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ABSTRACT

We study the use of large language model-based agents for interacting with software
via web browsers. Unlike prior work, we focus on measuring the agents’ ability
to perform tasks that span the typical daily work of knowledge workers utilizing
enterprise software systems. To this end, we propose WorkArena, a remote-hosted
benchmark of 29 tasks based on the widely-used ServiceNow platform. We also
introduce BrowserGym, an environment for the design and evaluation of such agents,
offering a rich set of actions as well as multimodal observations. Our empirical eval-
uation reveals that while current agents show promise on WorkArena, there remains
a considerable gap towards achieving full task automation. Notably, our analysis
uncovers a significant performance disparity between open and closed-source LLMs,
highlighting a critical area for future exploration and development in the field.

1 INTRODUCTION

Graphical User Interfaces (UIs) are the predominant medium through which people interact with
software, serving as a crucial gateway to the digital world. While they have evolved to become more
intuitive, featuring generic and universal components like forms, lists, and buttons, UIs can still make
complex or repetitive tasks burdensome for users. While being more and more intuitive, those complex
UIs also became inadvertedly more and more discriminative for visually-impaired users. An ideal user
experience would involve automated assistants that can streamline these tasks ensuring accessibility for
everyone. While Application Programming Interfaces (APIs) have facilitated programmatic interac-
tions with software, the resulting automated assistants often lack transparency, are difficult for users to
inspect, and are not universally available. In contrast, assistants that directly manipulate UIs (UI assis-
tants) offer greater transparency and are more amenable to human oversight. Most notably, because the
user can give and take back control over the UI at any point, UI assistants can provide varying levels of
automation ranging from partial assistance (such as finding a menu or filling a form) to complete task ex-
ecution (like placing an order), akin to the six levels of automation in autonomous driving (SAE, 2021).

Recent advancements in the fields of large language and vision models have seen the rapid development
of UI assistants, particularly web agents acting through a browser (Furuta et al., 2023; Kim et al., 2023;
Gur et al., 2023b). The range of web tasks explored in the literature varies from simple UI commands
such as selecting specific menu elements on toy web pages (Liu et al., 2018; Shi et al., 2017a), to more
complex requests such as “Checkout merge requests assigned to me”, on real-world websites like
Reddit and GitLab (Zhou et al., 2023). Yet, one area in which web agents can be particularly impactful
and remain unexplored is enterprise software. In the workplace, where repetitive tasks are common,
enterprise software often prioritizes functionality over user experience, leading to inefficiencies and
long learning curves for workers. Our work addresses this gap, and investigates the potential of web
agents in enterprise settings to improve accessibility, user experience, and worker productivity.

To this end, we introduce WorkArena, a benchmark developed on the widely-used ServiceNow
platform (ServiceNow, 2023). ServiceNow is a comprehensive cloud-based platform that offers
solutions for automating and managing digital workflows across various enterprise functions, including
IT service management, human resources, customer service, and security operations. In 2023
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Figure 1: Overview of contributions: (a) WorkArena is a benchmark of 29 web tasks and 18,050 unique instances
that cover common ways of interacting with the ServiceNow Platform, a widely-used enterprise software platform.
(b) BrowserGym is a Python environment for designing and evaluating web agents, which includes a rich set of
actions and multimodal observations (shown here the HTML contents of the page, its accessibility tree, and the
raw pixels after browser rendering).

their customer base counted over 7,000 companies worldwide, including 85% of the Fortune 500
companies (Mastantuono, 2023). Within these firms alone, the ServiceNow platform potentially
impacts over 12 million individuals, not including broader public interactions, such as the 500,000
daily users of Disney+’s customer help center (Maas, 2020). ServiceNow’s extensive reach makes
it an ideal real-world environment for evaluating the potential impact of UI assistants in the workplace.

