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ABSTRACT

A central focus of science is the identification and application of laws, which are
often represented as macrostates that capture invariant properties associated with
symmetries. However, complex systems can be challenging to study due to their
high-dimensionality, non-linearity, and emergent properties. To address this chal-
lenge, we propose the relational macrostate theory (RMT) that defines macrostates
in terms of symmetries between mutually predictive observations. Additionally,
we have developed a machine learning architecture, MacroNet, that can learn these
macrostates and invertibly sample from them, allowing for the design of new mi-
crostates consistent with conserved properties. By utilizing this framework, we
have studied how macrostates can be identified in systems ranging from simple
harmonic oscillators to complex spatial patterns known as Turing instabilities. Our
results demonstrate how emergent properties can be designed by identifying the
unbroken symmetries that give rise to invariants, bypassing Anderson’s “more is
different” by showing that “more is the same” in complex systems.

1 INTRODUCTION

Finding laws and using laws is one of the central topics in science. In physics, laws can be repre-
sented as invariants like energy, describing what is possible and what is not. Symmetry is a power-
ful tool for finding such invariants. Noether’s theorem (Noether, 1971) states that for systems with
conservative forces, every differentiable symmetry corresponds to a macro level conservation law.
However, for more general cases, macrostates that link sub-spaces of microstates are required to
fill the gap left by Noether’s theorem in non-differentiable mappings: for example, rule-behavior,
genotype-phenotype, and text-image mappings require a more general method for identifying in-
variants. In the past, successful laws like Newton’s laws of motion worked well because they iden-
tified macroscopic properties like mass, reducing the motion of high-dimensional objects to a single
measurable scalar quantity. However, finding macrostates for complex systems like biological and
technological systems has proven challenging due to their high dimensionality, nonlinear behavior,
and emergent properties. This suggests that machine learning may help identify conservation laws,
even in non-differentiable systems, by identifying macrostates and the symmetries they conserve.

In the current work, we introduce a relational theory of macrostates, which provides a framework
for training artificial neural networks, a complex system themselves, to break the barrier of com-
plexity (Jumper et al., 2021; Pathak et al., 2018; Seif et al., 2021) and to identify macrostates based
on symmetries in complex systems. Existing contrastive machine learning methods (Chen & He,
2021; Oord et al., 2018; Mikolov et al., 2013) have applied similar ideas to find lower-dimensional
representations for microstates by relations. However, these methods either require large numbers of
negative samples or cannot design microstates. Recent work has also focused on creating artificial
intelligence that can learn natural laws from data with minimal supervision (Udrescu & Tegmark,
2020; Liu & Tegmark, 2021; Daniels & Nemenman, 2015), but this does not go beyond extracting
laws from data. To take the next step, requires artificial intelligence that can learn rules from data
and use that knowledge to design new systems that follow those rules. Our machine learning ar-
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chitecture, MacroNet, learns macrostates and designs microstates by using the macrostate theory on
general relations and introducing invertibility.

2 RELATIONAL MACROSTATE THEORY
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Figure 1: The rectangle and disks represent the space of microstates. The points and links represent
the observed microstate pairs (ui, vi). The background color illustrates the macrostates. (A) shows
an optimal solution. (B) shows an inconsistent solution. (C) shows a trivial but legal solution in
which all microstates are coarse-grained to the same macrostate.

There have been various attempts to identify macrostates related to the emergence of regularities in
complex systems (Chen et al., 2021; Kipf et al., 2019; Sun et al., 2021), including the causal state
theory (Shalizi & Moore, 2003) and causal emergence theory (Hoel, 2017; Chvykov & Hoel, 2020;
Comolatti & Hoel, 2022). However, these theories have their limitations. The causal state theory
does not take into account microstate similarity, and both theories define macrostates based only on
temporal relations. However, not all regularities that we may want to associate with laws involve
time. A general theory of macrostates should be defined based on general relations between ob-
servations that retain symmetries under mappings, whether they are temporal, genotype-phenotype,
word co-occurrence (Mikolov et al., 2013), or other types of mappings. The theory of macrostates
we propose is general enough to extend to the symmetry of underlying rules, allowing us to identify
sets of rules that produce a specific large-scale behavior (Anderson, 1972).

