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ABSTRACT

Recently, there has been significant progress in connecting natural language to
real-world 3D scenes. Namely, for the problems of reference disambiguation
and discriminative reference production for objects in 3D scenes, various deep-
learning-based approaches have been explored by tapping into novel datasets such
as ScanRefer (Chen et al.| 2019) and Referlt3D (Achlioptas et al,, [2020). In
this paper, we curate a large-scale and complementary dataset extending both the
aforementioned ones by associating all objects mentioned in a referential sentence
to their underlying instances in a 3D scene. Specifically, our 3D Scene Entities
(3D-Scent) dataset provides an explicit correspondence between 369,039 objects,
spanning 705 scenes, over 84,015 natural referential sentences. Crucially, we show
that by incorporating simple and intuitive losses that enable learning from this
new dataset, we can significantly improve the performance of several recently
introduced neural listening architectures, including improving the SoTA by 5.0%
in both the ScanRefer and Nr3D benchmarks. Moreover, we experiment with
competitive baseline methods for the task of language generation and show that,
as with neural-listeners, 3D neural-speakers can also noticeably benefit by training
with 3D-Scent. Last but not least, our carefully conducted experimental studies
strongly support the conclusion that, by learning on 3D-Scent, commonly used
visio-linguistic 3D architectures can become more semantically robust in their
generalization without needing to provide these newly collected annotations at test
time.

1 INTRODUCTION

“The limits of my language mean the limits of my world.”

— Ludwig Wittgenstein.

As the amount of available data from both the linguistic and 3D domains has increased drastically
in recent years, so too has an interest in sophisticated techniques to combine, understand, and
exploit this data to solve outstanding problems involving both domains. In particular, there has
been flourishing interest in and work towards connecting natural language to object-centric 3D
scene understanding, a task crucial to solving fundamental problems concerning objects in real-
world 3D scenes. Specifically, the advent of large-scale multi-modal datasets (ScanRefer and Nr3D)
catalyzed a series of learning-based solutions to problems, which range from language-assisted object
localization and fine-grained object identification ((Chen et al.,[2019; |/Achlioptas et al., |2020)), to
object captioning (Chen et al.||2021)), scene-based Q/A (Azuma et al., 2021)), and language-based
semantic segmentation (Rozenberszki et al., [2022)).

At the heart of all current methods addressing these problems lies the exploitation of referential
language that distinguishes one (“target”) object from the remaining objects/entities co-existing in a
3D scene. This is understandable, as when humans naturally produce such discriminative referential
language, they do not merely enumerate properties of the target project in isolation, such as its
ego-centric properties of its color and geometry. Instead, they typically contextualize their description
and present explicit associations between the target and other objects in the scene (e.g., the tall chair
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— the tall chair between the table and the fireplace). Despite this crucial fact, current methods are
constrained due to lack of available grounding data, to largely ignore (or at best, indirectly and/or
weakly induce) most of these other mentioned (“anchor’) entities that together with the target object
contribute to the discriminative nature of each reference.

This work addresses this oversight concerning the utilization of anchor entities in two ways. First, by
curating and sharing with the research community grounding annotations that go beyond each target
object, and explicitly detail the correspondences between all 3D objects and any of their mentions,
for both Nr3D and ScanRefer. Second, by posing and verifying the hypothesis that 3D visio-linguistic
architectures can and should model such pairwise or higher-order object-to-object relations in
order to become more robust learners. We demonstrate this intuitive hypothesis by a variety of
experimental results concerning two cornerstone tasks for language-based 3D scene understanding:
experiments addressing object-centric language comprehension (a.k.a. ‘neural listening’), and
experiments concerning object-centric language production (a.k.a. ‘neural speaking’). Specifically,
we demonstrate that the incorporation of our loss functions, which disentangle and localize the
various objects mentioned in a given referential utterance during training, is: i) effective, as it results
in significantly improved accuracy for both tasks in well-established benchmarks; ii) generic, as it
has a positive performance effect across all the (many) evaluated architectures, and iii) its learning
effect is intuitive and natural — we show that the primary cause of the quantitative gains we attain is
learning more and/or better object-to-object relations expressed in the referential language.

To summarize, our main contributions are the following:

* We introduce a large-scale dataset extending both Nr3D and ScanRefer by grounding
all objects mentioned in their referential utterances to their underlying 3D scenes. Our
3D-Scent dataset (3D Scenes Entities) includes an additional 369,039 language-to-object
correspondences, more than four times the number from the original works.

