Fast and Accurate Language Model Decoding via
Parallel Token Processing

Zhepei Wei Wei-Lin Chen Xinyu Zhu Yu Meng
Department of Computer Science
University of Virginia
{zhepei.wei,wlchen,xinyuzhu,yumeng5}@virginia.edu

Abstract

Autoregressive decoding suffers from an inherent efficiency bottleneck due to its
sequential token generation process, where each token must be generated before
the next can be processed. This sequential dependency significantly limits the
ability to fully exploit the parallel processing power of modern hardware. While
speculative decoding and layer skipping offer promising speedups, both approaches
come with drawbacks. Speculative decoding relies on a secondary small “drafter”
model, which not only increases memory overhead but may also be unavailable
in many cases—the drafter must share the same tokenizer and vocabulary as
the main model for compatibility between generated and verified tokens. Layer
skipping, on the other hand, can cause discrepancies in the generated output
compared to standard autoregressive decoding, as skipped layers do not compute
the key-value (KV) cache that plays a crucial role in predicting future tokens.
In this work, we introduce a fast and accurate decoding method, ParaDecode,
which accelerates autoregressive decoding while ensuring output parity, without
the need for auxiliary models or changes to original model parameters. Our
approach is driven by the observation that many tokens—particularly simple or
highly-predictable ones—can be accurately predicted using intermediate layer
representations, without requiring computation through the entire model. Once
the model reaches a certain confidence, further layers are unlikely to significantly
alter the prediction. ParaDecode generates tokens at an intermediate layer when
confidence is sufficiently high. This allows the next token computation to start
immediately, in parallel with the completion of the KV cache computation for the
early-predicted token in its remaining layers. This parallelism, implemented using
batched matrix operations, enables simultaneous processing of multiple tokens
across different layers, thereby maximizing hardware utilization and reducing
overall decoding latency. To ensure output consistency, a final verification step is
applied to guarantee that the early-predicted tokens match the results of standard
autoregressive decoding. Experiments show that ParaDecode achieves up to 1.53 x
speedup across various generation tasks.

1 Introduction

The autoregressive decoding process in large language models (LLMs) is increasingly becoming a
critical efficiency bottleneck for text generation [34]. As each token generation depends on previ-
ously generated ones, the inherently sequential nature of this process severely limits parallelization
capabilities on modern hardware [41]. This challenge is becoming more pressing due to two key
trends. Firstly, LLMs continue to grow exponentially in size [33, 24, 14, 1, 56, 18, 31, 2], resulting
in substantially more time-consuming and resource-intensive computations at each step of token
generation. Secondly, model-generated outputs are becoming progressively longer [44, 50, 7, 46, 6],
which require massive inference steps. The confluence of these factors leads to significant latency in
text generation, amplifying the urgent need for more efficient decoding methods.

AFM Workshop at 38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Speculative Decoding ' Layer Skipping ' ParaDecode (Ours)

Same-colored layers are computed in parallel
White layers indicate normal decoding (no parallel)

Verify in parallel Skipped layers do not have KV cache

: | :
Main Model : ' erty| s verify
If : :
\ : t ¢t . '
\\ ' [
A Drafter
Same tokenizer

& vocabulary P : :

Generate autoregressively : :

Figure 1: (Left) Speculative decoding relies on an auxiliary drafter model, leading to increased
memory usage and requiring the same tokenizer and vocabulary as the main model. (Middle) Layer
skipping bypasses certain layers, which results in missing KV cache at those layers and can introduce
discrepancies in future token predictions. (Right) ParaDecode accelerates decoding by processing
tokens in parallel.

To accelerate autoregressive decoding, two primary approaches have emerged: speculative decoding
and layer skipping, as illustrated in Figure 1. Speculative decoding [37, 9, 40, 42, 23, 28] employs
a lightweight secondary model, called a “drafter,” to generate candidate tokens at lower latency,
which are then verified in parallel by the larger main model. However, the reliance on a separate
drafter model increases memory overhead and can be impractical in many cases, since the drafter
must share the same tokenizer and vocabulary as the main model to ensure token compatibility.
Layer skipping [27, 19, 20, 15, 48, 22, 17], in contrast, reduces computation cost by selectively
bypassing certain layers during token generation. This approach often requires designing new
model architectures and intricate training methods [20, 48]. Although effective at reducing latency,
layer skipping often leads to discrepancies in output quality compared to standard autoregressive
decoding [49, 38]. Specifically, skipped layers do not compute the key-value (KV) cache, which is
essential for maintaining consistency in the model’s predictions of future tokens. As a result, while
both speculative decoding and layer skipping provide promising speedups, they come with trade-offs
that pose challenges for their widespread adoption in practice.

In this work, we propose ParaDecode, a fast and accurate decoding method designed to accelerate au-
toregressive decoding through parallel token processing. ParaDecode builds on the insight that many
simple and predictable tokens can be accurately generated at intermediate layers, without requiring a
full pass through all model layers [49]. To optimize token generation quality at intermediate layers,
we introduce lightweight language model (LM) heads at intermediate layers, which are trained to
minimize the KL divergence between their predictions and those of the final layer, while keeping the
original model parameters frozen. Our preliminary studies show that when predictions at intermediate
layers are sufficiently confident, subsequent layers are unlikely to significantly alter the output. Based
on this observation, ParaDecode generates tokens from intermediate layers when confidence is high,
and simultaneously initiates processing of the next token in parallel with the remaining layers’ KV
cache computation for the current token. This parallelism is achieved through batched matrix opera-
tions, allowing multiple tokens to be processed across different layers simultaneously, maximizing
hardware utilization and improving overall decoding throughput. Once the KV cache for all layers is
computed, we verify that the early-predicted token matches the standard autoregressive decoding
result, ensuring consistency. Compared to speculative decoding and layer skipping, ParaDecode
accelerates autoregressive decoding while maintaining output parity, without requiring auxiliary
models or modifications to the original model parameters. Preliminary empirical studies demonstrate
that ParaDecode achieves up to 1.53 x speedup across challenging text generation tasks.

2 Method: ParaDecode

In this section, we present our proposed method ParaDecode, as illustrated in Figure 2. The core
concept is to start processing the initial layers of subsequent tokens in parallel with completing the
current token’s layers, thereby enhancing overall decoding throughput via parallel computation. We
introduce the techniques for enabling early predictions using intermediate layer representations in
Section 2.1, followed by a detailed explanation of our parallel processing approach in Section 2.2.