Our contributions are as follows:

• WorkArena: A realistic benchmark of enterprise-related tasks for web agents comprising 18,050
unique task instances (§3, Fig. 1a);

• BrowserGym: A new framework for the development and evaluation of web agents, compatible
with previous benchmarks like WebArena (Zhou et al., 2023), MiniWoB (Liu et al., 2018; Shi
et al., 2017a) and WebShop (Yao et al., 2022), that offers a richer set of multimodal observations
(e.g., screenshot, accessibility tree, screen coordinates), a broader set of actions (e.g., Python code
and high-level primitives), and supports chat-based interactions (§4, Fig. 1b); Surprisingly, these
features contribute to bringing our GPT-4 agent at the top of the leaderboard on WebArena, with
a score of 25.4%, contrasting with the score of the original paper, 14.4%.

• Empirical study: We report a collection of experiments to assess the ability of state-of-the-art large
language model (LLM)-based agents to solve WorkArena, as well as an analysis of the impact of
the different BrowserGym features on WorkArena and MiniWoB (§5).

2 RELATED WORKS

Benchmarks for web agents: Early benchmarks for web agents were based on synthetic web envi-
ronments where agents were tasked with performing low-level keyboard and mouse actions (Shi et al.,
2017b). Notable examples are MiniWoB (Shi et al., 2017a; Liu et al., 2018), which offer a collection of
125 toy web tasks ranging from clicking a specific button to using a basic text editor, and WebShop (Yao
et al., 2022), a simulated e-commerce website with shopping tasks that require searching and browsing a
catalog of items. More recently, Zhou et al. (2023) introduced WebArena, a collection of 190 tasks based
on realistic websites that emulate real-world domains such as e-commerce, social forums, collaborative
software development, and content management. WebArena is a notoriously challenging benchmark,
with a success rate of 14% for a state-of-the-art web agent based on GPT-4, and 78% for human
agents. Deng et al. (2023) proposed Min2Web, a large-scale dataset of 2,000 web interactions from 137
websites curated by human annotators. Similarly, Lù et al. (2024) propose WebLINX, a curated dataset
of web interactions composed of 2337 expert demonstrations from 155 different real-world websites.
In WebLINX, each task is composed of a turn-based chat dialogue averaging 43 interactions per task.
Last, He et al. (2024) propose 300 information-retrieval tasks, from 15 real-world consumer websites
(e.g., Amazon, Coursera, Booking), which are used to evaluate WebVoyager, a vision-based web agent.

Our proposed benchmark, WorkArena, is designed to complement existing work by specifically
focusing on real-world enterprise software applications. It includes a wide range of tasks that
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Create a new hardware asset with a value of 
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Figure 2: Example form task – The goal is given to the agent in natural language via the chat interface. As can
be seen, the goal is designed to be very explicit, leaving no ambiguity on the task to perform. As for the UI, it is
complex, composed of many fields, some of which are dynamic, such as auto-completion-based text boxes 1 ,
some are hidden behind tabs 2 , and others require complex interactions, such as date pickers 3 . Other such
examples are available in § A.2.

collectively encompass several end-to-end workflows typically performed by knowledge workers.
Additionally, it poses a series of technical challenges, such as pages with very large document object
models (DOMs), non-standard HTML, and complex UI elements, which we outline in § 3.2. This
benchmark integrates into BrowserGym, a new environment that we propose for the evaluation of
web agents, which aggregates all features proposed in previous work, such as multimodal observations
and code-based actions while being the first to support chat-based agent-user interactions (§4.1).

LLM-based Agents: The scope of our experimental contributions is limited to web agents that rely on
language models for reasoning. Recent studies include the seminal work of Nakano et al. (2021) that
introduces WebGPT, an agent capable of browsing the web and answering questions via information
retrieval. Other works have also explored web agents that receive HTML as input and produce a series
of high-level actions such as click, type, select (Deng et al., 2023; Liu et al., 2023a;b; Yao et al., 2023).

Other works have shown that using just text content as input is limited information, and, therefore,
have considered multimodal observations, which includes both visual (screenshots of a page) and
text content in order to perform a task (Humphreys et al., 2022; He et al., 2024). Instead of directly
interacting with a website, recent works have proposed methods that can act on websites using
Python-generated code from task-specific instructions (Gur et al., 2023a;b). Our proposed environment,
BrowserGym is flexible in that it supports all observations and actions spaces utilized in prior research.

