
Dynamic Spectral Clustering with Provable Approximation Guarantee

Steinar Laenen 1 He Sun 1

Abstract
This paper studies clustering algorithms for dy-
namically evolving graphs {Gt}, in which new
edges (and potential new vertices) are added into
a graph, and the underlying cluster structure of
the graph can gradually change. The paper proves
that, under some mild condition on the cluster-
structure, the clusters of the final graph GT of nT

vertices at time T can be well approximated by
a dynamic variant of the spectral clustering algo-
rithm. The algorithm runs in amortised update
time O(1) and query time o(nT). Experimental
studies on both synthetic and real-world datasets
further confirm the practicality of our designed
algorithm.

1. Introduction
For any graph G = (V,E) and parameter k ∈ N as input,
the objective of graph clustering is to partition the vertex set
of G into k clusters such that vertices within each cluster
are better connected than to the rest of the graph. Since
large-scale graphs are commonly used to model practical
datasets, designing efficient graph clustering algorithms is
an important problem in machine learning and related fields.

In practice, these large-scale graphs usually evolve over
time: not only are new vertices and edges added into a
graph, but the graph’s clusters could also change gradually,
resulting in a new cluster-structure in the long term. Instead
of periodically running a clustering algorithm from scratch,
it is important to design algorithms that can quickly identify
and return the new clusters in dynamically evolving graphs.

In this paper we study clustering for dynamically evolving
graphs, and obtain the following results. As the first and con-
ceptual contribution, we propose a model for dynamic graph
clustering. In contrast to the classical model for dynamic
graph algorithms (Thorup, 2007; Beimel et al., 2022), our

1School of Informatics, University of Edinburgh,
United Kingdom. Correspondence to: Steinar Laenen
<steinar.laenen@ed.ac.uk>, He Sun <h.sun@ed.ac.uk>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

proposed model considers not only edge insertions but also
vertex insertions; as such the underlying graph can gradu-
ally form a new cluster-structure with a different number of
clusters from the initial graph.

As the second and algorithmic result, we design a ran-
domised graph clustering algorithm that works in the above-
mentioned model, and our result is as follows:

Theorem 1.1 (Informal statement of Theorem 4.6). Let
G1 = (V1, E1) be a graph of n1 vertices and k = Õ(1)
clusters.1 Assume that new edges, which could be adjacent
to new vertices, are added to Gt at each time t to obtain
Gt+1, and there are O(poly(n1)) added edges in total at
time T = O(poly(n1)) to form GT of nT vertices and k′

clusters. Then, there is a randomised algorithm such that
the following hold with high probability:

• The initial k clusters of G1 can be approximately com-
puted in Õ(|E1|) time.

• The new k′ clusters of GT can be approximately com-
puted with amortised update time O(1) and query time
o(nT).

To examine the result, we notice that, although the num-
ber of clusters k in G1 can be identified with the classical
eigen-gap heuristic (Ng et al., 2001; von Luxburg, 2007),
computing an eigen-gap is expensive and cannot be directly
applied to determine the change of k in dynamically evolv-
ing graphs. Our result shows that the new number of clusters
k′ can be computed by a dynamic clustering algorithm with
sublinear query time. Secondly, as the running time of a
clustering algorithm is at least linear in the number of edges
in GT and it takes Ω(nT) time to output the cluster mem-
bership of all the vertices, obtaining an o(nT) amortised
query time2 is significant. To the best of our knowledge, our
work presents the first such result with respect to theoretical
guarantees of the output clusters, and time complexity.

Our algorithm not only achieves strong theoretical guaran-
tees, but also works very well in practice. For instance, for
input graphs with 300,000 vertices and up to 490,000,000
edges generated from the stochastic block model, our algo-

1We use Õ(n) to represent O(n · logc(n)) for constant c.
2Throughout the paper we use T to denote query time, and t as

arbitrary time throughout the sequence of graphs {Gt}.

1

Dynamic Spectral Clustering with Provable Approximation Guarantee

rithm runs more than 100 times faster than repeated exe-
cution of spectral clustering on the updated graphs, while
obtaining a comparable clustering result.

1.1. Overview of the Algorithm

For any input graph G1 with a well-defined cluster structure,
we first construct a cluster-preserving sparsifier H1 of G1,
which is a sparse subgraph of G1 that maintains its cluster-
structure, and employ spectral clustering on H1 to obtain
the initial k clusters of G1. After this, with a new edge
arriving at every time t, our designed algorithm applies two
components to track the cluster-structure of Gt.

The first component is a dynamic algorithm that maintains
a cluster-preserving sparsifier Ht for Gt. Our designed
algorithm is based on sampling edges with probability pro-
portional to the degrees of their endpoints, and these edges
get resampled if their degrees have significantly changed.
We show that Ht always preserves the cluster-structure of
Gt, and the algorithm’s amortised update time complexity
is O(1).

Our second component is an algorithm that dynamically
maintains a contracted graph G̃t of Gt, and this contracted
graph is used to sketch the cluster-structure of Gt. For the
first input graph G1 and the output of spectral clustering
on H1, our initial contracted graph G̃1 consists of k super
vertices with self-loops: these super vertices correspond
to the k clusters in G1, and are connected by edges with
weight equal to the cut values of the corresponding clusters
in H1. After that, when new edges (and potentially new
vertices) arrive over time, our algorithm updates G̃t such
that (new) clusters are represented by either the same super
vertices, newly added vertices, or a combination of both.
The algorithm further updates the edge weights between
the super vertices. With slight increase in the number of
vertices of G̃t over time, we prove that the cluster-structure
in Gt is approximately preserved in G̃t. In particular, when
new clusters are formed in Gt, this new cluster-structure
of Gt can be identified by the eigen-gap of G̃t’s Laplacian
matrix. See Figure 1 for the illustration of our approach.

1.2. Related work

Our work directly relates to a number of works on incremen-
tal spectral clustering algorithms (e.g., (Dhanjal et al., 2014;
Martin et al., 2018; Ning et al., 2007)). These works usually
rely on analysing the change of approximate eigenvectors
and don’t show the approximation guarantee of the returned
clusters. Many works along this direction further employ
matrix perturbation theory in their analysis, requiring that
the total number of vertices in a graph is fixed.

Our work is also linked to related dynamic graph algorithm
problems (e.g., (Bernstein et al., 2022; Saranurak & Wang,

2019)). However, most works in dynamic graph algorithms
focus on the design of dynamic algorithms in a general
graph, while for dynamic clustering one needs to assume the
presence of cluster-structures in the initial and final graphs,
such that the algorithm’s performance can be rigorously
analysed. Nevertheless, some of our presented techniques,
like the adaptive sampling, are inspired by the dynamic
graph algorithms literature.

2. Preliminaries
2.1. Notation

Let G = (V,E,w) be an undirected graph with |V | = n
vertices, |E| = m edges, and weight function w : V ×V →
R⩾0. For any edge e = {u, v} ∈ E, we write wG(u, v)
or wG(e) to express the weight of e. For a vertex u ∈ V ,
we denote its degree by degG(u) ≜

∑
v∈V wG(u, v), and

the volume for any S ⊆ V is defined as volG(S) ≜∑
u∈S degG(u). For any S, T ⊂ V , we define the cut value

between S and T by wG(S, T) ≜
∑

e∈EG(S,T) wG(e),
where EG(S, T) is the set of edges between S and T . More-
over, for any S ⊂ V , the conductance of S is defined as

ΦG(S) ≜
wG(S, V \ S)

min{volG(S), volG(V \ S)}

if S ̸= ∅, and ΦG(S) = 1 if S = ∅. For any integer k ⩾ 2,
we call subsets of vertices A1, . . . , Ak a k-way partition of
G if

⋃k
i=1 Ai = V and Ai ∩ Aj = ∅ for different i and j.

We define the k-way expansion of G by

ρG(k) ≜ min
partitions A1,...,Ak

max
1⩽i⩽k

ΦG(Ai).

Our analysis is based on the spectral properties of graphs,
and we list the basics of spectral graph theory. For a graph
G = (V,E,w), let DG ∈ Rn×n be the diagonal matrix de-
fined by DG(u, u) = degG(u) for all u ∈ V . We denote by
AG ∈ Rn×n the adjacency matrix of G, where AG(u, v) =
wG(u, v) for all u, v ∈ V . The normalised Laplacian ma-
trix of G is defined as LG ≜ I−D

−1/2
G AGD

−1/2
G , where I

is the n× n identity matrix. The normalised Laplacian LG

is symmetric and real-valued, and has n real eigenvalues
which we write as 0 = λ1(LG) ⩽ . . . ⩽ λn(LG) ⩽ 2; we
use fi ∈ Rn(1 ⩽ i ⩽ n) to express the eigenvector of LG

corresponding to λi.

Lemma 2.1 (Higher-order Cheeger inequality, (Lee et al.,
2014)). There is an absolute constant C2.1 such that it holds
for any graph G and k ⩾ 2 that

λk(LG)

2
⩽ ρG(k) ⩽ C2.1 · k3

√
λk(LG). (1)

2

Dynamic Spectral Clustering with Provable Approximation Guarantee

Gt

Gt′

Ht G̃t

Sparsify

Ht′ G̃t′

Cluster + contract

Graph update Dynamic sparsifier Dynamic contracted graph

(a) (b) (c)

Figure 1. Illustration of our technique. The black and red edges in Figure (a) are the edges in Gt and the added ones in Gt′ ; the dashed
black and red edges in Figure (b) are the ones added in Ht and Ht′ ; the black and red edges in Figure (c) are the ones in G̃t and G̃t′ .

2.2. Spectral Clustering

Spectral clustering is a popular clustering algorithm used in
practice (Ng et al., 2001), and it can be described with a few
lines of code (Algorithm 1).

Algorithm 1 SpectralClustering(G, k)

1: Input: Graph G = (V,E,w), number of clusters k ∈
N

2: Output: Partitioning P1, . . . , Pk

3: Compute eigenvectors f1, . . . , fk of LG

4: for u ∈ V do
5: F (u)← 1√

degG(u)
· (f1(u), . . . , fk(u))⊺

6: end for
7: P1, . . . , Pk ← k-means({F (u)}u∈V , k)
8: Return P1, . . . , Pk

To analyse the performance of spectral clustering, we ex-
amine the scenario in which there is a large gap between
λk+1(LG) and ρG(k). By the higher-order Cheeger inequal-
ity, a low value of ρG(k) ensures that V can be partitioned
into k clusters, each of which has conductance at most
ρG(k); on the other hand, a large value of λk+1(LG) im-
plies that any (k + 1) partition of V would introduce some
A ⊂ V with ΦG(A) ⩾ ρG(k + 1) ⩾ λk+1(LG)/2. Based
on this, Peng et al. (2017) introduced the parameter

ΥG(k) ≜
λk+1(LG)

ρG(k)
, (2)

and showed that a large value of ΥG(k) is sufficient to
guarantee a good performance of spectral clustering. They
further showed that, for a graph G with m edges, spectral
clustering runs in O(m · logβ m) time for constant β ∈ R+.

For convenience of notation, we always order the output
of spectral clustering by P1, . . . , Pk such that volG(P1) ⩽
. . . ⩽ volG(Pk).

2.3. Model for Dynamic Graph Clustering

We assume that the initial graph G1 = (V1, E1) with
n1 vertices satisfies λk+1(LG1) = Ω(1) and ρG1(k) =
O(k−8 log−2γ(n1)) for some constant γ ∈ R+. This con-
dition is similar to lower bounding ΥG1

(k), and ensures
that the initial input graph G1 has k well-defined clusters.
After this, the underlying graph is updated through an edge
insertion at each time, and let Gt = (Vt, Et) be the graph
constructed at time t. We assume that every edge insertion
introduces at most one new vertex; as such the underly-
ing graph is always connected, and the number of vertices
nt ≜ |Vt| could increase over time. We further assume
that, after every Θ(logγ(nt)) steps, there is time t′ such
that Gt′ = (Vt′ , Et′) presents a well-defined structure of
k′ clusters, which is characterised by λk′+1(LGt′) = Ω(1)

and ρGt′ (k
′) = O(k′−8 · log−2γ(nt′)) for some k′ ∈ N.

Notice that, since both the number of vertices nt in time t
and the number of clusters could change, our above-defined
dynamic gap assumption allows the underlying graph to
gradually form a new cluster structure, e.g., O(logγ(n1))
newly added vertices and their adjacent edges could initially
form a small new cluster which gradually “grows” into a
large one. On the other side, our assumption prevents the
disappearance of the underlying graph’s cluster-structure
throughout the edge updates, which would make the objec-
tive function of a clustering algorithm ill-defined.