Decoding Method Comparison ParaDecode (Ideal vs. Practical Parallel Scenarios)

- - [- Token ta
ParaDecode ! HELIE 16 Ideal . Tokents
Token t3 . Tokentz
. Tokent:
~ Tokentr S R R (I i
1O (/D E/) (B 0) y (B/2) /2y () P I Tokenta
Vanilla Decoding Practical {0 4 4 L Tokents
Token t2 . Tokentr !]
Token t1 o S T S A S s s N A _
Token processing (by layer) Wall-clock time

Figure 2: (Left): Vanilla autoregressive decoding processes tokens strictly in sequence, limiting
opportunities for parallelization. In contrast, ParaDecode starts processing the first few layers of the
next token in parallel with the remaining layers of the current token, once the model can confidently
predict the next token using intermediate LM heads. To illustrate, early predictions are assumed to
occur at layer /2, though in practice, predictions can happen at other layers based on confidence.
(Right): The ideal case is shown in the upper part, where all tokens are predicted early at shallow
layers, leading to maximal parallelization. The lower part shows a more typical scenario, where tokens
are early predicted at different intermediate layers, resulting in varying degrees of parallelization.

Who was the first American to win the Nobel Prize? Who was the first American to win the Nobel Prize?

Layer-8 Loss

—— Layer-16 Loss

0.75 0.75 —— Layer21 Loss
= 16- @ r
2 1050 Loso &0
S24- =
-0.25 025 25
32 25
THE et Gea™O I W€ (gpprne THE st qoePO W 0O (gperin® 0 10 20 30 40 30
Generated Tokens Generated Tokens # of Epochs
(a) w/ original LM head. (b) w/ trained LM heads. (c) KL loss curve.

Figure 3: Probabilities of model-generated tokens predicted at the 8th, 16th, 24th, and 32nd (final)
layers of the fine-tuned Llama-3.1-8B-Instruct are shown using (a) the original last-layer language
model (LM) head and (b) our newly introduced lightweight LM heads. These new LM heads are
trained to minimize the KL divergence loss relative to the final layer predictions, while keeping all
original model parameters frozen. The LM heads enable close approximation of the final predictions,
as seen in (b), where many tokens have confident predictions at intermediate layers, and in (c), where
the KL divergence loss relative to the final layer predictions is minimal.

2.1 Lightweight Language Model Heads Enable Early Predictions

Off-the-shelf LMs struggle with early predictions. Many tokens in natural language, such as
stopwords, can be easily predicted and do not require the full capacity of a model for accurate
generation. However, off-the-shelf LMs typically have difficulty utilizing intermediate layers for
next-token prediction, as the final-layer LM head is not trained to work with intermediate-layer
representations. As shown in Figure 3a, applying the final-layer LM head to intermediate layers
results in mostly low predicted probabilities for the tokens generated by the model, making early
predictions with standard LMs challenging. Hence, prior research on early exiting often involves
designing specific model architectures or fine-tuning existing models to enable intermediate-layer
predictions [20, 17, 15]. As a result, these acceleration methods typically fail to produce outputs
consistent with those of the original off-the-shelf LMs due to changes in architecture and parameters.

Training intermediate-layer LM heads with original model parameters frozen. We hypothesize
that many intermediate-layer representations may already contain sufficient information for predicting
the next token, but the original LM head cannot directly harness their potential. To facilitate early
predictions using intermediate-layer representations without further fine-tuning them, we introduce
trainable LM heads (9 = {egl) }4ey at each candidate early prediction layer I(V). They take the
hidden representations h(*) at layer [(*) as frozen features and predict the next word distribution
pec» (t|h*)), which are trained to approximate the last-layer prediction p* (t|h*) (h* is the last-layer
hidden states) by minimizing the following KL divergence loss:

exp (egi) . h(i))

> ey XD (egf) . h(i)) ’

poc (t|h)) = £(09) =KL (p* (t1h*)[[pecs (t1R))

Since we do not update h(?), the original model parameters remain unchanged, and only the newly
added LM heads are trained. As demonstrated in Figure 3c, training these intermediate-layer LM
heads results in good approximations of the last-layer outputs, as indicated by the low KL divergence
loss at the end of training. This supports our hypothesis that intermediate-layer representations
contain ample information for predicting the next token, and simple transformations via new LM
heads can effectively extract this information. Consequently, with our trained LM heads, many tokens’
predicted probabilities are notably high at intermediate layers, as shown in Figure 3b.

Lightweight LM head implementation. The LM heads () = {egi) }eey are typically represented
by a weight matrix E(Y) € RIVI*4 where d is the model dimension. Given the large vocabulary size
of LMs, learning a separate LM head for each early prediction layer leads to a substantial increase in
the number of parameters. Based on the observation that the weight matrix E(*) is always applied to
the hidden states h(*) to compute the probability over the vocabulary pg:) = Softmax(h() E®T),
to reduce the parameter cost, we decompose it as E(?) = E*T() where E* is the last-layer LM head
weights, and T ¢ R4%d ig a learnable transformation matrix. As d < |V| for most LLMs, learning
T is much more parameter-efficient than learning E(directly. We defer the proof that learning
T retains the full expressiveness of learning E() to Appendix C.

2.2 Parallel Token Processing via Batched Matrix Operations

Early predictions trigger parallel processing. As shown in Figure 3b, when a token’s predicted
probability is sufficiently high with intermediate LM heads (introduced in Section 2.1), subsequent
layers are unlikely to change the predictions significantly. Based on this observation, we generate the
next token ¢ at layer I(*) when its probability surpasses a predefined threshold:

t~ oo (t'|R) and ppeo (tR)) > 4, (1)

where v is a hyperparameter, and any sampling strategy can be employed (e.g., greedy or nucleus
sampling [25]). This allows parallel processing of the next token while completing the current token’s
processing. Notably, it is necessary to finish processing the remaining layers of the current token
to obtain their KV cache—omitting this step would result in a missing KV cache at deeper layers,
which would cause inconsistencies when computing future token representations.