3 WORKARENA – AN ENTERPRISE BENCHMARK

WorkArena consists of a suite of 29 tasks and 18,050 unique instances that cover core interactions with
the ServiceNow platform, such as navigating lists, filling forms, searching knowledge bases, utilizing
service catalogs, and navigating via menus (see Fig. 1a). Collectively, these tasks are representative
of a wide array of common operations that employees, like IT, administrative, and white-collar staff,
perform on a daily basis.

As a guiding example, consider an IT support agent tasked with onboarding new hires. Each day, this
agent logs into the ServiceNow platform. They use the menu to navigate to a list of requests to be
fulfilled. They plan their work by filtering the list to extract all requests assigned to them and sorting
the list in order of priority. They then process requests by filling out forms to create new user profiles,
and use the service catalog to order laptops for them. As we will see, all of the interactions listed above
are included in WorkArena, and this is only one of the many user trajectories that the benchmark covers.

3.1 WORKARENA TASKS

In WorkArena, each task is coupled with a natural language goal that provides unambiguous
instructions to the agent (examples are illustrated in Fig. 3). The benchmark includes validation
functions that offer real-time feedback to agents, identifying errors ranging from minor (e.g., unfilled
mandatory fields) to critical (such as pushing invalid data to the database). A unique feature of
WorkArena in contrast with prior benchmarks is the inclusion of a cheating function for each task,
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implemented using Playwright browser automation (Microsoft, 2023). This function, designed to
complete the tasks successfully, serves three purposes: (i) it ensures the feasibility of each task, (ii) it
serves as the ground truth for agents that have learning capabilities, and (iii) it helps maintain the
benchmark’s longevity by making it easier to identify and adjust tasks impacted by future updates to the
ServiceNow platform. The WorkArena benchmark runs on ServiceNow developer instances, which are
freely available (with limited capacity) from https://developer.servicenow.com, and initialized
to a known state with demonstration data, ensuring consistency and reproducibility of benchmark runs.

Menus

Navigate to the "SLA > My Work" module of the 
"Service Desk" application

Lists

Filter the incident list to extract all entries where 
priority is "high"

Service Catalogs

Order a new iPad pro with specifications {"colour": 
"space grey", "storage": "128 Gb" }

Knowledge Bases

Search the knowledge base to answer "What is the 
password for conference room A-651?"

Forms

Create a new user with first name "John", last name 
"Smith", and email "john.smith@workarena.com"

Figure 3: Example goal for each kind of
WorkArena task.

Lists: We consider 12 list-based tasks, which can be grouped
into two categories: filtering and sorting. The former consists
of using the UI to construct a complex filter with 1 to 5 condi-
tions. The latter consists of using the UI to sort the list based
on up to 3 columns. In both cases, the interaction with the
UI is non-trivial and requires opening a hidden menu, adding
the right number of conditions, and filling them out accord-
ingly. There are 6 tasks of each type, each corresponding to
a different data table (e.g., users, incidents). In both cases,
client-side validation is used to verify that the resulting list
satisfies the expected conditions. Together, these tasks yield
6,900 instances.

Forms: We consider 5 form-based tasks, which each consist
in creating a new entry in a given data table. These tasks vary
in complexity based on the number of fields that must be filled
(from 1 to 26) and on the intricate properties of each form’s
UI. For example, some forms require navigating through
a set of tabs to expose hidden fields. Others use dynamic
auto-completions fields, which require careful handling (see
Fig. 2 for an example). In all cases, validation proceeds by
querying the database to retrieve entries created by the agent
and verifying that their values are as expected. Together, these tasks yield 5,000 instances.

