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ABSTRACT

Understanding and modelling the performance of neural architectures is key to
Neural Architecture Search (NAS). Performance predictors for neural architec-
tures are widely used in low-cost NAS and achieve high ranking correlations be-
tween predicted and ground truth performance in several search spaces. How-
ever, existing predictors are often designed based on network encodings specific
to a predefined search space and are not generalizable across search spaces or to
new families of architectures. In this work, we propose a general-purpose neural
predictor for NAS that can transfer across architecture families, by representing
any given candidate Convolutional Neural Network with a computation graph that
consists of only primitive operators. Further combined with Contrastive Learn-
ing, we propose a semi-supervised graph representation learning procedure that is
able to leverage both labelled accuracies and unlabeled information of architec-
tures from multiple families to train universal embeddings of computation graphs
and the performance predictor. Experiments conducted on three different NAS
benchmarks, including NAS-Bench-101, NAS-Bench-201, and NAS-Bench-301,
demonstrate that a predictor pre-trained on other families produces superior trans-
ferability when applied to a new family of architectures with a completely different
design, after fine-tuning on a small amount of data. We then show that when the
proposed transferable predictor is used in NAS, it achieves search results that are
comparable to the state-of-the-arts on NAS-Bench-101 at a low evaluation cost.

1 INTRODUCTION

Neural architecture search (NAS) automates neural network design and has achieved remarkable
performance on many computer vision tasks. A NAS strategy typically performs alternated search
and evaluation over candidate networks to maximize a performance metric. While various strategies
such as random search (Li & Talwalkar, 2019), differentiable search (Liu et al., 2018), Bayesian
optimization (White et al., 2019), and reinforcement learning (Pham et al., 2018) can be used in the
search step, fast and reliable evaluation is key to identifying better architectures at a low cost.

To avoid the excessive cost involved in the complete training and evaluating of each candidate net-
work, most current NAS frameworks resort to performance estimation methods to predict its test
accuracy. Frequently used performance estimation methods in the NAS field include partial train-
ing (Tan et al., 2018), weight sharing (Pham et al., 2018), neural predictors (Luo et al., 2018) and
zero-cost proxies (Abdelfattah et al., 2021). The effectiveness of a performance estimation method
is mainly determined by its inference time, i.e., the time it takes to generate an estimate, as well as
the ranking correlation between predicted and ground-truth test scores. A higher ranking correla-
tion could better guide NAS toward finding truly superior architectures. And lower inference time
converts to more candidate networks visited under a computational budget.

While partial training and weight sharing are extensively used in early NAS works, thanks to several
existing NAS benchmarks that provide an ample amount of labeled networks (Ying et al., 2019;
Dong & Yang, 2020; Siems et al., 2020) (e.g., NAS-Bench-101 offers 423k networks trained on
CIFAR-10), there have been many recent developments in training neural predictors for NAS (Wen
et al., 2020; Tang et al., 2020). Without the need for any gradient computation, neural predictors
often enjoy the advantage of the lowest inference time and the capability of continued improvement
as more NAS benchmarking data are made available.
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Figure 1: Comparison of predictor training setups: (a) conventional, space-dependent neural predic-
tors; (b) the proposed general-purpose, space-agnostic predictor. Best viewed in color.

However, a major shortcoming of existing neural predictors is that they are not general-purpose.
Each predictor is specialized to process networks confined to a specific search space. For example,
NAS-Bench-101 limits its search space to a cell, which is a graph of up to 7 internal operators. Prior
neural predictors designed for NAS-Bench-101 are unable to handle networks from other search
spaces, e.g., DARTS (Liu et al., 2018), which adopts a different set of candidate operators and
a different form of topology, in which each edge (instead of each node) must choose an operator.
This search-space-specific design seriously limits the practicality and transferability of existing NAS
predictors, since for any new search space that may be used in reality, a predictor must be re-designed
and re-trained based on a large number of labeled networks in the new search space.

Another emerging approach to performance estimation is the zero-cost proxies (Abdelfattah et al.,
2021), which can naturally support any network structure as input. However, the performance of
zero-cost proxies may vary significantly depending on the search space. For example, Synflow
achieves a high Spearman’s ranking correlation coefficient of 0.74 when tested on the NAS-Bench-
201 search space, whereas this correlation drops to 0.37 when applied to NAS-Bench-101 (Abdelfat-
tah et al., 2021). Moreover, when compared to neural predictors, zero-cost proxies often have longer
per-network inference time and require an additional batch of image data to make predictions.

