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ABSTRACT

Differentially Private SGD (DP-SGD) is a widely known substitute for SGD to
train deep learning models with privacy guarantees. However, privacy guarantees
come at cost in model utility. The key DP-SGD steps responsible for this utility
cost are per-sample gradient clipping, which introduces bias, and adding noise
to the aggregated (clipped) gradients, which increases the variance of model up-
dates. Inspired by the observation that different layers in a neural network often
converge at different rates following a bottom-up pattern, we incorporate layer
freezing into DP-SGD to increase model utility at fixed privacy budget. Through
theoretical analysis and empirical evidence we show that layer freezing improves
model utility, by reducing both the bias and variance introduced by gradient clip-
ping and noising. These improvements in turn lead to better model accuracy, and
empirically generalize over multiple datasets, models, and privacy budgets.

1 INTRODUCTION

Deep Neural Networks (DNNs) have seen a growing success at many tasks under various domains
in recent years. As a result DNNs are now deployed in numerous applications, including some
involving sensitive data, such as users’ medical history, purchasing records, or chat histories. In
these sensitive applications, data privacy is a concern. However, there is strong evidence that deep
learning models memorize, and thus leak, information about their training data (Shokri et al., 2016;
Carlini et al., 2020; 2022; Feldman & Zhang, 2020). To prevent data leakage, common DNN training
algorithms such as Stochastic Gradient Descent (SGD) and its variants have been adapted to enforce
Differential Privacy (DP) Song et al. (2013); Dwork et al. (2006), a rigorous privacy guarantee which
provably mitigates data leaks. As a convenient drop-in replacement for SGD, the DP-SGD algorithm
is commonly used for privacy-preserving machine learning, and numerous efforts haave improved
its theoretical privacy analysis (Abadi et al., 2016; Mironov, 2017; Mironov et al., 2019).

However, the privacy guarantees offered by DP-SGD still come at a substantial cost in model utility
(accuracy), despite substantial practical improvements over time De et al. (2022); Papernot et al.
(2021). There are two key changes to SGD that DP-SGD introduces in each model update step. Each
change is required to prove privacy guarantees, and contributes to utility costs. The first change is
to clip per-sample gradient to a fixed L2 norm bound, which introduces bias in the estimation of
the gradient descent direction. The second change is to add noise from a standard Gaussian to the
aggregated (clipped) gradients, which increases the variance of model updates.

We show using theoretical analysis that increasing the gradient clipping norm of a given DNN layer
in DP-SGD reduces the variance introduced by DP noise and, under some assumptions, the clipping
bias as well. Both lead to better convergence upper-bounds for DP-SGD. We combine this result with
the observation that different layers in a DNN trained with SGD converge at different rates following
a bottom-up pattern—which we empirically verify also holds for DP-SGD—and introduce the DP-
SGD Layer Freeze (DP-SGD-LF) algorithm. This algorithm freezes the lower layers (closer to the
input) of a DNN towards the end of training, which increases the norm of clipped gradients for the
remaining layers, thereby decreasing the bias and variance introduced by DP-SGD when updating
these parameters. Since the remaining layers benefit more from updates at this point of traininig, the
finial accuracy increases.

We apply DP-SGD-LF to state of the art DP-SGD implementations on three datasets De et al. (2022);
Papernot et al. (2021), and show that it improves the final model’s accuracy by up to 1.3 percentage
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points, and is particularly effective in the high privacy (low DP ϵ) regime. We also show that DP-
SGD-LF is not sensitive to hyper-parameters, and propose and use easy to set, reasonable defaults.

The rest of the paper describes our contributions: after introducing the necessary background in §2,
§3 introduces our algorithm, and supports its design through empirical and theoretical analysis. §4
then empirically confirms the expected behavior, and shows that DP-SGD-LF improves the accuracy
of different models over multiple image classification datasets.

2 BACKGROUND

Mini-batch SGD is one of the most commonly used optimization algorithm in non-private deep
learning. For each iteration t, and calling ηt is the step size, SGD updates the parameters of the
model θ by stepping into the direction of steepest descent, estimated with the averaged gradients
over B samples in a mini-batch,

θt+1 ←− θt − ηt

[
1

B

B∑
i=1

gt(xi)

]
. (1)

The convergence analysis of the SGD algorithm often rely on the following fundamental result.
Lemma 2.1 (Decent Lemma (Bottou et al., 2018)). Assuming the objective function f : Rd −→ R
to be continuously differentiable and the gradient of f , ∇f : Rd −→ Rd to be Lipschitz continuous
with the Lipschitz constant L > 0, ∥∇f(v) − ∇f(w)∥ ≤ L∥v − w∥, ∀v, w, then f(v) ≤ f(w) +
∇f(w)T (v − w) + L

2 ∥v − w∥2, ∀v, w.

Under privacy constraints, the DP-SGD algorithm provides a convenient substitution to SGD for
training DNNs with differential privacy guarantees (Abadi et al., 2016). The DP-SGD algorithm
protects privacy by clipping the per-sample gradient vector, gt(xi) ←− ∇θtf(θt, xi), and adding
noise drawn from a Normal distribution to the aggregated clipped gradients. Let C be the L2-norm
clipping threshold, σ be the noise multiplier, and d be the dimension of the model’s parameters. the
update rule for DP-SGD in each iteration is:

θt+1 ←− θt − ηt

[
1

B

( B∑
i=1

clip
(
gt(xi), C

)
+ zt

)]
, zt ∼ N

(
0, σ2C2Id

)
clip
(
gt(xi), C

)
←− gt(xi)/max

(
1,
∥gt(xi)∥2

C

)
,

(2)

where C controls the maximum influence that an individual sample can have on the gradient (the
sensitivity), and σ controls the noise level scaled with respect to the sensitivity. We use the analysis
based on Rényi Differential Privacy (RDP) (Mironov, 2017) for privacy accounting. The compo-
sition over t steps of training and the conversion of the RDP guarantee to the (ϵ, δ)-DP guarantee
follow from the results in Mironov et al. (2019). we use the publicly available implementation of
the RDP privacy accountant in Opacus (Yousefpour et al., 2021).

