of a Gumbel-top-k layer, applied
on top of a ‘frozen’ choice prediction model f , pre-trained as described above. The Gumbel-top-k
layer has d trainable parameters θ ∈ Θ = Rd; once passed through an additional softmax layer,
this constitutes a distribution over features. As described in the main paper, given this distribution,
we generate random masks by independently sampling k features i ∼ θi without replacement (and
re-normalizing θ). However, to ensure our framework is differentiable, we use a relaxed-top-k
procedure for generating ‘soft’ k-sized masks, and for each batch, we sample in this way N soft
masks, for which we adopt the procedure of [31].

Given a sampled batch of masks {µ}, these are then plugged in to the prediction model f to obtain
ŷ(µ), and finally our proxy-loss −W̃ is computed. Optimization was carried out using the Adam
optimizer for 300 epochs (at which learning converged for most cases) and with a learning rate of
1e−2. We set N = 20, and use temperatures τGumbel = 2 for the Gumbel softmax, τtop-k = 0.2 for
the relaxed top-k, and τf = 0.01 for the softmax in the pre-trained predictive model f . Since the
selection of the top-k features admits several relaxations, for larger k > d/2, we have found it useful
to instead consider k ← d− k in learning, and then correspondingly use ‘inverted’ masks µ← 1−µ.

Variants. As noted, we evaluate three variants of our approach that differ in their usage at test-time:

• DbR(θ̂): Constructs a mask from the top-k entries in the learned θ̂.
• DbR(µ̂): A heuristic for choosing a mask on the basis of training data. Here we sample 20

masks µ̂ according to the multinomial distribution defined by the learned θ̂, and commit to
the sampled mask obtaining the lowest value on the proxy objective.

• DbR(π̂): Emulates using θ̂ as a masking policy π̂ = πθ̂. Here we sample 50 masks µ ∼ π̂,
evaluate for each sampled mask its performance on the entire test set, and average.

E.3 BASELINES

• Price predictive (price-pred): Selects the k most informative features for the regression
task of predicting the price of items, based on item its features. Data includes features and
prices for all items that appear in the dataset (recall markets include the same set of items,
but items can be priced differently per market). We use the Lasso path (implementation by
scikit-learn11) to order features in terms of their importance for prediction, and take as a
mask the top k features in that order.

• Choice predictive (choice-pred): Selects the k most informative features for the classifica-
tion task of predicting user choices from user and item features. For this baseline we use the
predictive model f , where we interpret learned weights W = T̂ as an estimated of the true
underlying mapping T between user features u and (unobserved) preferences β. Inferred

11https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.lasso_path
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Figure 8: A replication of results on synthetic data (Sec. 5.1) on an alternative choice model based
on mean-imputed values (top), in comparison to the zero-imputed choice model studied in the main
paper (bottom). Evaluation is also extended to additional CE price schemes.

parameters T̂ are then used to obtain estimated preferences per user via β̂ = uT̂ . We then
average preferences over users, to obtain preferences representative of an ‘average’ user,
and from which we take the top k-features, we we interpret as accounting for the largest
proportion of value.

• Random (random): Here we report performance averaged over 100 random masks sampled
uniformly from the set of all k-sized masks.

E.4 IMPLEMENTATION

Code. All code is written in python. All methods and baselines are implemented and trained with
Tensorflow12 2.11 and using Keras. CE prices were computed using the convex programming package
cvxpy13.

Hardware. All experiments were run on a Linux machine wih AMD EPYC 7713 64-Core processors.
For speedup runs were parallelized each across 4 CPUs.

Runtime. Runtime for a single experimental instance of the entire pipeline was clocked as:

• ≈ 6.5 minutes for the d = 12 setting
• ≈ 13.5 minutes for the d = 100 setting

Data creation was employed once at the onset.

F ADDITIONAL EXPERIMENTAL RESULTS: SYNTHETIC DATA

F.1 MEAN-IMPUTATION CHOICE MODEL

In this section we replicate our main synthetic experiment in Sec. 5.1 on a different user choice model.
In the main part of the paper, we model users as contending with the partial information depicted in
representations by assuming that unobserved features do not contribute towards the item’s value.

In particular, here we consider users who replace masked features with mean-imputed values: for
example, if some feature ℓ is masked, then features xjℓ are replaced with the ‘average’ feature, x̄ℓ =

12https://www.tensorflow.org/
13https://www.cvxpy.org/
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Figure 9: Other prices schemes for real data experiments. (Left:) Welfare (absolute) obtained for
CE prices computed on noisy valuations v + ϵv for increasing additive noise ϵv. (Right:) Welfare
(absolute) obtained for prices that interpolate between CE prices and heuristic (non-CE) prices set to
average user values.

1
m

∑
j′ xj′ℓ, computed over and assigned to all market items j. This is in contrast to the choice model

defined in (see Sec. 2) which relies on zero-imputed values. The main difference is that with mean
imputation, (i) perceived values can also be higher than true values (e.g., if x̄ℓ > xjℓ for some item j);
and (ii) our proxy welfare objective in Eq. (5) is no longer a lower bound on true welfare. Nonetheless,
we conjecture that if mean-imputed perceived values do not dramatically distort inherent true values,
then proxy welfare can still be expected to perform well as an approximation of true welfare.

Figure 8 shows performance for all methods considered in Sec. 5.1 on mean-imputed choice behavior,
for increasing k and for a range of possible CE prices. For comparison we also include results
for our main zero-imputed choice model (mid-range CE prices are used in Sec. 5.1). As can be
seen, our approach retains performance for mean-imputed choices across all considered pricing
schemes. Whereas for zero-imputed choices overall welfare decreases when prices are higher (likely
since higher prices increase null choices), mean-imputed choices exhibit a similar degree of welfare
regardless of the particular price range.