In general, neural predictors offer better estimation quality and can be continuously improved, but
do not transfer well across search spaces, while zero-cost proxies are naturally universal estimation
methods, but could be sub-optimal on certain search spaces. In this paper, We propose a general-
purpose predictor for NAS that is transferable across search spaces like the zero-cost proxies, yet
still preserves the benefits of conventional predictors. Our contributions are summarized as follows:

• We propose the use of computation graphs to provide a universal representation of networks
from different search spaces. Figure 1 highlights the differences between (a) existing NAS
predictors and (b) the proposed framework. The key is to introduce a universal search
space representation consisting of graphs of only primitive operators to model any network
structure, such that a general-purpose predictor can be learned based on NAS benchmarks
available from multiple search spaces and be transferred to a new search space.

• We combine recent advances in Graph Neural Networks (GNN) (Morris et al., 2019), self-
attention mechanisms (Vaswani et al., 2017) and Contrastive Learning (CL) (Chen et al.,
2020a) and propose a semi-supervised framework to learn a generalizable neural predictor.
Inspired by CL, we introduce a graph representation learning procedure to learn a general-
izable architecture encoder based on the structural information of vast unlabeled networks
of a target search space. The embeddings obtained this way are then used to train a pre-
dictor based on labeled accuracies in source families to achieve transferability to the target
search space.
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• We perform experiments to show that our predictor could jointly leverage training data from
multiple NAS-Bench families to boost performance, enabling the possibility of continuous
improvement when more NAS benchmarking data become available. Experimental results
on three representative NAS Benchmarks indicate that our predictor is a better option for
transferable performance estimation than zero-cost proxies. With the proposed pre-training
procedure and fine-tuning only on no more than 50 labeled architectures in the target search
space, our predictor could achieve a Spearman’s rank correlation coefficient of 0.917 and
0.892 on NAS-Bench-201 and NAS-Bench-301, respectively. When using the transferable
predictor for search on NAS-Bench-101 (without further fine-tuning during search), we
obtain results that are better than other non-transferable approaches like SemiNAS (Luo
et al., 2020), NAO (Luo et al., 2018), and BANANAS (White et al., 2019).

2 RELATED WORKS

Neural predictor is a popular choice of performance estimation in low-cost NAS. Existing
predictor-based NAS works include NAO (Luo et al., 2018), which adopts an encoder-decoder setup
for architecture encoding/generation, and a simple neural performance predictor that predicts based
on the encoder outputs. SemiNAS (Luo et al., 2020) progressively updates an accuracy predictor
during the search. BANANAS (White et al., 2019) relies on an ensemble of accuracy predictors as
the inference model in its Bayesian Optimization process. Tang et al. (2020) constructs a similar
auto-encoder-based predictor framework and supplies additional unlabeled networks to the encoder
to achieve semi-supervised learning. Wen et al. (2020) proposes a sample-efficient search procedure
with customized predictor designs for NAS-Bench-101 and ImageNet (Deng et al., 2009) search
spaces. Our approach to constructing accuracy predictors is similar to arch2vec (Yan et al., 2020) in
that the embedding is pre-trained. However, our embeddings are general, not restricted to the spe-
cific underlying search space. Furthermore, arch2vec focuses on solving the NAS problem directly.
In contrast, our work focuses on learning generalizable accuracy predictors. NPENAS (Wei et al.,
2020), BRP-NAS (Dudziak et al., 2020) are also notable predictor-based NAS approaches.

Zero-cost proxies are originally proposed as parameter saliency metrics in model pruning tech-
niques. With the recent advances of pruning-at-initialization algorithms, only a single for-
ward/backward propagation pass is needed to assess the saliency. Metrics used in these algorithms
are becoming an emerging trend for transferable, low-cost performance estimation in NAS. Ab-
delfattah et al. (2021) transfers several zero-cost proxies to NAS, such as Synflow (Tanaka et al.,
2020), Snip (Lee et al., 2018), Grasp (Wang et al., 2020) and Fisher (Turner et al., 2019). Zero-cost
proxies could work on any search space and Abdelfattah et al. (2021) shows that on certain search
spaces, they help to achieve results that are comparable to predictor-based NAS algorithms.