3 DIFFERENTIALLY PRIVATE LEARNING WITH LAYER FREEZING

We propose to incorporate layer freezing with DP-SGD, and demonstrate its effectiveness in in-
creasing the trained model’s predictive accuracy at fixed privacy budget. The intuition behind the
performance gain is as follows. The two key steps in DP-SGD, clipping and noising, provide a
DP guarantee at the cost of degrading model utility: clipping potentially introduces bias into the
estimated descent direction, since it truncates individual gradients before aggregation to control sen-
sitivity (Chen et al., 2021; Pichapati et al., 2019; Zhang et al., 2019); noising introduces variance
on top of the biased estimate by adding random noise to the aggregated clipped gradients. Freezing
parameters limits the model capacity in learning representations, but could bring benefits by reduc-
ing the bias and variance caused by clipping and noising on the remaining trainable parameters.
Given the observation that lower layers (closer to the input side) converge faster than higher layers
(closer to the prediction), we can freeze the parameters in lower layers during training, to minimally
sacrifice model capacity in exchange for the benefits of better updates for the upper layer parameters.
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We detail our approach in the rest of this section. §3.1 shows the algorithm we propose. §3.2
presents empirical evidence that lower layers in a DP-SGD trained neural network converge faster
than the upper layers. §3.3 shows theoretically that clipping and noising can be expected to degrade
the convergence of model training, and presents our key metric to quantify this negative impact: the
distortion angle in estimating the descent direction. In §3.4, we show that under some assumptions,
layer freezing can improve both bias and variance caused by clipping and noising with respect to the
trainable parameters. §4, then empirically evaluates our claims and demonstrates the effectiveness
of layer freezing in improving model utility under multiple settings.

3.1 THE DP-SGD-LF ALGORITHM

Algorithm 1 shows the pseudo code of our method. When the current iteration index t exceeds a
preset threshold tf , we apply parameter freezing on the first mf layers (closest to the input) of the
model architecture. tf and mf are two hyperparameters of the algorithm. In §4, we empirically
show that the performance is not sensitive to these hyperparameters in a wide range of values, and
provide generic defaults that we use in experiments. Before freezing, the algorithm behaves exactly
as DP-SGD. After freezing (t > tf ), the frozen layers’ gradients are set to 0 before clipping, and
are not noised. The frozen parameters are not updated. The rest of the parameters are updated as
usual, following Equation 2. Since layer freezing is decided by hyper-parameters without adapting
to the data, the privacy analysis of DP-SGD-LF is identical to that of DP-SGD, and existing privacy
accounting can be re-used.

Algorithm 1: DP-SGD-LF
Output: Model parameters θ
Input: Dataset D = (xi, yi)

N
i=0, loss function f , learning rate ηt, batch size B, noise multiplier σ,

L2-norm clipping threshold C, privacy parameters ϵ, δ, freezing parameters tf , mf

Initialize θ0 randomly
Calculate the total number of iterations T (ϵ, δ, B,N, σ)
for t = 1 . . . , T do

Take a random batch with sampling probability B/N

if t > tf then
Partition θt into θfrozent and θtrainablet according to the first mf layers
Update θtrainablet+1 as in Equation 2
Merge θfrozent with θtrainablet+1 as θt+1

else
Update θt+1 as in Equation 2

end
end

3.2 LAYER CONVERGENCE FOLLOWS A BOTTOM-UP PATTERN IN PRIVATE TRAINING

There is strong empirical evidence to suggest that for DNNs trained in the non-private setting, layers
in the DNN architecture converge at different rates, and exhibit a bottom-up pattern (Wang et al.,
2022; Raghu et al., 2017; Morcos et al., 2018; Yosinski et al., 2014; Rogers et al., 2020). In this
section, we verify that a similar observation holds under private training. The dataset, model, and
algorithm used for demonstration are CIFAR-10, a 5-layer CNN (with the last layer being a softmax-
activated classification layer) and DP-SGD with C = 3 and σ = 1. The accuracy of the full model
is around 0.63 at the last training step, when ϵ is around 7.

We examine the privacy-utility trade-off of the DP-SGD trained model by training only a single
layer after ϵ = 3 where the model achieves moderately high accuracy but is not fully trained yet.
We note that the final layer is the softmax activated classification layer and is not frozen in these
experiments. As shown in Figure 1 (Left), we observe that there is a minor gain in accuracy when
only Layer 1 is trained further in steps while a larger increase is observed when only upper layers are
trained. The final accuracy obtained by training Layer 1 only is also considerably lower than when
only training the other layers. To support this observation, we also measure the convergence quality
using a post-hoc analysis tool, PWCCA (Morcos et al., 2018), which compares different layers’
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Figure 1: Left: The privacy-utility trade-off when only a single layer is trained with every other
layer frozen (except for the final classification layer) after ϵ = 3. Layer 1 has the least amount of
gain in accuracy when other layers are frozen while the upper layers perform similarly. Right: The
PWCCA score over training steps for different layers. A lower PWCCA score indicates the model
converges better. Layer 1 shows a weak sign of convergence while the upper layers has no strong
evidence of converging.

intermediate activation vectors throughout training to the converged activation vector from a fully-
trained model (i.e., the final iteration the model converges to, in which the accuracy is reasonably
high). Figure 1 (Right) shows the PWCCA score for the first 4 layers over training steps. A lower
PWCCA score means that the layer converges better. We observe that only Layer 1 shows a weak
sign of convergence, while the upper layers are likely to be dominated by the accumulated noise and
have no clear sign of convergence. These experiments confirm that: lower layers converge better and
earlier during training with DP-SGD, and focusing training on higher layers leads to more utility.