3

Dynamic Spectral Clustering with Provable Approximation Guarantee

3. Dynamic Cluster-Preserving Sparsifiers
A graph sparsifier is a sparse representation of an input
graph that inherits certain properties of the original dense
graph, and their efficient construction plays a key role in
designing a number of nearly-linear time graph algorithms.
However, typical constructions of graph sparsifiers are based
on fast Laplacian solvers, making them difficult to imple-
ment in practice. To overcome this, Sun & Zanetti (2019)
studied a variant of graph sparsifiers for graph clustering,
and introduced the notion of a cluster-preserving sparsifier:
Definition 3.1 (Cluster-preserving sparsifier). Let G =
(V,E) be any graph with k clusters, and {Si}ki=1 a k-
way partition of G corresponding to ρG(k). We call a
re-weighted subgraph H = (V, F ⊂ E,wH) a cluster-
preserving sparsifier of G if (i) ΦH(Si) = O(k · ΦG(Si))
for 1 ⩽ i ⩽ k, and (ii) λk+1(LH) = Ω(λk+1(LG)).

To examine the two conditions of Definition 3.1, notice that
graph G = (V,E) has exactly k clusters if (i) G has k dis-
joint subsets S1, . . . , Sk of low conductance, and (ii) any
(k + 1)-way partition of G would include some A ⊂ V
of high conductance, which would be implied by a lower
bound on λk+1(LG) due to (1). With the well-known eigen-
gap heuristic and theoretical analysis on spectral cluster-
ing (Peng et al., 2017), these two conditions ensure that the
k optimal clusters in G have low conductance in H as well.

3.1. The SZ Algorithm

We first present the algorithm in (Sun & Zanetti, 2019) for
constructing a cluster-preserving sparsifier; we call it the SZ
algorithm for simplicity. Given any input graph G = (V,E),
the algorithm computes

pu(v) ≜ min

{
C · 1

λk+1(LG)
· log n

degG(u)
, 1

}

pv(u) ≜ min

{
C · 1

λk+1(LG)
· log n

degG(v)
, 1

}
,

for every e = {u, v}, where C ∈ R+ is some constant.
Then, the algorithm samples e = {u, v} with probability
pe ≜ pu(v) + pv(u) − pu(v) · pv(u), and sets the weight
of every sampled e = {u, v} in H as wH(u, v) ≜ 1/pe.
By setting F as the set of the sampled edges, the algorithm
returns H = (V, F,wH). Sun & Zanetti (2019) proved that,
with high probability, H has Õ(n) edges and is a cluster-
preserving sparsifier of G.

On the other side, while Definition 3.1 shows that the op-
timal clusters Si (1 ⩽ i ⩽ k) of G have low conductance
in H , it doesn’t build the connection from the vertex sets
of low conductance in H to the ones in G. In this paper,
we prove that such a connection holds as well; this allows
us to apply spectral clustering on H , and reason about the
conductance of its returned clusters in G.

Lemma 3.2. Let G be a graph with ΥG(k) = Ω(k) for
some k ∈ N with optimal clusters {Si}ki=1, and H its clus-
ter preserving sparsifier. Let {Pi}ki=1 be the output of spec-
tral clustering on H , and without loss of generality let the
optimal correspondence of Pi be Si for any 1 ⩽ i ⩽ k.
Then, it holds with high probability for any 1 ⩽ i ⩽ k that

volG(Pi△Si) = O

(
k2

ΥG(k)

)
· volG(Si),

ΦG(Pi) = O

(
ΦG(Si) +

k2

ΥG(k)

)
,

where A△B ≜ (A \B) ∪ (B \A).

3.2. Construction of Dynamic Cluster-Preserving
Sparsifiers

Now we design an algorithm that constructs a cluster-
preserving sparsifier under edge and vertex insertions, and
our algorithm works as follows. Initially, for the input G1

with n1 vertices, a well-defined structure of k clusters and

τ ⩾
C

λk+1(LG1
)

(3)

for some constant C ∈ R+, we run the SZ algorithm and
obtain a cluster-preserving sparsifier of G1. In addition to
storing the sparsifier H1 of G1, the algorithm employs the
vector sp∗

1 to store the values log n1/degG1
(u) for every

vertex u, which are used to sample adjacent edges of vertex
u. See Algorithms 2 and 3 for formal description.

Algorithm 2 SampleEdge(e,G, τ)

1: Input: edge e = {u, v}, graph G = (V,E) of n ver-
tices, parameter τ ∈ R+

Output: edge e′ with weight w(e′)
p(u, v)← pu(v) + pv(u)− pu(v) · pv(u)
Sample e with probability p(u, v)

2: if e is sampled then
3: e′ ← e, w(e′)← 1/p(u, v)
4: else
5: e′ ← ∅, w(e′)← 0
6: end if
7: Return e′, w(e′)

Next, given the graph Gt currently constructed at time
t, its sparsifier Ht, and edge insertion e = {u, v}, the
algorithm compares for every vertex w the parameter
log nt+1/degGt+1

(w) with sp∗
t (w), the quantity used to

sample the adjacent edges of w the last time, and checks
whether the two values change significantly. If it is the case,
then the used sampling probability is too far from the “cor-
rect” one when running the static SZ algorithm on Gt+1,
and hence we resample all the edges adjacent to w with

4

Dynamic Spectral Clustering with Provable Approximation Guarantee

Algorithm 3 StaticSZSparsifier(G, τ)

1: Input: G = (V,E) of n vertices, parameter τ ∈ R+

2: Output: Cluster preserving sparsifier H = (V, F,wH),
degree list sp∗

3: F ← ∅
4: for e ∈ E do
5: e′, w(e′)← SampleEdge(e,G, τ)
6: F ← F ∪ e′, wH(e)← w(e′)
7: end for
8: sp∗ ←

{
logn

degG(u) | u ∈ V
}

9: Return H , sp∗

Algorithm 4 UpdateSparsifier(Gt, Ht, sp
∗
t , e, τ)

1: Input: Gt = (Vt, Et), Ht = (Vt, Ft, wHt
), sp∗

t , in-
coming edge e = {u, v}, parameter τ

2: Output: Ht+1 = (Vt+1, Ft+1, wHt+1), sp
∗
t+1

3: Vnew ← {u, v} \ Vt

4: Gt+1 ← (Vt ∪ Vnew, Et ∪ e)
5: Ht+1 ← (Vt ∪ Vnew, Ft, wHt

)
6: sp∗

t+1 ← sp∗
t

7: if Vnew ̸= ∅ then
8: e′, w(e′)← SampleEdge(e,Gt+1, τ)
9: Ft+1 ← Ft+1 ∪ e′, wHt+1

(e)← w(e′)
10: if u ∈ Vnew then
11: sp∗

t+1(u)←
lognt+1

degGt+1
(u)

12: end if
13: if v ∈ Vnew then
14: sp∗

t+1(u)←
lognt+1

degGt+1
(v)

15: end if
16: end if

Vdoubled ←
{
v̂ ∈ Vt+1 \ Vnew | lognt+1

degGt+1
(v̂) > 2 ·

sp∗
t (v̂) or lognt+1

degGt+1
(v̂) <

sp∗
t (v̂)
2

}

17: if |Vdoubled| > 0 then
18: for û ∈ Vdoubled do
19: Ft+1 ← Ft+1 \ EHt+1

(û)
20: for ê ∈ EGt+1

adjacent to û do
21: ê′, w(ê′)← SampleEdge(ê, Gt+1, τ)
22: Ft+1 ← Ft+1 ∪ ê′, wHt+1(ê)← w(ê′)
23: end for
24: sp∗

t+1(û)←
lognt+1

degGt+1
(û)

25: end for
26: else
27: e′, w(e′)← SampleEdge(e,Gt+1, τ)
28: Ft+1 ← Ft+1 ∪ e′, wHt+1

(e)← w(e′)
29: end if
30: Return Ht+1, sp∗

t+1

the right sampling probability. Otherwise, we simply use
the values stored in sp∗

t to sample the upcoming edge e,
and include it in Ht+1 if e is sampled. See Algorithm 4 for
formal description3, and Theorem 3.3 for its performance:

Theorem 3.3. Let G1 = (V1, E1) be a graph with n1 ver-
tices and a well-defined structure of k = Õ(1) clusters,
and {Gt} the sequence of graphs of {nt} vertices con-
structed sequentially through an edge insertion at each
time. Assuming graph GT at time T = O(poly(n1))

has a well-defined structure of Õ(1) clusters and nT =
O(poly(n1)), Algorithm 4 returns a cluster-preserving spar-
sifier HT = (VT , FT , wHT

) of GT with high probability,
and |FT | = Õ(nT). The algorithm’s amortised running
time is O(1) per edge update.

4. Dynamic Spectral Clustering Algorithm
This section presents our main dynamic spectral cluster-
ing algorithm, and is organised as follows: In Section 4.1,
we present the construction and update procedure of a con-
tracted graph, which is the data structure that summarises
the cluster structure of an underlying input graph and al-
lows for quick updates to the clusters. The properties of
dynamic contracted graphs are analysed in Section 4.2. We
present the main algorithm and analyse its performance in
Section 4.3.

4.1. Construction and Update of Contracted Graphs

For any input graph Gt = (Vt, Et) of nt vertices, its dy-
namic cluster-preserving sparsifier Ht = (Vt, Ft, wHt

), and
its k clusters P1, . . . , Pk returned from running spectral clus-
tering on Ht, we apply Algorithm 5 to construct a contracted
graph G̃t = (Ṽt, Ẽt, wG̃t

) of Gt. Notice that we introduce

the set of non-contracted vertices Ṽ nc
t = ∅, which will be

used later.

Lemma 4.1. The algorithm ContractGraph(Ht,P) returns
G̃t = (Ṽt, Ẽt, wG̃t

) in O (|Ft|) time.

Next we discuss how the contracted graph is updated under
edge and vertex insertions. Given the graph Gt = (Vt, Et)
with nt vertices that satisfies λk+1(LGt) = Ω(1) and
ρGt

(k) = O(k−8 log−2γ(nt)) for some constant γ ∈ R+,
its cluster-preserving sparsifier Ht = (Vt, Ft, wHt

), the cor-
responding contracted graph G̃t = (Ṽt, Ẽt, wG̃t

), and the

upcoming edge insertion e = {u, v}, we construct G̃t+1

from G̃t as follows:
3Notice that, since λk+1(LGt) = Ω(1) for any graph Gt ex-

hibiting a well-defined structure of k clusters and it holds for
GT at time T = O(poly(n1)) that nT = O(poly(n1)), i.e.,
lognT = O(logn1), by setting C to be a sufficiently large con-
stant, τ · logn1 is the right parameter for defining the sampling
probability at time T = O(poly(n1)).

5

Dynamic Spectral Clustering with Provable Approximation Guarantee

Algorithm 5 ContractGraph(Ht,P)
1: Input: Cluster preserving sparsifier Ht =

(Vt, Ft, wHt
), partition P = {P1, . . . Pk}

2: Output: Contracted graph G̃t = (Ṽt, Ẽt, wG̃t
)

3: Let pi be a representative super vertex for each cluster
Pi ∈ P .

4: Ṽ c
t ← {pi | Pi ∈ P}, Ṽ nc

t ← ∅
5: Ṽt ← Ṽ nc

t ∪ Ṽ c
t

6: Ẽt ← ∅
7: for {pi, pj} ∈ Ṽ c

t × Ṽ c
t do

8: Ẽt ← Ẽt ∪ {pi, pj}
9: wG̃t

(pi, pj)← wHt
(Pi, Pj)

10: end for
11: Return G̃t = (Ṽt, Ẽt, wG̃t

)

• If either u or v is a new vertex, the algorithm adds the
vertex to G̃t as a non-contracted vertex. The algorithm
sets Vnew = {u, v} \ Vt, and Vt+1 = Vt ∪ Vnew.

• For every existing vertex w ∈ {u, v} \ Vnew that
belongs to some Pi, the algorithm checks whether
degGt+1

(w) > 2 · degGr
(w), where degGr

(w) for
r ⩽ t is the degree of w when the contracted graph
was constructed. If it is the case, the algorithm pulls
w out of pi, and adds it to Ṽt+1, i.e., the uses a single
vertex in G̃t+1 to represent w.

• The algorithm adjusts the edge weights in the con-
tracted graph based on the type of the vertices. For
instance, the algorithm sets wG̃t+1

(u, v) = 1 if both
of u and v are non-contracted vertices, and decreases
the value of wG̃t+1

(Pu, Pu) if vertex u pulls out of
Pu ∈ P .

See Algorithm 7 in the appendix for the formal description
of the algorithm UpdateContractedGraph(Gt, G̃t, e).

Lemma 4.2. The amortised time complexity of
UpdateContractedGraph(Gt, G̃t, e) is O(1).

4.2. Properties of the Contracted Graph

Now we analyse the properties of the contracted graph.
Since the amortised time complexity for every edge up-
date (Theorem 3.3 and Lemma 4.2) remains valid when we
consider a sequence of edge updates at every time, without
loss of generality let Gt′ = (Vt ∪ Vnew, Et ∪ Enew) be the
graph after a sequence of edge updates from Gt = (Vt, Et)

with nt vertices, and G̃t′ be the contracted graph of Gt′ con-
structed by sequentially running UpdateContractedGraph
for each e ∈ Enew. We assume that |Enew| ⩽ logγ(nt) for
some γ ∈ R+.