3 COMPUTATION GRAPH: A UNIFIED ARCHITECTURE REPRESENTATION

Operator-grouping is an implicit but widely adopted technique for improving the efficiency of NAS.
Without the loss of generality, we consider operations in Convolutional Neural Networks (CNN) for
classification and define a primitive operator as an atomic node of computation in a CNN. In other
words, a primitive operator is one like Convolution, ReLU, Add, Pooling or BatchNorm, which
are considered to be a single point of execution that cannot be further reduced. Operator-grouping
re-labels pre-defined combinations of primitive operators as new atomic groups. For example, a
Conv3x3 operator defined by the NAS-Bench-101 search space is a combination of 3 primitive oper-
ators: Convolution3x3-BatchNorm-ReLU. Different search spaces may propose different grouping
strategies. E.g., in NAS-Bench-201, a grouped Conv3x3 operator is instead a combination of ReLU-
Convolution3x3-BatchNorm. Operator-grouping simplifies the search space, helps to incorporate
useful prior knowledge such as the frequent co-occurrence of Convolution, BatchNorm, ReLU in
CNNs, and could lead to better search results. However, since the input features for neural pre-
dictors are commonly designed around the grouped operators, operator-grouping is also the main
culprit of low transferability in existing predictors.

We define a computation graph as a detailed graphical representation of a neural network without
any customized grouping, i.e., each node in the graph is a primitive operator and the network com-
putation graph is made up of only such nodes and edges that direct the flow of information. Without
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Figure 2: Example depicting the key graphical features extracted from compute graphs and how
they are encoded as node features for the GNN.

operator-grouping, computation graphs define a search space that could represent any network struc-
ture since the number of primitive operators is usually far less than the number of possible groupings.
We propose to learn a neural predictor based on features extracted from computation graphs, which
makes our predictor a transferable performance estimation method.

While there are many potential ways to construct a computation graph, we adopt a simple approach
of simplifying the model optimization graph maintained by a deep learning framework like PyTorch
(Paszke et al., 2019) or TensorFlow (Abadi et al., 2015). As the name suggests, a model optimiza-
tion graph is originally intended for gradient calculations and weight updates, and it is capable of
supporting any network structure. In this work, all the computation graphs used in our experiments
are simplified from TensorFlow model optimization graphs. Specifically, we extract the following
nodes from a model optimization graph to form a computation graph:

• Nodes that refer to trainable neural network weights. For these nodes, we extract the op-
erator type, such as Conv1D, Conv2D, Linear, etc, input/output channel sizes, input/output
image height/width sizes, convolution kernel sizes (if available), and bias information as
their node features.

• Nodes that refer to activation functions like ReLU or Sigmoid, pooling layers like MaxPool
or AveragePool, as well as batch normalizations. For these nodes, we extract the operator
type, input/output channel and image height/width sizes.

• Key supplementary nodes that indicate how information is processed, e.g., addition, multi-
plication and concatenation. For these nodes, we also extract the type, input/output channel
and image height/width sizes.

Formally, a computation graph G consists of a vertex set V = {v1, v2, v3, ...} and an edge set E,
where v refers to a primitive operator node andE contains pairs of vertices (vs, vd) indicating a con-
nection between vs and vd. Under this definition, the problem of performance estimation becomes
finding a function F such that for computation graphGi, which is generated from a candidate neural
network, F (Gi) = Pi, where Pi is the ground truth test score. One simple approach is to formu-
late F using Graph Neural Networks (GNNs). Figure 2 illustrates how we transform a computation
graph into learnable feature vectors for a GNN. Representing networks as computation graphs en-
able us to break the barrier imposed by search space definitions and fully utilize all available data
for predictor training, regardless of where a labeled network is from, e.g., NAS-Bench-101, 201
or 301. We could also effortlessly transfer a predictor trained on one search space to another, by
simply fine-tuning it on additional data from the target space. In Section 4.1, we further leverage
Contrastive Learning to extract additional knowledge from unlabeled computation graphs.

4 NEURAL PREDICTOR VIA GRAPH REPRESENTATION LEARNING

While features of computation graphs presented in Section 3 can naturally be fed into a GNN for
accuracy prediction, we propose a two-stage approach to improve generalization and leverage un-
labeled data via graph representation learning. We first find a vector representation (embedding)
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which converts the graph features mentioned in Section 3 into a fixed-sized latent vector via a graph
contrastive learning procedure, before feeding the latent vector to an MLP accuracy regressor. Given
a target family for performance estimation, a salient advantage of our approach is its ability to lever-
age vast unlabeled data, e.g., computation graphs of the target family, which are typically available
in abundance. In fact, our approach is able to jointly leverage labeled and unlabeled architectures
from multiple search spaces to maximally utilize available information.