Knowledge bases: The benchmark includes an information retrieval task that consists of searching the
platform’s knowledge base to answer a question. Concretely, this requires searching with appropriate
keywords and browsing the resulting articles to find specific information. These tasks are constructed
by starting from a list of facts, generating articles containing each fact with GPT-4 (OpenAI, 2023),
and generating a series of questions that unambiguously ask for this fact. Then, validation proceeds
by verifying if the answer returned by the agent is within a set of acceptable answers. For example, if
the question is “What is the level of customer satisfaction?” and the answer is “8.5/10”, alternative
answers such as “85%” or “8.5 out of 10” would be accepted. In total, this task yields 1,000 instances.
Details on article generation and validation are given in § A.3.

Service catalogs: The benchmark includes 9 tasks that require navigating a catalog of products and
ordering items with given specifications. Such tasks vary in complexity based on the number of item
configuration options. In all such tasks, validation is done by querying the database to verify that the
order request created by the agent includes the right items in the right amounts, with the expected
specifications. Together, these tasks yield 3,550 instances.

Menus: We consider 2 menu-based tasks: i) navigating via the “All” menu and ii) impersonating users.
The first consists of using the platform’s main menu to navigate to a given application. In this case,
validation simply verifies that the agent has arrived at the expected location. The second consists of
impersonating a user, a task commonly performed by IT support agents, where the agent logs into the
platform as a given user to diagnose an issue. In this case, validation verifies that the expected user is
logged in. Together, these tasks yield 1,600 instances.

A detailed list of all the tasks implemented in WorkArena is available in § A.1 Tab. 7.

3.2 CHALLENGES: THE WORLD Wild WEB OF WORK

The ServiceNow platform poses a specific set of challenges for UI assistants, which we believe make
WorkArena a complementary and meaningful benchmark for the community.
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Non-standard, dynamic UIs: First, the web pages are heavily dynamic, and exhibit complex UI
elements and ways of interacting with them. For example, the form to create an incident contains
specific rules that can make some fields required or hidden, depending on the value of other fields
(e.g., setting an incident’s status to “Resolved” requires filling its “Resolution notes”). Or, on some
pages, the right-click can be overloaded to display a dynamic menu in certain areas. While these UI
behaviors are not necessarily standard or best practices in web development, they are fairly common and
representative of real-world enterprise software, which is not always designed with user accessibility
in mind.

Non-standard, exotic DOMs: Second, the ServiceNow platform relies on a complex combination of
web technologies to implement its web pages, with nested iFrames, shadow DOMs, and proprietary
Javascript APIs and HTML tags that do not necessarily adhere to existing web standards.1 This
specificity would require strong out-of-distribution generalization for a UI assistant to successfully
solve a task.

Large DOM trees: Third, the HTML Document Object Model (DOM) of rendered web pages in the
ServiceNow platform can be prohibitively large even for state-of-the-art language models, with a flat
text size that ranges between 40k and 500k tokens, even after a basic cleaning (removing scripts, styles
and empty elements). Thus, even a conceptually simple task, such as finding the next element to click
on the current page requires long context understanding, which is an active area of research in language
models.

4 BROWSERGYM

Along with the WorkArena benchmark, we introduce BrowserGym, a generic browser environment
that facilitates the design of new benchmarks, and provides a solid platform for the evaluation of multi-
modal web agents. BrowserGym (Fig. 1b) is implemented as an OpenAI Gym environment (Brockman
et al., 2016) and follows a Partially-Observable Markov Decision Process (POMDP) paradigm. 2 It
relies on Chromium and uses the Chrome DevTools Protocol (CDP) (Google, 2023) and the Playwright
library (Microsoft, 2023) to interact with the web browser.

4.1 CAPABILITIES

BrowserGym implements the following capabilities.

Chat-based user interaction: one of the interaction modalities is a chat interface where the user and
the web agent can exchange messages. In WorkArena, the goal of each task is provided as the initial
user message, to which the agent can reply at any time. This allows for information retrieval tasks
where a specific answer is expected from the agent, but also sequential tasks where user instructions
change over time and are delivered sequentially in a way that mimics real-world use cases.