Mathematically, a macrostate is an ensemble of microstates that belong to the same equivalence
class under a mapping φ. If two microstates u and u′ have the same behavior (macrostate) under this
map, they are in the same equivalence class. We use symmetries to define macrostates based on the
relations between microstates u ∈ U and v ∈ V as random variables. The micro-to-micro relation
can be represented as a joint distribution P (u, v), and the micro-to-macro relation can be represented
as the joint distributions P (α, v) and P (u, β), where α and β are macrostates mapped from u and v
by φu and φv . The micro-to-macro relation for a given microstate ui (or vi) can be represented as
the conditional distribution P (β|ui) (or P (α|vi)). In the most general case, macrostates are defined
as:

Definition 1. Two pairs of microstates ui and uj (and vi and vj) belong to the same macrostate if
and only if they have the same micro-to-macro relation:

ui ∼ uj ⇔ P (β|ui) = P (β|uj) and (1)
vi ∼ vj ⇔ P (α|vi) = P (α|vj) (2)

This definition creates an equivalence class of symmetries where ui ∼ uj and vi ∼ vj (where ∼
indicates “is equivalent to” under a symmetry operation). Thus, as in Noether’s theorem, we see
that the definition of a macrostate entails simultaneously defining a class of symmetry operations,
although here our definition is sufficiently general that the system of interest need not necessar-
ily be continuously differentiable. We can approach the definition of macrostates by solving the
equation φu(u) = φv(v) (see SI A.1.3). This will be included in the loss function for MacroNet's
machine learning task. Figure 1C shows an example of trivial solutions, which reminds us to add
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additional requirements to avoid this. To specify “good” macrostates, we maximize mutual infor-
mation I (φ(v);φ(u)) at the macroscopic level for a given dimension of macrostates, where (u, v)
is sampled from P (u, v).

3 MACRONET ARCHITECTURE
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Figure 2: MacroNet neural network architecture. (A) Training process using two invertible neural
networks to map microstates to the same macrostates. (B) Conditional sampling and designing
process using a microstate from type V to compute its macrostate and sample microstates in U or V
with that macrostate.

To find optimal macrostates, we propose a self-supervised generative model for finding macrostates
from observations (Figure 2A). We optimize macrostates to predict other macrostates using neu-
ral networks φu and φv for coarse graining on U and V . The prediction loss is LP =

E(u,v)∼P (u,v) |φu(u)− φv(v)|2 , where (u, v) are pairs of microstates sampled from the training
data. To avoid trivial solutions, we add a distribution loss LD = LDu

+ LDv
to force the output

following independent normal distribution, where LDu
and LDv

are exactly the training loss in in-
vertible neural networks (Dinh et al., 2014; 2016; Kingma & Dhariwal, 2018). We train the neural
networks by combining the prediction loss LP with the distribution loss LD using a hyperparam-
eter γ to balance the two terms, so the final loss is L =LP + γLD. This combination allows us
to approach the mutual information criterion. We use invertible neural networks to compute the
log-determinate of the Jacobian and do sampling efficiently. Given an example microstate v′, we
can use φ to compute its macrostate β and then invert the neural network to sample microstates vs
(or us) with the same macrostate as v′. This enables the design of complex systems without human
classification of behavior (Figure 2B).

4 RESULTS

We applied our macrostate theory on Turing patterns using the Gray-Scott model (Gray & Scott,
1984), a reaction diffusion model with four parameters (Da, Db, F, k) that can generate complex
patterns (see Figure 6A). The model was originally designed to study the pattern formation in bi-
ology. By finding macrostates mapping patterns to parameters, we can design related systems by
specifying parameters that will yield user-specified patterns. Here, u is the parameter vector. And v
is the generated pattern, represented by 64× 64 two-channel images.

The trained neural network maps parameters and patterns to each other at the macro level. By
giving an example pattern v (Figure 3A), we can sample parameters u′ = φ−1

u (φv(v), z) with the
same macrostate as v (Figure 3B). The sampled rules (set of four parameters) will generate similar
patterns as the example patterns (Figure 3C). This shows that MacroNet can design complex systems
by sampling parameters that generate patterns with the same macrostate as the example behavior.
MacroNet can also discover microstate ensembles associated with macrostates. Figure 3B shows
the distribution of parameters sampled from different macrostates. The sample points with the same
color are considered equivalent under the mapping φ, which takes the microstate to a macrostate.
Parameters in the same equivalence class (sharing the same symmetry) will lead to patterns with the
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Figure 3: Experiments on Turing patterns. (A) By giving an example pattern, we can compute its
macrostate by φv . The patterns are colorized for distinguishing different experiments. (B) Sampled
ensembles of corresponding parameters from the macrostates. The points with the sample color
are sampled from the same macrostate. (C) Using the sampled parameters, we can generate Turing
patterns with similar macroscopic shape as the corresponding examples.

same macrostates, so we can sample any parameters along these equivalence curves and generate
Turing patterns with the user-specified behavior.
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Figure 4: We train a neural network to find invariant quantities in simple harmonic oscillators.
(A) the (u, v) pairs are sampled from simulations, with a time interval τ sampled from a uniform
distribution. (B) the neural network learns energy as the invariant quantity. (C) conditional sampling
microstates from the given macrostates.