4.1 COMPUTATION GRAPH REPRESENTATION USING CONTRASTIVE LEARNING

For each computation graph, we would like to produce a vector representation in the sphere of
Rm for a fixed hyper-parameter m. Similar to the word2vec representation of words (Mikolov
et al., 2013), we would like to infer relationships between the networks by considering the angles
between the corresponding vector representations. In this paper, we propose to learn representations
of computation graphs using contrastive learning: only similar computation graphs will have close
vector representations.

We follow the framework of SimCLR (Chen et al., 2020a;b), which was applied to image classifica-
tion (see Fig. 4.1).

Figure 3: Contrastive loss

This framework learns a base encoder, that,
given an image, outputs its vector represen-
tation. To train the base encoder, a projec-
tion head projects representations into a lower-
dimensional space where a contrastive loss
function is then optimized. The projection
head, Proj(∗), is an MLP that maps vectors
in Rm to vectors into the sphere of Rp, where
p < m. The contrastive loss is designed to
force representations of similar images to be
aligned. For images, similar images should be-
long to the same class. In addition to the con-
trastive loss function and the notion of similar-
ity, data augmentation is also crucial for train-
ing the base encoder. The augmentation pro-

cess occurs during training for each batch. For each batch element, a new data point is added to the
batch before assembling the contrastive loss function. The new data point is just a slight random
perturbation of the image. The idea here is that this pair, the image and its augmentation, constitute
the only positive pair, that is, since the images are similar their corresponding vector representations
should be aligned (all other pairs between the current batch element and other batch elements are
negative).

When attempting to apply contrastive learning to computation graphs, we need to address the fol-
lowing challenging issues: 1) defining a sensible pairwise similarity function, 2) designing an appro-
priate contrastive loss function, 3) implementing a suitable form of data augmentation, and finally,
4) choosing an architecture for the base encoder.

Since our focus is on the accuracy of neural networks, our vector representation will be tilted to
encode features that are useful for clustering networks based on accuracy, although our approach
could also be used for other clustering criteria (e.g., latency, network family affiliation, topological
structure, etc.). We start by considering the similarity between computation graphs. If network
accuracies are known, we can define the similarity of two computation graphs as their absolute
difference in accuracy, that is, irrespective of architectural differences, two computation graphs will
be close in vector representation if their accuracies achieved on some benchmark, e.g., ImageNet
test accurarcies, are close.

Alternatively, we can define similarity based on network structures, since it is intuitively expected
that networks that, as graphs, are topological close should have also comparable performance. This
approach is particularly useful when a sizeable number of unlabeled computation graphs are readily
available for training. In what follows, we describe our approach that uses spectral properties of
undirected graphs to compare computation graphs (see, Dwivedi & Bresson (2021), Dwivedi et al.
(2020)). Given a computation graph, we consider its underlying undirected graph G. Let A be its
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adjacency matrix, D be its degree diagonal matrix. The normalized Laplacian matrix is defined as

∆ = I −D−1/2AD−1/2 = UT ΛU,

where Λ is the diagonal matrix of eigenvalues and U the matrix of eigenvectors. It is known that
the eigenvalues Λ encode important connectivity features of G. For instance, 0 is the smallest
eigenvalue and has multiplicity 1 iff G is connected. More generally, the eigenvalues of ∆ can
be used to measure the distance between graphs. We do this by first truncating the eigenvalues
by considering only the k smallest eigenvalues of ∆, where k is usually much smaller than the
number of nodes of any computation graph of interest. For our experiments we chose k = 11.
Given two computation graphs, we define their distance as the Euclidean norm of the corresponding
k eigenvalues sorted from smallest to largest (note that this is not a true metric between graphs).
Smaller eigenvalues focus on general features of the graph, whereas larger eigenvalues focus on
features at higher granularity (see Wills & Meyer (2019) for more details). We use σS(g1, g2) to
denote this spectral distance between computation graphs g1, g2.