Batched matrix operations for parallelization. Modern deep learning libraries (e.g., PyTorch [45])
offer various approaches for parallel computation, including pipeline parallelism [30], multi-
threading [13], and asynchronous execution [59]. However, our preliminary studies indicate that the
actual speedups achieved by these parallelization techniques can vary widely. In many cases, these
techniques do not enhance throughput and may result in longer overall decoding time, likely due to
the overhead associated with scheduling, managing, and synchronizing threads and processes. There-
fore, we reformulate all parallel computations as batched matrix operations to optimize hardware
utilization, taking advantage of GPUs’ specialization, yielding the best practical throughput. We
defer the detailed implementation to Appendix B.

Early prediction verification. Regardless of the threshold hyperparameter ~ set in Equation (1),
there is always a possibility that the early predicted token from intermediate layers differs from
the final prediction. To ensure consistency with standard autoregressive decoding, we introduce
a verification step for every early prediction once the KV cache for all remaining layers has been
fully computed. Specifically, we compare the early predicted token ¢, sampled from the intermediate
layer’s distribution pg:) (t'|h(?)), with the gold predicted token ¢*, sampled from the final layer’s
distribution p*(¢'|h*). If the two tokens do not match, we reject the early prediction:

Reject tif t # t*, where t ~ poe (t'|hY), t* ~ p*(t'|h").

When an early prediction ¢ is rejected, we halt the generation process, replace ¢ with the actual token
t*, and resume generation from t* onward. Although rejecting early predictions can lead to some
wasted computation, we observe in practice that this happends rarely.

3 Experiments

In this section, we focus on presenting the speedup results and hyperparameter sensitivity study, and
refer readers to Appendix D for experimental details and full empirical results as well as analyses.

ParaDecode 100 Early Prediction Rate 20 Verification Rejection Rate
- 1.507 === Vanilla Decoding § §
Rad < < 20
-~ 30)
£1.25 Z 50 z
8 8 £10
100 £ &
0 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
threshold threshold ~ threshold ~
(a) Inference speedup. (b) Early prediction rate. (c) Verification rejection rate.

Figure 4: Hyperparamter study of ParaDecode by varying the early prediction threshold ~. This
figure presents the evaluation results on HumanEval where (a) shows the speedup curve, (b) shows
the early prediction rate, and (c) shows the verification rejection rate.

Table 1: Speedup comparison between ParaDecode and baseline decoding methods across three
tasks, including text summarization, code generation, and mathematical reasoning. All compared
methods ensure generation parity with vanilla autoregressive decoding, and the speedup results are
computed relative to the benchmarks established on the vanilla setup (i.e., speedup = 1 x for vanilla
autoregressive decoding). ‘-’ represents not applicable, as there is no smaller drafter from the same
family of the verifier model. The best performance is highlighted in bold.

Text Summarization Code Generation Mathematical Reasoning
Method (XSum) (HumanEval) (GSMS8K)

SpecDecode [37]
Llama3.1-8Bxsr
no smaller drafter available - — _

CodeLlama-34Bxst

w/ drafter CodeLlama-7Bysr 1.08x 1.41x 1.26x
w/ drafter CodeLlama-13B st 1.18x 1.23x 1.10x
Self-SpecDecode [57]
Llama2-7B st 1.05x 1.09x 1.10x
CodeLlama-13B st 1.03x 1.14x 1.12x
CodeLlama-34Bxst 1.07x 1.14x 1.14x
ParaDecode (Ours)
Llama3.1-8B st 1.15%x 1.31x 1.42x
CodeLlama-34B st 1.24 % 1.45x 1.53x

ParaDecode can work well without searching thresholds for early predictions. As introduced
in Equation (1), the hyperparameter -y controls early predictions and triggers parallel token processing.
To study its impact, we implement our method with Llama3.1-8B-Instruct, and Figure 4 presents
the speedup results, early prediction rate, and verification rejection rate, with varying values of
v =10,0.2,0.4,0.6,0.8,1]. Specifically, v = 1 effectively means no early predictions, as very few
tokens have a probability greater than 1, while v = 0 triggers early predictions at every inference step.
It can be observed that the early prediction rate decreases with increasing -y, while the verification
rejection rate also decreases, and the inference speed is jointly affected by both factors. Surprisingly,
we find that v = 0 leads to the fastest overall speedup. We attribute this to the fine-tuned lightweight
LM head, which enables early predictions with high confidence, suggesting that encouraging more
early predictions is beneficial for speedup. This demonstrates that our method can work efficiently
and accurately without hyperparameter tuning, simply by triggering early predictions at every step.

ParaDecode consistently achieves superior inference speedup across all benchmarks. To val-
idate the effectiveness of our method, we compare the proposed ParaDecode with state-of-the-art
efficient decoding methods SpecDecode and Self-SpecDecode across a wide range of challenging
text generation tasks. As presented in Table 1, our method consistently delivers superior speedup
compared to both SpecDecode and Self-SpecDecode in both moderate size and large size models,
achieving up to 1.53x speedup compared to standard autoregressive decoding.

4 Summary

In this work, we introduced ParaDecode, a new approach to accelerate autoregressive LM decoding
while preserving output consistency. Empirical study shows that ParaDecode consistently achieves
speedups in decoding throughput across various generation tasks compared to baselines, while
requiring no auxiliary model or fine-tuning of existing model parameters. We also provide discussions
on related works, limitations, and future works, which can be found in Appendices E and F.

References

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4
technical report. arXiv preprint arXiv:2303.08774,2023.

[2] Anthropic. Anthropic: Introducing claude 3.5 sonnet, 2024.

[3] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021.

[4] Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. ArXiv,
abs/1607.06450, 2016.

[5] Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-Young Yun. Fast and robust early-exiting
framework for autoregressive language models with synchronized parallel decoding. In Pro-
ceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages
5910-5924, 2023.

[6] Yushi Bai, Jiajie Zhang, Xin Lv, Linzhi Zheng, Siqi Zhu, Lei Hou, Yuxiao Dong, Jie Tang, and
Juanzi Li. Longwriter: Unleashing 10,000+ word generation from long context llms. arXiv
preprint arXiv:2408.07055, 2024.

[7] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré,
and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated
sampling. arXiv preprint arXiv:2407.21787, 2024.

[8] Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri
Dao. Medusa: Simple LLM inference acceleration framework with multiple decoding heads. In
Forty-first International Conference on Machine Learning, 2024.

[9] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and
John Jumper. Accelerating large language model decoding with speculative sampling. arXiv
preprint arXiv:2302.01318, 2023.

