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ABSTRACT

A central goal of cognitive modeling is to develop models that not only predict
human behavior but also provide insight into the underlying cognitive mecha-
nisms. While neural network models trained on large-scale behavioral data often
achieve strong predictive performance, they typically fall short in offering inter-
pretable explanations of the cognitive processes they capture. In this work, we
explore the potential of pretrained large language models (LLMs) to serve as dual-
purpose cognitive models — capable of both accurate prediction and interpretable
explanation in natural language. Specifically, we employ reinforcement learning
with outcome-based rewards to guide LLMs toward generating explicit reasoning
traces that explain human risky choices. Our findings demonstrate that this ap-
proach produces high-quality explanations at scale alongside strong quantitative
predictions of human decisions.

1 INTRODUCTION

Computational models of cognition have driven immense progress in understanding the men-
tal processes underlying learning, thinking, problem solving, and decision making (Farrell &
Lewandowsky, |2018; Busemeyer & Diederich, 2010; |Griffiths et al.,2024a;|Ma et al.,|2023} Rumel-
hart et al., [1986). Recent advances — particularly those leveraging neural networks to predict hu-
man behavior — have introduced increasingly sophisticated model architectures and training meth-
ods (Peterson et al., [2021} Zhu et al., [2025a; Huang, 2023; |/Almaatouq et al., [2024)). While these
models have demonstrated improved predictive accuracy, they often lack interpretability, offering
limited insight into the underlying cognitive mechanisms. A recent example is the Centaur model,
which applies customized supervised fine-tuning (SFT) to pretrained LLMs and achieves impressive
performance in predicting human behavior, surpassing domain-specific cognitive models from the
literature (Binz et al} [2025). However, despite their predictive successes, such models offer lim-
ited explanatory power; a deeper theoretical understanding of human cognition requires more than
a simple match in behavior (Frank & Goodman, [2025).

To start addressing this dilemma, we propose that LLMs capable of generating reasoning or thinking
tokens offer a promising opportunity for developing cognitive models that not only predict but also
explain human behavior. The key idea is to treat the chain-of-thought (CoT) generated by these
models prior to their final responses as a verbalized account of underlying cognitive mechanisms,
expressed in natural language. In other words, while LLMs learn to generate CoT reasoning that im-
proves prediction of human behavior, cognitive scientists can examine these CoTs to assess whether
they provide meaningful and interpretable explanations of the observed data.

In this work, we put these ideas to the test in the domain of human risky choice; that is, how
people choose between risky and/or safe options. To encourage LLMs to generate both CoTs and
predictions about human risky choices, we post-train a backbone LLLM using reinforcement learning
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(RL) with outcome-based rewards (Lambertl 2025} |Shao et al., 2024} |Yu et al.l 2025} [Liu et al.,
20235)), where human choice proportions served as the ground truth for evaluation. In other words,
the behavioral predictions are directly linked to the reward function of RL, incentivizing the LLM
to produce useful reasoning chains. For comparison, we also evaluated various SFT post-training
methods, including Centaur-style SFT (Binz et al., [2025), which has been shown to produce high-
performing cognitive models based on LLMs.

Our findings show that RL post-training can elicit sensible CoT reasoning traces from LLMs while
achieving predictive accuracy comparable to that of SFT-based methods. Moreover, the generated
CoTs are responsive to the structure of the training data: when human behavioral data are replaced
with synthetic data generated by an expected-value maximization model, the CoTs adapt accordingly
to reflect the structure of the synthetic dataset. We also find that the quality of the CoTs depends on
the strength of the backbone LLM and thus using a weaker model results in noticeable degradation
of reasoning quality.

2 RELATED WORK

Leveraging LLMs to model human cognition. In recent years, there has been widespread en-
thusiasm about the potential of LLMs to advance cognitive modeling and provide new theoretical
understanding about the mind. A growing body of work has sparked scholarly debate around the use
of LLMs for modeling human cognitive processes (Frank & Goodman, [2025; |Griffiths et al., [2024b;
Binz & Schulz,|2023). The main advantage of using LLMs to predict human behavior is that LLMs
can process similar stimuli to people; in other words, LLMs can process a broader range of stimuli
(often described in natural language) than previous neural network models which typically operate
in a more abstract representation of cognitive tasks (Frank & Goodman, 2025} |Peterson et al., 2021}
Huang, [2023; Zhu et al.|[2025a).

Consider the risky-choice problem illustrated in Figure |1} where human participants were asked to
choose between Option A, which offers $27 for sure, and Option B, which offers $25 with a 90%
probability and $92 with a 10% probability. Traditional cognitive models and neural-network-based
models typically operate on structured quantitative task features such as {1, $27} (i.e., probability
and value) for option A and {0.9, $25; 0.1, $92} for option B (Peterson et al.,2021). These models
define functions that map from such numerical inputs to human risky choices. In contrast, LLM-
based cognitive models operate over a different representation of the task: they take natural language
descriptions as input and predict human responses directly (Zhu et al.| 2025b; |Binz et al., 2025} Binz
& Schulz, [2023). Recent work has shown that SFT of LLMs can improve predictive accuracy on
human behavioral data (Binz et al.| 2025). Our work goes beyond improving LLMs’ ability to
predict human behavior; we aim to elicit verbal theories of human behavior from LLMs using RL.

Automated discovery of cognitive models using LLMs. Another closely-related line of research
involves using LLMs to automatically search over the space of cognitive models, enabling the au-
tomated discovery of interpretable theories (Castro et al.|, [2025; Rmus et al., 2025} Musslick et al.,
2024;|Wong et al.,2023). In this approach, LLMs are prompted to generate symbolic programs (e.g.,
Python code), which are then executed and fitted to human or animal data. Because the discovered
models are expressed as code, they are inherently interpretable — helping to address the afore-
mentioned dilemma in cognitive modeling. Leveraging the coding capabilities of LLMs has shown
promise in identifying heuristic decision-making models (Rmus et al.|[2025) and strategies in multi-
armed bandit tasks (Castro et al.||2025). However, these approaches typically do not involve further
fine-tuning of the LLM during the search process, instead relying heavily on the model’s in-context
learning (Brown et al.| [2020) ability for effective model discovery.

3 METHOD

To evaluate whether post-training LLMs can produce useful cognitive models, we compare three
distinct post-training strategies for LLMs: (i) SFT, (ii) a variant of SFT specifically designed for
adapting LLMs to cognitive tasks, as used in the Centaur model (Binz et al.,2025)), and (iii) RL based
on Group Relative Policy Optimization (GRPO) (Shao et al., |2024; Liu et al., [2025)). Each method
was applied to fine-tune identical low-rank adaptation (LoRA) modules on the largest available
human risky-choice dataset, choices13k, originally collected by Peterson et al.[(2021)).
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Problem 10621 in the training set

Option A offers a 100.0% chance to win $27.0.
Option B offers (1) a 90.0% chance to win $25.0; (2) a 10.0% chance to win $92.0.
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Figure 1: Overview of three post-training strategies for building cognitive models of human risky
choice using Qwen-2.5-7B-Instruct. The backbone LLM was first adapted using low-rank adapta-
tion (LoRA) (Hu et al., 2022), followed by post-training via three strategies: supervised fine-tuning
(SFT), Centaur-style SFT (Binz et al., 2025), and reinforcement learning from outcome-based re-
wards (Liu et al., 2025; Shao et al., [2024). In the illustrated example, the LLM is prompted to
predict human choice behavior. SFT and Centaur-style models are trained directly on human data
represented in JSON format. In contrast, the RL model generates candidate completions that include
CoT reasoning and final predictions in JSON format, with each completion evaluated based on its
predictions. Tokens or predictions relevant to each training method are highlighted in light blue.

The backbone LLM used throughout is Qwen-2.5-7B-Instruct (Yang et al.,|2024). All models were
fine-tuned using the same LoRA configuration (Hu et al., 2022}, with both the rank and alpha param-
eters set to 32. LoRA modules were applied to all linear layers of the backbone model and included
a dropout probability of 0.05. This setup results in approximately 80.74M trainable parameters,
comprising only 1.05% of the total parameters in the 7B model.