Next, we address the contrastive loss function. A key difference between images and computation
graphs is that our task of interest is regression rather than classification. We address this issue by
replacing a single positive pair with a probability distribution over all pairs which smoothly favors
similar computation graphs. Consider a batch ofN computation graphs, whose vector representation
is I = {h1, h2, . . . , hN} ⊂ Rm. For each i, let zi = Proj(hi) ∈ {||z|| = 1 : z ∈ Rp}, and let
the cosine similarity be sim(zi, zj) = zi · zj/τ , where the temperature τ > 0 is a hyper-parameter
(τ = 0.1 in all of our experiments) and · is the dot product. In SimCLR (Chen et al., 2020a), for
each i in the batch, called anchor index, there is an associated element j(i) (in an augmented batch),
called positive index, while r 6= i, j(i) are negative indices. The contrastive loss maximizes the
probability of the positive pair (i, j(i)):

LSimCLR = −
∑
i∈I

log
exp(sim(zi, zj(i)))∑
r 6=i exp(sim(zi, zr))

.

For images, j(i) is a small perturbation of image i. If classes are known, the SupCon loss function
(Khosla et al., 2020) is

LSupCon =
∑
i∈I

−1

P (i)

∑
s∈P (i)

log
exp(sim(zi, zs))∑
r 6=i exp(sim(zi, zr))

. (1)

where P (i) are the non-anchor indices whose class is the same as i. Thus, not just j(i), but all
indices whose class is the same as i contribute to the probability of positive pairs, not just j(i).

Our contrastive loss will take elements from both LSimCLR and LSupCon. Consider next the case
in which the batch consists of computation graphs. First, if the family of networks each computation
graph belongs to is known, e.g., NB201, NB101, OFA, etc., we treat the family affiliation as a class
and follow the LSupCon approach. Second, rather than using the uniform distribution over P (i) as in
(1), we use a convex combination over P (i) that will be based on the similarity of the corresponding
computation graphs

L = −
∑
i∈I

∑
s∈P (i)

α(i)
s log

exp(sim(zi, zs))∑
r 6=i exp(sim(zi, zr))

, (2)

where α(i)
s ≥ 0 and

∑
s∈P (i) α

(i)
s = 1. For computation graph i, we simply define α(i)

∗ to be the
softmax of σS(i, ∗) (we used a temperature of 0.05 in all of our experiments).

The challenge of data augmentation for computation graphs is that slightly perturbing a computation
graph may drastically change its accuracy on a benchmark, for instance, when changing an activation
function. In addition, arbitrary small changes to a computation graph may make it fall outside of the
family of networks of interest. To address this issue, rather than randomly perturbing a computation
graph, we randomly pick a very similar graph (e.g., in σS sense) from the training set to form a
positive pair. As suggested in (Khosla et al., 2020), we learn the embeddings using large batch
sizes.

Finally, we describe our encoder architecture to generate embeddings. The simplest encoder is just
a GNN. Since predicting accuracy involves both local and global graph features, we also propose
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alternative encoders that usually perform better. In particular, we consider the addition of attention
mechanisms (as in Vaswani et al. (2017)) to capture global graph relationships that are harder to
explore using regular GNNs. More precisely, we use transformer encoders (Vaswani et al., 2017)
with and without positional embeddings (as described in Chen et al. (2020a;b)) by itself or combined
with GNN encoders using composition, concatenation or residual connections between the two. In
practice, our best encoders concatenate a GNN encoder and a transformer encoder or concatenate a
GNN encoder with the node embedding of Section 3 followed by a transformer encoder. Finally, as
suggested in (Khosla et al., 2020), we normalize the output representations.

4.2 AN MLP ACCURACY PREDICTOR BASED ON VECTOR REPRESENTATIONS

Given a training set of accuracy-labeled computation graphs, we first find the embeddings as de-
scribed in Section 4.1. Notice that the representations are in Rm for hyper-parameter m. Our MLP
is just a regressor that predicts accuracies given m-sized latent features. In practice, we proceed as
follows. First, we train several vector representations over a small set of hyper-parameters, this is, in
fact, the bulk of the running time. For each one of these, we train our MLP regressor. For each one of
these predictors, we calculate the Spearman correlation with respect to each of the training families
we used for training and select the configuration with the highest value. We empirically observed
that our model selection approach is very stable, that is, the selected model does not change over
different MLP random runs.