* We demonstrate that, by incorporating appropriate training losses exploiting the new an-
notations, we can significantly improve the performance of several 3D neural listening
architectures, including improving the SoTA in Nr3D and ScanRefer by ~ 5.0% (55.1%
to 60.1% and 54.8% to 60.8%, respectively). Crucially, we note that to keep things fair
and comparable with existing works, we do not train our networks with more referential
utterances (or scenes), or use 3D-Scent’s annotations during inference. Instead, we rely
solely on leveraging all objects mentioned in referential utterances during training.

* We also demonstrate the utility of 3D-Scent by using it to train and improve the generalization
error of several neural speaking architectures in challenging benchmarks, as measured with
standard captioning metrics (e.g., BLEU, METEOR, ROUGE and CIDEr). For instance, we
improve the SoTA for neural speaking with Nr3D, per CIDEr, by +13.2.

* Last but not least, we present quantitative and qualitative results indicating that by training
with 3D-Scent, different neural speaking (or listening) architectures not only attain improved
performance, but do so in a natural and interpretable manner, i.e., by better learning
high-order (primarily, spatial) object-to-object relations.

2 RELATED WORK AND BACKGROUND

3D Datasets. Large and labeled datasets are crucial for deep learning tasks. Compared to 2D
images, 3D data is inherently more difficult to collect and annotate, resulting in relatively immature
progress in 3D tasks while 2D counterparts have already been fully explored. To mitigate the difficulty,
synthetic datasets are first proposed in object-level (Chang et al.,[2015) and scene-level (Handa et al.,
2016} [Fu et al} 2021) . However, the domain gap between real and synthetic data is usually ineligible.
To further facilitate the applicability, datasets collected and annotated in real worlds are proposed for
objects (Reizenstein et al.,[2021) and scenes (Silberman et al.,|2012; [Xiao et al., |2013; [Hua et al.,
2016 |Dai et al.l [2017)). Based on these efforts, supplemental annotations are collected to further
enrich the semantic exploitation of the dataset. Caption and referring expressions (Thomason et al.|
2021;|Chen et al., |2018; 2019} |Achlioptas et al.,|2020) are annotated based on ShapeNet and ScanNet.
In these descriptions of objects in scenes, we observe that “anchor” objects are commonly used
serving as referential entities. These anchor objects, however, are in large being ignored by existing
methods as well as datasets.
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Figure 1: Examples demonstrating the effect of training modern neural listeners with 3D-Scent.
For the two shown utterances (taken from the test split of Nr3D), the current SoTA listener model
(MVT (Huang et al.} [2022), wrongly (and confidently) predicts as targets the objects shown inside in
each red box (respectively, for each utterance and 3D scene). When the same model is trained with
3D-Scent, it identifies the actual targets very confidently (green). In addition, the fact that it uses
our dataset means that can employ a new loss that it enables it to separately learn to predict anchor
objects (purple) independently of the target. Note that the confidences of each prediction have the
same color and are placed nearby the corresponding boxes.

Modern visio-linguistic tasks for 3D scenes. Vision and language are two common and collabora-
tive modalities for human beings. With the rapid development in both computer vision and natural
language processing, researchers have extensively studied tasks that require joint understanding of
both modalities. Thanks to the recent 3D datasets along with linguistic annotations, various tasks are
unleashed, including captioning in object-level (Han et al.,[2020) and scene level (Chen et al.| 2021}
[Yuan et al.| [2022)), object identification in 3D scene(Chen et al.,[2019; [Achlioptas et al., [2020; Yuan
et al., 2022), language-based semantic segmentation (Rozenberszki et al., 2022; Hou et al.| 2021),
and 3D question answering(Gordon et al [2018; [Kolve et al.,[2017; Wijmans et al., 2019; [Yu et al.
2019; [Azuma et al.| 2021). In this work, we target at 3D visual grounding (Huang et al., 2022
et al., [2021; Roh et al., 2021}, [Yuan et al., 2021}; [He et al, 2021}, [Zhao et al., 2021) that associate

objects in a scene given referential sentences.