To ensure consistency and control across training and evaluation, we randomly partitioned the
choices13k dataset into training and test sets using a 90/10 split, resulting in 13,102 choice
problems for training and 1,462 for testing. The partition was performed at the level of unique prob-
lem identifiers, such that repeated measures of the same problem, if present, were assigned entirely
to either the training or the test set. This partition was held fixed for all post-training, including SFT,
Centaur-style SFT, and RL, as well as evaluation procedures.

SFT and Centaur-style SFT training details. We begin with the standard SFT approach to adapt a
pretrained LLM to the target domain of human risky choice behavior (see Figure[I[|SFT). To enhance
the Qwen model’s ability to predict human decisions, we converted the original choices13k
dataset into a text format. Specifically, we represented human choice data in JSON, rounding the
observed choice percentages for each option to the nearest integer between 0 and 100. For example,
if empirical data show that 71.11% of participants selected Option B, this was reformatted as JSON:
{"optionA": 29, "optionB": 71}.See Appendix[A.1]for detailed prompts.

We fine-tuned the Qwen model using SFT for a total of 6 epochs on the training set, with a fixed
learning rate of 10~°, gradient accumulation steps of 8, and the AdamW optimizer (Loshchilov &
Hutter, 2017). In our setup, SFT corresponds to the standard autoregressive next-token prediction
paradigm.

In parallel, we implemented a variant used to train the Centaur model, which selectively masks out
all tokens except those corresponding to human data (Binz et al.,|2025)). This method has been shown
to effectively adapt pretrained LLMs for explaining a wide range of human cognitive tasks (Binz
et al., [2025). Unlike standard SFT, Centaur-style SFT places human data (i.e., choice proportions)
within special brackets (“<<” and “>>"), and only tokens enclosed within these brackets contribute
to the loss during training (see Figure[I). In our implementation, Centaur-style SFT was applied at
the problem level rather than the individual participant level, such that the model predicts aggregated
human responses for each risky-choice problem.
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RL training details. We also fine-tuned the Qwen model using the GRPO algorithm (Shao et al.,
2024)). At each training step, the model generates 12 candidate completions (i.e., 01,03, ...,05)
for the same risky-choice problem (i.e., q), with each completion capped at a maximum length of
1,024 tokens. The GRPO algorithm evaluates each candidate based on the model-predicted choice
probabilities for the two options (see Figure|[l|RL). Specifically, we implemented an outcome-based
reward function that uses human data as ground truth. The reward is defined as one minus the abso-
lute difference between the model’s predicted probability for option B and the empirical proportion
of human participants who chose that option:

1—|o? —p?| ifois coherent

R(q,0) = {0 )

otherwise
Here, q denotes the risky-choice problem, o is the model response, o” is the model-predicted prob-
ability for option B, and p® is the proportion of human participants who selected option B. To be
eligible for a reward, model-predicted probabilities for both option A and B must satisfy coherence
constraints: 0 < 04 < 1,0 < of < 1, and 0o® + 0o = 1. The maximum achievable outcome
reward is 1, which occurs when o® = p?Z.

In addition, we incorporated a format reward to encourage structurally well-formed completions.
This reward depends on the number and position of JSON-formatted outputs in the model response.
If the model generates exactly one JSON output, the format reward increases by 0.25. Further-
more, if the behavioral prediction appears after reasoning tokens, the format reward increases by an
additional 0.25. The maximum possible format reward is therefore 0.5.

The RL training was conducted for a total of 3 epochs, with a learning rate of 3 x 10~5 and a cosine
learning rate scheduler. Moreover, we omitted the reward normalization by standard deviation as
suggested by the GRPO Done Right algorithm (Liu et al.,[2025)). As a result, the advantage function
was defined as the reward of each candidate completion minus the average reward within the group.

A; = R(q,0;) — mean({R(q,01), ..., R(q,0¢)}) 2)

where G = 12 is the group size. We revisit the implications of this design choice, along with other
unsuccessful attempts, in the Discussion section and Appendix [F

With the advantage function defined, we train the backbone LLM using the GRPO Done Right
algorithm (Liu et al.| 2025) with the following objective function:

L(mg) = Eqnq. (038 ~rogcia)

1 Al 7T<9(0itq0i<t) 7T9(0it|q 0i<t) 3)
EZZ min[ A Ai,clip( e ,17610W,1+6high)A1}

— T0gq (0i,td; 07, <) 004 (04,65 04, <)

where q denotes a risky-choice problem sampled from the training set @, and |o;| is the number
of tokens in the i-th model completion o;, generated by the LLM under the old policy 7. More-
over, t denotes the position of a token within the sequence of a model-generated completion and
0 represents the parameters of LLM. The inner summation iterates over all tokens in the sampled
completion. This objective follows the clipped surrogate loss formulation from the proximal policy
optimization (PPO) algorithm (Schulman et al.,|2017)), modified to operate at the token level within
each sampled trajectory. The clipped values lie within the range of [0.8, 1.28], where €y, = 0.2
and epiop = 0.28, as set in our experiment. This asymmetric clipping follows the recommendation in
Yu et al.[(2025), which suggests that slightly increasing epign, can enhance exploration in RL. GRPO
also incorporates a KL divergence penalty term in its objective function to prevent the updated policy
from deviating too far from the backbone LLM. This penalty takes the form 5D g1 (7 || Treference )
where /3 is set to 1074,

Key distinctions between RL and Centaur-style SFT. While both Centaur-style SFT and RL focus
exclusively on tokens relevant to choice probabilities (see Figure [1| highlighted text), there are
important distinctions between these two post-training methods. Centaur-style SFT operates within
the standard next-token prediction framework and thus relies on the tokenized representation of
numerical outputs. In contrast, RL assigns outcome rewards based on the predicted numerical values
themselves, rather than their tokenized forms. These rewards are then used to weight policy updates
during training. This reward-weighted policy optimization has been argued to support improved
generalization in downstream tasks (Chu et al.| [2025} [Wang et al., 2025)).
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Figure 2: Learning curves on the (a) training and (b) test sets. Backbone LLM is Qwen-2.5-7B-
Instruct. The horizontal axes indicate training epochs, while the vertical axes represent mean squared
error (MSE) evaluated on the corresponding dataset. The three post-training strategies compared are
supervised fine-tuning (SFT, red), Centaur-style SFT (green), and reinforcement learning (RL, grey).
The lowest MSEs on the training set occur at epochs 5.98 (SFT), 5.74 (Centaur-style SFT), and 2.75
(RL), while the lowest MSEs on the test set occur at epochs 5.86 (SFT), 5.86 (Centaur-style SFT),
and 2.60 (RL). (¢) MSE on the test set at the final checkpoint of each post-training method. Error
bars represent 1 standard error across risky-choice problems.

4 RESULTS

Having introduced the three post-training strategies, we now evaluate the effectiveness of the fine-
tuned models from each method as cognitive models of human risky choice. To ensure compara-
bility, all fine-tuned models were evaluated using identical sampling parameters, implemented with
vLLM (Kwon et al.,[2023)): temperature = 0.7, top-p = 0.95, and top-k = 50. The maximum number
of generated tokens was adjusted according to model type. Since the RL models were trained to
generate intermediate reasoning before producing a final choice prediction, they were allowed up to
1,024 tokens to accommodate more elaborate completions. In contrast, the SFT and Centaur-style
models were restricted to 30 tokens, as they were trained to produce choice predictions directly
without intermediate reasoning steps. We evaluated model inferences at all checkpoints across the
three post-training methods, for both the training and test set problems.