We then apply MacroNet so simple harmonic oscillators (SHOs) to identify the symmetry of time
translation invariance (energy). We represent the micro-to-micro relation as pairs of past-future
position and momentum. The time interval is uniformly sampled (see Figure 5A), so it is impossible
for accurate prediction at micro-level. Two neural networks φu and φv share the same weights to
find time invariants. The resulting macrostate is a function of energy (Figure 4B), which indicates we
find energy by finding time invariants. Sampling from macrostates (Figure 4C) allows for predicting
future macrostates and generating corresponding microstates, even when microscale predictions are
impossible. This demonstrates how machine learning combined with a theory for macrostates can
find physical concepts from observations, and determine predictable variables in stochastic relations.

5 DISCUSSION

Since Anderson published the seminal paper, More is Different, it has been increasingly recognized
that complex systems displaying emergent behaviors do not necessarily share the same symmetries
as their micro-rules (Strogatz et al., 2022). However, some symmetries may still be present at both
the micro and macro levels. Indeed, this is what we see in the experiments presented in this work.
Each macrovariable can represent a type of symmetry: for instance, the energy of a simple harmonic
oscillator represents the time translation symmetry. This is a general framework for identifying
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macrostates as maps conserving the symmetries of systems. Hence, given that “more is different” is
true in most cases, we can still find examples of macrovariables that behave as “more is the same.”
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A APPENDIX

A.1 DEFINITIONS AND THEORY

A.1.1 DEFINITIONS

Equivalence

Two microstates are equivalent if and only if they belong to the same macrostate. Using ∼ to repre-
sent equivalence, we have u ∼ u′ ⇐⇒ φ(u) = φ(u′). Here φ maps microstates to macrostates.

Relations

We use the inclusive term relation to include most types of paired variables – for instance, co-
occurrence pairs, data-label pairs, or past-future pairs, etc. A set of microstate pairs (ui, vi) can
be mathematically represented by joint distribution P (u, v). This joint distribution represents the
entire micro-to-micro relations. Given a microstate ui, we can define its micro-to-micro relation as
a conditional distribution P (v|u = ui) or P (v|ui).

Since there are two types of data in the paired datasets, we use α = φu(ui) and β = φv(vi) to
represent the macrostates of ui and vi respectively. For simplicity, we also use φ to represent either
of the mappings from microstates to macrostates when there is no ambiguity.

Given the microstates and their macrostates, we can define the entire micro-to-macro relation as
P (u, β) and P (α, v). And the micro-to-macro relation for a certain microstate, say ui (or vj), is
represented as conditional distributions:

P (β|ui) =

∫
P (β|v)P (v|ui)dv (3)

P (α|vi) =
∫

P (α|u)P (u|vi)du (4)

Here, the P (β|v) is a probabilistic representation of φv , which is a many-to-one mapping since φv

is a deterministic mapping.

The macro-to-macro relation can also be represented as the distribution P (α, β).

P (α, β) =

∫∫
P (α|u)P (β|v)P (u, v)dvdu (5)

So, we can also define macro-to-macro for certain macrostates as conditional distributions P (β|αi)
and P (α|βi). These definitions of relations are illustrated in Figure A1.

(A) entire relations (B) relations for certain states
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β
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ui
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Figure A1: The relations can be represented by joint distributions and conditional distributions. (A)
Joint distributions are used to represent the entire relationship. (B) For a certain microstate ui or
macrostate αi, we can use conditional distributions to represent its relations.
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A.1.2 DEFINITION OF MACROSTATES

Based on the definitions of relations, we can define macrostates based on micro-to-macro relations:

Definition S1: macrostate. Two pairs of microstates ui and uj (and vi and vj) belong to the same
macrostate if and only if they have the same micro-to-macro relation:

ui ∼ uj ⇐⇒ P (β|ui) = P (β|uj) and (6)
vi ∼ vj ⇐⇒ P (α|vi) = P (α|vj) (7)

The macrostate solutions should be self-consistent. Figure 1A shows a consistent solution, as an
example, u1 ∼ u2 because P (β|u1) = P (β|u2), and v1 ∼ v2 because P (α|v1) = P (α|v2).
However, Figure 1B shows an inconsistent solution: The microstates in red circles are all mapped
to the orange macrostate in V and therefore should not be mapped to different macrostates in U
because each microstate should belong to only one macrostate. they have the same micro-to-macro
relation.

Another solution is that all the microstates are mapped to the same macrostate (see Figure 1C). This
kind of solution will not provide any meaningful information about the systems under study.

Therefore, in addition to the definition S1, we propose an information criterion to specify “good
macrostates”. That is, given a certain number (or dimension) of macrostates, the information crite-
rion imposes the constraint of maximizing the mutual information I(α;β) at the macrostate.