3.3 DISTORTIONS IN DESCENT DIRECTION DEGRADES DP-SGD PERFORMANCE

 

 

  

After freezing
Before freezing

Figure 2: Left: An example of the true (∇f ), unbiased (sUt ), biased (sBt ), private (sPt ) signals and the
distortion angles (γUP

t , γUB
t , γBP

t ) as in Definition 3.1 and 3.2. Middle: Assuming the unclipped
and clipped gradients remain unclipped and clipped after freezing, when sUt is more aligned with
the clipped gradients, then γUB

t is reduced after freezing since the clipped gradient is clipped less
(magnitude increase prior to freezing) due to an decrease in ∥gt(xj)∥. Right: For an arbitrary noise
vector, since sBt increases in magnitude γBP

t is reduced after freezing such that the noising makes
sPt less variable in direction.

We first define the true, unbiased, biased and private signal vectors (which refer to the true descent
direction, and different estimates of it from a minibatch: without changes, with clipping, and with
clipping and noise, respectively) and the corresponding distortion angle in each step t of the opti-
mization algorithm. Figure 2 (Left) shows a demonstration using 2-dimensional vectors. We adapt
the Decent Lemma (Lemma 2.1) to DP-SGD, and show that bias and variance in the distortion angle
will increase the upper-bound on convergence. This suggests that a larger bias (mis-oriented descent
direction) and higher variance in the distortion angle is likely to lead to slower convergence.

Definition 3.1 (The True, Unbiased, Biased and Private Signal Vectors). For each step t, the true
signal vector ∇ft is the gradient of the loss function f evaluated at θt on all the training data. It
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is the true direction of steepest descent for the empirical loss. The unbiased signal vector sUt is
the mean gradient over samples in a batch drawn following a uniform sampling scheme. It is an
unbiased estimate of ∇ft (Bottou et al., 2018), sUt := 1

B

∑B
i=0 gt(xi). The biased signal vector

sBt is the mean of sample-wise clipped gradients on a batch drawn following a uniform sampling
scheme. It is a biased estimate of sUt since per-sample gradients are re-scaled differently before
aggregation, sBt := 1

B

∑B
i=0 clip

(
gt(xi), C

)
. Let zt ∼ N

(
0, (1/B2)σ2C2I

)
be the random noise

vector, the private signal vector is the sum of sBt and zt and is the actual descent direction in DP-
SGD updates, sPt := sBt + zt.

With Definition 3.1, the parameter update rule of DP-SGD can be rewritten as:

θt+1 ←− θt − ηts
P
t , sPt = sBt + zt. (3)

We note that gradient clipping in DP-SGD has been shown to be biased and a bias vector bt can be
decomposed following the analysis of Chen et al. (2021). We define the distortion in estimating the
descent direction by the angle between∇ft and sPt .

Definition 3.2 (Distortion Angle). For each step t, the distortion angle γt is the angle between∇ft
and sPt ,

γt := arccos

(
⟨∇ft, sPt ⟩
∥∇ft∥∥sPt ∥

)
,

where ⟨, ⟩ represents the dot product and ∥·∥ represents the L2-norm. γt can be decomposed into
γB
t and γBP

t which is the angle between ∇ft and sBt , and between sBt and sPt , respectively: γt =
γB
t + γBP

t .

In what follows, the expectations and variances of sUt , sBt , sPt , γt, γ
B
t , and γBP

t are taken with
respect to the data sampling and the DP noise distribution when applicable.

We show next show that the bias and variance introduced by clipping and noising leads to a worse
convergence bound rate bound for DP-SGD. The proof of Lemma 3.1 is in Appendix A.

Lemma 3.1 (DP-SGD convergence bound). Following the proof of Bottou et al. (2018) for DP-
SGD, we show the following result. Assuming the objective function f : Rd −→ R to be continuously
differentiable and the private gradient of f , ∇f : Rd −→ Rd to be Lipschitz continuous with the
Lipschitz constant L > 0, ∥∇f(v) − ∇f(w)∥ ≤ L∥v − w∥, ∀v, w, the convergence bound of
DP-SGD is,

min
t=0,...,T

E
[
∥∇f(θt)∥2

]
≤

(
f(θ0)− E

[
f(θT )

]
−

T∑
t=1

ηtE
[
cos (γB

t )∥∇f(θt)∥∥sBt ∥
]
+

T∑
t=1

η2t
L

2B2
σ2
DPC

2

)
/

T∑
t=1

ηt.

Finally, we explain why γt is an effective metric for utility. From the convergence bound above, we
see the negative effect of γt due clipping and noising: a larger bias (γB

t ) and variance (σDP ) make
the upper-bound larger, and could potentially lead to worse model performance:

(1) A negative value of E
[
cos (γB

t )∥∇f(θt)∥∥sBt ∥
]

could be caused by a large bias angle γB
t . This

makes the convergence bound worse by adding a positive term. A smaller γB
t (|γB

t | ∈ [0, π
2 ])

means that the DP-SGD descent direction is better aligned with the true direction of steepest
descent (γt is smaller), and E

[
cos (γB

t )∥∇f(θt)∥∥sBt ∥
]

is positive. However, |γB
t | > 0 still

makes cos(γB
t ) < 1, increasing the bound.

(2) Since zt is drawn from a zero mean Normal distribution, adding noise does not bias the es-
timation. However, from the convergence bound we see that a larger variance of the noise
(L/2B2)σ2

DPC
2 also makes the bound worse. A higher variance means a larger noise is more

likely added to sBt , therefore we would expect γt to be large.
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3.4 LAYER FREEZING MITIGATES DISTORTIONS IN OPTIMIZATION DIRECTION

In this section, we introduce (strong) assumptions, but supported by empirical measurements in
Appendix E, under which we prove that freezing some parameters benefits the remaining trainable
parameters, by reducing the bias and variance in their distortion angle γt. Intuitively, since a sub-
set of the parameters are frozen, the gradient’s L2-norm is reduced (the frozen parameters have a
gradient of zero). This in turn leads to an increase in the magnitude of each sample-wise clipped
gradients on the remaining parameters. Under our assumptions, clipping gradients less aggressively
reduces bias in the distortion angle γB

t , since each clipped gradient is closer to its original value. A
larger biased signal is also more robust to noise, and γBP

t is smaller for any fixed noise draw, lead-
ing to reduced variance. Figure 2 (Middle and Right) demonstrates this intuition with 2-dimensional
vectors, and the formal results are stated below, following from results which we prove in Appendix
B and C.