Learning curves. All three post-training methods led to gradual improvements in model predic-
tions, as indicated by decreasing MSE on both the training and test sets (see Figure [2). However,
the error trajectories differ notably across methods. RL achieves a faster reduction in prediction
error compared to SFT and Centaur-style SFT when measured by the number of training examples
processed. It is important to note, however, that RL generates significantly more completions per
training example and incurs substantially higher computational costs, whereas SFT and Centaur-
style SFT are trained directly on the human data without generating additional completions.
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Figure 3: Learning curves for the RL model. Backbone LLM is Qwen-2.5-7B-Instruct. (Left)
Correctness reward, defined as one minus the absolute difference between model predictions and
human choice proportions. (Middle) Format reward, based on the structure and position of the
model’s JSON output. (Right) Completion length, measured by the number of generated tokens.
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Problem 1175 in the test set

You are a and insightful gical theorist, skilled in analyzing human behavior, cognition, and decision-making. You will be shown two options, A and B. Your tas

is to estimate the
proportion of people who will choose each option. First. explain your reasoning step by step. Then, provide your final estimates in JSON format, ensuring that: "option_A" represents the percentage of people
choosing Option A; "option_B" represents the percentage of people choosing Option B; The values must be numbers between 0 and 100 (inclusive); The sum of "option_A" and "option_B" must equal 100.
Option A offers a 100.0% chance to win $15.0.

Option B offers (1) a 1.0% chance to win $13.0; (2) a 99.0% chance to win $20.0.

Qwen2.5-7B-Inst Qwen2.5-7B-GRPO-c13k

To analyze this decision, let’s break down the expected value (EV) for each option. Expected To analyze this decision-making scenario, let’s break down the expected values of each option and
value is a useful metric for evaluating choices based on their potential outcomes and probabilities. consider how risk perception and probability weighting might influence the decision.
Step 1: Calculate the Expected Value for Option A Step-by-Step Reasoning:

e Probability of winning: 100.0%

® Prize: $150

1. Calculate Expected Values:
© Option A: The expected value (EV) is straightforward as it's a 100% chance to win

o Expected Value (EV) = Probability * Prize $15.0.[EV_A=1.00 \times 15.00 = 15.00 ]
* EV_A=100*$150=5150 © Option B: The expected value is calculated as the sum of the probabilities and
Step 2: Calculate the Expected Value for Option B outcomes. [ EV_B = (0.01 \times 13.00) + (0.99 \times 20.00) = 0.13 + 19.80 = 19.93 |
. Pmbub;hl) of winning $20.0: 99.0% 2. Compare Expected Values:
* Prize: $20.0 ° V of ion A
o Expected Value (EV) = Probability * Prize o E:, Z: 3:;:::: }; i:;fﬁ
o EV_BI=0.99*$20.0 = $19.80 3. Based on expected values alone, Option B appears more attractive because it has a higher
* Probability of winning $13.0: 1.0% expected value.
e Prize: $13.0 4. Consider Risk Perception:
*  Expected Value (EV) = Probability * Prize o Risk Aversion: Many people tend to be risk-averse, preferring a certain outcome over a
e EV_B2=001%*$130=50.13 probabilistic one with the same expected value. However, the difference between the
* Total Expected Value for Option B RL two options is significant, and the expected value of Option B is notably higher.
* EV_B=EV_BI+EV_B2=51980+50.13=51993 -, o Probability Weighting: People often overweight low-p 'y outcomes. The 1%

Step 3: Compare Expected Values

* EV_A=$150

* EV_B=§1993
Option B has a higher expected value, which might lead most people to choose Option B.
However, people are often risk-averse and prefer a guaranteed outcome over a higher expected
value with risk.
Step 4: Consider Risk-Aversion

* Option A offers a 100% chance to win $15.0, which is risk-free.

* Option B offers a 99% chance to win $20.0 and a 1% chance to win $13.0, which introduces

risk.

Step 5: Estimate the Proportion of People Choosing Each Option

e Given the risk aversion of most people, a significant portion of the population might opt for

chance of winning $13.0 in Option B might be less appealing, but the 9% chance of
winning $20.0 might be more attractive due to the higher certainty and the higher value
of the larger win
« Behavioral Factors:
©  Lump Sum vs. Bundle: The $20.00 in Option B is more certain and larger than the
$15.00 in Option A. The bundle of smaller ‘ger outcomes (Option B) might be
more attractive due to the certainty of the la m,
Framing Effects: The framing of the options also influence decision-making. The
$20.00 in Option B can be seen as a significant gain, whereas the $15.00 in Option A
might feel less substantial.
Final Estimates:
xpected value of Option B and the behavioral factors that make it more
estimate the following:
25%
* Option B: 75%
JSON Format:
{
"option A": 25.0,
"option B": 75.0

n

the risk-free option, even if it has a lower expected value
Arough estimate could be that about 70% of people might choose Option A and 30% might
choose Option B.
Final Estimates
* Option A: 70%
* Option B: 30%
JSON Format
{ }
"option A": 70,
“option_B": 30
)

This estimation is based on the expected values and behavioral biases, but individual preferences

can vary

Figure 4: Comparison of CoT reasoning and model predictions before (left panel) and after (right
panel) RL training. Human data indicate that approximately 71% of participants selected Option B
in this problem. Model completions are reformatted using Markdown for enhanced readability.

Ultimately, all three post-training methods yield fine-tuned models with comparable performance in
predicting human choices. At the final checkpoint, the MSE on test setis M = .0144 (SE = .0006)
for SFT, M = .0155 (SE = .0006) for Centaur-style SFT, M = .0148 (SE = .0006) for RL.
Statistical tests reveal no significant differences among the models: SFT vs. Centaur-style SFT
(t(2923) = —1.31,p = 0.19), SFT vs. RL (¢(2923) = —0.58,p = 0.56), and RL vs. Centaur-style
SFT (¢(2923) = 0.78, p = 0.43). For reference, the best-performing neural network model reported
in (Peterson et al.| 2021), the Mixture of Theories model, achieved an MSE of .0113, while the
neurally augmented prospect theory model achieved an MSE of .0204 (both models use problem
features as input rather than text).

Moreover, we observe stable improvements in the RL learning curves for both the correctness reward
and the format reward (see Figure [3). The format reward is learned rapidly, with the ceiling value
of 0.5 reached within the first few training steps. The completion length of the RL model initially
increases during the first training epoch and subsequently stabilizes between 500 and 650 tokens.

Analyzing Chains-of-Thought. Unlike the SFT and Centaur-style models, RL models are capa-
ble of explicitly generating reasoning tokens prior to making final predictions. We analyze these
reasoning chains with three key objectives: (i) to characterize the nature of the reasoning processes
across different risky-choice problems and training stages; (ii) to assess whether the reasoning chains
exhibit causal influence on the model’s predictions; and (iii) to examine the implications of these
reasoning traces for developing cognitive models of human risky choice.

As illustrated in Figure 4] RL training alters both the CoT reasoning and final predictions of the
LLM for the same problem in the held-out test set. We observe that certain thoughts are preserved:
for example, the calculation and comparison of expected values for both options, as well as consid-
erations of human risk preferences. In addition, RL appears to amplify certain types of thoughts in
the CoT, such as references to psychological factors and cognitive biases.

We next aim to characterize the CoT reasoning learned by the RL model in order to identify effective
cognitive processes that contribute to accurately predicting human risky choices. Note that the CoT
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Figure 5: Visualization of CoT reasoning generated by RL models. Each reasoning segment
(“thought”) is embedded using the all-MiniLM-L6-v2 model from SBERT (Reimers &
Gurevychl 2019), followed by dimensionality reduction to two dimensions using t-SNE (Van der
Maaten & Hintonl [2008). In the resulting 2D space, we identified nine clusters using the k-means
algorithm. Each cluster is labeled with a summary of its centroid thought to provide an interpretable
overview of common reasoning patterns.

generated by the RL model is typically itemized, often presented as a sequence of clearly delineated
steps or sections. Leveraging this structure, we segmented each CoT into smaller units — referred
to as thoughts — using a regular expression-based parser. For example, the CoT shown in Figure 3]
(right) is divided into five distinct thoughts, corresponding to its five itemized sections.