So far, we have assumed that no accuracy data is available from the target family. To eliminate
the bias introduced by training on different families, we use fine tuning. We fine-tune our MLP
using a very small fraction of labeled data from the target family. This step seems inexpensive
and necessary for transferability. This approach is used, for instance, to evaluate the quality of
embeddings in contrastive learning (Chen et al., 2020a). In practice, the tiny amount of labeled
data used for fine-tuning can be added to the number of evaluations needed during NAS, minimally
affecting performance.

5 EXPERIMENTATION

In this section, we evaluate our proposed transferable predictor and demonstrate its superiority over
existing alternatives. We begin by comparing the ranking correlations between our predictor and
other transferable zero-cost proxies on popular NAS benchmarks. We then show that methods with
higher ranking correlations often produce better search results in Section 5.2.

5.1 COMPARISON OF RANKING CORRELATIONS

In this experiment, we study how the performance estimation quality of our transferable predic-
tor compares to other transferable zero-cost proxy baselines. We consider the search spaces of
NAS-Bench-101 (Ying et al., 2019), NAS-Bench-201-CIFAR-10 (Dong & Yang, 2020) and NAS-
Bench-301 (Siems et al., 2020), which cover a wide range of classification network architectures,
e.g., ResNet, Inception, DARTS. We sample 5000 instances from NAS-Bench-101, 4096 instances
from NAS-Bench-201 and 1000 instances from NAS-Bench-301 as independent test sets. We exe-
cute the zero-cost proxies directly on these test sets and report the Spearman correlation coefficient
(ρ ∈ [−1, 1]), with values closer to 1 indicating higher ranking correlations between the predicted
performance and ground truth test accuracies.

For our predictor we differentiate between target and source families. The test set belongs to the
target family. Furthermore, we assume that for the target family we have a large amount of unlabeled
data and a very small amount of labeled data. Source families are fully labeled (i.e., accuracies are
known). We consider all the cases in which one of NAS-Bench-101, NAS-Bench-201, NAS-Bench-
301 is the target family, while the reminder two are source families. Our predictor uses the structural
information of the target family for training the embeddings (Section 4.1), the source families for
training the MLP (Section 4.2) and the small amount labeled from the target family to fine-tune
the MLP (also Section 4.2). We use all the unlabeled data of the target family and all labeled data
from the source families. And, specifically for fine-tuning, for target families NAS-Bench-101 and
NAS-Bench-301 we sample 50 labeled networks, while for NAS-Bench-201 we sample 40.
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Table 1: Spearman correlation coefficients (ρ). Average of 5 fine tuning runs.

Method NAS-Bench-201 NAS-Bench-101 NAS-Bench-301
Synflow (Tanaka et al., 2020) 0.823 0.361 -0.210
Jacov (Mellor et al., 2021) 0.859 0.358 -0.190
Fisher (Turner et al., 2019) 0.687 -0.277 -0.305
GradNorm (Abdelfattah et al., 2021) 0.714 -0.256 -0.339
Grasp (Wang et al., 2020) 0.637 0.245 -0.055
Snip (Lee et al., 2018) 0.718 -0.165 -0.336
GNN-fine-tune 0.884 ± 0.03 0.542 ± 0.14 0.872 ± 0.01
CL-fine-tune 0.917 ± 0.01 0.553 ± 0.09 0.892 ± 0.01

We consider the following variants:

• CL-fine-tune is our best predictor model that leverages CL-based pre-training (Section 4.1)
as described above.

• GNN-fine-tune serves as the ablation comparison model to verify the usefulness of Con-
trastive Learning. Here, we directly pre-train + fine-tune a k-GNN (Morris et al., 2019)
predictor on the same amount of labeled data as CL-fine-tune.

Table 1 summarizes the results. We first note that although zero-cost proxies can work on any search
space, their prediction quality is often unstable. While most proxies generate positive correlations
on NAS-Bench-201, the correlation suffers a significant drop when transferred to NAS-Bench-101
and 301, which is similar to the observation made by Abdelfattah et al. (2021). Since there is
no easy way to correct or improve poorly-performing zero-cost proxies, their transferability and
generalizability remain questionable. In comparison, our predictor learns generalizable features
from the computation graphs, which makes it capable of utilizing any existing labeled/unlabeled
data. And with a small amount of fine-tuning data, our predictor transfers well to all test search
spaces with correlations far exceeding zero-cost proxy baselines. Finally, we observe that the CL-
fine-tune variant produces higher correlations than the GNN-fine-tune variant and is more stable
across different runs, which demonstrates the usefulness of CL pre-training using unlabeled data.