[10] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[11] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[12] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In The
Twelfth International Conference on Learning Representations, 2024.

[13] Jeffrey Dean, Gregory S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le,
Mark Z. Mao, Marc’ Aurelio Ranzato, Andrew W. Senior, Paul A. Tucker, Ke Yang, and A. Ng.
Large scale distributed deep networks. In Neural Information Processing Systems, 2012.

[14] DeepSeek. Deepseek llm: Scaling open-source language models with longtermism. ArXiv,
abs/2401.02954, 2024.

[15] Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal, Bin Yu, Ahmed Awadallah, and Sub-
habrata Mukherjee. Skipdecode: Autoregressive skip decoding with batching and caching for
efficient 1lm inference. arXiv preprint arXiv:2307.02628, 2023.

[16] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient
finetuning of quantized llms. In NeurIPS, 2023.

[17] Alexander Yom Din, Taelin Karidi, Leshem Choshen, and Mor Geva. Jump to conclusions:
Short-cutting transformers with linear transformations. ArXiv, abs/2303.09435, 2023.

[18] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The 1llama 3 herd
of models. arXiv preprint arXiv:2407.21783,2024.

[19] Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. In
International Conference on Learning Representations, 2020.

[20] Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen
Lai, Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed Aly, Beidi Chen,
and Carole-Jean Wu. LayerSkip: Enabling early exit inference and self-speculative decoding.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
12622-12642, Bangkok, Thailand, August 2024. Association for Computational Linguistics.

[21] Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of
LLM inference using lookahead decoding. In Forty-first International Conference on Machine
Learning, 2024.

[22] Mor Geva, Avi Caciularu, Ke Wang, and Yoav Goldberg. Transformer feed-forward layers build
predictions by promoting concepts in the vocabulary space. In EMNLP, 2022.

[23] Zhenyu He, Zexuan Zhong, Tianle Cai, Jason Lee, and Di He. Rest: Retrieval-based speculative
decoding. In Proceedings of the 2024 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pages 1582—-1595, 2024.

[24] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and L. Sifre.
Training compute-optimal large language models. ArXiv, abs/2203.15556, 2022.

[25] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural
text degeneration. In /CLR, 2020.

[26] Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Hasan Genc, Kurt Keutzer, Amir
Gholami, and Sophia Shao. Speed: Speculative pipelined execution for efficient decoding.
arXiv preprint arXiv:2310.12072, 2023.

[27] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Wein-
berger. Multi-scale dense networks for resource efficient image classification. In International
Conference on Learning Representations, 2018.

[28] Kaixuan Huang, Xudong Guo, and Mengdi Wang. Specdec++: Boosting speculative decoding
via adaptive candidate lengths. arXiv preprint arXiv:2405.19715, 2024.

[29] Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qiang-
long Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination
in large language models: Principles, taxonomy, challenges, and open questions. ArXiv, 2023.

[30] Yanping Huang, Yonglong Cheng, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le,
and Z. Chen. GPipe: Efficient training of giant neural networks using pipeline parallelism. In
Neural Information Processing Systems, 2018.

[31] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

[32] Sekitoshi Kanai, Yasuhiro Fujiwara, Yuki Yamanaka, and Shuichi Adachi. Sigsoftmax: Reanal-
ysis of the softmax bottleneck. In Neural Information Processing Systems, 2018.

[33] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[34] Mahsa Khoshnoodi, Vinija Jain, Mingye Gao, Malavika Srikanth, and Aman Chadha. A
comprehensive survey of accelerated generation techniques in large language models. arXiv
preprint arXiv:2405.13019, 2024.

[35] Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W. Mahoney, Amir
Gholami, and Kurt Keutzer. Speculative decoding with big little decoder. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

[36] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[37] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via
speculative decoding. In International Conference on Machine Learning, pages 19274—19286.
PMLR, 2023.

[38] Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng Ni, Kai Han, and Yunhe Wang. Kangaroo:
Lossless self-speculative decoding via double early exiting. arXiv preprint arXiv:2404.18911,
2024.

[39] Jiahao Liu, Qifan Wang, Jingang Wang, and Xunliang Cai. Speculative decoding via early-
exiting for faster LLM inference with Thompson sampling control mechanism. In Lun-Wei Ku,
Andre Martins, and Vivek Srikumar, editors, Findings of the Association for Computational
Linguistics ACL 2024, pages 3027-3043, Bangkok, Thailand and virtual meeting, August 2024.
Association for Computational Linguistics.

[40] Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Stoica, Zhijie Deng, Alvin Cheung, and Hao
Zhang. Online speculative decoding. arXiv preprint arXiv:2310.07177, 2023.

[41] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Hongyi Jin, Tianqgi Chen, and
Zhihao Jia. Towards efficient generative large language model serving: A survey from algorithms
to systems. arXiv preprint arXiv:2312.15234, 2023.

[42] Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang,
Rae Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating
generative large language model serving with tree-based speculative inference and verification.
arXiv preprint arXiv:2305.09781, 2023.

[43] Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for extreme summarization. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, pages 1797-1807,
2018.

[44] OpenAl. Introducing OpenAl ol: Learning to reason with large language models, 2024.

[45] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style,
high-performance deep learning library. In Neural Information Processing Systems, 2019.

[46] Chau Minh Pham, Simeng Sun, and Mohit Iyyer. Suri: Multi-constraint instruction following
for long-form text generation. arXiv preprint arXiv:2406.19371, 2024.

[47] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimiza-
tions toward training trillion parameter models. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1-16. IEEE, 2020.

[48] David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and
Adam Santoro. Mixture-of-Depths: Dynamically allocating compute in transformer-based
language models. arXiv preprint arXiv:2404.02258, 2024.

[49] Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and
Donald Metzler. Confident adaptive language modeling. Advances in Neural Information
Processing Systems, 35:17456-17472, 2022.

[50] Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling 1lm test-time compute opti-
mally can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314,
2024.

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference
via early exiting from deep neural networks. In 2016 23rd international conference on pattern
recognition (ICPR), pages 2464-2469. IEEE, 2016.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li,
and Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive
survey of speculative decoding. arXiv preprint arXiv:2401.07851, 2024.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared LLaMA: Accelerating
language model pre-training via structured pruning. In ICLR, 2024.