Lemma 3.2 (The magnitude of the biased signal of trainable parameters increases after freezing).
Let sBt

,b(θ′t) and sBt
,a(θ′t) be the biased signal of the trainable parameters before and after freezing,

then ∥gat (xi)∥ ≤ ∥gbt (xi)∥ ∀xi and ∥sBt ,a(θ′t)∥ ≥ ∥sBt ,b(θ′t)∥.
Assumption 3.1. The mean of per-sample gradients g(xi) with a larger magnitude such that
∥g(xi)∥ > C are more aligned (smaller angle) with the gradient direction ∇ft, whereas those
with a smaller magnitude such that ∥g(xi)∥ ≤ C are less aligned (larger angle).

Assumption 3.2. Rescaling the gradient norm of ∥g(xi)∥ by freezing does not change the gradients
that are clipped and unclipped gradients, but only rescales the clipped gradients.

Proposition 3.1 (Freezing reduces bias and variance in distortion angle with respect to trainable
parameters). Let θt be the set of full parameters and let θ′t be the subset of trainable parameters.
Let γt(θ

′
t) be the distortion angle with respect to trainable parameters. Let the superscript b and a

denotes the quantity before and after freezing occurs. Under Assumptions 3.1 and 3.2, the following
results hold:

(1) E[γB,a
t (θ′t)] ≤ E[γB,b

t (θ′t)];

(2) Var[γBP,a
t (θ′t))] ≤ Var[γBP,b

t (θ′t))];

(3) E[γa
t (θ

′
t)] ≤ E[γb

t (θ
′
t)],Var[γ

a
t (θ

′
t)] ≤ Var[γb

t (θ
′
t)]

Proof. (1) By the clipping function in Equation 2, each per-sample gradient is either clipped if
∥gt(xi)∥ > C or preserved to its original value if ∥gt(xi)∥ ≤ C. Let g′ denote the gradients with
respect to trainable parameters, v and w be the vector of the sum of unclipped and clipped gradients
in a random batch of size B respectively,

v =
∑

j:∥g′
t(xj)∥≤C

(
g′t(xj)

)
, w =

∑
k:∥g′

t(xk)∥>C

(
g′t(xk) · C
∥g′t(xk)∥

)
, |j|+ |k| = B.

By Lemma 3.2, since ∥g′ta(xk)∥ ≤ ∥g′tb(xk)∥ ∀i, (g′t(xk) · C)/∥g′ta(xk)∥a ≥ (g′t(xk) ·
C)/∥g′tb(xk)∥, i.e. the magnitude of the clipped gradients increase after freezing comparing to
before. By Assumption 3.2, v does not change. Since wa ≥ wb we have:

E

[
arccos

(
⟨v, v + wa⟩
∥v∥∥v + wa∥

)]
≤ E

[
arccos

(
⟨v, v + wb⟩
∥v∥∥v + wb∥

)]
,

which means E(γvB,a
t ) ≤ E(γvB,b

t ). Under Assumption 3.1, if E(γUv,a
t ) ≥ E(γvw,b

t ), then we have
E[γB,a

t (θ′t)] ≤ E[γB,b
t (θ′t)].

(2) Since the noise is drawn from a zero mean Normal distribution, for each batch, when taking
expectation over the random noise draw, E[γBP

t ] = 0. The variance term can be simplified as,

Var[γBP
t ] = E[(γBP

t )2]− (E[γBP
t ])2 = E

[
arccos

(
⟨sBt (θ′t), sBt (θ′t) + zt⟩
∥sBt (θ′t)∥∥sBt (θ′t) + zt∥

)2]
.
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Let X denote the random variable inside arccos (·), for every batch the distribution of the private
gradient is the same as the random noise distribution,

Var[γBP
t ] =

∫ ∞

−∞
(arccos (x))2f(x)dx, X ∼ N (0, σ2C2Id).

We show the following result in Appendix C,

E

[
arccos

(
⟨sBt (θ′t)a, sBt (θ′t)a + zt⟩
∥sBt (θ′t)a∥∥sBt (θ′t)a + zt∥

)2
]
≤ E

[
arccos

(
⟨sBt (θ′t)b, sBt (θ′t)b + zt⟩
∥sBt (θ′t)b∥∥sBt (θ′t)b + zt∥

)2
]
.

Therefore Var[γBP,a
t (θ′t)] ≤ Var[γBP,b

t (θ′t)].
(3) is a consequence of (1) and (2), since E[γa

t (θ
′
t)] = E[γB,a

t (θ′t)] + E[γBP
t (θ′t)] = E[γB,a

t (θ′t)]
since E[γBP

t (θ′t)] = 0. Var[γt(θ
′
t)] = Var[γB

t (θ′t)]+Var[γBP
t (θ′t)] since the noise zt is drawn inde-

pendently. By Assumption 3.1, ∀ batch with size B, γB,a
t ≤ γB,b

t , so Var[γB,a
t (θ′t)] ≤ Var[γB,b

t (θ′t)]
thus Var[γa

t (θ
′
t)] ≤ Var[γb

t (θ
′
t)].

4 EVALUATING LAYER FREEZING IN END-TO-END PRIVATE TRAINING

In this section we empirically examine our method on utility improvements over multiple datasets,
models and privacy levels. We also empirically evaluate the claims from previous sections. We
also perform a sensitivity analysis on hyperparameters, and present our suggested defaults. Unless
otherwise specified, the analysis results in this section are demonstrated using CIFAR-10 and a 5-
layered CNN model.