Each segmented thought was embedded using the al1-MiniLM-L6-v2 model from SBERT
(Reimers & Gurevych, 2019), and subsequently projected into two dimensions using t-SNE for
visualization (Van der Maaten & Hinton, [2008). In this 2D embedding space, we identified nine
clusters using the k-means algorithm. To enhance interpretability, each cluster was labeled with a
summary of its centroid thought, providing an overview of common reasoning patterns.

As shown in Figure [5] the CoT generated by the RL model can be broadly categorized into five
types of reasoning strategies that contribute to improved prediction of human risky choices: (i)
computing the expected values of both options accurately, (ii) conducting a coarse comparison based
on these expected values, (iii) considering psychological influences such as behavioral biases, (iv)
incorporating human risk preferences and the variability of outcomes, and (v) producing a final
prediction based on some or all of the above factors, conditional on the magnitude of the expected
value difference.

Moreover, we conducted several supplementary analyses of CoT reasoning, including small-scale
human evaluations (Appendix [C.I)), large-scale LLM-as-a-judge assessments (Appendix [C.2), CoT
swapping between the backbone and RL models (Appendix [C.3), and tests of the effectiveness of
SFT-generated and Centaur-generated CoTs (Appendix [C.4). Taken together, these analyses suggest
that RL post-training improves the quality of CoT reasoning, which in turn contributes to enhanced
prediction accuracy of human behavior.

Cognitive mechanisms identified in CoT. We examined the cognitive mechanisms reflected in
the RL model’s CoT reasoning. In our context, cognitive mechanisms are specifically defined as
verbal theories that explain how people reach a risky decision when presented with a particular set
of options. To assist with this analysis, we used OpenAl’s GPT-4.1 (https://openai.com/
index/gpt-4-1/) to summarize the CoT outputs generated by the RL model (see Appendix [B|
for detailed prompts). The evolution of the top eight cognitive mechanisms over training epochs is
shown in Figure [6h. Among these, expected value computation and risk aversion emerged as the
two most frequently used mechanisms, each accounting for approximately 29% to 36% of thoughts
across risky-choice problems.
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Figure 6: Proportions of cognitive mechanisms identified in the RL models’ thoughts across training
epochs. Backbone LLM is Qwen-2.5-7B-Instruct. The top eight most frequently used mechanisms
are displayed. (a) Training data are human risky choices. (b) Training data are synthetic choices
generated by an expected-value maximization model.

We observed notable representations of loss aversion — the tendency for individuals to prefer avoid-
ing losses over acquiring equivalent gains (Tversky & Kahneman||1992) — and the certainty effect,
where individuals disproportionately favor certain outcomes over those that are merely probable
(Cohen & Jaffray, |1988)). Finally, the RL model occasionally considers the possibility that some
individuals may exhibit risk-seeking behavior or be influenced by other cognitive biases, such as
probability weighting (Prelec 1998} | Kahneman & Tversky, [2013)), framing effects (Tversky & Kah-
neman, | 1981), and ambiguity aversion (Fox & Tversky, 1995). The full list of cognitive mechanisms
identified by the RL model is provided in Table|I|and Appendix B]

These results also provide an interesting perspective for theorists working on models of human
risky choice, a domain where substantial research effort has been devoted to identifying systematic
deviations from rationality and developing heuristics and biases to account for human irrational
behaviors (Tversky & Kahneman), [1992; Kahneman & Tversky} 2013} |Gigerenzer & Gaissmaier,
20115 |Gilovich et al., 2002). In contrast, the RL model highlights calculating expected values and
risk aversion as the dominant forces driving the explanation and prediction of human risky choices.
This finding suggests that greater attention should be paid to rational characterizations of human
behavior and that there may be value in developing new theories grounded in rational principles.
Recent work in this area suggests that human decisions may be explained in terms of the rational
use of cognitive resources (Gershman et al.l 2015} Lieder & Griffiths, [2020; Zhu & Griffiths| [2025).

5 CONTROL EXPERIMENTS

Data control. To further validate the RL method, we conducted a control experiment in which the
original human choice rates were replaced with synthetic choice rates generated by an expected-
value maximization model. Specifically, the synthetic choice rate for option B was set to 1 if option
B had a greater expected value than option A, and O if it had a smaller expected value. In cases
where the expected values of the two options were equal, the synthetic choice rate was set to 0.5.

Using the synthetic choice rate as the reward signal for RL (i.e., replacing p” in Equation with the
synthetic choice rate), we find that the RL model quickly learns to generate CoT focused on com-
puting and comparing expected values (see Figure [6b and Appendix [D] for details). Although risk
aversion is no longer necessary to explain the synthetic data, the model still occasionally includes
references to it in its CoT. This may be due to residual cues in the prompt suggesting that the task
involves human risky choice (see Appendix[A.2]and[D.3|for details), even though the actual data had
been replaced with synthetic data. Nonetheless, the RL model correctly identifies relevant cognitive
mechanisms (e.g., rational choice theory and all-or-nothing thinking) as important for explaining the
synthetic data. These results suggest that RL is capable of adapting its reasoning strategies to match
the structure of the training data.

Model control. Additionally, we replicated the main experiment using a smaller and arguably
weaker backbone LLM, Gemma-2-2B-Instruct (Team et al.||[2024) (see Appendix@for details). The
same LoRA configuration was applied, resulting in approximately 41.53M trainable parameters,
corresponding to 1.56% of the total parameters in the 2B model. The Gemma model was fine-
tuned using SFT, Centaur-style SFT, and RL on the same training set as in the main experiment and
evaluated on the same held-out test set.
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We observe several noteworthy findings. First, RL applied to the Gemma model performs signifi-
cantly worse than both SFT and Centaur-style SFT in reducing MSE on the test set (see Figure
in Appendix [E). This is a pattern that contrasts with the learning curves obtained using the stronger
Qwen model. Second, analysis of the CoT generated during RL training reveals that the Gemma
model fails to compute and compare the expected values of the risky options, a mechanism iden-
tified as critical for explaining human behavior in the main experiment (see Appendix [E)). This
absence of key cognitive mechanisms in its CoT likely contributes to the weaker performance of
RL on smaller models. Finally, even when RL underperforms, both SFT and Centaur-style SFT are
still able to predict human behavior (albeit without explanation) at a level comparable to that of the
stronger Qwen model. These suggest that RL and SFT exhibit different generalization patterns (Chu
et al., [2025; [Wang et al.| |[2025)).

6 DISCUSSION

The emergence of reasoning LLMs presents new opportunities for addressing complex problems
that traditional, non-reasoning LLMs struggle to solve. This improvement is likely due to the fact
that CoT reasoning enhances the expressiveness of Transformer-based models (Li et all [2024).
Moreover, RL post-training has been shown to effectively elicit appropriate CoTs from backbone
LLMs (Shao et al.| [2024; |Yue et al., 2025). This process can be seen as analogous to learning to
reason like a psychologist: given sufficient capacity, the backbone LLM implicitly encodes a range
of psychological theories about human risky choice, and RL serves to surface the most relevant
theoretical representations through the generation of CoT reasoning. As aresult, we trained an LLM-
based psychological theorist capable of verbalizing relevant cognitive mechanisms for explaining
and predicting human risky choices.

RLVR, RLHF, and RLAIF. Our work shows that applying reinforcement learning with verifiable
or outcome-based rewards (RLVR) directly to human risky choices can elicit CoTs that explain those
decisions at scale. Compared to SFT methods, RL methods have a distinct advantage: the resulting
CoTs serve as verbal theories of human choices albeit at the cost of higher computational demands.
An alternative to RLVR in the LLM setting is reinforcement learning from human feedback (RLHF;
Lambert (2025); [Ziegler et al.| (2019)). Adapting RLHF to our context would require experts in
risky decision-making to compare and evaluate LLM-generated explanations and predictions across
different risky choice problems. For instance, scaling up the type of expert judgments illustrated in
Figure[7] In practice, this would entail large-scale expert annotations to assess both the model’s CoT
explanations and its behavioral predictions, resources that are not currently available.