5.2 SEARCH RESULTS

We now demonstrate that our predictor is the better option for transferable performance estimation
in NAS. To highlight the impact of different estimation methods, we adopt a common evolutionary
search procedure described in Algorithm 1. We vary the choice of M and report the accuracy and
rank of the best architecture found. Specifically, we compare the CL-fine-tune predictor against
the Synflow zero-cost proxy and a random estimation baseline. For each method, we conduct 5
search runs on NAS-Bench-101 which has 423,624 labeled candidates, also on NAS-Bench-201
with 15,625 searchable candidates, and NAS-Bench-301 with over 1018 candidates.

Algorithm 1 Our EA Search Algorithm (More details in Appendix)
1: Input: A set of random architectures with evaluated performances P ; A performance estimator
M ; Budget B; NAS-Benchmark D;

2: for t = 1, 2, . . . , T do
3: Select top-k best architectures from P , denote as Pbest.
4: Perform crossover + mutation on Pbest to create a new candidate pool Pnew.
5: Rank candidates in Pnew according to the estimated performance from M .
6: Use D to query the ground truth scores of the first B candidates of Pnew, denote as Pchild.
7: P ← Pchild + P .
8: end for

To establish a fair comparison, we ensure that the same number of networks are queried (#Q) using
D in every run by adjusting B, T , as well as the initial size of P . Intuitively, the number of queries
made to the benchmark simulates the real-world computational cost of NAS. Table 2 reports the
search results. We observe that on NAS-Bench-101, searching with CL-fine-tune produces better
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results than Synflow, which is most likely due to the difference in their ranking correlations (0.553
vs. 0.361 as reported in Table 1). On NAS-Bench-201, Since Synflow and CL-fine-tune both achieve
high correlations (0.823 vs. 0.917), they could find the best architecture among the entire search
space in every run, which is significantly better than the random baseline. In Table 1, we observe that
Synflow produces a negative correlation on the NAS-Bench-301 test set, which means that it often
ranks bad-performing architectures higher the good ones. We see in Table 2 that this is detrimental to
the search since Synflow is unable to outperform the random baseline. In comparison, with a small
amount of fine-tuning data, the CL-fine-tune predictor achieves exceptional transferability and is
able to better guide the search process.

Table 2: Search results on NAS-Bench-101, 201 and 301 using the same EA search algorithm
but with different performance estimation methods. #Q represents the number of unique networks
queried during search. Note that the #Q for CL-fine-tune also counts the fine-tuning instances.

Method NAS-Bench-101 NAS-Bench-201 NAS-Bench-301
#Q Acc. (%) Rank #Q Acc. (%) Rank #Q Acc. (%)

Random 700 94.11 ± 0.10 26.0 90 93.91 ± 0.2 104 800 94.75 ± 0.08
Synflow 700 94.18 ± 0.05 5.8 90 94.37 ± 0.0 1.0 800 94.60 ± 0.11
CL-fine-tune 700 94.23 ± 0.01 2.2 90 94.37 ± 0.0 1.0 800 94.83 ± 0.06

Last but not least, we compare our best search results on NAS-Bench-101 to other state-of-art NAS
approaches in Table 3. We observe that our EA + CL-fine-tune setup is competitive among other
NAS algorithms. For instance, our setup requires fewer queries to find the second-best architecture
(94.23) in NAS-Bench-101 compared to BANANAS. And our search result is better than SemiNAS,
NAO and RE in terms of the number of queries and accuracy. More importantly, our predictor could
transfer to other search spaces with only a small amount of labeled data, which is a unique advantage
compared to other non-transferable predictors used in algorithms like Neural-Predictor-NAS.

Table 3: Comparison against other NAS approaches on NAS-Bench-101.