We first prove that the clusters returned by spectral cluster-
ing on Ht also have low conductance in Gt. Notice that, as

the underlying graph Gt could be dense over time, running
a clustering algorithm on its sparsifier Ht with Õ(nt) edges
is crucial to achieve the algorithm’s quick update time.

Lemma 4.3. It holds with high probability that ΦHt(Pi) =
O
(
k2 · ρGt

(k)
)

and ΦGt
(Pi) = O

(
k2 · ρGt

(k)
)

for all
Pi ∈ P .

Next, we define the event E1 that

ΦHt
(Pi) = O

(
k−6 · log−2γ(nt)

)

and
ΦGt

(Pi) = O
(
k−6 · log−2γ(nt)

)

hold for all Pi ∈ P . By the fact that λk+1(Gt) = Ω(1),
ρGt

(k) = O(k−8 · log−2γ(nt)) and Lemma 4.3, E1 holds
with high probability. We further define the event E2 that

(1/2) · degGt
(u) ⩽ degHt

(u) ⩽ (3/2) · degGt
(u)

hold for all u ∈ Vt, and know from the proof of Theorem 3.3
that E2 holds with high probability. In the following we
assume that both of E1 and E2 happen.

Next, we study the relationship between the cluster-structure
in Gt′ and the one in G̃t′ . Recall that the number of vertices
in G̃t′ is much smaller than the one in Gt′ . We first prove
that there are ℓ disjoint vertex sets of low conductance in
Gt′ if and only if there are ℓ such vertex sets in G̃t′ .

Lemma 4.4. The following statements hold:

• If ρGt′ (ℓ) ⩽ log−α(nt′) holds for some
ℓ ∈ N and α > 0, then ρG̃t′

(ℓ) =

max
{
O
(
log−0.9α(nt′)

)
, O
(
k−6 · log−γ(nt′)

)}
.

• If ρG̃t′
(ℓ) ⩽ log−δ(nt′) holds for some

ℓ ∈ N and δ > 0 , then ρGt′ (ℓ) =

max
{
O
(
log−δ(nt′)

)
, O
(
k−6 · log−γ(nt′)

)}
.

Secondly, we show that there is a close connection between
λℓ+1(LGt′) and λℓ+1(LG̃t′

) for any ℓ ∈ N.

Lemma 4.5. The following statements hold:

• If λℓ+1(LG̃t′
) = Ω(1) for some ℓ ∈ N, then

λℓ+1

(
LGt′

)
= Ω

(
log−α(nt′)/ℓ

6
)

for constant α >
0.

• If λℓ+1

(
LGt′

)
= Ω(1) holds for some ℓ ∈ N, then

λℓ+1(LG̃t′
) = Ω(1).

Lemmas 4.4 and 4.5 imply that the cluster-structures in Gt′

and G̃t′ are approximately preserved.

6

Dynamic Spectral Clustering with Provable Approximation Guarantee

4.3. Main Algorithm

Our main algorithm consists of the preprocessing stage, up-
date stage, and query stage. They are described as follows:

Preprocessing Stage. For the initial input graph G1 =
(V1, E1), we apply (i) StaticSZSparsifier(G1, τ) to ob-
tain H1 = (V1, F1, wH1

), (ii) SpectralClustering(H1, k)
to obtain initial partition P = {P1, . . . Pk}, and (iii)
ContractGraph(H1,P) to obtain G̃1 = (Ṽ1, Ẽ1).

Update Stage. When a new edge arrives at time t, we apply
Algorithm 4 and the update procedure of the contracted
graph (Section 4.1) to dynamically maintain Ht and G̃t.

Query Stage. When a query for a new clustering starts at
time T , the algorithm performs the following operations,
where γ is the constant satisfying γ > β and γ > 0.9α:

• For r being the last time at which G̃t is recomputed,
the algorithm checks if T − r ⩽ logγ(nr), i.e., the
number of added edges after the last reconstruction of
the contracted graph is less than logγ(nr). If it is the
case, then the algorithm runs spectral clustering on the
contracted graph G̃T .

• Otherwise, the algorithm runs spectral clustering on
HT . It also recomputes G̃T , by first computing G̃r′ ,
where r′ is the last time at which the dynamic gap
assumption holds, and updating G̃r′ to G̃T with the
edge updates between time r′ and T .

See Algorithm 6 for formal description.

Algorithm 6 QuerySpecClustering(GT , HT , G̃T , γ, ℓ)

1: Input: Graphs GT , HT , and G̃T , γ ∈ R+, and ℓ ∈ N
2: Output: Partition P = {P1, . . . Pℓ}
3: Let r be the last time at which G̃T is recomputed.
4: if T − r ⩽ logγ(nr) then
5: P1, . . . , Pℓ ← SpectralClustering(G̃T , ℓ)
6: Return {P1, . . . , Pℓ}
7: else
8: P1, . . . , Pℓ ← SpectralClustering(HT , ℓ)

9: Recompute G̃r′ , where r′ is the last time at which
the dynamic gap assumption holds

10: Update G̃r′ to G̃T with the edge updates between
time r′ and T

11: Return {P1, . . . , Pℓ}
12: end if

Theorem 4.6. Let G1 = (V1, E1) be a graph with n1 ver-
tices and k = Õ(1) clusters, and {Gt} the sequence of
graphs of {nt} vertices constructed through an edge in-
sertion at each time satisfying the dynamic gap assump-
tion. Assume that GT at query time T has ℓ clusters, i.e.,

λℓ+1(LGT
) = Ω(1) and ρGT

(ℓ) = O(ℓ−1 log−α(nT)) for
α ∈ R+. Then, with high probability Algorithm 6 returns
P1, . . . Pℓ with ΦGT

(Pi) = O
(
ℓ · log−0.9α(nT)

)
for every

1 ⩽ i ⩽ ℓ. The algorithm’s running time for returning
the clusters of G1 is Õ(|E1|). Afterwards, the algorithm’s
amortised update time is O(1), and amortised query time is
o(nT).

Proof. The algorithm’s running time and approximation
guarantee on G1 follows from (Macgregor & Sun, 2022), so
we only need to analyse the dynamic update stage. We first
analyse the conductance of every output Pi. Notice that, if
Lines 4–6 of Algorithm 6 are executed, then by Lemmas 3.2,
4.4 and 4.5 the approximation guarantee holds. Otherwise,
Lines 7–12 are executed, then by the dynamic gap condition
and Lemma 3.2 the approximation guarantee holds as well.

Next, we prove the running time guarantee. The O(1) amor-
tised update time of Ht and G̃t follows by Theorem 3.3
and Lemma 4.2. For the query at time T , notice that if
Lines 4–6 are executed, then the query time is at most
O(|ṼT |3) = O((k + logγ(nT))

3) = Õ(1). Note, the super
vertices are used as sketches to quickly update the clus-
ter assignment of each vertex; otherwise, Lines 7–12 are
executed, and the query time is dominated by spectral clus-
tering’s time complexity of O

(
nT · logβ(nT)

)
. Since this

only happens every logγ(nr) = O(logγ(nT)) edge updates,
the amortised query time is O(nT · logβ−γ(nT)) = o(nT).

Finally, we show that the number of clusters ℓ can be iden-
tified with our claimed time complexity. Notice that, if
Lines 4–6 of the algorithm are executed, then by Lem-
mas 4.4 and 4.5 we can detect the spectral gap in GT us-
ing G̃T ; hence we can choose ℓ in o(nt) time. Otherwise,
Lines 7–12 are executed. In this case, we run spectral clus-
tering with different values of ℓ′ and find the correct value
of ℓ (The same procedure is done to recompute G̃r′). Since
there are Õ(1) clusters in total, we achieve the same query
time guarantee.

5. Experiments
We experimentally evaluate the performance of our algo-
rithm on synthetic and real-world datasets. We report the
clustering accuracy of all tested algorithms using the Ad-
justed Rand Index (ARI) (Rand, 1971), and compute the
average and standard deviation over 10 independent runs.
Algorithms were implemented in Python 3.12.1 and exper-
iments were performed using a Lenovo ThinkPad T15G,
with an Intel(R) Xeon(R) W-10855M CPU@2.80GHz pro-
cessor and 126 GB RAM. Our code can be downloaded
from https://github.com/steinarlaenen/Dynamic-Spectral-
Clustering-With-Provable-Approximation-Guarantee.

7

https://github.com/SteinarLaenen/Dynamic-Spectral-Clustering-With-Provable-Approximation-Guarantee
https://github.com/SteinarLaenen/Dynamic-Spectral-Clustering-With-Provable-Approximation-Guarantee

Dynamic Spectral Clustering with Provable Approximation Guarantee

2 3 4 5 6 7 8 9 10 11
0.90

0.95

1.00

A
R

I

Increase k

2 3 4 5 6 7 8 9 10 11
0.90

0.95

1.00

Decrease k

2 3 4 5 6 7 8 9 10 11
0

50

100

T
im

e
(s

)

2 3 4 5 6 7 8 9 10 11
0

20

(c) (d)

(a) (b)

SC on GT SC on HT SC on G̃T

Figure 2. Results on the two versions of our dynamic SBM. Figures (a) and (b) report the average ARI score at each time T for the
clustering results on GT , HT , and G̃T ; Figures (c) and (d) report the running time in seconds at each time T . Shaded regions indicate the
standard deviation.

5.1. Results on Synthetic Data

We study graphs generated from the stochastic block
model (SBM), and introduce two dynamic extensions to
generate new clusters and merge existing clusters.

SBM with increasing number of clusters. We generate the
first graph G1 based on the standard SBM, and set k = 10
and the number of vertices in each cluster {Si}ki=1 as nk =
10, 000. For every pair of u ∈ Si and v ∈ Sj we include
edge {u, v} with probability p if i = j, and with probability
q if i ̸= j.

To update the graph, we generate a batch of edge updates
in two steps: first, we randomly select a subset Q ⊂ V (G1)
such that |Q| = nnew = 400, and for any u, v ∈ Q we
include edge e = {u, v} in the graph with probability r1;
setting r1 sufficiently large ensures that the set Q forms a
new cluster in the graph. Second, for any u, v ∈ V (G1)
we include edge e = {u, v} with probability s. The edges
sampled from these two processes form one edge update
batch. We sample 10 such batches (ensuring no new clusters
overlap), each inducing a new cluster and additional noise.

To cluster each GT , we run spectral clustering (SC) on three
graphs:

1. We run spectral clustering on the full graph GT .

2. We construct the contracted graph G̃1 at time T = 1,
and incrementally update G̃1 using the procedure de-
scribed in Section 4.1. Then, we run spectral clustering
on each G̃T .

3. We construct a cluster-preserving sparsifier H1 using
Algorithm 3, which we dynamically update using Al-
gorithm 4 with sampling parameter τ = 3, and cluster
each subsequent HT .

At each time T , we run spectral clustering with k = 10 +
T − 1 on all three graphs, and report the running times
and ARI scores. We set p = 0.1, q = 0.01, r1 = 0.95, and
s = 0.00001, and plot the results in the left plots of Figure 2.
We can see that at every time T , spectral clustering on GT

returns the perfect clustering, and spectral clustering on G̃T

and HT returns marginally worse clustering results. On
the running time, we see that running spectral clustering
on GT , HT and G̃T takes around 100 seconds, 50 seconds,
and less than 1 second respectively. This highlights that our
algorithm returns nearly-optimal clusters with much faster
running time than running spectral clustering on GT or HT .

Next, we compare the spectral gaps of LGT
and LG̃T

for ev-
ery T , and Table 1 reports that these gaps are well preserved.
This demonstrates that, as what we prove earlier, the new
cluster-structure of GT can be indeed identified from G̃T .

Table 1. Spectral gaps in LGT and LG̃T
for SBM with increasing

number of clusters. We report λk+T (LGT)/λk+T−1(LGT) and
λk+T (LG̃T

)/λk+T−1(LG̃T
) at each time T .

T 2 3 4 5 6 7 8 9 10 11

GT 6.3 5.8 5.8 5.7 5.7 5.7 5.6 5.6 5.6 5.5

G̃T 9.3 9.2 9.0 8.7 8.5 8.1 7.8 7.5 7.1 6.8

8

Dynamic Spectral Clustering with Provable Approximation Guarantee

2 10 18 26 34 42 50 58

0.60

0.80

A
R

I

MNIST

2 22 42 62 82 102
0.00

0.50

EMNIST

2 10 18 26 34 42 50 58
0

200

400

C
u

m
u

la
ti

ve
T

im
e

(s
)

2 22 42 62 82 102
0

500

1000

(c) (d)

(a) (b)

SC on GT SC on HT SC on G̃T

Figure 3. Results on MNIST and EMNIST. Figures (a) and (b) report the average ARI scores at each time T for the clustering results on
GT , HT , and G̃T ; Figures (c) and (d) report the average cumulative running time in seconds at each time T . Shaded regions indicate the
standard deviation.