Seongjun Yang, Gibbeum Lee, Jaewoong Cho, Dimitris Papailiopoulos, and Kangwook Lee.
Predictive pipelined decoding: A compute-latency trade-off for exact LLM decoding. Transac-
tions on Machine Learning Research, 2024.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W. Cohen. Breaking the softmax
bottleneck: A high-rank RNN language model. In /CLR, 2018.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan
Xu, Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, Yufei Xue, Jidong Zhai, Wenguang
Chen, Zhiyuan Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. GLM-130b: An open bilingual
pre-trained model. In The Eleventh International Conference on Learning Representations,
2023.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra.
Draft& verify: Lossless large language model acceleration via self-speculative decoding. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
11263-11282, Bangkok, Thailand, August 2024. Association for Computational Linguistics.

Zhexin Zhang, Leqi Lei, Lindong Wu, Rui Sun, Yongkang Huang, Chong Long, Xiao Liu,
Xuanyu Lei, Jie Tang, and Minlie Huang. SafetyBench: Evaluating the safety of large language
models with multiple choice questions. In ACL, 2024.

Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhiming Ma, and Tie-Yan Liu.
Asynchronous stochastic gradient descent with delay compensation. In ICML, 2017.

A Overall Algorithm of ParaDecode
Algorithm 1: ParaDecode

Input: = = [z, z2, ...,z]: user prompt; S = {l(i)}‘gl: early prediction layers
Parameter: ~: early prediction threshold
Output: Generated output sequence y = [to, t1,t2,...,tN]
KV cache + LM(x) // initialize KV cache by processing user prompt
y < [to] // initialize output sequence with BOS token
P—{} // initialize a dictionary to track (token, layer) pairs being processed in parallel
Plto] < 0 /I start processing BOS token at layer 0
while y[—1] # EOS // terminate generation upon generating EOS token
do
update KV cache +— LM(y; KV cache) with parallel processing of all layers in P
Plt] + Plt]+ 1,Vt € P /I proceed to the next layer for all parallel layers
if () = Ply[-1]] €S /1 if the latest token y[—1] reaches an early prediction layer
then
t ~ pow (t |h(i)) // sample from the intermediate LM head
if pgci) () > / if the probability surpasses the threshold
then
Yy<—yaot /l append token ¢ to output sequence
Plt] «+ 0 // add token ¢ at layer O to parallel processing
if3teP,Pt]=L /1 if any token being processed reaches the final layer L
then
t* ~ p*(t'|h*) // sample the gold token ¢* from final-layer predictions
ift* ¢ P // verify early prediction if made previously
then
‘ Empty P; P[t*] <~ 0 // reject early prediction, halt generation, and start from t* at layer 0
remove ¢ from P

return y

B Detailed Design of Batched Matrix Operations for Parallelization

Batched Matrix Multiplication Batched Self-Attention

g i E L
B — T I softmax
j30l Wi k(zl) \/a
2 W(,\'f)
vgx)
—_— % Update value cache

Figure 5: Parallel token processing via batched operations illustrated for the self-attention module,
with other Transformer modules (e.g., feedforward networks) operating similarly. If token ¢» can be
generated at layer 2 while processing ¢1, its computation at layer 1 starts immediately. This enables
the computation of layer 1 at ¢5 to run concurrently with layer 3 at ¢;. Batched matrix multiplication
facilitates simultaneous calculations of query, key, and value states across the parallel layers. The
self-attention calculation also utilizes batched operations with updated KV cache.

o o o

Figure 5 demonstrates a specific parallel processing example: when ¢, is generated at layer 2 of
t1’s processing, layer 3 computations for ¢; are executed concurrently with layer 1 computations
for to. More generally, consider N tokens ¢1,%s,...,ty being processed in parallel at layers
1) qG2) - n) () < j(t2) < ... < (V) The corresponding input hidden states for
these layers are h(*1) h(*2) . h({~) By stacking these input hidden states, we form a batched
input H® = [h(t); p(t2). - h(t~)] € RVN*4, Similarly, we prepare the batched weight matrices

10

W = [W)({tl); W)(;z); o W)(;N)] € RV*dxd where X may represent), I, or V. For simplicity,
we assume single-head attention with Q, K, V' € R4*4, though this approach easily generalizes to
multi-head attention. The batched matrix multiplication, denoted by ® and implemented using the
torch.matmul function, is expressed as:

X® = H® oW = [ntOw) ptaw () h(tN)W)(;N)} , Xc{Q. K.V
We can then compute the self-attention outputs O as follows:

T
QEB © Kgche 0]
Vd

where K9 and V) denote the updated KV cache at token position ¢;.

cache cache

V@

cache?

O® = Softmax (

Other Transformer components, such as feedforward networks and LayerNorm [4], can also be
expressed as batched matrix operations and parallelized in a similar fashion.

C Proofs

Lemma C.1. For any E® € RIVIX4 there exists a T € R4*? such that E) = E*T®.

Proof. We first prove that E* (the last-layer LM head weights) is full-rank, and then present an
explicit form of T%) that satisfies E(Y = E*T(®). During LLM pretaining, the last-layer LM
head weights E* are trained together with last layer hidden states H* € R!P!*? (|D| is the total
number of training tokens in the corpus) to learn the ground-truth next-token prediction probability
P e R\D|><|V|:
P* ~ Softmax(H*E*").

As the softmax function cannot increase matrix rank [32], we have rank(Softmax(H*E*T)) <
rank(H*E* ") < min{rank(E*), rank(H*)} < rank(E*). Thus, to achieve a good approximation
of P*, rank(E*) must closely match rank(P*). Given the complexity and diversity of natural
language, the empirical distribution P* derived from the pretraining data is extremely high-rank [55].
Therefore, to accurately model this high-rank distribution, E* must be full-rank.

Given E* being full-rank, U = E*" E* is invertible. We can define T() as T() = U-'E*T E(),
then:

E*T(z) — E*U—IE*TE(Z) — E*(E*TE*)—IE*T E(z)

=P

Note that P = E*(E*TE*)"'E*T is the projection matrix onto the column space of E* (as
P2 = P). Since E* is full rank, E(lies in the column space of E*. Therefore, applying P to E(?)
gives E() itself, confirming that E(*) can be expressed as E*T(%).

O

D Experiments

D.1 Evaluation Tasks

Evaluation tasks. We evaluate our method on a diverse set of text generation tasks, including
text summarization (i.e., XSum [43]), code generation (i.e., HumanEval [10]), and mathematical
reasoning (i.e., GSMS8K [11]), covering a broad spectrum of language model capabilities.