3D Visual Grounding. Visual grounding aims to identify the target object given a natural language

query. Visual grounding in 2D image has long been studied (Kazemzadeh et al., 2014}

2016; [Plummer et all, 2015; [Yu et al.} 2016} [Yang et al,[2020b; 2019; Yu et al.| 2018). On the contrary,
3D visual grounding is still in its infancy due to the lack of data. Recently, Referit3D (Achlioptas

et al, and ScanRef propose datasets for 3D visual grounding based on the ScanNet (Dai
etal., dataset. With the 3D visual grounding datasets, explorations have been made to explore
different designs and formulation (Cai et al., 2022} Wang et al.} 2022} [Yang et al| 2021} [Abdelreheem|
let al| 2022} [Feng et al.l 2021} [Roh et al.l 2021). In this work, we adopt and improve two state-of-the
art methods: MVT (Huang et al., that leverages additional information from different views,

and SAT (Yang et al., that uses 2D images as auxiliary semantic input.

3  3D-SCENE-ENTITIES DATASET

In this section we first briefly describe our pipeline for curating the annotations for 3D-Scent. We
then present its key characteristics in more detail. In the following sections, we describe the methods
we developed to employ it (Sec. ), then present and discuss our experimental results (Sec. [3).

3.1 CURATING HUMAN ANNOTATIONS

Curating all correspondences between each noun phrase in a referential sentence and their underlying
objects within a 3D scene is generally an error-prone task. First, it requires the annotators to
be familiar with (albeit simple) linguistic and syntactic rules in the target language to parse the
sentence. Second, they must be able to carefully navigate inside a complicated (and, possibly, poorly
reconstructed) scene, which typically contains multiple objects of the same fine-grained object class
(e.g., multiple kitchen cabinets, as in the lower-right example in Figure[2), so as to select all and
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"The picture is
between the window
and the . the
picture is rectangular
and has a black end."

“The square
in the corner between
the two couches.”

“Face the desk that sits
near the windows. It is
not behind the orange
. Choose the file
cabinet on the right
side that is close to the
grey desk chair.”

"The cabinet is brown
and on the wall. it is
w above the

Nr3D ScanRefer

Figure 2: Typical annotation examples from 3D-Scent. We color-code the noun-phrases corre-
sponding to the mentioned anchor entities for each of the four referential utterances portrayed. We use
the same color to visualize the corresponding 3D objects inside bounding boxes surrounding them,
and provide an exemplar view of each of the underlying 3D scenes. Our annotations are diverse with
regards to the categories of anchor objects indicated, providing a rich context for each utterance/scene
they outline.

only the correct referenced objects. In order to ensure the curation of high-quality correspondences
with a low error rate and high coverage, we took several critical steps. First, we developed a custom
web-based UI for 3D scene navigation, which was interactive, light-weight (i.e., fast), user-friendly,
and which allowed for maintaining an active dialogue with the annotators. Second, we coordinated
with a team of professional data labelers to ensure the collection of sufficiently accurate labels for
3D-Scent to validate our approach.

While a common approach to large-scale data collection today is to use crowd-sourcing techniques
with platforms such as Amazon Mechanical Turk (AMT) 2012)), we note that we con-
ducted an AMT-based pilot study to determine whether such an approach is sufficient, given the
aforementioned complexity and specificity of this task. We found that the error rate within the
collected annotations was significantly higher than that in the annotations provided by the profes-
sional labelers (error rates of 16% vs. < 5%, respectively). Rather than attempt to evaluate our
approach using data with such a high level of erroneous labels, we ultimately decided to employ the
professional annotators, which significantly improved the attained quality of 3D-Scent.

Finally, we split the curation process into two phases; the annotation phase and the verification phase.
The verification phase also involved correcting the mistakes found so as to provide high-quality
annotations. In Figure[2} we show examples from 3D-Scent dataset for Nr3D and ScanRefer, which
demonstrate that our annotations cover different classes of anchor objects, and that our annotations
provide rich contexts for these utterances.

3.2 KEY CHARACTERISTICS OF 3D-SCENT

In this section, we present some key characteristics of our 3D-Scent dataset (3D Scenes Entities). A
scene entity for a given utterance is a pair of words or short phrases (e.g., tables, trash can) and the
3D objects that correspond to these words, as shown in Figure 2] In Table[I] we collect annotations
for 37,842 examples from the Nr3D dataset and 46,173 examples from the ScanRefer dataset. We
observe that in general, ScanRefer examples provide more entities per single example compared to
Nr3D (182,300 vs. 96,032, respectively) as ScanRefer utterances are usually longer than Nr3D ones
(on average, there are 20.3 words per utterance in ScanRefer, vs. 11.4 in Nr3D). In Figure[3] we
portray the classes most used as anchor objects for both Nr3D and ScanRefer datasets.