NAS algorithm #Queries Best Acc. (%)
Random Search 2000 93.66
RE (Real et al., 2019) 2000 93.97
SemiNAS (Luo et al., 2020) 2000 94.02
SemiNAS (RE) (Luo et al., 2020) 2000 94.03
SemiNAS (RE) (Luo et al., 2020) 1000 93.97
NAO (Luo et al., 2018) 2000 93.90
BANANAS (White et al., 2019) 800 94.23
GA-NAS (Rezaei et al., 2021) 378 94.23
Neural-Predictor-NAS (Wen et al., 2020) 256 94.17
NPENAS (Wei et al., 2020) 150 94.14
BRP-NAS (Dudziak et al., 2020) 140 94.22
EA + CL-fine-tune 700 94.23

6 CONCLUSION

In this work, we propose the use of computation graphs as a universal representation for any CNN
network structures. On top of this representation, we design a novel, performant, transferable neural
predictor that incorporates Graph Convolutional Networks, Self-Attention and Contrastive Learn-
ing. Experimental results suggest that our predictor could transfer to any search space and achieve
superior prediction quality, with a Spearman correlation coefficient over 0.8, while only requiring
a small amount of labeled data. When used in NAS, our predictor helps to generate results that
are competitive among other non-transferable state-of-the-art methods. In general, our transferable
predictor alleviates the need to manually design and re-train new performance predictors for any
new search spaces in the future, which helps to further reduce the computational cost and carbon
footprint of NAS.
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7 APPENDIX

7.1 MORE ON OUR EA SEARCH ALGORITHM

In our EA algorithm, we propose a combination of crossover and mutation procedures to create
a larger pool of mutated child architectures. Although the detailed implementation of these two
procedures might differ depending on the underlying search space, we still provide a high-level
description for them here.

In the crossover procedure, we randomly select two unique architectures from the current top-k
best set of architectures, namely, parent1 and parent2. During crossover, we randomly select one
operator in parent2 and use it to replace another random operator in parent1. The replaced operator
cannot be the same as the selected operator. Therefore, our crossover is single-point and uniformly
random. After crossover, we perform additional mutations on the child architecture.

In the mutation procedure, given an architecture that is randomly selected from the top-k set or is
coming from the crossover procedure, we perform 1-edit random mutations on its internal structures.
The actual definition for 1-edit change is determined by the search space. For example, on NAS-
Bench-101, 1-edit mutations include the following:

• Swap an existing operator in the cell with another uniformly sampled operator.

• Add a new operator to the cell with random connections to other operators.

• Remove an existing operator in the cell and all of its incoming/outgoing edges.

• Add a new edge between two existing operators in the cell.

• Remove an existing edge from the cell.

A 1-edit mutation means we choose one mutation type from the list above and execute it on the given
architecture. Intuitively, under different search space definitions, this list of valid mutations could
be different. It is also worth mentioning that in our search we allow for more than 1-edit mutations,
i.e., we could randomly perform consecutive mutations on an architecture to boost the diversity of
the new population.

7.2 KEY HYPER-PARAMETERS FOR NAS

Table 4 reports some of the key hyper-parameters we used to generate the search results. For some
of the search spaces, we had to choose slightly different values for CL-fine-tune to account for the
extra instances needed for fine-tuning and to make sure each search run issues the same amount of
queries to the NAS benchmark.

Table 4: Summary of key hyper-parameters. |Pinit| refers to the size of the starting population.

Method NAS-Bench-101 NAS-Bench-201 NAS-Bench-301
k B |Pinit| T k B |Pinit| T k B |Pinit| T

Random 20 100 100 6 10 20 10 4 20 100 100 7
Synflow 20 100 100 6 10 20 10 4 20 100 100 7
CL-fine-tune 20 100 50 6 10 10 10 5 20 100 50 7

7.3 PREDICTOR DETAILS AND HYPER-PARAMS PARAMETERS

7.3.1 VECTOR REPRESENTATION

We describe the encoder of Section 4.1 in more detail.

First, we use a node embedding that process a computation graph representation and outputs a graph
with 64 node features.

The GNN encoder consists of 4 or 6 GNN layer, with node features remaining at 64. The aggregator
function is the mean, so the output is of size 64.
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We use a standard transformer encoder with up to 2 layers and 2 attention heads. The input and
output size are the same and are either 64 or 128.

The projection is a 4 layer MLP with input 128, layer size 64 and activation ReLu.

We construct the CL encoder in two different ways:

1. Apply the node embedding, then we apply in parallel the GNN encoder and the transformer
encoder, concatenate the two in the end.

2. Apply node embedding, then the GNN encoder. Concatenate the node embedding and the
GNN encoder results. Apply the transformer encoder.

7.3.2 MLP

The MLP of Section 4.2 consists of 5 layers. The input size is m = 128, the size of the vector
representation. The rest of the layers are of size 200, except the last one which is of size 1. Between
each of the dense layers the activation is ReLU.
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