SBM with decreasing number of clusters. We set k = 25,
and the first graph G1 is generated based on the standard
SBM with parameters p and q. For clusters {Si}5i=1 we set
|Si| = 20, 000, and for {Si}25i=6 we set |Si| = 500; hence
there are 5 large and 20 small clusters.

To update the graph, we generate a batch of edge updates as
follows: we randomly choose two clusters Si and Sj such
that |Si| = |Sj | = 500, and for any u ∈ Si and v ∈ Sj we
include edge e = {u, v} in the graph with probability r2.
Setting r2 sufficiently large ensures that clusters Si and Sj

merge. Similarly as before, for any u, v ∈ V (G1) we also
include edge e = {u, v} with probability s. All the edges
sampled by these two processes form a single batch update.
We sample 10 such batches, and there are k = 15 clusters
at final time T = 11. At each time T , we run spectral
clustering with k = 25− T + 1 on all three graphs. We set
p = 0.1, q = 0.001, r2 = 0.95, and s = 0.00001, and plot
the results in the right plots of Figure 2.

Similar to the SBM with increasing number of clusters, at
every time T , spectral clustering on all three graphs returns
similar results. We further see that spectral clustering on
G̃T has lower running time than the one on GT and HT .
The spectral gaps in GT and G̃T are reported in Table 2.

5.2. Results on Real-World Data

We further evaluate our algorithm on the MNIST dataset (Le-
cun et al., 1998), which consists of 10 classes of handwritten
digits and has 70, 000 images, and the “letter” subset of the
EMNIST dataset (Cohen et al., 2017), which consists of 26

Table 2. Spectral gaps in LGT and LG̃T
for SBM with decreasing

number of clusters. We report λk−T+2(LGT)/λk−T+1(LGT)
and λk−T+2(LG̃T

)/λk−T+1(LG̃T
) at each time T .

T 2 3 4 5 6 7 8 9 10 11

GT 4.5 4.4 4.2 4.0 4.0 3.9 3.8 3.8 3.8 3.6

G̃T 8.3 8.0 7.5 7.4 7.4 7.0 6.8 6.3 5.8 5.4

classes of handwritten letters and has 145, 600 images. We
construct a k-nearest neighbour graph for each dataset, and
set k = 100 (resp. k = 200) for MNIST (resp. EMNIST).

We select four classes (clusters) at random; the chosen ver-
tices and adjacent edges in the k-nearest neighbour graph
form G1. To construct the sequence of updates, we select
one new cluster (resp. two) at random for MNIST (resp.
EMNIST), and add the edges inside the new cluster as
well as the ones between the new and existing clusters.
We randomly partition these new edges into 10 batches of
equal size, and add these to the graph sequentially. We
recompute G̃T after one class (resp. two) is streamed for
MNIST (resp. EMNIST), and report the results in Figure 3.
The update/reconstruction time is included in the running
time.

Our experiments on real-world data further confirm that, as
the size of the underlying graph and its number of clusters
increase over time, our designed algorithm has much lower
running time compared with repeated execution of spectral
clustering, while producing comparable clustering results.

9

Dynamic Spectral Clustering with Provable Approximation Guarantee

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

Acknowledgements
This work is supported by an EPSRC Early Career Fellow-
ship (EP/T00729X/1). Part of this work was done when
He Sun was visiting the Simons Institute for the Theory of
Computing in Fall 2023.

References
Beimel, A., Kaplan, H., Mansour, Y., Nissim, K., Saranu-

rak, T., and Stemmer, U. Dynamic algorithms against
an adaptive adversary: generic constructions and lower
bounds. In 54th Annual ACM Symposium on Theory of
Computing (STOC’22), pp. 1671–1684, 2022.

Bernstein, A., van den Brand, J., Gutenberg, M. P.,
Nanongkai, D., Saranurak, T., Sidford, A., and Sun, H.
Fully-dynamic graph sparsifiers against an adaptive adver-
sary. In 49th International Colloquium on Automata, Lan-
guages, and Programming (ICALP’22), pp. 20:1–20:20,
2022.

Chung, F. and Lu, L. Concentration inequalities and mar-
tingale inequalities: a survey. Internet mathematics, 3(1):
79–127, 2006.

Cohen, G., Afshar, S., Tapson, J., and Schaik, A. V. Emnist:
Extending MNIST to handwritten letters. In 2017 Inter-
national Joint Conference on Neural Networks (IJCNN),
pp. 2921–2926, 2017.

Dhanjal, C., Gaudel, R., and Clémençon, S. Efficient eigen-
updating for spectral graph clustering. Neurocomputing,
131:440–452, 2014.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Lee, J. R., Gharan, S. O., and Trevisan, L. Multiway spec-
tral partitioning and higher-order Cheeger inequalities.
Journal of the ACM, 61(6):1–30, 2014.

Macgregor, P. and Sun, H. A tighter analysis of spectral
clustering, and beyond. In 39th International Confer-
ence on Machine Learning (ICML’22), pp. 14717–14742,
2022.

Martin, L., Loukas, A., and Vandergheynst, P. Fast approxi-
mate spectral clustering for dynamic networks. In 35th In-

ternational Conference on Machine Learning (ICML’18),
pp. 3420–3429, 2018.

Ng, A. Y., Jordan, M. I., and Weiss, Y. On spectral cluster-
ing: Analysis and an algorithm. In Advances in Neural
Information Processing Systems 15 (NeurIPS’01), pp.
849–856, 2001.

Ning, H., Xu, W., Chi, Y., Gong, Y., and Huang, T. Incre-
mental spectral clustering with application to monitoring
of evolving blog communities. In Proceedings of the
2007 SIAM International Conference on Data Mining
(SDM), pp. 261–272, 2007.

Peng, R., Sun, H., and Zanetti, L. Partitioning Well-
Clustered Graphs: Spectral Clustering Works! SIAM
Journal on Computing, 46(2):710–743, 2017.

Rand, W. M. Objective criteria for the evaluation of cluster-
ing methods. Journal of the American Statistical Associ-
ation, 66(336):846–850, 1971.

Saranurak, T. and Wang, D. Expander decomposition
and pruning: Faster, stronger, and simpler. In 30th
Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’19), pp. 2616–2635, 2019.

Sun, H. and Zanetti, L. Distributed graph clustering and
sparsification. ACM Transactions on Parallel Computing,
6(3):17:1–17:23, 2019.

Thorup, M. Fully-dynamic min-cut. Combinatorica, 27(1):
91–127, 2007.

Tropp, J. A. User-friendly tail bounds for sums of random
matrices. Foundations of Computational Mathematics,
12(4):389–434, 2012.

von Luxburg, U. A tutorial on spectral clustering. Statistics
and Computing volume, 17(4):395–416, 2007.

10

Dynamic Spectral Clustering with Provable Approximation Guarantee

A. Omitted Details from Section 3
The section presents the details omitted from Section 3, and is organised as follows. We prove Lemma 3.2 in Section A.1,
and prove Theorem 3.3 in Section A.2.

A.1. Proof of Lemma 3.2

We first prove a structure theorem. We define the vectors χ1, . . . χk to be the indicator vectors of the optimal clusters
S1, . . . , Sk in G, where χi(u) = 1 if u ∈ Si, and χi = 0 otherwise. We further use ḡ1, . . . , ḡk to denote the indicator
vectors of the optimal clusters S1, . . . Sk in G, normalised by the degrees in H , i.e.,

ḡi ≜
D

1
2

Hχi

∥D
1
2

Hχi∥
. (4)

Theorem A.1. Let S1, . . . , Sk be a k-way partition of G achieving ρG(k), and ΥG(k) = Ω(k), and {fi}ki=1 be first k
eigenvectors of LH and let {ḡi}ki=1 be defined as in (4) above. Then, the following statements hold:

1. For any i ∈ [k], there is f̂i ∈ Rn, which is a linear combination of f1, . . . , fk, such that ∥ḡi − f̂i∥2 = O (k/ΥG(k)) .

2. There are vectors ĝ1, . . . , ĝk, each of which is a linear combination of ḡ1, . . . , ḡk, such that
∑k

i=1 ∥fi − ĝi∥2 =
O
(
k2/ΥG(k)

)
.

Proof. Let f̂i =
∑k

j=1⟨ḡi, fj⟩fj , and we write ḡi as a linear combination of the vectors f1, . . . , fn by ḡi =
∑n

j=1⟨ḡi, fj⟩fj .

Since f̂i is a projection of ḡi, we have that ḡi − f̂i is perpendicular to f̂i and

∥∥∥ḡi − f̂i

∥∥∥
2

= ∥ḡi∥2 −
∥∥∥f̂i
∥∥∥
2

=




n∑

j=1

⟨ḡi, fj⟩2

−




k∑

j=1

⟨ḡi, fj⟩2

 =

n∑

j=k+1

⟨ḡi, fj⟩2.

Now, let us consider the quadratic form

ḡ⊺i LH ḡi =




n∑

j=1

⟨ḡi, fj⟩f⊺
j


LH




n∑

j=1

⟨ḡi, fj⟩fj




=

n∑

j=1

⟨ḡi, fj⟩2λj(LH)

⩾ λk+1(LH)
∥∥∥ḡi − f̂i

∥∥∥
2

= Ω(λk+1(LG))
∥∥∥ḡi − f̂i

∥∥∥
2

, (5)

where the second to last inequality follows by the fact that λi(LH) ⩾ 0 holds for any 1 ⩽ i ⩽ n, and the last inequality
follows because H is a cluster preserving sparsifier of G. This gives us that

ḡ⊺i LH ḡi =
∑

(u,v)∈EH

wH(u, v)

(
ḡi(u)√
degH(u)

− ḡi(v)√
degH(v)

)2

=
∑

(u,v)∈EH

wH(u, v)

(
χi(u)√
volH(Si)

− χi(v)√
volH(Si)

)2

=
wH(Si, V \ Si)

volH(Sj)

= O (k · ρG(k)) , (6)

11

Dynamic Spectral Clustering with Provable Approximation Guarantee

where the last line holds because H is a cluster preserving sparsifier of G. Combining (5) with (6), we have that

∥∥∥ḡi − f̂i

∥∥∥
2

⩽
ḡ⊺i LH ḡi

Ω (λk+1(LG))
⩽

O (k · ρG(k))
Ω (λk+1(LG))

= O

(
k

ΥG(k)

)
,

which proves the first statement of the theorem.

Now we prove the second statement. We define for any 1 ⩽ i ⩽ k that ĝi =
∑k

j=1⟨fi, ḡj⟩ḡj , and have that

k∑

i=1

∥fi − ĝi∥2 =

k∑

i=1

(
∥fi∥2 − ∥ĝi∥2

)

= k −
k∑

i=1

k∑

j=1

⟨ḡj , fi⟩2

=

k∑

j=1

(
1−

k∑

i=1

⟨ḡj , fi⟩2
)

=

k∑

j=1

(
∥ḡj∥2 −

∥∥∥f̂j
∥∥∥
2
)

=

k∑

j=1

∥∥∥ḡj − f̂j

∥∥∥
2

=

k∑

j=1

O

(
k

ΥG(k)

)

= O

(
k2

ΥG(k)

)
,

where the last inequality follows by the first statement of Theorem A.1.

Proof Sketch of Lemma 3.2. The proof follows Theorem 1.2 of (Peng et al., 2017) and Theorem 2 of (Macgregor & Sun,
2022), which imply that every returned cluster Pi (1 ⩽ i ⩽ k) from spectral clustering on G satisfies that

volG(Pi△Si) = O

(
k · volG(Si)

ΥG(k)

)

and

ΦG(Pi) = O

(
ΦG(Si) +

k

ΥG(k)

)
,

where Si is the optimal correspondence of Pi in G. Since H is a cluster-preserving sparsifier of G, we know that
ρH(k) = O(k · ρG(k)) and λk+1(LH) = Ω(λk+1(LG)), which implies that

ΥH(k) =
λk+1(LH)

ρH(k)
=

Ω(λk+1(LG))

O(k · ρG(k))
= Ω

(
1

k
·ΥG(k)

)
. (7)

On the other side, compared with their work, we need to apply the bottom k eigenvectors of LH instead of LG to run
spectral clustering. As such, combining (7) with the adjusted structure theorem (Theorem A.1) one can prove Lemma 3.2
using the proof technique from (Macgregor & Sun, 2022) and (Peng et al., 2017).

A.2. Proof of Theorem 3.3

Let
Eresampled ≜ e

⋃ {
{u, v} ∈ EGt+1

| u ∈ Vdoubled

}

12

Dynamic Spectral Clustering with Provable Approximation Guarantee

be the set of all the edges that have been (re)-sampled by Algorithm 4, and

Eold ≜ Et+1 \ Eresampled.