We also calculate how frequently an object is used as an anchor object when it is the only example
from its class in the scene (e.g., single TV in a 3D scene). We find that 24.3% of all the anchor
objects are unique in Nr3D and 39.1% of all anchor objects are unique in ScanRefer. As these unique
anchors represent salient objects in their scenes, they are quite useful in locating the target object.
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For instance, in Figure[T] the presence of the unique anchor objects (e.g., whiteboard and desk) make
it easier to predict the target object.

Nr3D ScanRefer

Sink L ‘I Toilec 3 B
i ] < window g Annotated Utterances 37,842 46,173
- W 311 dé’ XV( (92 Tabl e\/.\la l ]_ No. of Entities 96,032 182,300
g0 . lﬂ“ Ceiting Avg. No. of Entities per Utterance  2.55 3.95
S 5% _ Moni tor F1OOE Ave. No. of Objects per Entity 132 133
OEF LOOF wiiceboara Poor; 24nk Avg. No. of Words per Entity 1.11 1.13

(a) (b)
Figure 3: Wordclouds depicting the most com- Table 1: Basic statistics from 3D-Scent for the
mon anchor object classes in (a) Nr3D and Nr3D and ScanRefer datasets. ScanRefer has, by
(b) ScanRefer datasets. The font size of each  construction, more verbose utterances compared
printed class name is proportional to its underly- to the more parsimonious Nr3D. This distinction is
ing frequency (better seen by zooming in). clearly reflected in these statistics from 3D-Scent.

4 METHOD

In this section, we describe how the proposed 3D-Scent dataset can be used to improve the perfor-
mance of current neural listeners and neural speakers. For neural listeners, we propose three simple,
intuitive, yet surprisingly effective loss functions to leverage the additional data. These loss functions
can serve as auxiliary add-ons to existing neural listeners, e.g., SAT (Yang et al.,[2021), and MVT
(Huang et al., 2022)). For neural speakers, we apply a similar approach to the Show, Attend, and Tell
model (Xu et al2015)) and the X —Trans2Cap model (Yuan et al.| 2022).

4.1 NEURAL LISTENING

The goal of the neural listener is to identify the target object correctly given an input description.
Following (Achlioptas et al., 2020), the input to a neural listener is a set of M 3D object proposals
present in a particular scene, in which each proposal is represented as a 3D point cloud, and an input
utterance that describes a target object and is represented as a set of N words. The recent neural
listeners are transformer-based models (Huang et al., 2022} |Yang et al.} 2021} |Zhao et al.| 2021]), each
of which applies multi-modal attention layers between the features of the 3D objects and the features
of the words of the input utterance. We propose three auxiliary losses to enhance existing neural
listeners.

4.1.1 ANCHOR PREDICTION LOSS

We introduce an anchor prediction loss £, to guide the neural listener to predict the anchor (non-
target) objects that are mentioned in an input utterance. First, we obtain the object feature vectors
Fr, ={fo, fi,- -, fam}. For the MVT model (Huang et al.,|2022)), F7, is obtained from a sequence of
transformer decoder layers followed by aggregation over multiple views. For the SAT model (Yang
et al., [2021), F7, is obtained from a sequence of multi-modal attention layers. Then we obtain
Xane = ¢(Fy,) with an MLP consisting of two fully connected layers ¢(.), where X, is a logits
vector of shape M x 1. We apply a binary cross entropy loss as in Equation[I} where Yy, is a ground
truth vector of shape M x 1.

ﬁanc = BCE(Xan07 Yanc) (1)

4.1.2 SAME-CLASS DISTRACTOR PREDICTION LOSS

We apply an intuitive loss for guiding the neural listener to predict the same-class distractor objects
(Lq4is)- A same-class distractor object is one from the same class as the target object co-existing in
the scene but is not the one referred to in the input utterance. As with the anchor objects, we treat the
same-class distractor prediction problem as a multi-label classification problem. Thus, we use an
approach similar to the anchor prediction loss discussed in Section f.T.T] We obtain the logits for
predicting the same-class distractor Xg;s = ¢ (F) of shape M x 1 with an MLP ¢(.) The loss is
binary cross entropy as in Equation [2] where Yj;s is a multi-hot target vector of shape M x 1. Note
that a same-class distractor object may not be mentioned in the given input utterance.