A.1.3 FROM DEFINITION TO OPTIMIZATION OBJECTIVE

In relational macrostate theory, macrostates are defined in terms of relations. As such they are
defined in a circular manner: the macrostate of a microstate is determined by the macrostates of its
related microstates. Since the macrostates in U are defined by the macrostates in V , and macrostates
in V are defined by U , we need to optimize the mapping from micro-to-macro to find informative
and consistent solutions that allow identifying macrostates associated to symmetries. Based on our
definition of macrostates, we can do continuation on the definition by introducing distance functions
D1 and D2. The continuous version of the definition becomes:

D1[φu(ui), φu(uj)] = D2[P (β|ui), P (β|uj)], (8)
D1[φv(vi), φv(vj)] = D2[P (α|vi), P (α|vj)]. (9)

When these two equations are perfectly satisfied, this reduced to the original macrostate definition.
When choosing D1 be square Euclidean distance and D2 be 2-Wasserstein distance (Dowson &
Landau, 1982), we can verify the following formula is a solution for our macrostate definition:

φu(ui) ≈ φv(vi). (10)

More specifically, the solution is:

φu(ui)− φv(vi) ∼ N (0,Σ), (11)

where (ui, vi) is sampled from P (u, v), and tr(Σ) ≪ 1. Using P (α|ui) and P (β|vi) to represent
φu(ui) and φv(vi) as distributions, we have:

P (β|ui) =

∫
v

P (β|v)P (v|ui)dv (12)

=

∫
v

P (α+ δ|ui)P (v|ui)dv (13)

= P (α+ δ|ui) (14)

8
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where δ ∼ N (0,Σ) and tr(Σ) ≪ 1. Here we replaced P (β|u) by P (α + δ|ui) because φu(ui) ≈
φv(vi), or αi ≈ βi. So, we can find that P (β|ui) and P (α|vi) are both normal distributions with
low standard deviations. For normal distributions X and Y , the 2-Wasserstein distance has a simple
form:

W2(X,Y )2 = |µx − µy|2 + tr
(
Σx +Σy − 2(ΣxΣy)

1/2
)
, (15)

So, the definition becomes:

|φu(ui)− φu(uj)|2 = |E(φv(vi)− φv(vj))|2 + tr(Σi +Σj − 2(ΣiΣj)
1/2), (16)

|φv(vi)− φv(vj)|2 = |E(φu(ui)− φu(uj))|2 + tr(Σ′
i +Σ′

j − 2(Σi
′Σ

′
j)

1/2), (17)

Since Σ ≪ 1, we can abandon the trace term and remove the expectations:

|φu(ui)− φu(uj)|2 ≈ |φv(vi)− φv(vj)|2 , (18)

|φv(vi)− φv(vj)|2 ≈ |φu(ui)− φu(uj)|2 , (19)

The formulas still hold when substitute φu(ui) ≈ φv(vj) into it. So, we can verify that φu(ui) ≈
φv(vj) is a solution for our definition. This solution can be approximated by minimizing the distance
between φu(ui) and φv(vi). There may exist other more general but more complex solutions.
However, this simple approach shows good performance in experiments.

A.2 METHODS

A.2.1 INVERTIBILITY AND DISTRIBUTION CONTROL

Technically, our framework requires two key features in the neural network for learning φ: the ability
to perform conditional sampling and ability to control the distribution of its outputs. Fortunately, the
invertible neural networks (INNs) cover both features. The invertibility makes conditional sampling
possible. And the distribution control feature makes it possible to avoid trivial solutions without a
large number of negative samples (in (Chen et al., 2020), 65536 negative samples are used).

In a broad definition, the INNs can be classified into two types: flow-based models (Dinh et al., 2014;
2016; Chen et al., 2019), and models that are trained to be invertible such as InfoGAN (Chen et al.,
2016). The flow-based model, including the coupling models such as RealNVP (Dinh et al., 2016),
NICE (Dinh et al., 2014), and ResNet-based models such as invertible residual networks (Behrmann
et al., 2019) and ResFlow (Chen et al., 2019). The flow-based models have two common designs:
first, they are guaranteed to be invertible, no matter how well they have been trained. Second, they
are easy to compute determinants of Jacobians.

With the information of determinants of Jacobians, the probability density of the output can be com-
puted by the “change of variable” theorem (Dinh et al., 2016), hence we can control the distribution
of output. Here, for simplicity, let’s just consider an extreme case: if a linear matrix that maps a
three-dimensional manifold to a zero, one, or two-dimensional manifold that is embedded in three-
dimensional space. Then, the rank of the matrix must be two or lower. Hence, the determinant of
Jacobian will be zero. So, by avoiding having zero determinants of Jacobians, we can avoid the
dimension collapse, hence avoiding trivial solutions.