Moreover, let

p(t+1)
u (v) ≜ min

{
τ · log(nt+1)

degGt+1
(u)

, 1

}

be the “ideal” sampling probability of an edge {u, v} if one runs the SZ algorithm from the scratch on Gt+1, and let

q(t+1)(u, v) ≜ p(t+1)
u (v) + p(t+1)

v (u)− p(t+1)
u (v) · p(t+1)

v (u)

be the probability that edge e is sampled if one runs the SZ algorithm from scratch at time t+1. For any edge {u, v}, we use

• q̃(u, v) ≜ q(r)(u, v)

• p̃u(v) ≜ p
(r)
u (v)

• p̃v(u) ≜ p
(r)
v (u)

for some 1 ⩽ r ⩽ t + 1 to denote the sampling probability last used for edge {u, v} throughout the sequence of edge
updates. Hence, we have q̃(u, v) = q(t+1)(u, v) if {u, v} ∈ Eresampled, and q̃(u, v) = q(r)(u, v) for some 1 ⩽ r ⩽ t+ 1 if
edge {u, v} ∈ Eold. By the algorithm description (Line 16 in Algorithm 4), we know that

τ · log(nt+1)

2 · degGt+1
(u)

⩽
τ · log(nr)

degGr
(u)

⩽
2 · τ · log(nt+1)

degGt+1
(u)

. (8)

The following two concentration inequalities will be used in our analysis.

Lemma A.2 (Bernstein’s Inequality (Chung & Lu, 2006)). Let X1, . . . , Xn be independent random variables such that
|Xi| ⩽ M for any i ∈ {1, . . . , n}. Let X =

∑n
i=1 Xi, and R =

∑n
i=1 E

[
X2

i

]
. Then, it holds that

P [|X − E [X] | ⩾ t] ⩽ 2 exp

(
− t2

2(R+Mt/3)

)
.

Lemma A.3 (Matrix Chernoff Bound (Tropp, 2012)). Consider a finite sequence {Xi} of independent, random, PSD
matrices of dimension d that satisfy ∥Xi∥ ⩽ R. Let µmin ≜ λmin(E [

∑
i Xi]) and µmax ≜ λmax(E [

∑
i Xi]). Then, it

holds that

P

[
λmin

(∑

i

Xi

)
⩽ (1− δ)µmin

]
⩽ d

(
e−δ

(1− δ)1−δ

)µmin/R

for δ ∈ [0, 1], and

P

[
λmax

(∑

i

Xi

)
⩾ (1 + δ)µmax

]
⩽ d

(
eδ

(1 + δ)1+δ

)µmax/R

for δ ⩾ 0.

We first prove the following result on the relationship of cut values between Gt+1 and Ht+1.

Lemma A.4. Let Gt+1 be a graph, and Ht+1 the sparsifier returned by Algorithm 4. Suppose for every {u, v} ∈ Et+1 that
p̃u(v) < 1, then it holds for any non-empty subset A ⊂ Vt+1 that

P
[
|wHt+1

(A, Vt+1 \A)− wGt+1
(A, Vt+1 \A)| ⩾ 1

2
· wGt+1

(A, Vt+1 \A)

]

⩽ 2 · exp
(
−τ · log nt+1 · wGt+1

(A, Vt+1 \A)

10 · volGt+1
(A)

)

13

Dynamic Spectral Clustering with Provable Approximation Guarantee

Proof. For any edge e = {u, v}, we define the random variable Ye by

Ye ≜

{
1

q̃(u,v) with probability q̃(u, v)

0 otherwise.

We also define
Z ≜

∑

e∈EGt+1
(A,Vt+1\A)

Ye,

and have that

E[Z] =
∑

e={u,v}∈EGt+1
(A,Vt+1\A)

E[Ye] =
∑

e={u,v}∈EGt+1
(A,Vt+1\A)

q̃(u, v) · q̃(u, v)−1 = wGt+1
(A, Vt+1 \A).

To prove a concentration bound on this degree estimate, we apply the Bernstein inequality (Lemma A.2), for which we need
to bound the second moment

R ≜
∑

e={u,v}∈EGt+1
(A,Vt+1\A)

E[Y 2
e].

We get that

R =
∑

e={u,v}∈EGt+1
(A,Vt+1\A)

q̃(u, v) ·
(

1

q̃(u, v)

)2

=
∑

e={u,v}∈EGt+1
(A,Vt+1\A)

1

q̃(u, v)

⩽
∑

e={u,v}∈EGt+1
(A,Vt+1\A)

1

p̃u(v)
(9)

=
∑

e={u,v}∈EGt+1
(A,Vt+1\A)

2 · degGt+1
(u)

τ · log(nt+1)
(10)

⩽
2 ·∆Gt+1

(A)

τ · log(nt+1)
·

∑

e={u,v}∈EGt+1
(A,Vt+1\A)

1

=
2 ·∆Gt+1

(A) · wGt+1
(A, Vt+1 \A)

τ · log(nt+1)
,

where ∆Gt+1(A) ≜ maxu∈A degGt+1
(u), (9) holds since q̃(u, v) = p̃u(v) + p̃v(u) − p̃u(v) · p̃v(u) ⩾ p̃u(v), and (10)

holds because of (8).

Note, by (8), for any edge e = {u, v} ∈ EGt+1(A, Vt+1 \A) we have that

0 ⩽ Ye =
1

q̃(u, v)
⩽

1

p̃u(v)
⩽

2 ·∆Gt+1
(A)

τ · log nt+1
.

Then, by applying Bernstein’s inequality, we have that

P
[
|Z − E[Z]| ⩾ 1

2
E[Z]

]
⩽ 2 · exp


− wGt+1

(A, Vt+1 \A)2/4
∆Gt+1

(A)·wGt+1
(A,Vt+1\A)

τ ·log(nt+1)
+

∆Gt+1
(A)·wGt+1

(A,Vt+1\A)

3·τ ·log(nt+1)


 (11)

= 2 · exp
(
−
τ · log(nt+1) · 3 · wGt+1(A, Vt+1 \A)

16 ·∆Gt+1(A)

)
(12)

⩽ 2 · exp
(
−
τ · log(nt+1) · wGt+1(A, Vt+1 \A)

10 · volGt+1
(A)

)
, (13)

which proves the lemma.

14

Dynamic Spectral Clustering with Provable Approximation Guarantee

Proof of Theorem 3.3. We first analyse the number of edges in Ht+1, i.e., the size of Ft+1. We have that

∑

u∈Vt+1

∑

e={u,v}∈EGt+1

p̃u(v) ⩽
∑

u∈Vt+1

∑

e={u,v}∈EGt+1

2 · τ · log nt+1

degGt+1
(u)

= 2 · τ · nt+1 · log nt+1,

where the first inequality holds by (8). Therefore, it holds by the Markov inequality that the number of edges {u, v} with
p̃u(v) ⩾ 1 is O (τ · nt+1 log nt+1). Without loss of generality, we assume that these edges are included in Ft+1, and we
assume for the remaining part of the proof that it holds that p̃u(v) < 1.

We now show that the degrees of the vertices in Gt+1 are approximately preserved in Ht+1. Let u be an arbitrary vertex of
Gt+1. Observing that volGt+1

(u) = wGt+1
(u, V \u) = degGt+1

(u) and wHt+1
(u, Vt+1\u) = degHt+1

(u), by Lemma A.4
it holds that

P
[
|degHt+1

(u)− degGt+1
(u)| ⩾ 1

2
degGt+1

(u)

]
= 2 exp (−(1/10) · τ · log nt+1)

= 2 exp
(
−(1/10) · (log nt+1 · C)/λk+1(LGt+1)

)

= o(1/n2
t+1).

Hence, by taking C to be sufficiently large and the union bound, it holds with high probability that the degrees of all the
vertices in Gt+1 are preserved in Ht+1 up to a constant factor. Throughout the rest of the proof, we assume this is the case.
This implies for any subset A ⊆ Vt+1 that volHt+1

(A) = Θ(volGt+1
(A)).

Secondly, we prove it holds that ΦHt+1
(Si) = O(k · ΦGt+1

(Si)) for any 1 ⩽ i ⩽ k, where S1, . . . , Sk are the optimal
clusters corresponding to ρGt+1

(k). For any 1 ⩽ i ⩽ k, it holds that

E[wHt+1
(Si, Vt+1 \ Si)] =

∑

e={u,v}∈Et+1

u∈Si,v /∈Si

q̃(u, v) · 1

q̃(u, v)
= wGt+1

(S, Vt+1 \ Si).

Hence, by Markov’s inequality and the union bound, it holds with constant probability that wHt+1(Si, Vt+1 \ Si) =
O(k · wGt+1(Si, Vt+1 \ Si)). Therefore, it holds with constant probability that

ρHt+1(k) ⩽ max
1⩽i⩽k

ΦHt+1(Si) = max
1⩽i⩽k

O(k · ΦGt+1(Si)) = O(k · ρGt+1(k)).

Next, we prove that λk+1(LHt+1) = Ω(λk+1(LGt+1)). LetLGt+1 be the projection ofLGt+1 on its top nt+1−k eigenspaces,
and notice that LGt+1

can be written as

LGt+1
=

nt+1∑

i=k+1

λi(LGt+1
) · fif⊺

i

where f1, . . . , fnt+1
are the eigenvectors of LGt+1

. Let L−1/2

Gt+1
be the square root of the pseudoinverse of LGt+1

. We prove
that the top nt+1 − k eigenvalues of LGt+1

are preserved, which implies that λk+1(LHt+1
) = Θ(λk+1(LGt+1

)).

To prove this, for each edge e = {u, v} ∈ EGt+1
we define a random matrix Xe ∈ Rnt+1×nt+1 by

Xe =

{
wHt+1(u, v) · L

−1/2

Gt+1
beb

⊺
eL

−1/2

Gt+1
if e = {u, v} is sampled by the algorithm

0 otherwise,

where be ≜ χu − χv is the edge indicator vector and χv ∈ Rn is defined by

χv(a) ≜





1√
degGt+1

(v)
if a = v

0 otherwise.

Notice that ∑

e∈EGt+1

Xe =
∑

e={u,v}
e∈EGt+1

wHt+1
(u, v) · L−1/2

Gt+1
beb

⊺
eL

−1/2

Gt+1
= L−1/2

Gt+1
LH′

t+1
L−1/2

Gt+1
,

15

Dynamic Spectral Clustering with Provable Approximation Guarantee

where
LH′

t+1
≜

∑

e∈EGt+1

wHt+1(u, v) · beb⊺e

is LHt+1 normalised with respect to the degree of the vertices in Gt+1. We prove that, with high probability, the top nt+1−k
eigenvalues of LH′

t+1
and LGt+1

are approximately the same. Then, to finish the proof, we also show that this is the case for
the top nt+1 − k eigenvalues of LHt+1

and LH′
t+1

, from which we get that λk+1(LHt+1
) = Ω

(
λk+1(LGt+1

)
)
.

First, from (8) we get that for any edge e it holds that

q̃(u, v) ⩽ p̃u(v) + p̃v(u) ⩽ 2 ·

(
τ · log(nt+1)

degGt+1
(u)

+
τ · log(nt+1)

degGt+1
(v)

)
, (14)

and

q̃(u, v) ⩾
1

2
· (p̃u(v) + p̃v(u)) ⩾

1

4
·

(
τ · log(nt+1)

degGt+1
(u)

+
τ · log(nt+1)

degGt+1
(u)

)
. (15)

We start by calculating the first moment of
∑

e∈EGt+1
Xe, and have that

E


 ∑

e∈EGt+1

Xe


 =

∑

e={u,v}
e∈EGt+1

q̃(u, v) · wHt+1
(u, v) · L−1/2

Gt+1
beb

⊺
eL

−1/2

Gt+1
L−1/2

Gt+1

=
∑

e={u,v}
e∈EGt+1

q̃(u, v) · 1

q̃(u, v)
· L−1/2

Gt+1
beb

⊺
eL

−1/2

Gt+1

= L−1/2

Gt+1
LGt+1

L−1/2

Gt+1
.

Moreover, for any sampled e = {u, v} we have that

∥Xe∥ ⩽ wHt+1(u, v) · b⊺eL
−1/2

Gt+1
L−1/2

Gt+1
be

=
1

q̃(u, v)
· b⊺eL

−1/2

Gt+1
L−1/2

Gt+1
be

⩽
1

q̃(u, v)
· 1

λk+1(LGt+1
)
· ∥be∥2

⩽
4λk+1(LGt+1

)

C · log nt+1 ·
(

1
degGt+1

(u) +
1

degGt+1
(v)

) · 1

λk+1(LGt+1
)
·

(
1

degGt+1
(u)

+
1

degGt+1
(v)

)
(16)

=
4

C · log nt+1
,

where the second inequality follows by the min-max theorem of eigenvalues, and (16) holds by (15). Now we apply the
matrix Chernoff bound (Lemma A.3) to analyse the eigenvalues of

∑
e∈EGt+1

Xe. We set λmax

(
E
[∑

e∈EGt+1
Xe

])
=

λmax

(
L−1/2

Gt+1
LGt+1

L−1/2

Gt+1

)
= 1, R = 4

C·lognt+1
and δ = 1/2, and have that

P


λmax


 ∑

e∈EGt+1

Xe


 ⩾

3

2


 ⩽ nt+1 ·

(
e1/2

(1 + 1/2)3/2

)C·lognt+1/4

= O(1/nc
t+1)

for some constant c. Therefore we get that

P


λmax


 ∑

e∈EGt+1

Xe


 <

3

2


 = 1−O(1/nc

t+1). (17)

16

Dynamic Spectral Clustering with Provable Approximation Guarantee

Similarly, since λmin

(
E
[∑

e∈EGt+1
Xe

])
= λmin

(
L−1/2

Gt+1
LGt+1

L−1/2

Gt+1

)
= 1, the other side of the matrix Chernoff bound

gives us that

P


λmin


 ∑

e∈EGt+1

Xe


 >

1

2


 = 1−O(1/nc

t+1). (18)

Combining (17) and (18), it holds with probability 1 − O(1/nc
t+1) for any non-zero x ∈ Rnt+1 in the space spanned by

fk+1, . . . , fnt+1
that

x⊺L−1/2

Gt+1
L′

Ht+1
L−1/2

Gt+1
x

x⊺x
∈ (1/2, 3/2).