G ADDITIONAL EXPERIMENTAL RESULTS: REAL DATA

G.1 ADDITIONAL DATASET - YELP RESTAURANTS

Here we present a replication of our main experiment in and an additional dataset—the restaurants
portion of the Yelp! reviews dataset, which is publicly-available.14 We use the same preprocessing
procedure and experimental setup as for MovieLens (see Appendix E), but also filter to keep restau-
rants that received at least 20 reviews, and users that gave at least 20 reviews. Figure 10 shows results.
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Figure 10: A replication of our main experiment on the Yelp restaurant reviews dataset.

14https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset
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Figure 11: Null-item choices (equivalent to no-choice). (Left:) Main experiment on d = 12. (Right:)
Prices scheme in which CE prices ranges from buyer-optimal (minimal) to seller-optimal (maximal).

As can be seen, general trends are qualitatively similar to the those observed for the Movielens dataset
(Figure 4 in the main paper).

G.2 PRICING SCHEMES

Here we present robustness results for additional pricing schemes, which complement our results
from Sec. 5.2. In particular, we examined performance for:

• Prices set by solving Eq. (10), but for noisy valuations v + ϵv , for increasing levels of noise
ϵ. These simulate a setting where prices are CE, but for the ‘wrong’ valuations, p∗(v + ϵv).
Results are shown in Figure 9 (left).

• Prices that interpolate from mid-range CE prices (as in the main experiments) to heuristically-
set, non-CE prices. Specifically, here we use prices based on average values assigned by
users to items. Results are shown in Figure 9 (right).

Overall, as in the main paper, moving away from CE prices causes a reduction in potential welfare,
and in the performance of all methods. Results here demonstrate that in the above additional pricing
settings, our approach is still robust in that it maintains it’s relative performance compared to baselines
and the welfare oracle.

G.3 THE IMPORTANCE OF λ

In principle, and due to the counterfactual nature of learning representations (see Appendix C, tuning
λ requires experimentation, i.e., deploying a learned masking model µ̂ trained on data using some λ,
to be evaluated on other candidate λ′. Nonetheless, in our experiments we observe that learning is
fairly robust to the choice of λ, even if kept constant throughout training. Figure 14 (bottom-right)
shows welfare (normalized) obtained for a different λ on Movielens using d = 12. As can be seen,
any λ > 0.5 works well and on par with our heuristic choice of λ = 1− k/2d, used in Sec. 5.

G.4 NO-CHOICE PENALTY

One empirical observation that came up during experimentation was that the optimization of our
proposed differential welfare proxy occasionally converged to a degenerate solution in which all
users choose the null option. To circumvent this, we added to the objective a penalty term that
discourages the outcome in which all users choose the null item (see end of Sec. 3). This proved
useful in steering the optimization trajectory away from such undesired local optima, which trivially
implies no congestion but for the “wrong” reasons, and is by definition sub-optimal (in terms of both
the proxy objective value and actual welfare). A possible concern that could arise from using this
penalty would be that it could inadvertently coerce users to always choose some (non-null) item,
which is undesirable. However, Figure 11 (Left) demonstrates that this is not the case: user do indeed
choose the null item even when the penalty is present in the objective. Furthermore, and as ban be
expected, such non-choices become even more frequent when prices are higher.
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Figure 12: Results on Movielens with d = 100 for additional values of k > 90.

G.5 HIGHER-RESOLUTION RESULTS FOR MOVIELENS

When examining Fig. 4 from Sec. 5.2, which shows results for the Movielens dataset, it may seem as
if there is a qualitative difference between outcomes for d = 12 and d = 100: whereas for d = 12
the improvement of the DbR methods in terms of welfare (relative to random) seems to increase with
k and then decrease, for d = 100, it appears to be only increasing. This, however, is an artifact of
the range of values of k considered in each experiment; Clearly, for any d, performance cannot only
increase in k, since for k = d performance for all methods is the same, and so the relative gain vs. the
random baseline is always zero (as it is also for k = 0). Hence, and whereas for d = 12 performance
peaks at around k = 9, the optimal point for d = 100 (again, in terms of relative welfare gain) is for
some k ∈ [90, 100].

To validate this, we evaluated performance on a tighter grid of values for large k, and in particular for
k ∈ {91, 92, . . . , 99}. Results are shown in Fig. 12, together with all previous k. As expected, for
d = 100 relative welfare gains do indeed increase first and then decrease, with the maximum attained
at around k = 96.

G.6 RELATIVE AND ABSOLUTE PERFORMANCE

In Sec. 5, for our experiments which vary k, we chose to portray results normalized from below
to match random performance (random). This was mainly since the overall effect on performance
of increasing k is larger than that which can be obtained by any method (i.e., the gap between
random and oracle). For completeness, Figure 14 (top row) shows unormalized results, which show
in absolute terms how overall performance increases for k. Figure 14 (bottom-left) shows results
normalized from both below (matching random) and above (matching oracle); as can be seen, our
approach obtains fairly constant relative performance across k. For completeness, Figure 13 shows in
more detail the number of allocated items for the d = 12 setting.
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Figure 13: Number of unique items (enlarged version of inlay in Fig. 4 (left)).
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Figure 14: (Top row:) Unormalized results, showing how potential and obtained welfare increase
with k. (Bottom-left:) Results normalized to 1 from above (matching the oracle, as in the main
paper) and below to 0 (matching random). Our approach shows relative performance that is fairly
constant across k. (Bottom-right:) Performance (also normalized) for various fixed λ.
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