Augmented DOM attributes: BrowserGym marks every element on the web pages with a unique
identifier bid, its center screen coordinates (x,y), its bounding box (left,top,right,bottom), and
a visibility flag (visible). These attributes provide a crude summary of the visual rendering of the UI
and allow unambiguous interaction with individual elements through their identifiers.

Rich observation space: at each time step, the observation space contains the content of the chat
(list of messages), the currently open pages (list of URLs), the error message from the last action
if any (stack trace), and a multi-modal view of the active web page: its DOM snapshot (structured
object), its accessibility tree or AXTree (structured object) as originally proposed by Zhou et al. (2023),
and a viewport screenshot (image). Both DOM and AXTree are enriched with augmented attributes
(bid, coords, visible tag) and are obtained through Chrome’s CDP. These structured objects
can typically be rendered as text for processing by a language model and can be combined with the
screenshot for a vision-language model.

Rich action space: the action space is customizable and includes Python code, which can be re-
stricted to specific set of pre-defined high-level primitives, such as bid-based actions (click(bid),
type(bid,text), . . . ), and coord-based actions (mouse click(x,y), keyboard type(text), . . . ).

1https://www.w3.org/standards/
2https://github.com/ServiceNow/BrowserGym

5

https://www.w3.org/standards/
https://github.com/ServiceNow/BrowserGym


Published as a conference paper at the ICLR 2024 LLM Agents workshop

Alternatively, the action space be left unrestricted and allow the execution of arbitrary Python code,
including the entire Playwright API and giving the web agent maximum flexibility in interacting with
the browser. For the complete list of high-level primitives available in Browsergym, refer to § B, Tab. 8.

Multi-page navigation: BrowserGym natively supports web tasks that require multiple open pages
(tabs, popups) and is also robust to web pages that employ nested encapsulation techniques such as
iFrames and shadow DOMs. This robustness is essential to handle the heterogeneity of real-world
websites and is missing in existing web environments.

4.2 AN IDEAL EXPERIMENTAL FRAMEWORK

Flexible agent design: BrowserGym offers an extensive list of features but does not impose any
restriction on how web agents should be implemented. The agent is responsible for using the provided
observations or not (DOM, AXTree, screenshot, error message), deciding how to handle the history
(past observations and actions), or deciding which action space it should be using (python, bid, coord,
coord+bid). As such, with BrowserGym, researchers can easily experiment with new ideas and
evaluate and compare a wide variety of web agents on the same set of tasks, such as text-only agents,
vision-augmented agents, memory-augmented agents, and so on.

Minimal task design: BrowserGym reduces the burden of creating new benchmarks to a minimum.
Implementing a new task in BrowserGym boils down to implementing four functions: setup(),
teardown(), validate() and cheat() (optional). The setup() function is responsible for initializing
anything the task needs beforehand, such as creating database entries, navigating to the starting URL,
authenticating, etc. Likewise, teardown() is responsible for cleaning up any resource that might have
been created during the task’s execution. validate() is responsible for checking if the task’s goal was
fulfilled, which can involve operations such as querying a database, validating the URL and the content
of the current page, or looking at the messages sent by the agent in the chat. The method returns a
reward, an optional user message for the chat, and a done flag indicating the end of the task. Finally,
each task can optionally implement a cheat() function, meant to assess the feasibility of the task via a
hard-coded Playwright solution.

Extensibility: BrowserGym is easily extensible to additional benchmarks. We currently support
MiniWoB § B.2), WebArena (Zhou et al., 2023) and WorkArena. We encourage the community to add
new benchmarks or new agents to this platform. We also offer support to reduce the friction of adding
new benchmarks to the platform. Please reach out on GitHub for assistance.

5 EXPERIMENTS

We present a series of empirical experiments to assess the performance of state-of-the-art, general-
purpose LLMs at solving work-related web tasks, using WorkArena and BrowserGym. The aim of
these experiments is two-fold. First, we situate the level of difficulty of WorkArena by comparing it
across baselines and benchmarks. Second, we propose an incremental analysis to quantify the impact
of the different features offered in BrowserGym.

