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Abstract

Reservoir computing architectures known as echo state networks (ESNs) have
been shown to have exceptional predictive capabilities when trained on chaotic
systems. However, ESN models are often seen as black-box predictors that lack
interpretability. We show that the parameters governing the dynamics of a complex
nonlinear system can be encoded in the learned readout layer of an ESN. We can
extract these dynamical parameters by examining the geometry of the readout layer
weights through principal component analysis. We demonstrate this approach by
extracting the values of three dynamical parameters (σ, ρ, β) from a dataset of
Lorenz systems where all three parameters are varying among different trajectories.
Our proposed method not only demonstrates the interpretability of the ESN readout
layer but also provides a computationally inexpensive, unsupervised data-driven
approach for identifying uncontrolled variables affecting real-world data from
nonlinear dynamical systems.

1 Introduction

The analysis and modeling of complex nonlinear dynamics is a key problem across a broad range of
disciplines in science and engineering [1]. While supervised deep learning approaches can provide
excellent predictive performance on dynamical systems [2–4], difficulties with interpretability limit
their usefulness in some scientific applications. For example, consider the problem of identifying
uncontrolled dynamical parameters causing variations in the dynamics of a set of observed trajectories.
Directly learning a black-box predictor for each trajectory does not provide any insight into how
the dynamics are changing between trajectories. Potential approaches for solving this problem
include methods that attempt to directly recover the symbolic governing equations [5–9], which often
require a large library of possible terms along with assumptions about the sparsity of the equations,
and Koopman operator-based methods [10–13] that map the nonlinear dynamics to an interpretable
linear system but struggle with chaotic dynamics. Unsupervised learning approaches that use deep
autoencoder architectures to provide interpretability have also been investigated [14, 15].

We propose an alternative approach for discovering varying dynamical parameters that is based on
echo state networks (ESNs), a type of reservoir computing architecture [16, 17]. ESNs provide a
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fast and easy way to build predictive models for dynamical systems [18–20] and have been shown
to perform remarkably well when trained to forecast complex nonlinear dynamics exhibiting high-
dimensional chaos [4, 19, 21]. While superficially similar to recurrent architectures in deep learning,
ESNs are inexpensive to train and do not suffer from exploding or vanishing gradients due to their
use of a large sparse reservoir with fixed weights [4, 18]. Correctly constructed ESNs also exhibit
the echo state property [16, 22], which provides many nice theoretical guarantees and allows for the
ESN to be effectively trained by only fitting the output weights of the final readout layer via linear
regression.

However, ESNs are generally considered black-box predictors that have the same issues with inter-
pretability as deep learning approaches. Our work demonstrates that this is not the case. By sharing
the fixed weights across a series of separately trained ESNs, we can interpret the learned output
weights from the readout layer as a representation of the system dynamics and use manifold learning
to extracted the varying dynamical parameters affecting the data. Using the chaotic Lorenz system
[23] as an example, we show that this approach is able to quickly and accurately learn high-quality
predictive models and then extract an embedding which encodes three distinct varying parameters
that affect the dynamics of the system.

2 Methods

To produce a set of interpretable representations of the system dynamics, we train a series of echo
state networks (ESNs) that share the same reservoir and input weights. Each ESN is trained on a
distinct trajectory in the dataset and, after training, produces a linear readout layer which we use
as our representation of the dynamics. We then analyze the geometry of the readout layer weights
using a manifold learning method—in our case, principal component analysis (PCA)—and extract
parameters that account for the varying dynamics among the trajectories in the dataset.

2.1 ESN training and prediction

ESNs are reservoir computing architectures that consist of a large, fixed sparse reservoir A ∈ Rn×n
with hidden size n, a fixed set of input weights Win ∈ Rn×d, and a trained set of output or readout
weights Wout ∈ Rd×n. A standard discrete time ESN can model a d-dimensional dynamical system

du(t)

dt
= Fθ(u(t)) (1)

with dynamical parameters θ and states u(t) ∈ Rd discretized as a time series {ut0 ,ut0+∆t, . . .}
with a fixed time step ∆t.

Training—To train the output weights Wout, we first feed a training trajectory {ut}Ttrain
t=t0 into the

ESN in a recurrent fashion
rt+∆t = tanh(Art + Winut), (2)

producing a series of hidden reservoir states {rt0 , rt0+∆t, . . .} where each rt ∈ Rn and rt0 = 0
is initialized as the zero vector. The output weights Wout are then fitted using a (regularized)
linear regression to map the hidden states rt back to the physical states ut such that ut ≈Woutrt,
corresponding to the final readout layer of the ESN. Because the training only involves passing the
inputs through the ESN once and then fitting the final readout layer using linear regression, this
process is both fast and computationally inexpensive.

Prediction—To predict the future states of a test trajectory {ut}Ttest
t=t0 , the new trajectory is fed

recurrently into the ESN as during training (2), and then future physical states ût = Woutrt for
t > Ttest are computed using the output weights from the readout layer. The predicted states ût are
then fed back into the recurrent architecture to obtain subsequent hidden states

rt+∆t = tanh(Art + Winût). (3)