Since dim(span{fk+1, . . . , fnt+1
}) = nt+1 − k, there exist nt+1 − k orthogonal vectors whose Rayleigh quotient with

respect to L′

Ht+1
is Ω

(
λk+1

(
LGt+1

))
. The Courant-Fischer Theorem implies that λk+1(L′

Ht+1
) = Ω

(
λk+1

(
LGt+1

))
.

It only remains to show that λk+1(LHt+1
) = Ω(λk+1(L′

Ht+1
)), which implies that λk+1(LHt+1

) = Ω
(
λk+1

(
LGt+1

))
. By

definition of λk+1(L′
Ht+1

), we have that

LHt+1
= D

−1/2
Ht+1

D
1/2
Gt+1
L

′

Ht+1
D

1/2
Gt+1

D
−1/2
Ht+1

.

Therefore, for any x ∈ Rnt+1 and y ≜ D
1/2
Gt+1

D
−1/2
Ht+1

x, it holds that

x⊺LHt+1
x

x⊺x
=

y⊺L′

Ht+1
y

x⊺x
= Ω

(
y⊺L′

Ht+1
y

y⊺y

)
,

where the final guarantee follows from the fact that the degrees in Ht+1 are preserved up to a constant factor. The conclusion
of the theorem follows from the Courant-Fischer Theorem.

Finally, it remains to analyse the amortised update time of the algorithm. Notice that, if one only needs to sample the
incoming edge at time t+ 1, then the update time is O(1). Otherwise, all the edges adjacent to some vertex w need to be
resampled, and the running time for this step is O(degGt+1

(w)). However, this means that either degGt+1
(w) > 2·degGt

(w)
or log(nt+1) > 2 · log(nt). In the first case, this only occurs at most every degGt

(w) edge updates, which results in the
amortised update time of O(1). The second case only happens after every n2

t vertex additions, and in the worst case we only
have to resample all the edges in present in Gt every n2

t edge updates, which again leads to the amortised update time of
O(1).

B. Omitted Details from Section 4
This section contains the omitted details from Section 4, and is organised as follows. In Section B.1 we introduce
additional notation to analyse our constructed contracted graphs. In Section B.2 we present the omitted proofs for
Lemmas 4.1, 4.2, 4.3, 4.4, and 4.5, and we formally describe the UpdateContractedGraph procedure.

B.1. Notation

For any subset A ⊂ Vt′ , let Ã ≜ A ∩ Ṽ nc
t′ be the representation of A among the non-contracted vertices of G̃t′ . Recall that

for any subset of vertices A ⊂ Vt′ , we use A(t) ≜ A ∩ Vt to denote the set of vertices present at time t. Let

Eadded ≜ Enew ∪
{
{u, v} ∈ Et | degGt′

(u) > 2 · degGr
(u) or degGt′

(v) > 2 · degGr
(v)
}

be the set of edges that have been directly added into G̃t, where degGr
(w) for r ⩽ t is the degree of w used to construct the

contracted graph. These edges are the ones directly added as new edges or their endpoints are pulled out from clusters in G̃t.
For a subset B ⊂ Ṽt′ , let B̂ be the representation of the set B in Gt′ , i.e.,

B̂ ≜ Bnc
⋃

 ⋃

pi∈Bc

P
(t′)
i


 ,

where P
(t′)
i ≜ Pi \ (Pi ∩ Ṽ nc

t′), Bnc ≜ B ∩ V nc
t′ , and Bc ≜ B ∩ V c

t′ . One can see P
(t′)
i as the vertices in Pi that are still

represented by the respective super vertex in G̃.

17

Dynamic Spectral Clustering with Provable Approximation Guarantee

B.2. Omitted Proofs

Our analysis is based on approximation guarantee of spectral clustering. The following result, which can be shown easily by
combining the proof technique of (Peng et al., 2017) and the one of (Macgregor & Sun, 2022), will be used in our analysis.

Lemma B.1. There is an absolute constant CB.1 ∈ R>0, such that the following holds: Let G be a graph with k optimal
clusters {Si}ki=1, and ΥG(k) ⩾ CB.1 · k. Let {Pi}ki=1 be the output of spectral clustering and, without loss of generality,
the optimal correspondence of Pi is Si for any 1 ⩽ i ⩽ k. Then, it holds for any 1 ⩽ i ⩽ k that

volG(Pi△Si) ⩽
k · CB.1

3ΥG(k)
· volG(Si),

where A△B for any sets A and B is defined by A△B ≜ (A \B) ∪ (B \A). It also holds that

ΦG(Pi) = O

(
ΦG(Si) +

k

ΥG(k)

)
.

Moreover, these P1, . . . , Pk can be computed in nearly-linear time.

Proof of Lemma 4.1. The running time of the algorithm is dominated by computing the total weight wHt
(Pi, Pj) between

every Pi, Pj ∈ P (Lines 7–10), which takes O(|Ft|) time as there are |Ft| edges in Ht.

Proof of Lemma 4.2. The running time of the update operation is dominated by the case in which a vertex is pulled out from
a contracted vertex (Lines 7–22). It’s easy to see that, if this does not happen, then the running time is O(1) as the edge is
just added into G̃t.

Let {u, v} be the added edge, and we assume Lines 7–22 are triggered. The running time for this case is O(degGt+1
(u) +

degGt+1
(v)), since at least one of u and v is pulled out from their respective contracted vertices and all the adjacent edges are

placed into the contracted graph. Notice that this only happens if degGt+1
(u) > 2 ·degGt

(u) or degGt+1
(v) > 2 ·degGt

(v).
Since at least degGt

(u) or degGt
(v) edge insertions are needed before running Lines 7–22, the amortised per edge update

time is O(1).

Proof of Lemma 4.3. Notice by Lemma B.1 we know it holds with high probability for all 1 ⩽ i ⩽ k that ΦHt
(Pi) =

O (k · ρHt
(k)). By applying Theorem 3.3, it holds with high probability that ΦHt

(Pi) = O
(
k2 · ρGt

(k)
)
. By Lemma 3.2,

we also have with high probability that ΦGt
(Pi) = O

(
k2 · ρGt

(k)
)
. This proves the statement.

The next lemma shows that, starting from Gt and Ht, one can easily construct a cluster preserving sparsifier of Gt′ .

Lemma B.2. Let H ′
t′ ≜ (Vt′ , Ft ∪ Eadded, wH′

t′
) be a graph, where

wH′
t′
(e) ≜





1 e ∈ Eadded

wHt(e) e ∈ Ft \ Eadded

0 otherwise.

Then, it holds with high probability that H ′
t′ is a cluster preserving sparsifier of Gt′ .

Proof. First, for any e ∈ Eadded we know that it is included in H ′
t′ with probability 1. For any other edge e = {u, v} ∈

Ft \ Eadded, we know by the construction of Ht using the dynamic cluster-preserving sparsifier that the parameter used to
sample e from the perspective of u is

τ · log(nt)

2 · degGt
(u)

⩽
τ · log(nr)

degGr
(u)

⩽
2 · τ · log(nt)

degGt
(u)

,

for some 1 ⩽ r ⩽ t. We also know by construction that for any e = {u, v} ∈ Ft \ Eadded that

degGt′
(u) ⩽ 2 · degGt

(u).

18

Dynamic Spectral Clustering with Provable Approximation Guarantee

Algorithm 7 UpdateContractedGraph(Gt, G̃t, e)

1: Input: Graph Gt = (Vt, Et), contracted graph G̃t = (Ṽt, Ẽt, wG̃t
), incoming edge e = {u, v}.

2: Output: Contracted graph G̃t+1 = (Ṽt+1, Ẽt+1, wG̃t+1
)

3: Vnew ← {u, v} \ Vt

4: Gt+1 ← (Vt ∪ Vnew, Et ∪ e)

5: G̃t+1 ← (Ṽt ∪ Vnew, Ẽt, wG̃t
) = (Ṽt+1, Ẽt+1, wG̃t+1

)

6: Ṽ nc
t+1 ← Ṽ nc

t+1 ∪ Vnew

7: for w ∈ {u, v} \ Vnew do
8: Let Gr be the graph at time r when the contracted graph is constructed, and Hr = (Vr, Fr, wHr) the cluster

preserving sparsifier at time r.
9: if w /∈ Ṽ nc

t+1 and degGt+1
(w) > 2 · degGr

(w) then
10: Let pj be the super node such that w ∈ Pj

11: Ṽ nc
t+1 ← Ṽ nc

t+1 ∪ w

12: Ẽt+1 ← Ẽt+1 ∪ EGt+1
(w, Ṽ nc

t+1)

13: for v̂ ∈ Ṽ nc
t+1 adjacent to w do

14: wG̃t+1
(pj , v̂)← wG̃t+1

(pj , v̂)− 1

15: end for
16: for {w, pi} ∈ w × Ṽ c

t+1 do
17: Ẽt+1 ← Ẽt+1 ∪ {w, pi}
18: wG̃t+1

(w, pi)← wGt+1
(w,P

(t+1)
i)

19: wG̃t+1
(pi, pj)← wG̃t+1

(pi, pj)− wHr
(w,P

(t+1)
i)

20: end for
21: end if
22: end for
23: if u ∈ Ṽ nc

t+1 and v ∈ Ṽ nc
t+1 then

24: Ẽt+1 ← Ẽt+1 ∪ {u, v}
25: else if u ∈ Ṽ nc

t+1 or v ∈ Ṽ nc
t+1 then

26: Without loss of generality, let u ∈ Ṽ nc
t+1 and v /∈ Ṽ nc

t+1. Let pj be the supernode such that v ∈ Pj

27: Ẽt+1 ← Ẽt+1 ∪ {u, pj}
28: wG̃t+1

(u, pj)← wG̃t+1
(u, pj) + 1

29: else
30: Let pi and pj be the supernodes such that u ∈ Pi and v ∈ Pj

31: wG̃t+1
(pi, pj)← wG̃t+1

(pi, pj) + 1

32: end if
33: Return Gt+1 = (Ṽt+1, Ẽt+1, wG̃t+1

)

19

Dynamic Spectral Clustering with Provable Approximation Guarantee

Finally, it holds that log(nt) ⩽ log(nt′) ⩽ 2 log(nt). From this we get that e is sampled from vertex u with the following
parameter

τ · log(nt′)

4 · degGt′
(u)

⩽
τ · log(nr)

degGr
(u)

⩽
4 · τ · log(nt′)

degGt′
(u)

.

Following almost the same analysis as the proof of Theorem 3.3, it holds with high probability that H ′
t′ is a cluster preserving

sparsifier of Gt′ .

Our next lemma proves several useful properties about the contracted graph as it is updated.

Lemma B.3. The following statements hold:

(C1) It holds for any subset B ⊂ Vt′ \ Ṽ nc
t′ that volGt′ (B) ⩽ 2 · volGt(B).

(C2) Suppose for a subset A ⊂ Vt′ with volGt′ (A) ⩽ vol(Gt′)/2 we have that ΦGt(A
(t)) ⩾ 1/c1 and ΦGt′ (A) ⩽

log−ε(nt′) for any positive c1, ε such that 4 · c1 ⩽ logε(nt′), then it holds that

ΦG̃t′
(Ã) ⩽

21 · c1
logε(nt′)

.

(C3) For any super node pi ∈ Ṽ c
t , it holds that

ΦG̃t
(pi) = O

(
k−6 · log−2γ(nt)

)
,

and
ΦG̃t′

(pi) = O
(
k−6 · log−γ(nt)

)
.

Informally speaking, Property (C1) of Lemma B.3 shows that the volume of any vertex set B ⊂ Vt′ that are not directly
represented in G̃t′ remains approximately the same in Gt and Gt′ ; Property (C2) states that, if the conductance of any
set A ⊂ Vt′ in Gt′ becomes much lower than the one in Gt, then its representative set Ã ⊂ Ṽt′ has low conductance;
Property (C3) further shows that the conductance of all the contracted vertices doesn’t change significantly over time.