5.1 AGENT DESIGN

We implement a simple web agent with chain-of-thought prompting (Wei et al., 2022b), and we evaluate
its performance across two axes: (1) the underlying LLM, and (2) the use of BrowserGym features.

Observation space: The observation space is composed of the goal, the DOM formatted in HTML,
the accessibility tree and the errors of the previous action if any. We also provide the history of actions
since the beginning of the episode. To study the effect of the different components, we use flags
to activate or deactivate certain features such as use error logs, use html, use AXTree. We have
the option to augment the HTML and accessibility tree with the coordinates of each object on the
page. This is achieved using extract center or extract box to extract the centre coordinates or
bounding boxes respectively. Similarly, we can extract whether objects are visible or hidden using
extract visible tag.

Action space: Agents can be designed to use single actions only or multi-actions.
When action space=bid, only actions to interact at the object level are permitted. When
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action space=bid+coord, we augment the set of actions to interact with 2D coordinates x,y. This is
useful in MiniWoB, where certain tasks require clicking at a certain position on a SVG figure.

Zero-shot examples: In the prompt, we provide a single generic example of how the chain of thought
and the action should be formatted. This contrasts with other methods (Kim et al., 2023) where
task-specific few-shot examples are provided, yet aligns with our objective of developing zero-shot
agents able to solve a large range of new tasks.

Parse and retry: Once the LLM provides an answer, we have a parsing loop that can re-prompt the
agent up to 4 times to make it aware of the parsing mistake. This can save the agent from making basic
mistakes and is mainly useful for less capable LLMs such as GPT-3.5 and CodeLlama. Once parsed,
the action is executed via BrowserGym, which moves to the next step.

Language models: Our study distinguishes between closed- and open-source LLMs. For the closed-
source segment, we employed GPT-3.5 (gpt-3.5-turbo-1106, 16K context) and GPT-4 (OpenAI, 2023)
(gpt-4-1106-preview, 128K context), utilizing OpenAI’s API for model instantiation. In the realm
of open-source LLMs, we sought a model that 1) understands code and HTML, 2) can manage our
lengthy prompts with a substantial context size, and 3) is instruction-finetuned. Our choice fell on
CodeLLAMA-34b-instruct, a specialized version of LLAMA2 (Touvron et al., 2023) that is finetuned
for code, extended context, and instruction-following capabilities. This model was deployed using
Hugging Face’s Text Generation Inference library on 8 A100 GPUs, setting the stage for a maximum
single-batch size of 12,000 tokens. We also explored the effect of using GPT-4 vision by providing the
screenshot of the page but only observed marginal improvement on MiniWoB.

Truncating prompt: We use a maximum of 15,000 tokens for our prompt when using GPT-3.5, 11,000
for CodeLlama and 40,000 with GPT-4. When the prompt is too large, we progressively truncate the
DOM and accessibility tree until they fit the maximum allowed.

5.2 EXPERIMENTAL PROTOCOL

Standard Error: To be able to run a range of experiments under a fixed budget, we limit the number
of seeds to 10 per task. After averaging results, we usually observe a sufficiently low standard error to
draw the needed conclusions. We use stratified bootstrap3 to obtain 1,000 samples of the mean and
report the average and standard deviation of these means as success rate and standard error.

Max step: For all tasks, we allow a maximum of 10 steps per episode. This ensures that a low-
performing agent will not wander around for too long if it’s incapable of solving the task; 10 steps are
considered sufficient for all MiniWoB tasks. On the other hand, some WorkArena tasks can require a
single-action agent more than 25 steps to accomplish, although 10 are enough in multi-action mode.

Model Selection: To select the best model from the ablation study, we use 3 seeds out of the 10 and
keep the remaining 7 for the bootstrap statistics.

5.3 BASELINES ON WORKARENA

Tab. 1 reports the zero-shot performance of these agents on three benchmarks: MiniWoB (Liu et al.,
2018), WebArena (Zhou et al., 2023) and our proposed WorkArena. Performance is measured in terms
of success rate. We emphasize our key findings below.