Text summarization. For text summarization, we use the widely adopted extreme summarization
(XSum) dataset [43], where the models are prompted to produce a single-sentence summary of a
news article, testing their ability to identify and precisely summarize the most salient information in a
coherent sentence. Following previous works [57], we randomly sample 1K instances from the test
split for evaluation, and 10K instances from the training split for training the lightweight LM head.

11

Code generation. For code generation, we evaluate our method on the HumanEval [10] benchmark,
which assesses Python programming skills through a variety of coding problems, ranging from basic
tasks to complex problem-solving challenges. Since the standard HumanEval benchmark does not
provide a training set, we use the entire MBPP [3] dataset for training, which contains a set of
crowd-sourced Python programming problems designed to be solvable by entry-level programmers,
covering programming fundamentals and standard library functionality. This results in a total of 974
training samples and 164 test samples for this task.

Mathmatical reasoning. We use GSM8K [11] as the benchmark for mathematical reasoning, which
contains diverse grade-school math word problems created by human problem writers. The dataset
consists of 7.5K training problems and 1K test problems. These problems typically require multiple
reasoning steps to solve and involve performing a sequence of basic arithmetic operations (such as
addition and subtraction) to arrive at the final answer. The goal of this task is specifically to evaluate
the LLM’s ability in multi-step mathematical reasoning.

D.2 Baselines

In our work, we primarily focus on comparing with efficient decoding baselines that provide output
parity guarantees with standard autoregressive decoding techniques, such as speculative decoding [37,
9] and self-speculative decoding [57]. Despite their conceptual advantages, these methods have
practical limitations. They often come with inherent constraints regarding model selection or
necessitate task-specific model architectures. For instance, speculative decoding (SpecDecode)
requires the assistance of drafter models that are both smaller and derived from the same model family
as the verifier model, limiting the overall flexibility in model selections. Similarly, self-speculative
decoding (Self-SpecDecode) relies on a comprehensive Bayesian Optimization (BO) process to
configure the model structure, allowing it to skip intermediate layers effectively for downstream tasks.
Such requirements significantly compromise their practical utility and present difficulties for real-
world application—as we will demonstrate later (§ D.6), they can only lead to quite limited speedup
or even negative speedup results compared to standard decoding unless careful hyperparameter tuning
is performed. Below, we provide a detailed introduction of the baselines.

SpecDecode. For this baseline, we consider two configurations: (1) CodeLlama-34B-Instruct as
the main model (i.e., verifier) with CodeLlama-13B-Instruct as the assistant model (i.e., drafter),
and (2) CodeLlama-34B-Instruct as the verifier with CodelLlama-7B-Instruct as the drafter. Note
that it is impractical to evaluate SpecDecode with state-of-the-art moderate-sized models such as
Llama3.1-8B-Instruct due to the absence of a smaller drafter model within the same family.

Self-SpecDecode. For a fair comparison, we adopt three backbone models for Self-SpecDecode: (1)
Llama2-7B-chat, (2) CodeLlama-13B-Instruct, and (3) CodeLlama-34B-Instruct. Following [57],
we adopt an adaptive confidence threshold strategy and set the initial threshold 7° = 0.6, the max
number of draft token K = 12, and the max number of generated token 7" = 512. We run the Bayesian
optimization search for 200 iterations to determine skipped layers for configuring the drafter model.
We use 4 instances randomly sampled from the training set of each task for the Bayesian optimization
search as suggested in the original implementation.

D.3 Implementation Details

Training details. The lightweight LM heads in our method are trained through full-parameter
fine-tuning using the alignment-handbook repository' with Nvidia H100 GPUs. Specifically, we
utilize DeepSpeed ZeRO-3 [47] along with FlashAttention [12] for distributed training, and we
enable BF16 mixed precision training to enhance training efficiency. We generate on-policy data to
train the lightweight LM heads by prompting the off-the-shelf Llama3.1-8B-Instruct or CodeLlama-
34B-Instruct to produce responses using greedy decoding for prompts from the mixed training split
obtained from the benchmarks. By default, our models are trained using the Adam optimizer [36] for
50 epochs, with a batch size of 128, a learning rate of 5e-3, and a cosine learning rate schedule with
3% warmup steps.

Inference details. During inference, we adopt the zero-shot evaluation by directly prompting the
model to generate responses and apply the corresponding chat templates to format the prompts, as all
backbone models used in our work are instruction-tuned versions. The framework is implemented

"https://github. com/huggingface/alignment-handbook

12

https://github.com/huggingface/alignment-handbook

Table 2: Speedup comparison between ParaDecode and baseline decoding methods across three
tasks, including text summarization, code generation, and mathematical reasoning. All compared
methods ensure generation parity with vanilla autoregressive decoding, and the speedup results are
computed relative to the benchmarks established on the vanilla setup (i.e., speedup = 1 x for vanilla
autoregressive decoding). ‘-’ represents not applicable, as there is no smaller drafter from the same
family of the verifier model. The best performance is highlighted in bold.

Text Summarization Code Generation Mathematical Reasoning
Method (XSum) (HumanEval) (GSMB8K)

SpecDecode [37]
Llama3.1-8Bxsr
no smaller drafter available - — —

CodeLlama-34B st

w/ drafter CodeLlama-7B st 1.08 % 1.41x 1.26x
w/ drafter CodeLlama-13B st 1.18x% 1.23x 1.10x
Self-SpecDecode [57]
Llama2-7B st 1.05x 1.09x 1.10x
CodeLlama-13Bxsr 1.03x 1.14x 1.12x
CodeLlama-34Bxsr 1.07x 1.14x 1.14x
ParaDecode (Ours)
Llama3.1-8Bxst 1.15% 1.31x 1.42x
CodeLlama-34B st 1.24 % 1.45x% 1.53x%

using the HuggingFace Transformers library?, and we utilize the standard greedy decoding strategy
as the baseline for a reproducible comparison. Following [57], the maximum number of new tokens
is set to 512.

D.4 Main results

ParaDecode consistently achieves superior inference speedup across all benchmarks. To val-
idate the effectiveness of our method, we compare the proposed ParaDecode with state-of-the-art
efficient decoding methods SpecDecode and Self-SpecDecode across a wide range of challenging
text generation tasks. As presented in Table 2, our method consistently delivers superior speedup
compared to both SpecDecode and Self-SpecDecode in both moderate size and large size models,
achieving up to 1.53x speedup compared to standard autoregressive decoding.