2.2 Training ESNs with unique and comparable readout layers

Because our approach treats the trained output weights Wout from the readout layer as a represen-
tation of the system dynamics, we require Wout to be comparable across ESNs trained on distinct
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Figure 1: Prediction example for a test trajectory with dynamical parameters σ = 10.3, ρ = 29.2,
β = 2.58. (a)–(c) The plots of the individual states x, y, z of the Lorenz system show the predicted
dynamics (orange) compared with the actual ground truth dynamics (blue). Times are given in units
of τ , the Lyapunov time of the dynamics. (d) The root mean squared error (RMSE) between the
predicted and actual dynamics (normalized by the standard deviation over the entire trajectory) is used
to define the prediction horizon, which corresponds to the first time at which the normalized RMSE
rises above 1. The prediction horizon for this example is 4.56τ . (e) The phase space plot consists
of the full trajectory of the actual dynamics (blue) alongside a partial trajectory of the predicted
dynamics (orange), showing the predicted trajectory up to the prediction horizon where the two
trajectories diverge. (f) For three sets of ESNs trained with ridge regression parameters γ = 0.01,
0.05, 0.1, the average mean squared error (MSE) over the entire test trajectory (normalized by twice
the variance) is plotted versus the prediction horizon for each example in the test set. We ultimately
chose to use γ = 0.1, which results in good long-term prediction stability as indicated by an average
normalized MSE that is consistently low and close to 1.

trajectories with varying dynamics. To ensure this, we use the same fixed reservoir and input weights
for all our ESNs and impose L2 regularization on the linear regression (i.e. ridge regression) when
fitting Wout. Along with proper initialization of the ESN to ensure the echo state property (ESP)
is fulfilled [16, 22], these conditions also maintain uniqueness among the learned readout layers
corresponding to different dynamics. The ESP guarantees that each input sequence {ut}T−1

t=−∞
corresponds to a unique reservoir state rT . Then, because the dynamical system is Markovian (1),
each set of dynamical parameters θ and physical state uT have a unique input sequence history and so
correspond to a unique rT . Therefore, the mapping rT → uT , which is approximated by the readout
layer, is also unique for each θ. Finally, by using ridge regression to fit the readout layer—a common
practice for training ESNs—we obtain a unique set of output weights Wout for each θ.

2.3 Extracting dynamical parameters using manifold learning

Once we have the dynamics encoded in the output weights Wout, we can analyze the geometry of
this representation by performing manifold learning. In our experiments, we found that applying
PCA to the flattened output weights was enough to extract a reasonable low-dimensional embedding
that encodes the dynamical parameters θ.

3



Figure 2: Three-dimensional embedding of the varying dynamical parameters σ, ρ, β of the Lorenz
system extracted from the trained output weights Wout using PCA. (a)–(c) The scatter plots show
cross-sections of the extracted embedding colored by the ground truth parameters σ, ρ, β. ρ is
primarily aligned with component 1, while σ and β are embedded in components 2 and 3. (d)–(f) The
predicted dynamical parameters, based on a linear fit from the extracted embedding, are plotted versus
the ground truth parameters. The parameters σ and ρ are very well represented with R2 = 0.993 and
0.996, respectively, while the embedding of β is slight noisier with R2 = 0.925.

3 Lorenz System Experiment

The Lorenz system [23] is a three-dimensional chaotic dynamical system governed by

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz

(4)

with the parameters σ, ρ, β traditionally chosen to be 10, 28, 8/3, respectively. For our dataset, we
generate 1000 trajectories each with 300,000 time steps (∆t = 0.02) for training and a subsequent
50,000 time steps for testing. For each trajectory, we independently sample the three dynamical
parameters σ, ρ, β from uniform distributions that cover ±5% of their standard values to mimic
uncontrolled variations in the dynamics. Using a sparse reservoir (with size 300, degree 6, and a
spectral radius of 0.1 as suggested by [20]), an input weight scaling of 0.1, as well as a ridge regression
regularization parameter γ = 0.1, we achieve long-term stability and good prediction performance
(Fig. 1) with a mean prediction horizon of 3.2τ . Here, τ = Λ−1

max refers to the Lyapunov time of the
chaotic system, i.e. the inverse of the maximum Lyapunov exponent Λmax, which characterizes how
quickly two similar trajectories diverge.

Applying PCA to the trained output weights Wout, we can identify the 3 relevant components based
on their explained variance ratios (0.750, 0.165, 0.062) using a total explained variance threshold
of 0.95. These PCA components provide a three-dimensional embedding that directly corresponds
to the varying dynamical parameters σ, ρ, β of the Lorenz system (Fig. 2(a)–(c)). We also obtain
high-quality linear fits for the parameters σ, ρ, β from the extracted three-dimensional embedding
(Fig. 2(d)–(f)) with R2 correlation coefficients of 0.993, 0.996, 0.925, respectively.
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4 Conclusion

We have empirically confirmed that parameters governing the dynamics of a nonlinear system are
encoded in the readout layer of a trained ESN and have demonstrated a method for extracting an
embedding of the varying dynamical parameters using PCA. Our proposed method for analyzing data
from dynamical systems, including chaotic systems, provides a fast and computationally inexpensive
approach for both predicting future states and understanding the uncontrolled variables causing
variations in the dynamics. While our method only extracts a latent embedding of the dynamical
parameters without an explicit symbolic interpretation, the geometry of this embedding is already
very informative on its own: trajectories with similar dynamics are embedded nearby; each relevant
component of the embedding corresponds to a varying parameter; and the intrinsic dimensionality
of the embedding manifold (i.e. the number of relevant components) gives the number of varying
parameters. Given the extracted embedding, it should also be feasible to approximately reconstruct
ESN output weights as a function of the identified dynamical parameters, effectively creating a tunable
model for the dynamics learned from the data. This would aid in directly interpreting unknown
dynamical parameters extracted using our method, so we hope to further explore this direction in the
near future. Also, because our approach builds on top of standard ESN training methods, it would
be straightforward to adapt for any applications where ESNs are currently being used purely for
prediction. These applications include modeling EEG signals [24], making atmospheric climate
predictions [25], and scaling up ESNs to model high-dimensional chaotic attractors [21]. As such, we
plan to test our method on a wider variety of examples, including systems exhibiting spatiotemporal
chaos, as well as investigate the effects of noise on our approach.
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