Performance on MiniWoB: The GPT-4-based agent demonstrates notably high performance on this
benchmark, achieving significantly greater zero-shot success compared to other agents. The outcomes
on the full benchmark and the WebGum subset surpass those of prior studies on zero-shot performance
like Assouel et al. (2023); Zeng et al. (2023), underscoring the effectiveness of our agent design.

WorkArena Presents a Greater Challenge: Consistent with our expectations, our newly proposed
benchmark, WorkArena, proves to be significantly more difficult than MiniWoB, primarily due to its
incorporation of complex user interfaces from real-world software environments. Consequently, all
agents exhibit low performance levels, with no agent achieving success in one specific task. Notably,
our top-performing agent was only able to exceed a 50% success rate in 2 out of the 6 categories,
highlighting the benchmark’s heightened challenge.

3We sample with replacement for each task independently and we average across the tasks and seeds.
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Table 1: Success rate±Standard error (SR ±SE) of all agents
on MiniWoB, WorkArena and WebArena. Bolded num-
bers represent the average success rate over the entire
corresponding benchmark.
 WorkArena has changed on GitHub and those results
are obtained using an older version. Reproducible results
will be published in an updated version of the paper.

Task Category GPT-4 GPT-3.5 CodeLlama
SR % ±SE SR % ±SE SR % ±SE

WorkArena 54.8 ±2.1 18.6 ±2.2 0 ±0

Form 58.0 ±4.8 16.0 ±4.0 0 ±0

Knowledge 50.0 ±14.8 0.0 ±4.3 0 ±0

List-filter 0.0 ±1.7 0.0 ±2.0 0 ±0

List-sort 58.3 ±5.5 38.3 ±6.1 0 ±0

Menu 95.0 ±4.8 25.0 ±8.7 0 ±0

Service catalog 78.9 ±3.7 20.0 ±3.3 0 ±0

MiniWoB (125 tasks) 71.7 ±1.0 43.6 ±1.0 25.5 ±1.3

WebGum Subset (56 tasks) 87.6 ±1.2 59.8 ±1.7 32.4 ±2.1

WebArena (812 tasks) 25.4 ±0.6 13.1 ±0.6 0 ±0

Content-and-config (411 tasks) 28.7 ±0.9 21.9 ±0.9 0 ±0

Information-seeking (325 tasks) 23.1 ±1.0 4.0 ±1.0 0 ±0

Navigation (76 tasks) 17.1 ±2.1 3.9 ±2.0 0 ±0

CodeLLAMA’s Shortcomings: Our analysis
sheds light on why CodeLLAMA, despite its
reasonable zero-shot performance on MiniWoB,
fails to accomplish any task within WorkArena.
We categorize and summarize the primary failure
modes encountered, with details in § C. Initially,
CodeLLAMA frequently replicates actions from
prompt examples, which are unsuitable for a
given context (§ C.1). Additionally, it misap-
plies both high-level (§ C.2) and Python APIs
(§ C.3), and struggles with the intricacies of han-
dling iFrames in Playwright (§ C.3). On the rare
occasions that CodeLLAMA does execute rele-
vant actions and navigates a WorkArena instance,
it nevertheless fails to meet its objectives. These
observations underscore a significant disparity
between leading open-source LLMs and their
closed counterparts further highlighting the rig-
orous challenge posed by our benchmark.

GPT-4’s Superiority: The data unequivocally demonstrate GPT-4’s dominance over GPT-3.5 and
CodeLlama within WorkArena. In the relatively simpler task category of menu navigation, GPT-4
achieves 95% success, in stark contrast to GPT-3.5’s 25% and CodeLlama’s 0%. The performance
disparity between the LLMs is significantly more pronounced here than in MiniWoB and WebArena,
aligning with findings on the emergent properties of AI systems (Wei et al., 2022a). As the complexity
of tasks increases, the necessity for a more advanced LLM to achieve any score becomes apparent, with
noticeable improvements in performance correlating with the enhancement of capabilities.