That said, we acknowledge that a scalable RL alternative may be possible by leveraging stronger
LLMs as automated judges (e.g., role-playing expert psychologists), a strategy aligned with rein-
forcement learning from Al feedback (RLAIF; [Bai et al.| (2022); Lee et al| (2023)). Of course,
scientists could also rely on black-box commercial RL training services (e.g., the RL fine-tuning
API offered by OpenAl| n.d.). We chose not to use such services for comparison in the present work
due to their lack of transparency, as the details of the underlying RL training are not disclosed.

Training predictive models and then explaining their predictions. As an alternative approach
for obtaining interpretable theories of human cognition, researchers can first train predictive models
and then apply modern explainability techniques (Agrawal et al., [2020). LLMs can also be used to
strengthen the training of such predictive models; for example, synthetic data generated by LLMs
has been shown to improve predictive accuracy in economic choice models (Shapira et al., 2024;
2025)). This predict-then-explain pipeline is a promising alternative to our RL approach. However,
note that the RL method simultaneously optimizes both predictions and explanations using reasoning
LLMs. It also avoids the direct use of explainability techniques, which can sometimes be brittle for
feature attributions (Bilodeau et al., [2024).

In principle, both approaches aim to uncover explainable and interpretable signals by improving
behavioral predictions. The primary difference is that traditional explainability relies on features
proposed by human researchers, whereas the RL approach automatically explores features or hy-
potheses that can explain human data using LLMs. LLM-proposed hypotheses are more automated
but depend heavily on the base LLM’s capacity to generate meaningful insights. Human-proposed
hypotheses, while slower and less automated, may in some cases be more creative than those gener-
ated by LLMs.
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Limitations and future research. A key limitation of developing cognitive models through CoT
lies in the elicitation hypothesis of RL post-training (Lambert, 2025; [Yue et al.| [2025)). If this hy-
pothesis holds, RL is unlikely to generate entirely novel theories or cognitive mechanisms. For
instance, imagine an LLM pretrained in a world prior to the development of Kahneman and Tver-
sky’s prospect theory (Kahneman & Tversky,2013). RL alone would likely not discover this theory
during post-training (see Appendix [F for more discussion). However, in principle, RL can draw on
theoretical frameworks beyond psychology to explain psychological phenomena. For example, it
may learn to apply concepts from physics or computer science to human behavior, provided such
ideas are already embedded in the backbone LLM. Future research could explore how RL facilitates
the integration of knowledge across traditional disciplinary boundaries to generate novel explanatory
frameworks.

Our findings also suggest that RL and SFT exhibit different generalization patterns. Further research
is needed to systematically investigate these differences and understand the conditions under which
each method performs the best. An additional open question is when and how to effectively combine
RL and SFT to produce more robust and interpretable cognitive models through the CoT of LLMs.

Conclusion. We introduced a method for developing interpretable cognitive models using LLMs by
eliciting CoT reasoning through RL post-training, using human risky choice as a case study. Our
results show that RL post-training can generate meaningful CoTs that adapt to the structure of the
training data, though the effectiveness of this approach strongly depends on the capabilities of the
backbone LLM. We believe this method is highly generalizable and holds promise for applications
in other domains of cognitive modeling.
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A  PROMPTS

A.1 PROMPTS FOR THE SFT AND CENTAUR-STYLE SFT MODELS

User: You are a knowledgeable and insightful psychological theorist, skilled in analyzing hu-
man behavior, cognition, and decision-making. You will be shown two options, A and B. Your
task is to estimate the proportion of people who will choose each option. Please only provide
your final estimates in JSON format, ensuring that: “option_A” represents the percentage of
people choosing Option A; “option_B” represents the percentage of people choosing Option
B; The values must be numbers between 0 and 100 (inclusive); The sum of “option_A” and
“option_B” must equal 100.

A.2 PROMPTS FOR THE RL MODEL

User: You are a knowledgeable and insightful psychological theorist, skilled in analyzing
human behavior, cognition, and decision-making. You will be shown two options, A and B.
Your task is to estimate the proportion of people who will choose each option. First, explain
your reasoning step by step. Then, provide your final estimates in JSON format, ensuring that:
“option_A” represents the percentage of people choosing Option A; “option_B” represents the
percentage of people choosing Option B; The values must be numbers between 0 and 100
(inclusive); The sum of “option_A” and “option_B” must equal 100.

A.3 EXAMPLE PROMPTS FOR RISKY OPTIONS

Risky choices from the choices1 3k dataset are described in natural language using the following
format:

Option A offers (1) a 50.0% chance to win $2.0; (2) a 50.0% chance to win $0.0.
Option B offers a 100.0% chance to win $1.0.

B COGNITIVE MECHANISMS IDENTIFIED BY QWEN-2.5-7B-INSTRUCT
AFTER RL TRAINING

Based on the CoT reasoning generated by the RL models, we identified a set of cognitive mech-
anisms that the model appeared to find useful for predicting human risky choices. To assist with
summarization, we used GPT-4.1 with the following prompt (the temperature for GPT-4.1 was fixed
at 0):

User: Read the following thought atom and return a JSON list of standard psychological effects
or cognitive biases that are present. Use only the most relevant terms from established psycho-
logical concepts (e.g., “Expected Value”, “Loss Aversion”, “Risk Aversion”, etc.). Return only
a JSON list like [“Effect]”, “Effect2”, ...]. No explanation or extra text.

Cognitive mechanisms that appeared in at least 10 risky-choice problems are summarized in Table
Other mechanisms identified in the CoT reasoning are described below: Social Proof, Reference
Point, Reference Dependence, Behavioral Biases, Rational Choice Theory, Majority Effect, Gam-
bler’s Fallacy, Anchoring Effect, Risk Neutrality, Heuristic, Present Bias, Perceived Utility, Risk
Premium, Representativeness Heuristic, Regret Aversion, Perceived Value, Heuristic Processing,
Range Effect, Assumption Bias, Attractiveness Effect, Risk Assessment, Underweighting of Large
Probabilities, Simplicity Preference, Perceived Risk, Simplicity Bias, Assumption of Uniformity,
Diminishing Sensitivity, Variance Aversion, Diversification Bias, Variance Preference, Cognitive
Biases, Mental Accounting, Endowment Effect, Neglect of Expected Value, Heuristic Bias, Overes-
timation of Small Probabilities, Heuristic Simplification, Sure-Thing Principle, Frequency Illusion,
Psychological Biases, Pessimism Bias, Immediate Gratification, Preference for Variety, Ambiguity
Effect, Overweighting of Gains, Immediate Reward Bias, Diversification Effect, Overestimation of
Rare Events, Contrast Effect, Regret Theory, Multiple Gains Effect, Equally Likely Heuristic, Ap-
proximation Bias, Overweighting Small Probabilities, Positivity Effect, Salience of Losses, Affect
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Table 1: Frequency of cognitive mechanisms identified in the CoT reasoning generated by the RL
model (final checkpoint). Only mechanisms that appeared in at least 10 risky-choice problems are
reported.