Dataset Model
Test Acc.

δ
LF (ours) ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 7

MNIST CNN
✗ 0.956 (0.002) 0.975 (0.002) 0.981 (< 0.001) /

10−5

✓ 0.957 (0.001) 0.976 (0.002) 0.981 (< 0.001) /

FashionMNIST CNN
✗ 0.801 (0.005) 0.855 (0.007) 0.862 (0.002) /

10−5

✓ 0.815 (0.005) 0.868 (0.002) 0.875 (0.002) /

CIFAR10 CNN
✗ / / 0.533 (0.010) 0.637 (0.005)

10−5

✓ / / 0.548 (0.003) 0.651 (0.003)

CIFAR10 Wide-ResNet
✗ 0.558 (0.252) 0.625 / /

10−5

✓ 0.571 (0.120) 0.636 / /

Table 1: A summary of the results training with DP-SGD with and without layer freezing. The
results are the median and standard deviation over 5 independent runs. The bold results indicate
better performance.

Baseline models and experimental setup. We implement layer freezing on top of the existing
baseline models. For MNIST, FashionMNIST and CIFAR10 with CNN, we use the baseline model
from Papernot et al. (2021). For the CIFAR10 experiment with Wide-ResNet, the baseline model
is from De et al. (2022). All hyperparameters related to the model, training, or DP settings are
kept constant between with and without layer freezing (and tuned without freezing in the baselines’
papers). For each experiment, we run the model with and without layer freezing 5 times indepen-
dently, using different random seeds. For the CIFAR10 model with Wide-ResNet we were only
able to repeat the experiments for ϵ = 1 settings due to limited computational resources. The exact
hyperparameters and other details are included in Appendix D.

Model utility under DP-SGD-LF. Table 1 compares the performances of DP-SGD-LF on top of
the current ’state-of-the-art’ baselines and show the median and standard deviation over 5 runs. We
observe that layer freezing generally improves the predictive performance across datasets, models
and privacy budgets, as it improves the median score and has a smaller standard deviation.

Layer Freezing Improves Angle of Distortions in Optimization Direction Figure 3 shows the
median of |sBt | of the trainable layers after freezing the first 3 layers after step 5000. In the last step,
the model accuracy is around 0.64, for ϵ = 7. We observe an increase in signal strength for both
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Figure 3: The median of ∥sBt ∥ for trainable layers over training steps after the lower 3 layers frozen
at step 5000. We observe in both Layer 4 and 5 there is an increase in the signal strength.
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Figure 4: The change in γUB
t for trainable layers after freezing the lower 3 layers at step 5000. We

observe a decrease in γUB
t in both Layer 4 and 5, indicating that the biased signal is closer to the

unbiased signal after freezing.

layers which matches the claim in §3.4. Figures 4 and 5 show the change in the distortion angle when
layer freezing is imposed. We note that since the full-sample-size gradient is expensive to compute,
we measure the angle between the unclipped and unnoised SGD gradients γUB

t on the same batch
of data. We thus make the underlying assumption that moving the DP descent direction closer to the
minibatch direction in each iteration t would improve the private training performance. We observe
that both γUB

t and γBP
t decrease after freezing for trainable layers. The distortion measured in γUB

t
is generally weaker than in γBP

t as the absolute scale is higher in the later. Although the privacy
hyperparamters C and σ affect the results, we generally observe that noising has a stronger negative
effect than clipping in terms of distorting the optimization direction.

The tradeoff between gains of freezing and model capacity. The benefits of freezing layers
comes at a cost in model capacity, which potentially limits performance. We evaluate such a tradeoff
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Figure 5: The change in γBP
t for trainable layers after freezing the lower 3 layers at step 5000. We

observe a decrease in γUB
t in both Layer 4 and 5, indicating that the improved strength in signal

makes it more robust to noise as noising changes the direction less.
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Figure 6: Evaluating the hyperparameter choices of how many layers to freeze (mf ) and when to
start freezing (tf ). Left:The privacy-utility trade-off when freezing different number of layers after
ϵ = 3. Right:The privacy-utility trade-off when freezing the lower 3 layers at different steps.

by measuring the final model accuracy under different choices of freezing hyperparameters: how
many layers to freeze (nf ) and when to start freezing (mf ). Figure 6 (Left) compares the model’s
utility when freezing different number of layers. In these experiments, freezing starts after ϵ = 3.
We observe that in general, the choice of how many layers to freeze is not quite sensitive as long as
the model still has a reasonable capacity (e.g., leaving only the last layer is insufficient). Figure 6
(Right) compares the model utility by varying when to start freezing layers. In these experiments,
we freeze Layers 1-3 at different training steps. We observe that freezing early can result in worse
performance, whereas freezing in later steps does not bring any gains prior to freezing.

Determining the optimal values for tf and mf might lead to additional privacy cost. Since the utility
is not too sensitive to these hyperparameters in a wide reasonable range, we suggest the following
default hyperparameters, which are those we use for all experiments in Table 1: given a target privacy
budget ϵ, we calculate the number of training to take (based DP and optimization parameters), and
set tf to be about 20 steps earlier. We set mf to be the lower half of all layers in a model.

5 RELATED WORK

There is a rich literature on representations learning in DNNs under non-private training. It is com-
monly observed that the lower level layers extract more general features and are easier to train while
higher level layers capture more abstract and task-specific features and take more steps for learning
good representations (Raghu et al., 2017; Morcos et al., 2018; Yosinski et al., 2014; Rogers et al.,
2020). Wang et al. (2022) demonstrate with image classification tasks that different layers converge
with a bottom-up pattern. This line of work promotes the possibility of transfer learning, with a
subset of the parameters to be inherited from pre-trained models, and kept frozen when fine-tuning
on downstream tasks. In non-private training, parameter freezing is mainly used to reduce data
requirements, computational costs, or communication (Zhuang et al., 2019).