Edis = BCE(Xdis; Ydis) (2)
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4.1.3 CROSS-ATTENTION MAP LOSS

We introduce a grounding loss that encourages the network to attain high relevance values between
the objects and words belonging to the same scene entity. It operates on the cross-attention maps
A (before applying the softmax operation) between the features of the input scene 3D objects and
the word tokens of the input utterance, where A is of shape M x N. The target matrix Yy, is @
binary matrix of shape M x NN, where a cell (y; ;) has a value of 1 if the ith object and the jth word

correspond to one another. For each row R; of shape 1 x N and the corresponding row Y, in the
target matrix, the cross-attention map loss (L,t¢y,) is measured as:
| M
Lawn = 37 > BOE(Ri, Yiy,) 3)

i=1
4.1.4 TRAINING OBJECTIVE FUNCTION

The proposed losses can serve as auxiliary add-ons to the original loss term (L) of existing neural
listeners, such as the MVT and SAT models. We train these models in an end-to-end fashion, as:

L= Eorg + Laux, Wwhere Lo = alane + BLain + ’Y‘cdis “4)

4.2 NEURAL SPEAKING

In addition to the neural listening task, we demonstrate that the extra annotations in 3D-Scent can
benefit neural speakers. First, We adopt a simple baseline based on the well-known “Show, Attend,
and Tell” model (Xu et al.,[2015), referred to here as SATCap-Scent. SATCap-Scent is an encoder-
decoder network with pre-trained PointNet++ (Q1 et al.,2017) layers and the 3D object self-attention
layers in the MVT (Huang et al., 2022)) network as the encoder, and an LSTM (Greff et al.,|2017)) as
the decoder. The encoder part is given as inputs the ground-truth objects in a similar manner to the
neural listener. The speaker model is trained with a teacher-forcing approach. We apply our proposed
entity prediction loss during the decoding steps. At each decoding step, if the current word to be
predicted corresponds to a scene entity, then the attention to the objects corresponding to that scene
entity should be the highest among other objects that are present in the input scene.

Second, we try a similar approach on the X —Trans2Cap model (Yuan et al.,2022), referred to as
M2Cap-Scent. We introduce the following two changes to X' —Trans2Cap architecture. First, we use
a pre-trained PointNet++ encoder followed by the pre-trained 3D object self-attention layers in the
MVT (Huang et al., [2022) network. Second, we add a new cross-attention layer after the captioning
layer. The layer applies a cross-attention operation between the features of the 3D objects of shape
M x d and the features of the predicted tokens IV x d, where d is the latent feature dimension, to
obtain new enhanced features F. of shape M x d. Finally, the logit vector is obtained with an MLP
6(.), representing a confidence value for each object as to whether it is mentioned in the target caption
or not. A binary cross-entropy 10ss Lyen = BCE(0(F.), Yinen) is employed, in which the target
vector Yyen is a multi-hot vector (y! ., is 1 if the ith object is mentioned in the target caption).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We use the Nr3D (Achlioptas et al.,|2020) and ScanRefer (Chen et al., [2019) datasets with
their original annotations as well as our additional annotations provided with the proposed 3D-Scent
dataset. We use the official ScanNet (Dai et al.,[2017) training and validation splits.

Metrics. In the neural listening experiments, we report the target referential accuracy. In the neural
speaking experiment, we report CIDEr (Vedantam et al.| [2015), BLEU-4 (Papineni et al., [2002),
METEOR (Banerjee & Lavie,2005), and ROUGE (Lin} 2004)).

5.2 NEURAL LISTENING

We demonstrate the effectiveness of the proposed 3D-Scent by comparing state-of-the-art models
trained with and without the additional annotations. For all experiments, we note that our dataset only
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Arch. Overall Easy Hard View-dep. View-indep.
ReferIt3DNet (Achlioptas et al.| 35.6%+0.7%  43.6%+0.8%  27.9%+0.7%  32.5%+0.7%  37.1%+0.8%

38.8%+0.4%  46.0%+0.5% 31.8%+04%  34.5%+0.6% 41.9%+0.4%
412022)  39.0%+02%  46.4%+0.4%  32.0%+03%  34.7%+03%  41.2%+0.4%
40.8%+0.2%  48.5%+02%  34.8%+0.4%  34.8%+0.7%  43.7%+0.5%