Another type of INNs is the models that are trained to be invertible. Such models should also
have the two features as flow-based models: invertibility, and distribution control. InfoGAN (Chen
et al., 2016) architecture is an example that follows the requirements. Compared to vanilla GANs,
the InfoGAN is simply doing two different things: 1) splitting the input noise into two parts c
and z. 2) add a Q network that can reconstruct the c information, i.e., Q[G(c, z)] → c, where
G is the generator. The inverse of InfoGAN is trained, it can partially inverse the process of G :
(c, z) → x by using Q : x → c, while the z information is lost. This loss will not affect our
macrostate framework, because we can map microstates to macrostates by Q : u → α, and sample
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microstates from macrostates by G : (α, z) → u. The ability of distribution control is achieved by
the reconstruction process and discriminator together. Given that discriminator exists, if c is sampled
from a distribution P and z ∼ N (0, 1), then G(c, z) will follow the data distribution. Since Q is
trained to predict c by the generated samples, as an inverse process, Q(x ∼ Pdata) will follow the
distribution of P . By controlling the distribution, InfoGAN can also avoid trivial solutions.

Our experiments have all been trained on flow-based models. We are making this choice for three
reasons: 1) flow-based models are guaranteed to be invertible. and 2) flow-based models are not
likely to have mode collapse problems, while GAN based models often have such problems. This is
critical if we want to design microstates. 3) flow-based models make the experiments more concise.
However, the InfoGAN structure can still be useful when we need a high expressivity because it can
use more different neural network structures.

A.2.2 INVERTIBLE NEURAL NETWORKS

name structure forward inverse

RealNVP
y1 = x1

y2 = x2s(x1) + t(x1)

x1 = y1

x2 = (y2 − t(y1))/s(y1)

NICE
y1 = x1

y2 = x2 + t(x1)

x1 = y1

x2 = y2 − t(y1)

ResFlow y = x+ g(x)

x = lim
n→∞

xn

xn = y − g(xn−1)

if Lip(g) < 1

InfoGAN y = Q(x̂) x̂ ∼ G(y, z)

Table A1: illustrations for multiple versions of invertible neural networks (INNs).

Table A1 compares different types of INNs. The forward and inverse column shows the mapping
from input x to output y, and y to x.

A.2.3 COARSE-GRAINING AND SAMPLING

The flow-based models require the output and input to have the same dimensions for invertibility.
So, to do coarse-grain and up sampling, we need to adopt a special way to change dimensions.

(Hu et al., 2022) provided a multi-scale architecture, which let the network abandon dimensions:
f : x → (y, z), where z is the abandoned dimensions, and y can be used to do supervised or
self-supervised training. In this way, we can reduce the dimension and do coarse graining. In
the forward process, given a N -dimensional input, the output will be splitted into two variables
α(D) and z(N−D), where the superscripts show their dimensions. Only α will be trained to satisfy
φu(ui) = φv(vi). To make it clear, we use φ to represent the mapping from u to α, and use Φ to
represent the mapping from u to (α, z).

10
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However, z is not totally ignored. Since we also want to do conditional sampling, the distribution of
z should also be trained to be an independent normal distribution. So, the Jacobian of φ is computed
by Φ so we can include z. When doing conditional sampling, given the macrostate α(D) or β(D), we
sample a z(N−D) to compute Φ−1(α, z). The coarse-graining and sampling process are summarized
in Table A2.

forward training
coarse-graining Φ(u(N)) = (α(D), z(N−D)),

where z(N−D) is the abandoned di-
mensions. And φ(u) = α.

both α and z will be trained to
follow independent normal distribu-
tion. z will not be stored since
we know its distribution after train-
ing. And α will be trained as a
macrostate.

sampling φ−1(α) = Φ
−1

(α(D), z(N−D)) =
u(N),
where z(N−D) is sampled from an
independent normal distribution.

—

Table A2: details of coarse-graining and sampling process.

Since (α, z) is trained to be independent normal distributions, the P (z|α) should also follow normal
distribution. With this feature, we are able to do conditional sampling of u from P (u|φ(u) = α).

A.2.4 TRAINING TRICKS

The flow-based models have limitations of expressivity (Bond-Taylor et al., 2021) since their Jaco-
bian and dimensions are restricted. A common way to overcome this problem is to have more layers
of INNs, for example, the Glow model (Kingma & Dhariwal, 2018) uses nearly one hundred layers
to do generative tasks on the CIFAR10 dataset (Krizhevsky, 2009). However, for some tasks which
have very low dimensions, more layers cannot provide results that are good enough. To solve this
problem, we propose two useful tricks for different situations.

Noisy kernel trick

The expressivity problem can often be overcome by adding more layers of INNs (Bond-Taylor et al.,
2021). However, our experiments show that when the input dimension is too low, adding layers will
not help. While extending neural networks wider can significantly improve the performance. To
extend the neural network of INN, we need to extend the input dimension by concatenating the
original input with additional random variables:

u′ = [u, x], x ∼ Nd(0, 10−3) (20)

With this method, we can add d dimensions to the inputs. Here, the u is the original input, and x
is the appended input, which is sampled from a standard normal distribution. Note that x has to be
sampled from a d-dimensional distribution instead of zeros. This is because the flow-based model
will be trained to map inputs to an independent normal distribution. However, if we append inputs by
zeros, the input itself will be a lower dimensional manifold, which makes it impossible to be mapped
to an independent normal distribution and leads to unstable training. We found that 10−3 is a good
standard deviation that is small enough to reduce the interference from noise, and large enough
to avoid the explosion of log-Jacobian. Since this method is increasing the input dimensions with
gaussian noise, we call it “noisy kernel”. The additional dimensions will increase the expressivity
of flow-based models, which will lead to better performance. Table A3 shows noisy kernels can
significantly improve the performance on the simple harmonic oscillator task.