Cognitive mechanism Count
Expected value 6495
Risk aversion 5210
Loss aversion 1676
Certainty effect 1453
Risk seeking 710
Probability weighting 470
Framing effect 278
Prospect theory 113
Ambiguity aversion 99
Risk perception 76
Overweighting of small probabilities 64
Risk tolerance 64
Heuristics 51
Attraction effect 50
Assumption of equiprobability 49
Equiprobability bias 41
Diminishing marginal utility 38
Optimism bias 37
Risk preference 34
Possibility effect 30
Utility theory 23
Expected utility theory 19
Auvailability heuristics 19
Anchoring 18
Variance effect 15
Bandwagon effect 14
Salience bias 13
Diversification 12
Probability overestimation 12
Assumption of equal probability 12
Complexity aversion 11
Expected utility 10
Expected value neglect 10

Heuristic, Windfall Effect, Underweighting of Losses, Magnitude Effect, Majority Influence, Fre-
quency Effect, Nonlinear Utility, Risk-Reward Tradeoff, Sure Thing Effect, Heuristic Biases, Over-
confidence Effect, Preference for Simplicity, Law of Small Numbers, Attractiveness Heuristic, De-
nomination Effect, Cognitive Ease, Estimation Bias, Value Perception, Allais Paradox, Probability
Perception, Utility of Money, Psychophysical Numbing, Hope Effect, Assumption of Symmetry, Sim-
plicity Effect, Salience, Decision Heuristics, Probability Matching, Weber-Fechner Law, Satiation,
Overconfidence Bias, Assumption of Probability Distribution, Assumption Heuristic, Small Wins
Effect, Reward Seeking, Intuition, Neglect of Probability Weighting, Lottery Effect, Time Prefer-
ence, Range Seeking, Impact Bias, Positive Outcome Bias, Reference Points, Fairness Bias, Risk
Seeking in Losses, Loss Underestimation, Heuristic Substitution, Behavioral Economics, Tempo-
ral Discounting, Risk-Reward Ratio, Lump Sum Effect, Overestimation, Gambling Fallacy, Variety
Seeking, Framing, Variability Effect, Anchoring Bias, Risk-Seeking, Heuristic Reasoning, Conser-
vatism Bias, Delay Discounting, Undervaluation of Large Losses, Overweighting of Large Gains,
Reward Sensitivity, Minimization of Differences, Reference Point Effect, Uncertainty Aversion, Sim-
plification, Underweighting of Small Probabilities, Immediate Reward Preference, Overestimation
Effect, Motivational Salience, Overweighting of Outcomes, All-or-Nothing Thinking, Simplification
Bias, Equal Probability Bias, Segregation of Gains, Choice Overload, Social Norms, Majority Illu-
sion, Near Miss Effect, Psychological Value of Money, Frequency Bias, Normalization, Emotional
Valence, Risk-seeking Behavior.
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C ADDITIONAL ANALYSES OF COT

C.1 HUMAN EVALUATION OF COT

To obtain a preliminary human evaluation of CoT reasoning quality, we conducted the following
experiment.

Participants. We recruited 20 participants via a social media post targeting local universities, invit-
ing volunteers to evaluate completions generated by LLMs. The sample included 12 graduate stu-
dents, 3 postdoctoral researchers, 3 faculty members, and 2 undergraduate students. Participants
represented a range of academic disciplines: 10 from Psychology or Cognitive Science, 7 from Com-
puter Science or Artificial Intelligence, and 3 from Business or Economics. On average, participants
reported a self-assessed knowledge of human risky decision-making of 3.5 out of 5. Participants
did not receive any monetary payment, and the study lasted up to 30 minutes. All experimental ses-
sions were conducted in May 2025. Informed consent was obtained from all participants (Princeton
University IRB number 10859: ‘Computational Cognitive Science’)

Procedures. Each participant completed 10 evaluation trials. On each trial, a risky choice problem
was randomly sampled from the held-out test set. The corresponding CoT completions generated
by the backbone and RL models were presented side by side beneath the problem statement (see
Figure [/| for an example). To ensure that evaluations focused on reasoning quality rather than pre-
dictive accuracy, we removed the final choice predictions from the completions. Participants were
instructed to select which CoT they found more reasonable by making a binary choice. After each
choice, they also reported their confidence using a slider ranging from 0 (least confident) to 100
(most confident). To prevent bias, the two completions were anonymized as Model A and Model B,
and their left-right order was randomized across trials.

Option A: offers a 100.0% chance to win $6.0.
Option B: offers (1) a 75.0% chance to lose $16.0;
(2) a 25.0% chance to win $89.0.

Model A Model B
To estimate the proportion of people who will To estimate the proportion of people who will
choose each option, we need to consider the choose each option, we need to consider the
expected value (EV) of each option and the risk expected value of each option and the risk
tolerance of the average person. tolerance of the average person.
1. Calculate the Expected Value (EV) for Option Step 1: Calculate Expected Value
A:
Option A:

o EV of Option A = 100.0% * (6.0 =)6.0
2. Calculate the Expected Value (EV) for Option :C;?EZ?%;%: 100.0%
B: « Expected Value (EV) = 1.00 % (6.0 =)6.0

o EV of Option B = (75.0% * —(16.0) +

(25.0% *)89.0) Option B:
° 5 ofF fen B & (028 & <(25:0) < (0:28 « Probability of losing $16.0: 75.0%
el « Probability of winning $89.0: 25.0%

LBV nf Ontinn R — —(12 & £177 78 — ¢14 98

Which LLM output do you find more reasonable?

Model A is more reasonable Model B is more reasonable

Trial 1 of 10

Figure 7: Screenshot of a representative trial from the human evaluation experiment. Participants
were shown a risky choice problem followed by two anonymized CoT completions (Model A and
Model B) and asked to select the more reasonable explanation.

Results. On average, CoTs generated by the RL. model were selected as more reasonable in 61.5%
of trials (SE = 5.2%) above the chance level of 50% at 0.05 significance level (¢(19) = 2.19,
p < .05). This suggests that participants found the reasoning produced by the RL model to be more
persuasive or coherent than that of the backbone model. While this represents a useful initial step in
soliciting expert opinions from researchers in relevant fields, scaling human evaluations to the whole
dataset remains a significant challenge.
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C.2 USING GPT-4.1 TO JUDGE COT

Due to the large volume of CoTs generated across multiple model checkpoints and risky choice
problems, conducting comprehensive human evaluations is constrained by time and labor demands.
To address this limitation, we piloted an alternative approach using OpenAl’s GPT-4.1 to simulate
expert evaluations. Specifically, GPT-4.1 was instructed to role-play as an expert in judgment and
decision-making and provide quality ratings of the CoTs. The temperature for GPT-4.1 was fixed at
0. The model was prompted with the following instructions:

System: You are an expert in judgment and decision-making.

User: As an expert in judgment and decision-making, please evaluate the reasoning and pre-
diction of the following question. Provide a single integer score from 0 to 100 based on the
quality of the completion.

72 A

70 1

68 1

Subjective Ratings (GPT-4.1)

Epoch

Figure 8: GPT-4.1 was prompted to act as an expert evaluator, rating the RL model’s completions for
risky-choice problems in the test set. Error bars represent 1 standard error across choice problems.

As shown in Figure 8] GPT-4.1’s ratings of the RL model’s completions show a modest initial
increase, though the magnitude of change is relatively small given the full rating scale of 0 to 100.
The scores then stabilize for several training steps before exhibiting a slight decline toward the end.
This pattern suggests that the quality of the CoT reasoning largely plateaued after the first epoch of
RL training.

C.3 SWAPPING COT BETWEEN BACKBONE AND RL MODELS

To examine the potential causal relationship between CoT reasoning and final predictions of human
choice proportions, we conducted the following analysis. First, we evaluated both the original back-
bone LLM (i.e., Qwen-2.5-7B-Instruct, or checkpoint 0) and its RL post-trained version (i.e., the
final RL checkpoint) on the test set, recording their generated CoTs and final predictions (see the
first row of Table [2). Next, we removed the final JSON prediction from each model’s completion
and performed a CoT-swapping procedure: the backbone LLM was prompted with the RL model’s
CoT and asked to continue the generation, while the RL model was prompted with the backbone
LLM’s CoT and similarly asked to produce a final prediction (see the second row of Table [2).