InstanceRefer 1m|m
3DRefTransformer {

FFL-3DOG ( 41.7% 48.2% 35.0% 37.1% 44.7%
TransRefer3D 2021) 42.1%+02%  48.5%+02%  36.0%+0.4%  36.5%+0.6%  44.9%+0.3%
LanguageRefer (R 0 43.9% 51.0% 36.6% 41.7% 45.0%
SAT (Yang et al.[[2021} 492%+03%  56.3%+0.5%  42.4%+04%  46.9%+03%  50.4%=+0.3%
3D-SPS (Luo et al.|[2022] 51.5%+02%  58.1%+03%  45.1%+0.4%  48.0%+02%  53.2%=+0.3%
MVT ( .|[2022] 55.1%+0.3%  61.3%+04%  49.1%+0.4%  54.3%+0.5%  55.4%=+0.3%

52.5%+02%  59.8%+02%  45.6%+03%  51.3%+0.5%  53.2%=+0.1%
SAT-Scent (ours)

(+3.3%) (+3.6%) (+3.2%) (+4.4%) (+2.8%)
MVTS . 60.1%+04% 66.1%+05% 541%+03% 60.3%+0.7% 60.1%+0.3%
~Scent (ours) (+5.0%) (+4.8%) (+5.0%) (+6.0%) (+4.7%)

Table 2: Listening performance on Nr3D dataset. The neural listeners are trained with or without
our 3D-Scent dataset and our proposed losses. The numbers in green are the relative improvements
over their original counterparts.

leads to modifications at training time. At inference time, our trained models and their respective
baseline models use the same input data.

First, we demonstrate that neural listeners trained with 3D-Scent achieve state-of-the-art performance.
As shown in Table 2] and Table 3] our MVT-Scent model, which trained with our proposed dataset
and our auxiliary losses, achieves the state-of-the-art, outperforming the current SOTA models. MVT-
Scent outperforms the original MVT (Huang et al.,[2022)) on both the Nr3D (+5.0%) and ScanRefer
(+5.0%) datasets, while SAT-Scent model similarly outperforms the original SAT
model on both the Nr3D (+3.3%) and ScanRefer (+2.4%) datasets. The results illustrate that the
proposed loss terms are generic enough to be applied as plug-ins to other models.

Next, we observe that neural listeners trained with 3D-Scent are semantically more robust. We
analyze the predictions generated by our best-performing MVT-Scent model. As shown in Figure
M first, we find that the MVT-Scent model is less likely to mistakenly predict one of the same-class
distractor objects as the target object for a given input example than the original MVT
model by 3.5% (20.3% vs. 23.8%). Second, we also find that the MVT-Scent model is less
likely to mistakenly predict an object present in the input scene but not mentioned in the input
utterance as the target object than the MVT model by 1.5% (14.7% vs. 16.2%).

Furthermore, we observe considerable improvements in each context for Nr3D, particularly in the
view-dependent and hard contexts (6.0% and 5.0% as in Table 2] respectively). In addition, we report
the F; score 2020), which measures the overall accuracy of a test taking into account its
precision and recall, of the anchor object classification in the MVT-Scent model. The F} score of
0.64 (out of a possible maximum of 1) suggests that the full potential value of our proposed dataset
3D-Scent may still be attained with the development of more sophisticated losses, a promising area
for future work.

Arch. Acc. B MVT  m MVT-Scent (ours)
ScanRefer (Chen et al.|2019) 44.5% redictod o _
Referlt3DNet (Achlioptas et al.|[2020)  46.9%+0.2%  wentioned objec 0
SAT (Yang et al.[2021) 53.8%+0.1%
MVT (Huang et al.|2022) 54.8%+0.1% redceas [ s %)

Same-Class
Distractor Object 20.3%

SAT-Scent (ours) 56.2%+0.2%
MVT-Scent (ours) 60.8% +0.2 %

Table 3: Listening performance on the ScanRefer dataset. Figure 4: Comparison of incorrect
The neural listeners are trained using the ground truth boxes predictions on the Nr3D dataset.
as input with or without using the additional annotations The neural listeners trained with 3D-
from the 3D-Scent dataset and our proposed losses. Scent are semantically more robust.
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Finally, In Figure 5] we present examples of how knowing the anchor objects allows the model
to identify the target object correctly. Comparing the proposed model MVT-Scent and the current
state-of-the-art method MVT, we demonstrate that guiding our network to understand the anchor
entities mentioned in the input utterances allows the listener to better identify the target object. In the
third column, we illustrate the predicted target object and the predicted anchor objects by MVT-Scent
in green and purple bounding boxes, respectively.