However, the added noise will also have side effects on sampling. The additional dimensions in z
will add noise to the output when doing sampling (see Table A3). So, we only suggest using noisy
kernels when necessary, for example, when the dimension is too low.

One-side INN structures

In many cases, only one side of microstates needs to be sampled. In such a case, we only need to
let one of two networks (i.e., φu or φv) be invertible. The other network is not necessary to be an

11



Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

without noisy kernel with noisy kernel

A
0.0 0.2 0.4 0.6 0.8 1.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

E=
p2

2m
+
1

2
k x2

m
ac
ro
st
at
e

0.0 0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

E=
p2

2m
+
1

2
k x2

m
ac
ro
st
at
e

B
-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

p

α  -1

α  0

α  1

-0.5 0.0 0.5

-0.5

0.0

0.5

x

p

α  -1

α  0

α  1

Table A3: The noisy kernel can improve the performance when the input dimension is too low.
However, noisy kernels may make the sampling noisy.

INN. This makes the optimization much easier since the free-form neural networks will have higher
expressivity. We adopted this method in finding macrostates of Turing patterns.

Putting batch normalization at the last layer

The common practice in neural networks often puts the linear layer as the last layer. In MacroNet,
although we have the distribution term to avoid trivial solutions, we still find that putting the invert-
ible batch normalization layer (Dinh et al., 2016) as the last layer (or before the last resize layer) will
improve the performance. This may be caused by the potential tradeoff between the prediction loss
and the distribution loss, which could skew the distribution of macrostates away from gaussian dis-
tribution. This trick cannot omit the importance of the distribution loss. Even when the macrostates
have a standard deviation of one, the macrostates can still be low-dimensional manifolds that lack
information.

A.3 EXPERIMENTS

A.3.1 LINEAR DYNAMICAL SYSTEMS

A linear dynamical system can be represented as a differential equation (Strogatz, 2018):

dx⃗
dt

= Mx⃗ (21)

where M is a n×n matrix. n is the dimension of vector x⃗. So, when the system has different x⃗, the
dx⃗/dt will be different. Different matrices will lead to different behaviors, such as attractor, limit
cycles, rotations or saddles (see Figure A2).

So, there exist many-to-many mappings between the matrix and trajectory:

1. one-to-many: For the same matrix M , depending on initial states, the trajectories can be
different. For instance, given M = I , the trajectories can move to the right or left if the
initial state x0 = (1, 0) or (−1, 0).

2. many-to-one: Also, even with different matrices, the trajectories can be the same when the
initial state is properly chosen. For instance, when M1 = I , and M2 be a permutation
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Figure A2: The behavior of the linear dynamical system is changing with the matrix M .

parameter trajectory

generate

gradients

coarse-grain

minimize difference

Figure A3: The training process of finding macrostates from linear dynamical systems. Both the
parameters and trajectories are coarse-grained to two-dimensional macrostates.

matrix that permutes between dimension 1 and 2, their trajectories can be the same when
the initial state x0 = (ξ, ξ), where ξ > 0.

For such many-to-many mapping situations, our macrostate theory and machine learning method can
help us design the matrices for given trajectories. Here we define the macrostates on the parameter-
trajectory pairs. The parameter is a 2 × 2 matrix M and the trajectory is a n × 2 tensor x0:n−1 =
[x0, x1, ..., xn−1] to represent the evolution with the initial state x0, where n = 8. We coarse-grained
both sides to a 2-dimensional space as the macrostate (see Figure A3).

The training data is generated by an algorithm. For each (u = M,v = x0:n−1) pair, the M is
firstly sampled from an independent normal distribution N (µ = 0, σ = 1). Then the trajectory
is generated by the dynamic dx/dt = Mx, where the initial state x0 are sampled uniformly and
independently in a 2-dimensional space U2(−1, 1).

The training takes 2000 epochs, and each epoch has 512 samples with a batch size of 256. We use
Adam optimizer (Kingma & Ba, 2014) to train the model. The learning rate is 10−3 and the weight
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Figure A4: The trained neural network on linear dynamic systems is capable of predicting the
macrostate. Here, each point represents a (αi, βi) pair. Here, αi = φu(ui) and βi = φv(vi).
By jointly compare αi and βj , we can quantify the performance of the predictions on macrostates.
In the view of mutual information, when all points are on the curve β = α, the mutual information
I(α;β) is maxmized.

decay is 10−5. We let γ = 0.1 to balance the prediction loss and distribution loss. Figure A4 shows
the scatter plot of macrostates (α, β), which indicates the accuracy of prediction at macrostates.