SpecDecode (mostly) performs better when assisted with smaller models. Table 2 shows that a
smaller drafter model (e.g., CodeLlama-7B-Instruct) generally leads to higher speedup for SpecDe-
code compared to a moderate-size model (e.g., CodeLlama-13B-Instruct). This is mainly because
smaller drafters have fewer parameters, requiring less computation and inference time to generate
draft tokens, which are then passed to a large-scale verifier (e.g., CodelLlama-34B) for parallel
verification and correction, significantly reducing the overall time. One notable exception is in the
text summarization task, where using the smaller model as the drafter yields a lower speedup than the
moderate counterpart. We speculate that this is because smaller models like CodeLlama-7B-Instruct
have limited capacity to handle extremely long texts, thus producing low-quality draft tokens, which
can lead to a higher rejection ratio during verification, thereby increasing the overall latency.

Self-SpecDecode tends to achieve higher speedups as the model size increases. By skipping a
larger portion of intermediate layers, Self-SpecDecode can generate draft tokens much faster than the
full model, thereby achieving significant speedup. However, this approach provides limited speedup
improvement for mid-sized models such as Llama2-7B-Instruct. The reason is that such models have
only 32 layers, skipping too many layers negatively impacts the quality of the draft tokens, which
will lead to a high rejection rate during verification, and consequently increase the decoding latency.
On the contrary, skipping too few layers does not yield sufficient speedup, as the performance gains
stem primarily from reducing the computations associated with skipped layers.

ParaDecode guarantees output parity with standard autoregressive decoding. As shown in Ta-
ble 3, we empirically evaluate the output parity guarantee of all baseline methods across three
benchmarks. Despite theoretical guarantees, both SpecDecode and Self-SpecDecode fail to achieve

https://github.com/huggingface/transformers

13

https://github.com/huggingface/transformers

Table 3: Consistency ratio comparison. In principle, all compared methods in our work are expected
to guarantee output parity with standard autoregressive decoding as a result of the verification
steps. However, due to numerical precision inaccuracies and potentially tied probabilities during the
computation, the generation results might vary in practice and are subject to experimental environment
and hardware specifications. To empirically validate the output consistency of all methods with
vanilla autoregressive decoding, we report the consistency ratio for all methods to ensure a fair
comparison under the same experimental environment.

Text Summarization Code Generation —Mathematical Reasoning
Method (XSum) (HumanEval) (GSMS8K)

SpecDecode [37]
CodeLlama-34Bxsr

w/ drafter CodeLlama-13B st 94.98% 78.56% 93.91%
Self-SpecDecode [57]
Llama2-7B st 94.26% 94.83% 94.14%
CodeLlama-13Bxsr 92.53% 95.20% 93.78%
CodeLlama-34B st 93.31% 97.79% 94.16%
ParaDecode (Ours)
Llama3.1-8B st 95.36% 97.24% 95.35%
CodeLlama-34Bxsr 93.27% 98.02% 94.65%

100% generation parity with standard autoregressive decoding. One possible reason is the numerical
precision inaccuracies during inference, as we use BF16 precision for inference, which may cause
the model to select different tokens compared to standard decoding.

D.5 Ablation Study

Table 4: Ablation study on ParaDecode. We report the performance of our method by ablating the
training of the lightweight LM head and analyzing the impact of the verification step. The table
shows the resulting speedup and consistency ratio on the code generation task (HumanEval).

Method Consistency Ratio (%) Speedup (x)

ParaDecode 97.24% 1.312x
w/o verification step 23.83% 1.605 x
w/o lightweight LM head training 71.28% 0.863x

The verification step is essential for ensuring output parity. As shown in Table 4, As shown
in Table 4, removing the verification step from ParaDecode significantly reduces the consistency
ratio, even though it achieves a slightly higher speedup. Without verification, there is no control
over the generated tokens, which can lead to ParaDecode producing entirely different content as
early predictions may not always be reliable. This results in the acceptance of potentially incorrect
early predicted tokens and causes significant deviations from standard autoregressive decoding. This
finding underscores the importance of the verification step in our method.

Simply applying the final-layer LM head for early prediction will not lead to speedup. To validate
the utility of our lightweight LM heads, we replaced the trained lightweight LM head with the final-
layer LM head for early prediction. As shown in Table 4, this ablation substantially compromises
the consistency ratio and, even worse, results in a negative speedup. This is because applying the
final-layer LM head to intermediate layers for early prediction only produces very low confidence
(as illustrated in Figure 3a), which requires frequent corrections of the early predicted tokens as few
early predictions are accepted—the resultant overheads significantly slow down the decoding process
because once a token is rejected, the KV cache generated during parallel computation for the next
token immediately becomes invalid, as they are based on an incorrect preceding token.

D.6 Analysis

SpecDecode is sensitive to hyper-parameter configurations. Figure 6 presents the hyperparameter
study for SpecDecode, indicating that it is challenging to achieve consistent speedup without careful

14

B threshold = 0.3
threshold = 0.5

B threshold = 0.8

I threshold = 0.3 | W XSUM
threshold = 0.5 . HumanEval
B threshold = (.8 N GSMBK

n=2 1=38 n=14 n=2 n=

I 8
of draft tokens # of draft tokens # of Bayesian Optimizations Iterations

n=14 1 50 100 150 200

(a) SpecDec with 7B drafter. (b) SpecDec with 13B drafter. (c) Self-SpecDecode BO search.

Figure 6: Hyperparameter study of baseline models with CodeLlama-34B as the backbone model. (a)
SpecDecode with Codel.lama-7B as drafter. (b) SpecDecode with CodeLlama-13B as drafter. (c)
Self-SpecDecode optimized by different iterations of Bayesian optimization (BO) on three tasks.