Parameter has also been studied in the private training setting, also under the transfer learning sce-
nario but with additional privacy benefits. A subset of the model parameters are transferred from
publicly trained models, and are frozen when fine-tuning with privat data on the downstream task.
Such an approach is empirically effective across multiple computer vision and natural language pro-
cessing tasks (Tramèr & Boneh, 2021; Luo et al., 2021; Yu et al., 2021; Li et al., 2021; Mehta et al.,
2022). In these work, the frozen parameters are either used directly as good initializations, or at-
tached to additional layers for finetuning. In Luo et al. (2021), the parameters chosen to be frozen
are the ones with smaller scales which are usually considered less important in a neural network. It
coincides with our observation that freezing the lower level layers, which converge early, does not
overly hurt model performance.

A few work closely related works incorporate techniques to increase sparsity in private learning.
Zhang et al. (2021) presents a theoretical study on the benefits of sparse gradients in wide neural
network models trained with DP. Talwar et al. (2015) studies the DP LASSO model which encour-
ages sparsity by design. Huang et al. (2020) shows that pruning can be an alternative approach to
privacy.
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A PROOF OF LEMMA 3.1

Lemma (DP-SGD convergence bound). Following the proof of Bottou et al. (2018) for DP-SGD,
we show the following result. Assuming the objective function f : Rd −→ R to be continuously
differentiable and the private gradient of f , ∇f : Rd −→ Rd to be Lipschitz continuous with the
Lipschitz constant L > 0, ∥∇f(v) − ∇f(w)∥ ≤ L∥v − w∥, ∀v, w, the convergence bound of
DP-SGD is,

min
t=0,...,T

E
[
∥∇f(θt)∥2

]
≤

(
f(θ0)− E

[
f(θT )

]
−

T∑
t=1

ηtE
[
∇f(θt)T bt

]
+

T∑
t=1

η2t
L

2B2
σ2C2

)
/

T∑
t=1

ηt.

Proof. Let f be the loss function we want to optimize, let ∇f(θt) be the true steepest descent
gradient vector, and let sUt , sPt be the unbiased and private gradient as in Definition 3.1 at step
t. Since the private gradients are assumed to be L-Lipschitz continuous, the descent lemma (§2)
implies that,

f(θt+1) ≤ f(θt) +∇f(θt)T (θt+1 − θt) +
L

2
∥θt+1 − θt∥2.

Substituting in the parameter update rule of DP-SGD, θt+1 ←− θt − ηts
P
t , we get,

f(θt+1) ≤ f(θt)− ηt∇f(θt)T sPt + η2t
L

2
∥sPt ∥2.

Taking the expectation over the data distribution and assuming the step size ηt is independent of
which data are sampled in each iteration t we get,

E
[
f(θt+1)

]
≤ f(θt)− ηt∇f(θt)TE

[
sPt
]
+ η2t

L

2
E
[
∥sPt ∥2

]
.

The private gradient sPt is composed of the biased gradient sBt and the random noise zt. The bias in
sBt can be isolated and quantified by integrating over the probability density function of the gradient
noise caused by data sampling (Chen et al., 2021). Therefore we can simplify the expectation of sPt
as,

E
[
sPt
]
= E

[
sUt
]
+ bt + E

[
zt
]
= ∇f(θt) + bt,

for some bias vector bt. The second equality holds because sUt is an unbiased estimator of the true
gradient ∇f(θt) with the assumption that each xi is drawn with a uniform sampling scheme as in
the regular mini-batch SGD, and E[zt] = 0 since zt ∼ N

(
0, (1/B2)σ2C2I

)
. The variance of sPt is

bounded under DP-SGD since we performed gradient clipping to control sensitivity and added the
noise drawn from Normal distribution. Given batch size B, L2-clipping norm threshold C and noise
multiplier σDP ,

E
[
∥sPt ∥2

]
≤ 1

B2
σ2
DPC

2.

Therefore, the progress bound for each parameter update step t of DP-SGD is,

E
[
f(θt+1)

]
≤ f(θt)− ηt

(
∥∇f(θt)∥2 +∇f(θt)T bt

)
+ η2t

L

2B2
σ2
DPC

2.

Rearranging the terms and summing over all iterations t = 1, . . . , T we get,

T∑
t=1

(
ηt∥∇f(θt)∥2

)
≤

T∑
t=1

(
f(θt)− E

[
f(θt+1)

]
− ηt∇f(θt)T bt + η2t

L

2B2
σ2
DPC

2

)
.
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Taking expectations on both sides and simplify using the Law of Iterated Expectations we get,
T∑

t=1

ηtE
[
∥∇f(θt)∥2

]
≤

T∑
t=1

(
E
[
f(θt)

]
− E

[
f(θt+1)

])
−

T∑
t=1

ηtE
[
∇f(θt)T bt

]
+

T∑
t=1

η2t
L

2B2
σ2
DPC

2.

Similar to the usual gradient descent scenario, when the magnitude of the gradient vector shrinks
and gets closer to 0, we consider the algorithm is converged (to optima or to saddle point). We can
rewrite the above inequality in terms of the smallest gradient norm over all training steps as,

min
t=0,...,T

E
[
∥∇f(θt)∥2

] T∑
t=1

ηt

≤
T∑

t=1

ηtE
[
∥∇f(θt)∥2

]
≤

T∑
t=1

(
E
[
f(θt)

]
− E

[
f(θt+1)

])
−

T∑
t=1

ηtE
[
∇f(θt)T bt

]
+

T∑
t=1

η2t
L

2B2
σ2
DPC

2

≤ f(θ0)− E
[
f(θT )

]
−

T∑
t=1

ηtE
[
∇f(θt)T bt

]
+

T∑
t=1

η2t
L

2B2
σ2
DPC

2.