We find that using the RL model’s CoT significantly reduces the backbone model’s prediction error,
as measured by MSE (¢(2596) = —18.11, p < .01). Conversely, using the backbone model’s CoT
significantly increases the RL model’s prediction error (£(2597) = 20.65,p < .01). These results
suggest that the RL model generates higher-quality CoTs that contribute more effectively to accurate
final predictions than those produced by the backbone model.
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Table 2: Prediction errors for the backbone LLM and its RL post-trained counterpart. Values repre-
sent mean squared error on the test set, with standard errors in parentheses. Original CoT indicates
that the model used its own CoT reasoning for prediction, whereas Swapped CoT refers to predic-
tions made using the CoT generated by the other model.
Qwen-2.5-7B-Instruct (backbone) Qwen-2.5-7B-GRPO-c13k (RL)
Original CoT .0694 (.0025) .0148 (.0006)
Swapped CoT .0212 (.0008) .0695 (.0025)

C.4 TESTING THE COTS GENERATED BY SFT AND CENTAUR MODELS

When an LLM is SFT-trained on risky choices, it may also learn the behavioral policy reflected
in the risky-choice data (Betley et al., 2025). For example, if the choice data are risk-seeking, the
finetuned LLM will exhibit more risk-seeking behavior as well. Therefore, to further test whether
the CoTs elicited using RL are more informative than those produced via SFT, we also elicited
CoTs from SFT models and evaluate whether these SFT-generated CoTs are effective at predicting
human risky choices. Specifically, we prompted both the SFT and Centaur models (i.e., the final
SFT and Centaur checkpoints) with the RL prompt that encourages step-by-step reasoning before
providing a behavioral prediction in JSON format. We then removed the final JSON prediction from
the model completions and fed the remaining CoT, without the JSON output, to the backbone LLM
— a procedure similar to the CoT-swapping experiment reported in Table

We find that neither SFT-generated nor Centaur-generated CoTs improve the backbone model’s
predictions of human risky choices. The MSE of the backbone LLM’s predictions using SFT-
generated CoTs is M = 0.0785 (SE = 0.0023), and the MSE using Centaur-generated CoTs
is M = 0.0728 (SE = 0.0019). Both values are comparable to the performance of the backbone
LLM using its original CoT (see the top-left cell of Table[2). These results suggest that although SFT
and Centaur models can achieve comparable behavioral predictions without CoTs, the CoTs gener-
ated by these models do not help improve the predictions of the original LLM. This highlights the
particular need for RL post-training, beyond SFT and Centaur-style SFT, to produce more effective
CoTs.

Finally, we examined the evolution of SFT-generated and Centaur-generated CoTs over the course of
training. Similar to the analysis in Figure[6] where we used GPT-4.1 to summarize CoTs generated
by the RL models, we also prompted GPT-4.1 with the SFT-generated and Centaur-generated CoTs
(see Figure 0). Compared to the CoTs elicited through RL training in Figure [6| both SFT and
Centaur-style SFT (neither of which are explicitly trained to produce CoTs) showed no noticeable
changes in CoT frequencies across training epochs. We do observe an upward trend in the usage
of “expected value” in the SFT-generated CoTs (Figure [Op), whereas its usage decreases in the
Centaur-generated CoTs (Figure [9b). This suggests that even though SFT and Centaur-style SFT
yield similar behavioral predictions, the CoTs they generate can differ.

a SFT-generated CoTs Centaur-generated CoTs
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Figure 9: Evolution of Chain-of-Thoughts (CoTs) generated by the SFT and Centaur-style SFT
models over training epochs. (a) SFT-generated CoTs. (b) Centaur-generated CoTs.
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D DATA CONTROL EXPERIMENT

D.1 LEARNING CURVES

In the data control experiment, we retained the same backbone LLM, Qwen-2.5-7B-Instruct, but
replaced the human data with synthetically generated data from an expected-value maximization
model. We then performed RL post-training on this synthetic dataset using the same set of hyperpa-
rameters as in the main experiment. The RL learning curve shows a gradual improvement in model
performance over training steps (see Figure [I0).
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Figure 10: Data control experiment. Learning curves for the RL model. Backbone LLM is Qwen-
2.5-7B-Instruct. (Left) Correctness reward, defined as one minus the absolute difference between
model predictions and human choice proportions. (Middle) Format reward, based on the structure
and position of the model’s JSON output. (Right) Completion length, measured by the number of
generated tokens.

D.2 COGNITIVE MECHANISMS IDENTIFIED BY QWEN-2.5-7B-INSTRUCT DURING THE DATA
CONTROL EXPERIMENT

We replicated the CoT analysis presented in Appendix [B|for the RL model trained on the synthetic
choice dataset in the control experiment. The evolution of the top eight cognitive mechanisms
identified in the model’s CoT reasoning across training epochs is shown in Figure [6b. Given that the
synthetic choice rates were generated by an expected-value maximizer model, the expected value
computation emerges as the dominant mechanism in the CoT.

The full list of cognitive mechanisms, ordered by frequency of use, is presented below: Expected
Value, Risk Aversion, Rational Choice Theory, All-or-Nothing Thinking, Black-and-White Think-
ing, Certainty Effect, Herd Behavior, Bandwagon Effect, Consensus Bias, Expected Utility Theory,
Zero-Sum Bias, Overconfidence Effect, Loss Aversion, Risk Seeking, Probability Neglect, Majority
Influence, False Consensus Effect, Dominance Heuristic, Indifference, Overconfidence Bias, Over-
weighting of Small Probabilities, Indifference Principle, Binary Bias, Social Proof, Majority Effect,
Equiprobability Bias, Contrast Effect, Optimism Bias, Risk Neutrality, Indifference Point, Expected
Utility, Ambiguity Aversion, Equity Heuristic, Normative Decision Theory

D.3 ADDITIONAL DATA CONTROL EXPERIMENTS

To further verify that the CoTs elicited from LLMs through RL training adapt to the structure of the
training dataset, we conducted two additional control experiments using (i) a Random Dataset, con-
sisting of randomly generated choice rates (i.e., samples from U0, 1]), and (ii) a Complexity Aver-
sion Dataset, in which choice rates reflect only complexity aversion. Specifically for (ii), we define
complexity based on the number of outcomes in each gamble. For example, if Option A had one out-
come and Option B had two, the synthetic data specified that 2/3 of people would prefer Option A

. num_outcomes_B . : num_outcomes_A
(l‘e" num-outcomes-A+num-_outcomes_B )’ and 1/ 3 would choose OpthIl B (l'e” num,outcomesA-l-num,outcomes,B)

regardless of the underlying probabilities or payoff values. In essence, the only decision rule was to
probabilistically prefer the option with fewer outcomes.
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We then trained the Qwen-2.5-7B-Instruct model using the same RL setup in the main text. When
trained on the Random Dataset, the model collapsed to consistently predicting 50% choice rates,
and its CoT generations became nonsensical, often degenerating into multilingual gibberish. In
contrast, when trained on the Complexity Aversion Dataset, the learning curve showed a steady
increase in correctness reward toward 0.97 (with 1 as the maximum), indicating that the model has
successfully learned to predict complexity-averse behavior. Moreover, the resulting CoTs generated
by the RL model more frequently referenced concepts such as “simplicity” and “complexity” (e.g.,
“Complexity: Option B is significantly more complex and involves a higher number of possible
outcomes. People often avoid options with too many uncertainties and choices, which can lead to
decision fatigue and heuristic shortcuts.”).

However, as shown in Figure [ITh, the CoTs did not exclusively focus on complexity, likely due
to residual influence from the original prompt, which framed the task as explaining human risky
choice. This phenomenon mirrors our earlier data control experiment in which synthetic data were
generated by an expected-value maximization model. However, the relative rank of thoughts that
mention complexity aversion steadily increases over the course of RL training, rising from around
16th place to around 6th place (see Figure[TTp). Taken together, these additional control experiments
further support the flexibility and robustness of our RLVR-based approach in eliciting sensible CoT
explanations from LLMs that adapt to the structure of the training data.
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Figure 11: Proportions of cognitive mechanisms identified in the RL models’ thoughts across train-
ing epochs in the additional data control experiment, where the synthetic dataset reflects complexity-
aversion behavior. (a) The eight most frequently used mechanisms are shown. (b) The relative rank
of complexity-aversion usage in the CoTs increases over the course of RL training.