Proof of Lemma B.3. For (C1), by construction we have that for any u ∈ Vt′ \ Ṽ nc
t′ it holds that degGt′

(u) ⩽ 2 · degGt
(u),

from which the statement follows.

Next, we prove (C2). The following two claims will be used in our analysis.

Claim B.3.1. It holds that volEnew
(A) ⩾ volGt (A

(t))·logε(nt′)

2·c1 .

Proof. Assume by contradiction that volEnew(A) <
volGt (A

(t))·logε(nt′)

2·c1 . We have that

ΦGt′ (A) =
wGt(A

(t), Vt \A(t)) + wEnew(A, Vt \A)

volGt
(A(t)) + volEnew

(A)

⩾
wGt

(A(t), Vt \A(t))

volGt(A
(t)) + volEnew(A)

⩾
1

2
min

{
wGt

(A(t), Vt \A(t))

volGt(A
(t))

,
wGt

(A(t), Vt \A(t))

volEnew
(A)

}

⩾
1

2
min

{
ΦGt

(A(t)),
volGt

(A(t))

c1 · volEnew(A)

}

>
1

logε(nt′)
,

where on the last line we used the contradictory assumption. This contradicts the condition of ΦGt′ (A) ⩽ log−ε(nt′), and
hence the statement holds.

20

Dynamic Spectral Clustering with Provable Approximation Guarantee

Notice that this claim implies that

volGt′ (A) = volGt
(A(t)) + volEnew

(A)

⩾

(
1 +

logε(nt′)

2 · c1

)
· volGt(A

(t))

⩾

(
1 +

logε(nt′)

4 · c1
+

logε(nt′)

4 · c1

)
· volGt

(A(t))

⩾

(
2 +

logε(nt′)

4 · c1

)
· volGt

(A(t)) (19)

where the last inequality follows from the fact that 4 · c1 ⩽ logε(nt′).

Claim B.3.2. It holds that volG̃t′
(Ã) ⩾ logε(nt′)

4·c1 · volGt(A
(t)).

Proof. Assume by contradiction that volG̃t′
(Ã) < logε(nt′)

4·c1 · volGt
(A(t)). Then, it holds that

volGt′ (A) = volG̃t′
(Ã) + volGt′ (A \ Ã)

⩽ volG̃t′
(Ã) + 2 · volGt

(A \ Ã)

<
logε(nt′)

4 · c1
· volGt

(A(t)) + 2 · volGt
(A(t)),

where the first inequality holds by statement (C1). Hence, we reach a contradiction with (19), and the claim holds.

Now we are ready to prove statement (C2). We have that

ΦG̃t′
(Ã) =

wG̃t′
(Ã, Ṽt′ \ Ã)

volG̃t′
(Ã)

⩽
wGt′ (A, Vt \A) + wGt′ (A \ Ã, Ã)

volG̃t′
(Ã)

⩽
log−ε(nt′) · volGt′ (A) + volGt′ (A \ Ã)

volG̃t′
(Ã)

⩽
volGt′ (A)

logε(nt′) · volG̃t′
(Ã)

+
8 · c1 · volGt(A

(t))

volGt
(A(t)) · logε(nt′)

(20)

⩽
volGt

(A(t)) + volEnew
(A)

logε(nt′) · volG̃t′
(Ã)

+
8 · c1

logε(nt′)

⩽
3 · volGt

(A(t)) + volG̃t′
(Ã)

logε(nt′) · volG̃t′
(Ã)

+
8 · c1

logε(nt′)
(21)

⩽
3 · volGt(A

(t)) · c1 · 4
log2ε(nt′) · volGt

(A(t))
+

volG̃t′
(A)

logε(nt′) · volG̃t′
(Ã)

+
8 · c1

logε(nt′)
(22)

⩽
12 · c1

log2ε(nt′)
+

1

logε(nt′)
+

8 · c1
logε(nt′)

⩽
1 + 20 · c1
logε(nt′)

⩽
21 · c1

logε(nt′)
,

where (20) holds by Claim B.3.2 and the fact that volGt′ (A \ Ã) ⩽ 2 · volGt(A \ Ã) ⩽ 2 · volGt(A
(t)) by statement (C1).

(21) holds because by construction volEnew
(A) ⩽ volG̃t′

(Ã) + volGt′ (A \ Ã) ⩽ volG̃t′
(Ã) + 2 · volGt

(A(t)), and (22)
holds because of Claim B.3.2.

21

Dynamic Spectral Clustering with Provable Approximation Guarantee

Finally, we prove statement (C3). For any Pi ∈ P , we have by construction that

ΦG̃t
(pi) = ΦHt

(Pi) = O
(
k−6 · log−2γ(nt)

)
, (23)

where the last equality holds by Lemma 4.3. This proves the first part of the statement. Next, notice that for any pi ∈ Ṽ c
t ,

because Gt is connected and each Pi has almost identical volume as the corresponding optimal Si in Gt (Lemma 3.2), by
construction it holds that

volG̃t
(pi) = Ω(k6 · log2γ(nt)), (24)

and
volG̃t

(Ṽt \ pi) = Ω(k6 · log2γ(nt)). (25)

Taking this into account, we get that

wG̃t′
(pi, Ṽt′ \ pi) ⩽ wG̃t

(pi, Ṽt \ pi) + |Enew|+ wGt′

(
Pi ∩ Ṽ nc

t′ , Pi \ (Pi ∩ Ṽ nc
t′)
)

⩽ wG̃t
(pi, Ṽ \ pi) + logγ(nt) + volGt′

(
Pi ∩ Ṽ nc

t′

)

⩽ ΦG̃t
(pi) ·min{volG̃t

(pi), volG̃t
(Ṽ \ pi)}+ logγ(nt) + 2 · logγ(nt) (26)

= O
(
k−6 · log−2γ(nt)

)
·min{volG̃t

(pi), volG̃t
(Ṽ \ pi)}+ 3 · logγ(nt), (27)

where (26) holds because volGt′ (Pi ∩ Ṽ nc
t′) ⩽ 2 · logγ(nt) as every vertex that is pulled out of pi needs to at least double

in degree, so adding |Enew| edges ensures at most 2 · |Enew| volume can be pulled out of pi, (27) holds because of (23).
Moreover, we also have that

min{volG̃t′
(pi), volG̃t′

(Ṽt′ \ pi)} ⩾ min{volG̃t
(pi)− 2 · logγ(nt), volG̃t

(Ṽt \ pi)} (28)

= Ω
(
min{volG̃t

(pi), volG̃t
(Ṽt \ pi)}

)
, (29)

where (28) holds because volG̃t′
(pi) ⩾ volG̃t

(pi)− volGt′ (Pi ∩ Ṽ nc
t′) ⩾ volG̃t′

(pi)− 2 · logγ(nt), and (29) holds because

of (24) and (25). Combining (27) and (29), we have for any pi ∈ Ṽ c
t that

ΦG̃t′
(pi) =

wG̃t′
(pi, Ṽt′ \ pi)

min{volG̃t′
(pi), volG̃t′

(Ṽt′ \ pi)}
= O

(
k−6 · log−γ(nt)

)
,

which proves the second part of statement (C3).

Corollary B.4. Suppose for a subset A ⊂ Vt′ with volGt′ (A) ⩽ vol(Gt′)/2, it holds that ΦG̃t′
(Ã) > (21 · c1) · log−ε(nt′)

and ΦGt′ (A) ⩽ log−ε(nt′) for any positive c1, ε satisfying 4 · c1 ⩽ logε(nt′). Then, it holds that ΦGt
(A(t)) < 1/c1.

Proof of Corollary B.4. Assume by contradiction that ΦGt
(A(t)) ⩾ 1/c1. Then, by statement (C2) in Lemma B.3 and the

fact that ΦGt′ (A) ⩽ log−ε(nt′), it holds that ΦG̃t′
(Ã) ⩽ (21 · c1) · log−ε(nt′), which is a contradiction. Hence, it holds

that ΦGt(A
(t)) < 1/c1.

Before analysing the spectral gap in the contracted graph G̃t′ with respect to the spectral gap in the full graph Gt′ , we show
that for any small subset of vertices A ⊂ V with a low value of ΦGt′ (A), the conductance of its corresponding set in the
contracted graph ΦG̃t′

(Ã) is low as well.

Lemma B.5. Let C ⊂ Vt′ be a subset of vertices such that volGt′ (C) ⩽ k6 · log2γ(nt) and ΦGt′ (C) ⩽ log−ε(nt′) for
some constant ε > 0. Then, it holds that

ΦG̃t′
(C̃) = O(log−0.9ε(nt′)).

22

Dynamic Spectral Clustering with Provable Approximation Guarantee

Proof. We prove this by contradiction. Assume by contradiction that

ΦG̃t′
(C̃) >

21

4
· log0.1ε(nt′) · log−ε(nt′) =

21

4
· log−0.9ε(nt′).

Setting c1 ≜ (1/4) · log0.1ε(nt′), it holds by Corollary B.4 that

ΦGt
(C(t)) < 4 · log−0.1ε(nt′). (30)

We will show that C(t) can be used to create a (k + 1)-partition in Gt with low outer conductance, contradicting with the
fact that λk+1(Gt) = Ω(1).

Let S1, . . . Sk be the optimal clusters in Gt corresponding to ρGt
(k). Given that Gt is a connected graph and ρGt

(k) =
O
(
k−8 · log−2γ(nt)

)
, it holds that volGt(Si) = Ω

(
k8 · log2γ(nt)

)
for all 1 ⩽ i ⩽ k. We then create the following

(k + 1)-partition:
A ≜ C(t) ∪

{
S1 \ C(t), . . . , Sk \ C(t)

}
,

which is a valid partition as we know that volGt
(C(t)) ⩽ volGt′ (C) ⩽ k6 · log2γ(nt) by the conditions of the lemma. Now

we will compute the conductance of each cluster in A.

First of all, we have from (30) that
ΦGt

(C(t)) < 4 · log−0.1ε(nt′). (31)

Second, for any cluster Sj \ C(t) we have that

ΦGt
(Sj \ C(t)) =

wGt
(Sj \ C(t), Vt \ (Sj \ C(t)))

min{volGt
(Sj \ C(t)), volGt

(Vt \ (Sj \ C(t)))}
.

Our proof is by the following case distinction:

Case 1: min{volGt
(Sj \ C(t)), volGt

(Vt \ (Sj \ C(t)))} = volGt
(Vt \ (Sj \ C(t))).

ΦGt(Sj \ C(t)) =
wGt(Sj \ C(t), Vt \ (Sj \ C(t)))

volGt
(Vt \ (Sj \ C(t)))

⩽
wGt

(Sj , Vt \ Sj) + wGt
(C(t), Vt \ C(t))

volGt(Vt \ Sj) + volGt(C
(t) ∩ Sj)

⩽ 2 ·max

{
wGt

(Sj , Vt \ Sj)

volGt
(Vt \ Sj)

,
wGt(C

(t), Vt \ C(t))

volGt
(Vt \ Sj)

}

⩽ 2 ·max
{
ΦGt

(Sj),ΦGt
(C(t))

}
(32)

⩽ max{O
(
k−8 · log−2γ(nt)

)
, 4 · log−0.1ε(nt′)},

where for (32) it holds that min{volGt(Sj), volGt(Vt \ Sj)} = volGt(Vt \ Sj) because we know that vol(Gt)/2 ⩾
volGt

(Vt \ (Sj \ C(t))) ⩾ volGt
(Vt \ Sj), and we also know that volGt

(Vt \ Sj) ⩾ volGt
(C(t)).

Case 2: min{volGt(Sj \ C(t)), volGt(Vt \ (Sj \ C(t)))} = volGt(Sj \ C(t)).

ΦGt
(Sj \ C(t)) =

wGt
(Sj \ C(t), Vt \ (Sj \ C(t)))

volGt
(Sj \ C(t))

⩽
wGt(Sj , Vt \ Sj) + wGt(C

(t), Vt \ C(t))

volGt
(Sj)− volGt

(C(t))

⩽
wGt

(Sj , Vt \ Sj) + wGt
(C(t), Vt \ C(t))

Ω (volGt
(Sj))

(33)

= O (ΦGt
(Sj)) +O

(
ΦGt

(C(t))
)

(34)

= 2 ·max
{
O
(
k−8 · log−2γ(nt)

)
, O
(
log−0.1ε(nt′)

)}
(35)

23

Dynamic Spectral Clustering with Provable Approximation Guarantee

where (33) holds because volGt
(Si) = Ω

(
k8 · log2γ(nt)

)
and volGt

(C(t)) = O
(
k6 · log2γ(nt)

)
, (34) holds because

wGt
(Sj , Vt \ Sj) ⩽ ΦGt

(Sj) · volGt
(Sj) and wGt

(C(t), Vt \ C(t)) ⩽ ΦGt
(C(t)) · volGt

(C(t)).