After training, we can do two things: given a trajectory se as “example behavior”, use φ−1
v to

sample other trajectories that have the same macrostate as se. Or, given a trajectory, use φ−1
u to

sample parameters that can generate this trajectory with certain initial states. Here we show the
sampling with different example behaviors (represented by x0:n−1, illustrated by red trajectories) in
Figure A5.

Neural network architecture

The neural network maps the parameters and trajectories to a two-dimensional space as the
macrostates. To improve the performance, we use noisy kernels to improve the performance. For
the parameter side, we use a noisy kernel to increase the dimension from 4 to 8. For the trajectory
side, we use a noisy kernel to increase the dimension from 16 to 32. The noises for each additional
dimension are independently sampled from N (0, 10−3). The details of the structure of the neural
networks are in Table A4.

A.3.2 SIMPLE HARMONIC OSCILLATOR

There is an important special case of the macrostates. When the relation is built on temporally
connected microstates, the neural network is predicting future macrostates, which is similar to the
contrastive predictive learning (Oord et al., 2018), but adding the conditional sampling ability. Fur-
thermore, if we force the two neural networks to share the same parameter, then it is learning time
invariant quantities. Here we use simple harmonic oscillators (SHOs) as an example. The Hamilto-
nian of SHOs is:

H(x, p) =
p2

2m
+

1

2
kx2, (22)

where p = mv is the momentum, x is the position, m is the mass, and k represents the elasticity of
the spring. In this experiment, we let m = 1 and k = 1 in all cases for simplicity. So, the solution
is:

xt = A cos(t+ ϕ), pt = −A sin(t+ ϕ), (23)
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Figure A5: Red lines show the example trajectories. And gray dotted lines show the sampled mi-
crostates of trajectories. The blue vector lines represent the dynamics of sampled parameters.
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φu φv
1d block n

resize 8→2

1d block 8

1d block 8

4 4

resize 32→2

1d block 32

1d block 32

16 16

1d Real NVP n

batch norm n

1d linear n

Table A4: Here we adopted the noisy kernels, represented by trapezoids. For φu, the 4-dimensional
microstates input are increased to 8 dimensions by the noisy kernels. After that, there are 20
one-dimensional INN blocks (indicated by the ↓↑ icon). At the end, we simply abandon 6 di-
mensions to get a 2-dimensional output. The one-dimensional INN block is composed of a linear
INN (Kingma & Dhariwal, 2018), a RealNVP 1-dimensional layer, and an invertible batch normal-
ization layer (Dinh et al., 2016).

microstate microstate

gradients gradients

coarse-grain coarse-grain

minimize difference

time evolve

Figure A6: The training process of finding invariants as macrostates from simple harmonic oscilla-
tors.

where A depends on the initial energy, A =
√
x2
0 + p20. And ϕ is the initial phase, ϕ =

arctan(p0/x0). The microstate of simple harmonic oscillator is (xt, pt). To find an invariant quan-
tity, we require the macrostate of u = (x0, p0) should as close as the macrostate of v = (xτ , pτ ),
where τ follows the uniform distribution U(0, 2π) (shown in Figure A7A). Since τ is a random
variable, predicting microstate (xτ , pτ ) is not possible. However, the macrostate can be predictable.
The training architecture is shown in Figure A6.

We use 2048 samples of (u, v) pairs to train the neural network. The training takes 200 epochs with
a batch size of 256. We use NAdam optimizer (Dozat, 2016) to optimize the neural network. The
learning rate is 5 × 10−3. The learning rate decreases by 0.1 in each 60 epochs. To balance the
prediction loss and distribution loss, we choose γ = 0.5.

Figure A7B shows the invariant quantity found by our neural network has a clear and monotonous
relation to the energy. We can also sample the microstates (x, p) from given invariant by implement
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Figure A7: With a simple harmonic oscillator, we train a neural network to find invariant quantities
as a special case of macrostates. (A) the (u, v) pairs are sampled from simulations, where u =
(x0, p0) (the black dots) and v = (xτ , pτ ). The τ is sampled from a uniform distribution U(0, 2π).
The white dots in the yellow region show a sampling example of v. Due to the randomness of τ ,
it is impossible for accurate prediction at microstate. (B) the neural network learns energy as the
invariant quantity. The x-axis is the energy of microstates computed by the physical theory of SHOs
discovered by humans, and the y-axis is the macrostate discovered by the neural network. They
show a monotonical relation, which implies the successful identification of energy by the neural
network. (C) conditional sampling microstates from P ((x, p)|φ(x, p) = αi), where the αi are the
given macrostates. The results approximate equal energy surfaces, denoted by the dashed circles.
Note that the noise in the sampling is a side effect of the noisy kernel trick we use here. The
background color also shows the learned macrostate mapping as a field.