E MODEL CONTROL EXPERIMENT

E.1 LEARNING CURVES

In the model control experiment, we replaced the original Qwen-2.5-7B-Instruct model with the
smaller Gemma-2-2B-Instruct model, while keeping the human risky choice data as the target for
prediction. We find that SFT and Centaur-style SFT achieve comparable levels of predictive accu-
racy (see Figure[T2). At the final checkpoint, the MSE on the test set is M = 0.0162, SE = 0.0006
for SFT and M = 0.0163,SE = 0.0007 for Centaur-style SFT, with no statistically significant
difference between them (¢£(2924) = —0.13,p = 0.90). In contrast, RL yields significantly higher
MSE at its final checkpoint (M = 0.0526, SE = 0.0016), indicating poorer predictive performance.

E.2 COGNITIVE MECHANISMS IDENTIFIED BY GEMMA-2-2B-INSTRUCT

As before, we replicated the CoT analysis (see Appendix [B) for the RL model trained using the
Gemma-2-2B-Instruct backbone. This model performs poorly in predicting human choices com-
pared to both SFT-based methods applied to the same LLM and RL applied to the stronger Qwen
model. The distribution of identified cognitive mechanisms in the CoT provides insight into this
performance gap (see Figure [I4). Notably, the CoT lacks arguably the most critical component:
expected value calculation and comparison. The absence or infrequent usage of this key cognitive
mechanism likely contributes to the RL model’s failure to accurately capture human risky choice.

Additional identified mechanisms are listed below in order of frequency: Ambiguity Aversion, Risk
Tolerance, Probability Weighting, Anchoring, Subjective Probability, Anchoring Bias, Probability
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Figure 12: Model control experiment. Learning curves on the (a) training and (b) test sets. Back-
bone LLM is Gemma-2-2B-Instruct. The horizontal axes indicate training epochs, while the vertical
axes represent mean squared error (MSE) evaluated on the corresponding dataset. The three post-
training strategies compared are supervised fine-tuning (SFT, red), Centaur-style SFT (green), and
reinforcement learning using Group Relative Policy Optimization (RL, grey). (¢) MSE on the test set
at the final checkpoint of each post-training method. Error bars represent =1 standard error across
risky-choice problems.
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Figure 13: Model control experiment. Learning curves for the RL model. Backbone LLM is
Gemma-2-2B-Instruct. (Left) Correctness reward, defined as one minus the absolute difference be-
tween model predictions and human choice proportions. (Middle) Format reward, based on the
structure and position of the model’s JSON output. (Right) Completion length, measured by the
number of generated tokens.
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Figure 14: Model control experiment. Proportions of cognitive mechanisms identified in the RL
models’ thoughts across training epochs. Backbone LLM is Gemma-2-2B-Instruct. The top 8 most
frequently used mechanisms are displayed.

Neglect, Anchoring Effect, Status Quo Bias, Mental Accounting, Affect Heuristic, Uncertainty Aver-
sion, Immediate Gratification, Social Proof, Endowment Effect, Optimism Bias, Confirmation Bias,
Present Bias, Heuristics, Social Influence, Availability Heuristic, Attraction Effect, Context Effect,
Opportunity Cost, Possibility Effect, Regret Aversion, Overconfidence Effect, Gambler’s Fallacy,
Hedonic Adaptation, Personality Traits, Lottery Effect, Reward Sensitivity, Overweighting of Small
Probabilities, Choice Overload, Emotional Reasoning, Impulsivity, Comparative Judgment, Group-
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think, Reward Seeking, Cognitive Bias, Cognitive Dissonance, Stress Influence on Decision Making,
Cognitive Complexity, Desire for Gain, Pessimism Bias, Relative Value, Cognitive Biases, Informa-
tion Overload, Mood Congruent Bias, Expected Utility Theory, Immediate Reward Bias, Probability
Perception, Subjective Value, Illusion of Control, Perceived Probability, Desirability Bias, Heuristic,
Cognitive Load, Bounded Rationality, Sunk Cost Fallacy, Ambiguity Effect, Positivity Bias, Com-
parative Evaluation, Cognitive Appraisal, Perceived Value, Normative Social Influence, Expected
Value Neglect, Herd Behavior, Context Dependence, Incentive Salience, Risk Perception, Intuition,
Subjective Utility, Salience Bias, Subjectivity, Neglect of Probability, Personal Experience Effect,
Magnitude Effect, Motivation, Overestimation of Small Probabilities, Hope, Hot-Hand Fallacy, In-
formation Asymmetry, Probability Overestimation, Value of Money, Mental Fatigue, Complexity
Aversion, Uncertainty Effect, Reference Dependence, Time Pressure, Perceived Predictability, Fear
of Missing Out.

F ADDITIONAL DISCUSSION

Failures of RL. During our experiments, we also observed several failures associated with
GRPO training. Most notably, applying the original GRPO algorithm (Shao et al.l |2024) to the
choices13k dataset led to mode collapse. By mode collapse, we refer to the phenomenon in
which the fine-tuned LLMs converge to generating a single, repetitive reasoning chain that simply
computes the expected values of both options and consistently outputs a final prediction of 50% for
each option across all choice problems. Note that the choices1 3k dataset exhibits a modal human
choice proportion of 50%, which may have contributed to this degeneracy.

We experimented with several strategies to prevent the model from collapsing to this default pre-
diction. Specifically, we tested alternative reward functions, including one minus the mean squared
error, negative cross-entropy loss, and the addition of diversity bonuses incentivizing diverse pre-
dictions. However, none of these modifications were effective in mitigating mode collapse in our
setting. The issue was eventually addressed by removing advantage normalization in GRPO, as rec-
ommended by [Liu et al.| (2025). That is, dividing the centered reward by the standard deviation of
group rewards introduces a bias toward question-level difficulty: risky-choice problems with lower
standard deviations (i.e., those that are either too easy or too difficult) disproportionately influence
policy updates by receiving higher weights. By omitting this normalization step, we were able to
recover the main RL results reported above.

After removing normalization, the stability of RL training improved substantially. We then evaluated
three reward functions under GRPO without normalization: (i) 1 — absolute prediction error, (ii)
1 — squared error, and (iii) negative cross-entropy loss. Among these, reward function (i) yielded
the most stable RL training, characterized by smoother KL trajectories and smaller reward standard
deviations compared to (ii) and (iii). We suspect this advantage arises because (i) aligns more closely
with GRPO’s centered reward design.

The elicitation hypothesis. A prominent hypothesis about RL post-training is that it primarily
increases the probability of generating correct outputs by eliciting behaviors already latent in the
pretrained LLM (Lambert, 2025} [Yue et al 2025). In this view, RL post-training does not teach
new capabilities but instead amplifies and selects from pre-existing knowledge. Our model control
results support this hypothesis: weaker LLMs — particularly those unable to elicit the expected
value mechanism for risky choice — struggle to explain human behavior effectively when trained
with RL. These results suggest that the success of RL highly depends on the capacity of the backbone
LLM.

G IMPLEMENTATION DETAILS

7B models. RL training was conducted over 3 epochs using the training set, distributed across
4xH100 GPUs for a total runtime of 80 hours. For SFT and Centaur-style SFT trainings, each
model was trained for 6 epochs on the training set, using a single A100 GPU with an approximate
runtime of 5 hours per training session.
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Inference across all checkpoints on the complete choices13k dataset took approximately 5 hours
on a single A100 GPU for the SFT and Centaur-style SFT models using vVLLM (Kwon et al.,|[2023)),
whereas the RL models required roughly 30 hours under the same conditions.

2B models. RL training was conducted over 3 epochs using the training set, distributed across
4xH100 GPUs for a total runtime of 40 hours. For SFT and Centaur-style SFT trainings, each
model was trained for 6 epochs on the training set, using a single A100 GPU with an approximate
runtime of 3 hours per training session.

Inference across all checkpoints on the complete choices13k dataset took approximately 3 hours
on a single A100 GPU for the SFT and Centaur-style SFT models using vLLM (Kwon et al.|[2023),
whereas the RL models required roughly 20 hours under the same conditions.

Pilot and control experiments. We also conducted several RL runs for pilot and control experi-
ments, which together accounted for approximately 2,500 H100 GPU hours.
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