GT

Ours

- @ = = s 8 - \
,, 3 N A : — N \
“The office chair closest to the exit door and “The huge picture on the wall to the left of the

Facing windows, desk furthest on right. furthest from the window.” double window.”

Figure 5: Qualitative results for our proposed model (MVT-Scent) compared to the MVT model.
The rows from top to bottom show the ground-truth (green box), the target object predicted by MVT
(red box), the predicted target object predicted by MVT-Scent (green box) along with the predicted
anchor objects (purple boxes), and the input utterance. The above examples show that the model
can accurately predict the target object by correctly understanding the underlying anchor objects
mentioned in the input utterance.

5.3 NEURAL SPEAKING

With the proposed 3D-Scent dataset, the modified speaker models, SATCap-Scent and M2Cap-Scent,
improve significantly against their corresponding baseline, as shown in Table[d The encoder networks
in SATCap and M2Cap models are the pretrained encoder weights of an original MVT neural listener
trained without 3D-Scent, while the encoder networks in SATCap-Scent and M2Cap-Scent are the
pretrained weights of an MVT-Scent listener. We observe that 3D-Scent helps our speaker models to
provide better captions for Nr3D and ScanRefer across all metrics (BLEU, CIDEr, METEOR, and
ROUGE). The M2Cap-Scent model improves the SoTA for neural speaking with Nr3D, per CIDEr,
by +13.2. In all experiments, we use the ground truth instances as input. Also, we do not provide
the extra 2D modality during the inference phase, and do not use the extra CIDEr loss in the final

objective function found in (Yang et al.} [2020a).

5.4 ABLATION STUDY

We conduct an ablation study by applying different combinations of our proposed auxiliary losses to
see their effect on the neural listener performance. We try each possible combination of our proposed
losses (Lancs Lattn, and Lqis) with the MVT (Huang et al., 2022)) architecture and report their
performance on the Nr3D dataset, as shown in table |5 When applying the cross-attention map loss
alone, we obtain an overall boost of 1.5% over the baseline MVT model (using none of our proposed
losses). As mentioned earlier, the boost is considered small for the following reason: forcing the
cross-attention maps to be closer to the sparse ground truth matrix prevents the attention layer from
attending to other important words (like prepositions, spatial relation words, and object attributes).
We also observe that, in general, using the cross-attention map loss in any experiment hurts the
performance more than when not using it. We observe that incorporating the same-class distractor
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Arch. Nr3D ScanRefer
C B-4 M R C B-4 M R
Scan2Cap|Chen et al.|(2021) 61.89 32.02 28.88 64.17 | 6444 36.89 2842 6042
X —Trans2Cap |Yuan et al.|(2022) | 80.02 37.90 3048 67.64 | 87.09 44.12 30.67 64.37
SATCap (ours) 76.57 29.12 2497 55.62 | 80.98 3747 2691 56.98
SATCap-Scent (ours) 84.37 30.73 2590 56.57 | 84.81 38.85 27.18 57.62
M2Cap (ours) 86.15 37.03 30.63 67.00 | 85.75 44.02 30.74 64.80
M2Cap-Scent (ours) 93.25 39.33 31.55 68.33 | 87.20 44.81 30.93 65.24

Table 4: Speaking performance on Nr3D and ScanRefer datasets. The results of incorporating
3D-Scent dataset in our proposed approaches for the speaking (captioning) task. A speaking model
trained with our rich annotations performs better than one trained without in both Nr3D and ScanRefer
datasets.

prediction loss helps in improving the referential performance. We obtain an improvement in the
performance of 1.8% upon applying the same-class distractor loss alone. This result is unsurprising,
as we find that the same-class distractors are mentioned in 17.2% of the utterances in the Nr3D and
12.4% in the ScanRefer datasets. Applying the anchor prediction loss gives the best boost in every
experiment where it is applied compared to the other losses. We observe that incorporating the anchor
prediction loss is useful for all the Nr3D contexts, especially the hard contexts. The aforementioned
result demonstrates how useful the knowledge of the anchor objects mentioned in the input utterance
is. The best performing model applies both the anchor and same-class distractor prediction losses
together, and the performance is better than using all three losses combined by 0.5%.