φ−1(α). The results show that the neural network can sample a ring in (x, p) space (Figure A7C),
which is exactly the solution of p2 + x2 = H .

Neural network architecture

φu φv = φu
1d block n

resize 8→1

1d block 8

1d block 8

2 6

resize 8→1

1d block 8

1d block 8

2 6

1d ResFlow n

batch norm n

1d linear n

Table A5: The neural network structure for finding macrostates of simple harmonic oscillators. To
find invariant quantity, the φu and φv have the same structure and share the same weights. We
replaced the RealNVP layer with the ResFlow layer (Chen et al., 2019) to get better performance.

Since the dimension of the microstate is two, we use a noisy kernel to increase it to eight dimensions.
The noise follows the distribution of N 6(0, 10−3). We also use residual flow (Chen et al., 2019) as
the basic block to increase the expressivity. The details of the neural network are shown in Table A5.
Note that here we let φv shares the same weight as φu.
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microstate microstate

gradients gradients

coarse-grain coarse-grain

minimize difference

generate
random initial state

Figure A8: The training process of finding macrostates from Turing patterns. The neural networks
maps the parameter (Da, Db, F, k) and patterns v(3×64×64) to macrostates in a two-dimensional
space.

A.3.3 TURING PATTERNS

The Turing patterns are two-dimensional patterns generated by reaction-diffusion models (Turing,
1990). By changing the parameter of the model, the reaction-diffusion model can generate many
different types of patterns (Pearson, 1993). In this experiment, we use macrostate theory to find the
macrostate of the patterns and parameters. Then, we sample parameters that can generate certain
types of patterns.

Here we use the Gray-Scott model (Gray & Scott, 1984) as the reaction-diffusion model. In this
model, there are two types of chemical components, their densities are represented as the density
fields a and b. The dynamics is represented by the following differential equations:

∂a

∂t
= Da∇2a− ab2 + F (1− a), (24)

∂b

∂t
= Db∇2b+ ab2 − (F + k)b, (25)

where Da, Db, F and k are four positive parameters that determine the behavior of the system. So,
a microstate u here is a vector of the four parameters, i.e., u = (Da, Db, F, k). And the microstate
v is the pattern generated based on the parameters. When initializing the a, b as 64× 64 grids, each
elements are independently sampled from the uniform distribution U(0, 1). We approximate the
differential equation on a 2× 64× 64 tensor by using Euler method (Greenbaum & Chartier, 2012)
with step size dt = 0.1.

We only sample (u, v) pairs that have meaningful structure in the v matrix and omit the cases where
v is a blank image (all elements in v have the same value) with no structure. Using this method, we
sample 1024 pairs of microstates. The training architecture is shown in Figure A8.

We trained the neural network 1000 epochs with NAdam optimizer. The learning rate is 10−3. To
help the training converge, we reduce the learning rate by 0.5 every 128 epochs. To balance the
prediction loss and distribution loss, we let γ = 0.1.

Since we do not want to sample the pattern v, we only let φu be invertible, and let φv be a free form
neural network. This will make φv has higher expressivity and easier to be optimized. The φu uses
5 invertible blocks and one resize block to reduce the dimension from 4 to 2. Each invertible block
contains an invertible linear layer, a Real-NVP layer, and a batch normalization layer. The φv is a
convolutional neural network that maps 3 × 64 × 64 tensor to a two dimensional vector. Note that
the channel is changed from 2 to 3 by the mapping (a, b) → (a, b, (a+ b)/2) to make it have better
visualization and easier to do data augmentations, while not losing or alter any information. The
detailed neural network structure is shown in Table A6.
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Figure A9: The trained neural network on Turing patterns is capable of predicting the macrostate.
Here, each point represents a (αi, βi) pair. Here, αi = φu(ui) and βi = φv(vi). Here we map
the microstates to a two-dimensional space, so we compare the macrostates on each dimension,
represented as αi and βi.

Figure A9 compares the macrostates mapped from parameters (α) and macrostates mapped from
patterns (β). Most points are laying on the α = β line, which indicates that this trained neural
network made good predictions at macrostate and having high mutual information I(α;β).

φu φv
1d block n 2d block

resize 4→2

1d block 4

1d block 4

2d block 3,8,3

AvgPool2d /2

2d block 8,32,3

AvgPool2d /2

2d block 32,64,3

2d block 64,128,3

AvgPool2d /2

AdaptivePool 1

Linear 128→256

Linear 256→2

Instance Norm

1d Real NVP n

batch norm n

1d linear n
Conv2d

Conv2d

Instance Norm

Leaky ReLU

Instance Norm

Leaky ReLU

1x1 Conv2d

Table A6: The neural network structure for finding macrostates of Turing patterns. For the parameter
side (φu) we use a 5-layer INN to get a 2-dimensional output. For the pattern side (φv), since
generation is not needed, we use a free-form neural network to get a 2-dimensional output.
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