ParaDecode 100 Early Prediction Rate 20 Verification Rejection Rate
= 1.507 ----- Vanilla Decoding = =
z g 220
2125 £ 50 £
g €10
%100 = =
0 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
threshold ~ threshold threshold ~
(a) Inference speedup. (b) Early prediction rate. (c) Verification rejection rate

Figure 7: Hyperparamter study of ParaDecode by varying the early prediction threshold ~. This
figure presents the evaluation results on HumanEval where (a) shows the speedup curve, (b) shows
the early prediction rate, and (c) shows the verification rejection rate.

tuning. In this study, we use CodeLlama-34B-Instruct as the backbone model, and performed a
comprehensive hyperparameter search on the HumanEval benchmark, with CodeLlama-7B-Instruct
and CodeLlama-13B-Instruct as the assistant models, respectively. We explored various configurations
with different max number of draft tokens n = [2, 8, 14] and confidence threshold = [0.3,0.5, 0.8].
Figure 6a and Figure 6b reveal that significant speedup variance exists across different settings.
Moreover, the variance becomes even larger when the confidence threshold shifts. Notably, when
n = 14 and the threshold is 0.3, the speedup of 13B drafter is merely 0.944, which is even worse
than standard decoding. These findings highlight that careful tuning hyperparameters is essential to
optimize SpecDec’s speedup performance and avoid potential slowdowns.

Self-SpecDecode requires task-specific architecture for optimized speedup performance. Self-
SpecDecode has been proposed as a training-free, inference schema that could be employed on LMs
in a plug-and-play manner. However, it requires an additional Bayesian optimization (BO) process
to first obtain a set of layers to skip (as the drafter) before it can be adopted for inference. The
time-consuming BO process greatly limits its practicality, moreover, it requires a set of examples as
validation data to select the desired drafter. To further investigate the effect of this search process, we
optimize CodeLlama-34B-Instruct with different numbers of BO iterations, as shown in Figure 6c.
In general, more number of iterations could lead to improved evaluation performance. Yet, on
HumanEval, it demonstrates a decrease in performance in the process. This implies scaling the
number of iterations does not monotonically reflect better results, and the iteration process might
require careful tuning to select an optimized drafter for inference.

ParaDecode can work well without searching thresholds for early predictions. As introduced
in Equation (1), the hyperparameter « controls early predictions and triggers parallel token processing.
To study its impact, we conduct experiments with Llama3.1-8B-Instruct, and Figure 7 presents
the speedup results, early prediction rate, and verification rejection rate, with varying values of
~v=10,0.2,0.4,0.6, 0.8, 1]. Specifically, v = 1 effectively means no early predictions, as very few
tokens have a probability greater than 1, while v = 0 triggers early predictions at every inference step.
It can be observed that the early prediction rate decreases with increasing -y, while the verification
rejection rate also decreases, and the inference speed is jointly affected by both factors. Surprisingly,
we find that v = 0 leads to the fastest overall speedup, demonstrating that our method does not require
hyperparameter tuning. Based on this finding, we set v = 0 for all experiments without further tuning,
and the results in Table 2 and Table 3 confirm the effectiveness of this setting. We attribute this to the
fine-tuned lightweight LM head, which enables early predictions with high confidence, resulting in a
lower verification rejection rate (around 30%, as presented in Figure 7c). This finding suggests that
encouraging more early predictions is beneficial for speedup and demonstrates that our method can
work efficiently and accurately without hyperparameter tuning, simply by triggering early predictions
at every step with the fine-tuned lightweight LM head.

15

E Related Work

E.1 Early Exiting

Early exiting enables language models (LMs) to complete prediction at intermediate layers, reducing
computational overhead and accelerating generation. Previous approaches achieved this by adding
decision branches or language modeling heads at various depths [51, 27, 19, 49]. Perhaps the most
similar work to ours is [54], where the authors utilize multi-processing for pipelined decoding via
early exiting. While conceptually similar, their approach diverges from ours in both method design
and the implementation of parallelism—they need to train the last-layer LM head for early exiting,
potentially deviating from the standard autoregressive decoding. Moreover, multi-processing incurs
initialization overhead and communication costs, which also limits its practical efficiency. Another
notable recent work is Mixture-of-Depth [48], which dynamically skips transformer blocks to enhance
efficiency, however it still lacks the output parity guarantee with the standard autoregressive decoding.
For a more detailed discussion on this line of research, we refer the readers to [34].

E.2 Speculative Decoding

Speculative decoding [37, 9] has emerged as an effective approach for speeding up language model
generation. It aims to reduce decoding latency by drafting tokens using smaller auxiliary models
and verifying multiple tokens in parallel with larger models, which has been actively investigated
recently [23, 21, 38, 8, 39]. Among them, self-speculative decoding [57] addresses the limitation of
requiring an auxiliary smaller model as the drafter. LayerSkip [20] employs early exiting to generate
draft tokens while continuing with the remaining layers for verification, thereby accelerating the
decoding process. Other notable works have also explored methods to handle long text sequences
more efficiently [5, 35, 26]. A comprehensive overview in this area can be found in [52].

F Limitations and Future Work

Limitations. Our work focuses on accelerating LM decoding without directly improving the
quality of the outputs, so ParaDecode may encounter similar issues as general LM decoding, such as
hallucinations [29] and generating unsafe content [58]. Additionally, while ParaDecode consistently
accelerates standard autoregressive decoding, it may occasionally incur higher FLOPs, particularly
when an early-predicted token does not match the gold token, necessitating a reversion. However,
such cases are rare in practice, and we find that strict parity with standard autoregressive decoding is
not always necessary. The early-predicted tokens, even when they differ from the final prediction, are
typically still meaningful. Therefore, one might consider relaxing strict consistency requirements to
avoid unnecessary computational waste.

Future work. In the future, we plan to integrate ParaDecode with other efficiency-enhancing
techniques like model pruning and quantization. Model pruning [53] offer the potential to reduce
model size and parameter space by identifying and removing less critical weights or neurons. When
combined with ParaDecode, pruning could lead to even faster decoding times and lower memory
usage without significantly impacting performance. Similarly, ParaDecode can also be seamlessly
integrated with quantization [16], which reduces the precision of model weights and activations,
substantially lowering memory and compute requirements. These directions could be particularly
valuable for efficient inference on mobile and edge devices.

16

	Introduction
	Method: ParaDecode
	Lightweight Language Model Heads Enable Early Predictions
	Parallel Token Processing via Batched Matrix Operations

	Experiments
	Summary
	Overall Algorithm of ParaDecode
	Detailed Design of Batched Matrix Operations for Parallelization
	Proofs
	Experiments
	Evaluation Tasks
	Baselines
	Implementation Details
	Main results
	Ablation Study
	Analysis

	Related Work
	Early Exiting
	Speculative Decoding

	Limitations and Future Work