Combining both cases, we have for every 1 ⩽ j ⩽ k that

ΦGt
(Sj \ C(t)) = 2 ·max

{
O
(
k−8 · log−2γ(nt)

)
, O
(
log−0.1ε(nt′)

)}
. (36)

Therefore, by combining (31) and (36), we have shown that

ρGt
(k + 1) ⩽ max

Aj∈A
ΦGt

(Aj) = 2 ·max
{
O
(
k−8 · log−2γ(nt)

)
, O
(
log−0.1ε(nt′)

)}
,

which contradicts the fact that ρGt(k + 1) ⩾ λk+1(LGt)

2 = Ω(1). Hence, the statement of the lemma follows.

Proof of Lemma 4.4. We first prove the first statement. Let S = S1, . . . , Sℓ be a set of clusters that achieve ρGt′ (ℓ). For
ease of notation we set

Ssmall ≜ S(t
′)

small

(
k6 · log2γ(nt)

)

to be the clusters in S with volume at most k6 · log2γ(nt), and similarly

Slarge ≜ S(t
′)

large

(
k6 · log2γ(nt)

)
.

We will use the partition S, which has low outer conductance in Gt′ , to create an r-way partition in G̃t′ with low r-way
expansion. We construct this r-way partition, denoted byR, as follows:

R ≜
{
S̃1, . . . , S̃ℓ1 , p1, . . . , pk−1, p

∗
k

}

where ℓ1 ≜ |Ssmall|, and we define

p∗k ≜ pk ∪


Ṽ nc

t′ \
⋃

Sj∈Ssmall

S̃j




to be the union of the super node pk with the leftover non-contracted vertices which do not belong to any S̃j . We start by
showing thatR has low r-way expansion:

• By Lemma B.5, we know that for every Sj ∈ Ssmall, it holds that ΦG̃t′
(S̃j) = O

(
log−0.9α(nt′)

)
.

• By Property (C3) of Lemma B.3, we know that for every super node pi ∈ {pk1
, . . . pk−1} it holds that ΦG̃t′

(pi) =

O
(
k−6 · log−γ(nt′)

)
.

• Finally, for p∗k we know that

ΦG̃t′
(p∗k) =

wG̃t′
(p∗k, Ṽt′ \ p∗k)

min
{
volG̃t′

(p∗k), volG̃t′
(Ṽt′ \ p∗k)

} . (37)

We split the computation of this conductance into two cases.

24

Dynamic Spectral Clustering with Provable Approximation Guarantee

Case 1: Suppose min
{
volG̃t′

(p∗k), volG̃t′
(Ṽt′ \ p∗k)

}
= volG̃t′

(p∗k). Then, we have that

ΦG̃t′
(p∗k) =

wG̃t′
(p∗k, Ṽt′ \ p∗k)
volG̃t′

(p∗k)

⩽
wG̃t

(pk, Ṽt \ pk) + logγ(nt′) + volG̃t′
(Ṽ nc

t′)

volG̃t
(pk)− volG̃t′

(Ṽ nc
t′)

(38)

⩽
ΦG̃t

(pk) · volG̃t
(pk) + 3 · logγ(nt′)

Ω
(
volG̃t

(pk)
) (39)

=
O
(
k−6 · log−2γ(nt)

)
· volG̃t′

(pk) + 3 · logγ(nt′)

Ω
(
volG̃t

(pk)
) (40)

=
O
(
k−6 · log−2γ(nt) · volG̃t′

(pk)
)

Ω
(
volG̃t

(pk)
) (41)

= O
(
k−6 · log−2γ(nt)

)
,

where (38) holds because |Enew| ⩽ logγ(nt) is the maximum amount of weight that can be added between pk
and its complement, (39) holds because volG̃t′

(Ṽ nc
t′) ⩽ 2 · |Enew| is the maximum volume of non-contracted

vertices that can be added to G̃t′ and (40) holds because of statement (C3) of Lemma B.3, and (41) holds since
volG̃t′

(pk) ⩾ vol(Gt)/k ⩾ nt/k.

Case 2: Suppose min
{
volG̃t′

(p∗k), volG̃t′
(Ṽt′ \ p∗k)

}
= volG̃t′

(Ṽt′ \ p∗k). Then it holds that the conductance of p∗k is
upper bounded by the maximum conductance of every other cluster inR, i.e.,

ΦG̃t′
(p∗k) =

wG̃t′
(p∗k, Ṽt′ \ p∗k)

volG̃t′
(Ṽt′ \ p∗k)

⩽

∑
Sj∈Ssmall

wG̃t′
(S̃j , Ṽt′ \ S̃j) +

∑k−1
j=1 wG̃t′

(pj , Ṽt′ \ pj)
∑

Sj∈Ssmall
volG̃t′

(S̃j) +
∑k−1

j=1 volG̃t′
(pj)

⩽ max

{
max

Sj∈Ssmall

{
ΦG̃t′

(S̃j)
}
, max
pj∈{p1,...,pk−1}

{
ΦG̃t′

(pj)
}}

= max
{
O
(
log−0.9α(nt′)

)
, O
(
k−6 · log−γ(nt′)

)}
,

where the last inequality follows by the mediant inequality.

Combining the two cases, we have that

ΦG̃t′
(p∗k) = max

{
O
(
log−0.9α(nt′)

)
, O
(
k−6 · log−γ(nt′)

)}
.

We have so far analysed the conductance of each of the clusters in the partitionR, and have shown that

ρG̃t′
(r) = max

{
O
(
log−0.9α(nt′)

)
, O
(
k−6 · log−γ(nt′)

)}
. (42)

Before reaching the final contradiction, we prove the following claim.
Claim B.5.1. It holds that r ⩾ ℓ.

Proof. Assume by contradiction that r < ℓ. In this case, we know that r = |Ssmall| + |P|, and ℓ = |S|. Therefore, the
condition of r < ℓ gives us that |Ssmall|+ |P| < |S|, which implies that |P | < |S| − |Ssmall| = |Slarge|. This means that
the number of large clusters in S is greater than the number of clusters in P .

25

Dynamic Spectral Clustering with Provable Approximation Guarantee

It therefore holds that |Slarge| > |P| = k. Furthermore, since it holds that for every Sj ∈ Slarge that volGt′ (Sj) >

k6 · log2γ(nt), and the number of new edges is |Enew| ⩽ logγ(nt), it also holds that

ΦGt
(Sj) = O

(
ΦGt′ (Sj)

)
= max

{
O
(
log−α(nt′)

)
, k6 · logγ(nt)

}
.

This means that Slarge is a set of |Slarge| ⩾ k + 1 disjoint subsets in Gt with low conductance, which contradicts the
higher-order Cheeger inequality and proves the claim.

Combining (42) with Claim B.5.1 gives us that

ρG̃t′
(ℓ) = max

{
O
(
log−0.9α(nt′)

)
, O
(
k−6 · log−γ(nt′)

)}
,

and this proves the first statement.

Next we prove the second statement. Let A1, . . . Aℓ be the partition such that ΦG̃t′
(Ai) = O

(
log−δ(nt′)

)
for every

1 ⩽ i ⩽ ℓ. Recall that Âi is the representation of the set Ai in the full graph Gt′ , i.e.,

Âi ≜ Anc
i

⋃

 ⋃

pj∈Ac
i

P
(t′)
j


 ,

where P (t′)
j = Pj \ (Pj ∩ Ṽ nc

t′), Anc
i ≜ Ai ∩ V nc

t′ , and Ac
i ≜ Ai ∩ V c

t′ . One can see P (t′)
j as the vertices in Pj that have not

been pulled out into the contracted graph yet.

Notice that, when Ac
i = ∅, it holds by construction that ΦGt′ (Ai) = ΦG̃t′

(Ai) ⩽ log−δ(nt′). So we only look at the case
where Ac

i ̸= ∅. Without loss of generality, we assume that Ac
i does not contain all the contracted nodes p1, . . . , pk. If it did,

then

ΦGt′ (Âi) = ΦGt′


 ⋃

Ac
j=∅

Aj


 ⩽ log−δ(nt′).

Therefore, given that for any 1 ⩽ i ⩽ ℓ it holds that volGt′ (A
nc
i) ⩽ 2 · |Enew| ⩽ 2 · logγ(nt), and for any 1 ⩽ j ⩽ k it

holds that volGt′ (P
(t′)
i) = Ω(k6 · log2γ(nt)), we get that

ΦGt′ (Âi) = O


ΦGt′


 ⋃

pj∈Ac
i

P
(t′)
j




 = O

(
k−6 · log−γ(nt′)

)
,

where the last line holds because of property (C3) of Lemma B.3. This proves the second statement.

Proof of Lemma 4.5. We first prove the first statement, and we will prove this by contradiction. Assume by contradiction
that λℓ+1(LGt′) < C · log

−α(nt′)
(ℓ+1)6 for some constant C. Then, by the higher-order Cheeger inequality, there exists an optimal

(ℓ+ 1)-way partition S = {S1, . . . Sℓ+1} such that for all 1 ⩽ i ⩽ ℓ+ 1

ΦGt′ (Si) ⩽ ρGt′ (ℓ+ 1) ⩽ C2.1 · (ℓ+ 1)3 ·
√

λℓ+1(Gt′) = O
(
log−0.5α(nt′)

)
.

By Lemma 4.4, it then holds that ρG̃t′
(ℓ+ 1) = max

{
O
(
log−0.45α(nt′)

)
, O
(
k−6 · log−γ(nt′)

)}
, which contradicts the

fact that

ρG̃t′
(ℓ+ 1) ⩾

λℓ+1(LG̃t′
)

2
= Ω(1),

from which the first statement of the lemma follows.

Next we prove the second statement. We prove this by analysing the spectrum of LG̃t′
with respect to LGt′ through LH′

t′
.

As proven in Lemma B.2, H ′
t′ is a cluster preserving sparsifier of Gt′ , and therefore we know that

λℓ+1(LH′
t′
) = Ω(λℓ+1(LGt′)). (43)

26

Dynamic Spectral Clustering with Provable Approximation Guarantee

Our next analysis is inspired by the work on meta graphs of Macgregor and Sun (Macgregor & Sun, 2022). We will
analyse the spectrum of LH′

t′
with respect to the spectrum of LG̃t′

, and for simplicity we denote H ′
t′ ≜ H , G̃t′ ≜ G̃,

and nt′ ≜ n. For every vertex uj ∈ V (G̃) in the contracted graph, we associate it with a non-empty group of vertices
Aj ⊂ V (H) as follows: for all uj ∈ Ṽ nc

t′ , we associate uj with its unique corresponding single vertex v ∈ V (H), and for
every uj = pr ∈ Ṽ c

t′ for some r, we associate it with its corresponding vertices in the cluster P (t′)
r ⊂ V (H). Then, let

χj ∈ Rn be the indicator vector for the vertices Aj ⊂ V (H) corresponding to the vertex uj ∈ V (G̃).

We define ñ = |V (G̃)|, and let the eigenvalues of LG̃ be γ1 ⩽ γ2 ⩽ . . . ⩽ γñ with corresponding eigenvectors
g1, g2, . . . , gñ ∈ Rñ. We further define vectors ḡ1, . . . ḡñ which will represent the eigenvectors g1, . . . gñ of the normalised
Laplacian LG̃, but blown up to size Rn. Formally, we define

ḡi ≜
ñ∑

j=1

D
1
2

Hχj

∥D
1
2

Hχj∥
gi(j).

We can readily check that these vectors form an orthonormal basis. First,

ḡiḡ
⊺
i =

ñ∑

j=1

∑

u∈Aj

(√
dH(u)√

volH(Aj)
gi(j)

)2

=

ñ∑

j=1

gi(j)
2
∑

u∈Aj

dH(u)

volH(Aj)

=

ñ∑

j=1

g(j)2 = 1.

And similarly for any i1 ̸= i2,

ḡi1 ḡ
⊺
i2

=

ñ∑

j=1

∑

u∈Aj

dH(u)

volH(Aj)
gi1(j)gi2(j)

=

ñ∑

j=1

gi1(j)gi2(j) = 0.

We also get the useful property that for the eigenvalues λ1, . . . , λn of LH and γ1, . . . , γñ of the contracted Laplacian LG̃, it
holds that λi ⩽ 2 · νi. In particular,

ḡiLH ḡ⊺i =

ñ∑

x=1

ñ∑

y=x

∑

u∈Ax

∑

v∈Ay

wH(u, v)

(
ḡi(u)√
dH(u)

− ḡi(v)√
dH(v)

)2

=

ñ∑

x=1

ñ∑

y=x

wH(Ax, Ay)

(
gi(x)√
volH(Ax)

− gi(y)√
volH(Ay)

)2

= 2 · giLG̃g
⊺
i .

Therefore we have an i-dimensional subspace Xi such that

max
x∈Xi

x⊺LHx

x⊺x
= 2 · γi,

from which it follows by the Courant-Fischer theorem that λi ⩽ 2 · γi. Combining this with (43), we get that

λℓ+1(LG̃t′
) ⩾

1

2
· λℓ+1(LH′

t′
) = Ω

(
λℓ+1(LGt′)

)
= Ω(1),

which proves the lemma.

27