Let sBt and γB
t be defined as in Definition 3.1 and 3.2, we can rewrite the bound in terms of these

quantities,

E[∇f(θt)T bt] = E[⟨∇f(θt), sBt ⟩] = E
[
cos (γB

t )∥∇f(θt)∥∥sBt ∥
]
,

Therefore the convergence bound of DP-SGD is,

min
t=0,...,T

E
[
∥∇f(θt)∥2

]
≤

(
f(θ0)− E

[
f(θT )

]
−

T∑
t=1

ηtE
[
cos (γB

t )∥∇f(θt)∥∥sBt ∥
]

+

T∑
t=1

η2t
L

2B2
σ2
DPC

2

)
/

T∑
t=1

ηt.

B PROOF OF LEMMA 3.2

Lemma (The magnitude of the biased signal of trainable parameters increases after freezing). Let
sBt

,b(θ′t) and sBt
,a(θ′t) be the biased signal of the trainable parameters before and after freezing,

then ∥gat (xi)∥ ≤ ∥gbt (xi)∥ ∀xi and ∥sBt ,a(θ′t)∥ ≥ ∥sBt ,b(θ′t)∥.

Proof. Let gt(xi, θt), gt(xi, θ′t) and gt(xi, θ
′
t) be the corresponding gradient vector of the full, frozen

and trainable parameters for each instance xi, since θt = θ′t ∪ θ′t then

gbt (xi, θt) = gbt (xi, θ′t) ∪ gbt (xi, θ
′
t), g

a
t (xi, θt) = gat (xi, θ

′
t) = gbt (xi, θ

′
t).

By the Triangle Inequality, we get,

∥gbt (xi, θt)∥ = ∥gt(xi, θ′t) + gbt (xi, θ
′
t)∥ ≤ ∥gbt (xi, θ′t)∥+ ∥gbt (xi, θ

′
t)∥.

Since ∥gbt (xi, θ′t)∥ ≥ 0, ∥gbt (xi, θt)∥ ≥ ∥gbt (xi, θ
′
t)∥ = ∥gat (xi, θt)∥. By Definition 3.1,

sBt
,b(θ′t) =

1

B

B∑
i=1

gt(xi)/max

(
1,
∥gb(xi, θ

′
t)∥

C

)
,

sBt
,a(θ′t) =

1

B

B∑
i=1

gt(xi)/max

(
1,
∥ga(xi, θ

′
t)∥

C

)
,

so it follows that ∥gat (xi)∥ ≤ ∥gbt (xi)∥ ∀xi and ∥sBt ,a(θ′t)∥ ≥ ∥sBt ,a(θ′t)∥.
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C SUPPORTING PROOFS FOR PROPOSITION 3.1

We first show a common result that helps the proofs stated afterwards: The cosine similarity in-
creases between two vectors if either one of the vectors is a sum of the other vector plus a third
vector with a larger magnitude. Let v1 and v2 be two arbitrary vectors, let v3 be the sum of v1 and
v2, v3 = v1 + v2. Keeping v1 the same, if the magnitude of v2 increases, then the cosine similarity
between v1 and v3 is larger, leading to a smaller angle between v1 and v3. The same result also
holds if v2 is kept the same and the magnitude of v1 increases.

Note that if v1, v2 and v3 are all 2-dimensional vectors, then the claims follow naturally from the
Parallelogram law. We show that the claim holds in the general p-dimensional case. Let vi =
[vi1, vi2, . . . , vip] be the flattened p-dimensional vector, we show one direction of the results which
when v1 is kept the same and the magnitude of v2 increases, v′2 = kv2 for some k ≥ 1, and the other
direction follows by symmetry. we show that

LHS =
⟨v2, (v2 + v1)⟩
∥v2∥∥(v2 + v1)∥

≥ ⟨v′
2, (v

′
2 + v1)⟩

∥v′
2∥∥(v′

2 + v1)∥
= RHS.

Expanding the dot product and the norm into summations on both sides, and let

a =
∑
i

v22i, b =
∑
i

v1iv2i, c =
∑
i

v21i.

Then we can simplify LHS and RHS as,

LHS =
k2a+ kb

k
√
a+
√
k2a+ c+ 2kb

, RHS =
a+ b

√
a+
√
a+ c+ 2b

.

Since a ≥ 0, c ≥ 0, if b ≥ 0, we can easily verify that,

(1)At k = 1, LHS −RHS = 0; (2) lim
k→∞

(LHS −RHS) =∞; (3) ∇k(LHS −RHS) ≥ 0.

Therefore, LHS −RHS is a positive non-decreasing function in k for k ≥ 1, i.e. LHS ≥ RHS.

Finally, we show that the following result is true,

E

[
arccos

(
⟨sBt (θ′t)a, sBt (θ′t)a + zt⟩
∥sBt (θ′t)a∥∥sBt (θ′t)a + zt∥

)2
]
≤ E

[
arccos

(
⟨sBt (θ′t)b, sBt (θ′t)b + zt⟩
∥sBt (θ′t)b∥∥sBt (θ′t)b + zt∥

)2
]
.

Let X denote the random variable inside the arccos function, in this case X follows the same distri-
bution as the noise, X ∼ N

(
0, σ2C2Id

)
since for each fixed sBt the sources of randomness comes

from the addition of random noise. Let x be a sample of X and let xb and xa denote the function
calculating the quantity of x before and after freezing,

xa =
⟨sBt (θ′t)a, sBt (θ′t)a + zt⟩
∥sBt (θ′t)a∥∥sBt (θ′t)a + zt∥

, xb =
⟨sBt (θ′t)b, sBt (θ′t)b + zt⟩
∥sBt (θ′t)b∥∥sBt (θ′t)b + zt∥

.