Lattn  Lane Ldis Overall Easy Hard View-dep. View-indep.

551%+03%  61.3%+0.4%  49.1%+0.4%  543%+0.5%  55.4%=+0.3%
56.6%+02%  63.0%+03%  50.5%+03%  55.4%+0.4%  57.2%=+0.2%
v 56.9%4+03%  63.5%+03%  50.6%+03%  55.3%+0.4%  57.8%=+0.4%
v 56.9%+03%  63.6%+0.4%  50.6%+0.4%  56.0%+0.1%  57.4%=+0.4%
58.0%+02%  64.2%+03%  52.1%+02%  57.1%+0.6%  58.5%=+0.1%
589%+03%  65.1%+0.4%  52.9%+02%  57.4%+02%  59.6%=+0.4%
v 59.6%+03%  65.5%+0.5%  53.9%+03%  57.8%+0.5%  60.4%+0.2%
v 60.1%+0.4% 66.1%+0.5% 541%+03% 60.3%=+0.7%  60.1%+0.3%

SSENENEIEN

NN

Table 5: Ablation study on neural listeners. We ablate different combinations of our proposed
auxiliary losses on the MVT neural listener, trained on Nr3D using our proposed 3D-Scent dataset.

6 CONCLUSION

Humans describe or locate objects in 3-dimensional scenes by understanding and utilizing their
relationships to other, co-existing objects. This work takes substantial initial steps to bring such
object-to-object interactions, grounded in language, to the frontline of relevant learning-based
methods. First, we curate and share a set of rich correspondences covering all referential entities
mentioned in Nr3D and ScanRefer to their underlying environments. Second, we employ these
(meta) annotations to effectively train neural networks that better understand 3D objects and their
language-based grounding. Interestingly, we find that using this new grounding data and integrating
our proposed simple and intuitive losses enables state-of-the-art results in neural listening and
speaking tasks.

By better incorporating human-like comprehension of contextual information to describe and interact
with scenes, these insights will open new opportunities to advance related multimodal tasks. These
could include improving the ability of robots to understand and interact with objects in real environ-
ments and perform complex language-driven tasks; describing and manipulating large-scale outdoor
environments (e.g., to caption real environments or design virtual worlds); and related tasks for which
the relationship between scene entities is crucial to attain human-like performance.
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A APPENDIX

A.1 DATASET COLLECTION

This section discusses in detail the two phases of our 3D-Scent curation. Figure[6]shows the user
interface we implemented.

oo e D N Y

Objects Found

m m trash can , 1 object(s) found
m m table , 1 object(s) found

something wrong or interesting about this example? All Found (Submit)
please text-it here

Instructions MUST read ALL of them once (Click to hide)

High Level Task Description:
You are given below a sentence broken down in its constituent words. Your goal is to find and mark all the NOUNs of this sentence that descirbe SPECIFIC
objects (e.g., chair, table,...) in a given 3D scene. Please read the precice details below.

Detailed instructions:

Figure 6: The user interface for 3D-Scent dataset collection.

Annotation Phase. A human labeler is given an utterance and a 3D scene. While the utterance
generally describes one specific object in the 3D scene, the labeler is first asked to mark all the nouns
(entities) that describe specific objects in the given 3D scene (e.g., chair, table, etc.) in the utterance.
Then, for each selected entity in the given utterance, the labeler should highlight the corresponding
3D objects in the given 3D scene. The labeler can zoom, pan or rotate the 3D scene to find the
corresponding 3D objects. Each labeler is provided with one random utterance at a time. We assign
one labeler for each example.

Review Phase. A reviewer is given one annotated example randomly and is asked to determine
whether the example was correctly annotated. If the example was annotated incorrectly, the reviewer
is then requested to correct and fix the annotation. The reviewer is shown a similar user interface to
the labeler. Each annotation is reviewed by one reviewer.

A.2 IMPLEMENTATION DETAILS

For the listening experiments, We used the same hyper-parameters specified in MVT (Huang et al |
2022) and SAT (Yang et al.||2021). We use one NVidia V100 GPU in each of our experiments. For

the listening experiments, we use a = 3.0, v = 2.0, and 5 = 0. We use the same hyper-parameters
found in|Yang et al.|(2020a) for the neural speakers.
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