Since xa ≥ xb, arccos (xa)
2 ≤ arccos (xb)

2, therefore,∫ ∞

−∞
arccos (xa)

2
f(x)dx ≤

∫ −∞

−∞
arccos (xb)

2
f(x)dx,

where f(x) = (1/(σ′√2π)) exp (−(1/2)((x− µ)/σ′)2), µ = 0, σ′2 = σ2C2Id is the probability
density function of X. Therefore E[(γBP

t )2]a ≤ E[(γBP
t )2]b.

D EXPERIMENT DETAILS

We implement our method and the CNN baseline model (Papernot et al., 2021) with JAX (Bradbury
et al., 2018). The MNIST model is run using a 2-layered CNN model, FashionMNIST and CIFAR-
10 are run using a 5-layered CNN model. The architecture is the same as in Table 1 and 2 in Papernot
et al. (2021). The Wide-ResNet baseline model is from Balle et al. (2022) and we implement the
layer freezing part on top of it. We mostly adopt the hyperparameters suggested in the original paper.
Below are the details for each experiment:
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(1) MNIST, 2-layered CNN: C = 1.0, σDP = 1.923, B = 2048, η = 2.0, activation function
is tempered sigmoid with scale=1.58, inverse temp=3.0, offset=0.71 as suggested in the
original paper. When using layer freezing, we freeze the first 2 layers after epoch 3, 17, 39
for ϵ = 1, 2, 3 respectively.

(2) FashionMNIST, 5-layered CNN: C = 1.0, σDP = 2.15, B = 2048, η = 4.0, activation
function is tempered sigmoid with scale=1.58, inverse temp=3.0, offset=0.71 as suggested
in the original paper. When using layer freezing, we freeze the first 3 layers after epoch 4,
19, 40 for ϵ = 1, 2, 3 respectively.

(3) CIFAR10, 5-layered CNN: For the ϵ = 3 experiment we used C = 3.0, σDP = 1.0,
B = 512, η = 0.15, activation function is tempered sigmoid with scale=1.58, inverse
temp=3.0, offset=0.71 as suggested in the original paper. We freeze the first 3 layers after
epoch 20. For the ϵ = 7 experiment we used C = 1.0, σDP = 1.47, B = 2048, η = 4.0,
We freeze the first 3 layers after epoch 75.

(4) CIFAR10, Wide-Resnet: We adopt the publicly available configuration file in Balle et al.
(2022). We freeze the first 2 convolution groups after update step 800 and 3000 for ϵ = 1, 2
respectively.

E EMPIRICALLY EVALUATING ASSUMPTION 3.1 AND 3.2

In this section we empirically examine the assumptions in Section 3.4. We observe that Assumption
3.1 is generally well-supported empirically as the sum of clipped gradients are closer, in terms of
having a smaller angle, to the true gradient direction ∇ft than the sum of unclipped gradients. We
also observe that Assumption 3.2 is generally not true since freezing rescales ∥g(xi)∥ thus moving
some per-sample gradient g(xi) from being clipped to unclipped. However, since only a small
amount of g(xi) are moved, the directions of the summed clipped and unclipped gradients after
freezing are quite aligned with the directions before freezing.

Intuitively, if we clip less by freezing a subset of the parameters, under Assumption 3.1, we assign a
larger weight to the clipped gradients which are more aligned with the truth so that we decrease the
bias. To verify Assumption 3.1, in each iteration we record the clipping status and compute the sum
of the clipped (those with ∥g(xi)∥ ≥ C) and unclipped (∥g(xi)∥ < C) gradients, and compute the
distortion angle (as in Definition 3.2) to the true gradient ∇ft computed on all training examples.
Figure 7 shows the results with different L2-clipping norm C run with DP-SGD, CIFAR10, σDP =
1.0, batch size B = 512 and learning rate η = 0.15. At the end of training, ϵ = 7.0 and the
test accuracy is 0.42, 0.58, 0.60, 0.58 for C = 0.1, 1, 5, 10 respectively. We observe that in general
the summed clipped gradients are more aligned with the true gradient than the summed unclipped
gradients by having a smaller angle for different Cs which empirically supports Assumption 3.1.
It matches with our intuition since there are often more gradients being clipped than unclipped
throughout training, given a reasonable range of C from 0.1 to 10 as suggest by the Opacus authors
(Yousefpour et al., 2021), and these per-sample gradients with larger magnitudes are more likely to
dominate the true gradient direction.

Assumption 3.2 is used to characterize sample gradients that change clipping status due to layer
freezing, from clipped to unclipped. Figure 8 shows the change in the number of clipped and un-
clipped gradients. We see that a small number of gradients does change their category as some data
points’ gradients go from being clipped to unclipped when rescaling ∥g(xi)∥. Referring to the demo
in Figure 2, Assumption 3.2 ensures that the directions of gt(xj) and gt(xk) (the summed unclipped
and clipped gradients respectively) do not change after freezing so that the observed change γUB

is mostly due to rescaling the gradient norm which the analysis proceeds. We empirically measure
the change in angle before and after freezing, for the sum of gradients in the clipped and unclipped
category. We observe that the change in the angle of the summed clipped gradients are 0.09 and
0.11 radians, and 0.10 and 0.12 radians for the summed unclipped gradients, when freezing the first
3 layers of parameters after epoch 20 and 40. This matches our intuition that the direction of the
sum of gradients over a minibatch is stable to changing a small number of medium-sized gradients
from the clipped to the unclipped category.
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Figure 7: Comparing the angle between the true gradient and the sum of clipped and unclipped
gradients for different C. Top-Left: C = 0.1, Top-Right: C = 1.0, Bottom-Left: C = 5.0,
Bottom-Right: C = 10.0. Missing values indicate at step t all the gradients are clipped. We
observe that in general the clipped gradients are more aligned with the true gradient by having a
smaller angle across C.
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Figure 8: The number of clipped and unclipped gradients when freezing after Left: epoch 20 and
Right: epoch 40. A small number of gradients changed status from being clipped to unclipped after
freezing.
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