5.4 CHALLENGES OF LARGE CONTEXT IN WORKARENA
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Figure 4: Comparative analysis of observation modality
sizes: (left) DOM elements of the page and (right) its
accessibility tree, across MiniWoB and WorkArena. In
WorkArena, the data is further delineated by task category.
The grey regions indicate the augmented observation size
when incorporating the comprehensive suite of features
provided by BrowserGym.

WorkArena underscores the challenge of man-
aging real-world websites, notably dealing with
extensive observations stemming from sizable
HTML files, as illustrated in Fig. 4. This poses a
particular challenge for Large Language Models
(LLMs) that require encoding this vast context
to make accurate decisions. Moreover, current
LLMs rely on the transformer architecture, which
incurs a quadratic cost in attention computation.
For instance, a typical 100,000 token HTML file
in WorkArena necessitates a transformer to com-
pute 10 billion (100,0002) attention values per
layer to generate the first token, significantly im-
pacting computational efficiency.

Fortunately, BrowserGym introduces an acces-
sibility representation of websites (Zhou et al.,
2023), significantly diminishing the context size
required for processing. Additionally, through
the implementation of visible element tagging, it is possible to prune elements that are not visible to the
user, thereby further reducing the context size. This approach not only mitigates the computational
challenges posed by large HTML files but also aligns more closely with the actual user experience
by focusing on elements that are relevant and visible, enhancing the efficiency and relevance of the
model’s actions within the environment.

5.5 EFFECT OF BROWSERGYM FEATURES

Our proposed BrowswerGym environment equips web agents with rich observation and action spaces.
Results reported in Tabs. 2 and 3 show the effect of combinations of such features on performance on
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Table 2: Progressive feature analysis on MiniWoB.
Success rate±Standard error (SR ±SE) of all configurations.
Each row adds a new feature to the previous configura-
tion.

Configuration GPT-4 GPT-3.5
SR % ±SE SR % ±SE

Most basic configuration 65.1 ±0.9 29.7 ±0.9

↪→ use error logs=True 66.6 ±1.0 32.2 ±1.0

↪→ use ax tree=True 66.1 ±1.0 38.2 ±1.0

↪→ multi actions=True 67.9 ±1.0 42.0 ±1.1

↪→ extract coords=center 70.4 ±0.8 43.6 ±1.0

↪→ action space=bid+coord 68.4 ±1.0 41.6 ±1.1

↪→ extract coords=box 71.7 ±1.0 39.1 ±1.1

↪→ extract visible tag=True 66.9 ±1.1 39.8 ±1.1

Table 3: Progressive feature analysis on WorkArena.
Success rate±Standard error (SR ±SE) of all configurations.
Each row adds a new feature to the previous configura-
tion.

Configuration GPT-4 GPT-3.5
SR % ±SE SR % ±SE

Most basic configuration 50.7 ±2.0 13.8 ±1.7

↪→ use error logs=True 54.8 ±2.0 14.5 ±1.6

↪→ multi actions=True 50.2 ±2.0 18.6 ±2.2

↪→ extract coords=center 51.2 ±2.3 14.5 ±1.7

↪→ action space=bid+coord 51.2 ±1.9 13.8 ±1.7

↪→ extract coords=box 50.7 ±2.4 13.1 ±1.8

↪→ extract visible tag=True 50.3 ±2.0 13.1 ±1.8

MiniWoB and WorkArena, respectively. Here, the most basic configuration is where all the features are
turned off and each row corresponds to increasingly adding more features (cf. §5.1).

BrowserGym improves performance: Tabs. 2 and 3 shows that adding observation- or action-space
features often helps performance. While not always the case, we can observe a gap of more than 10%
between the most basic configuration and the best one using GPT-3.5 on MiniWoB. Moreover, our
GPT4 agents obtains state-of-the-art performance on WebArena with 25.4% success rate.

2D features do not help for WorkArena: Several MiniWoB tasks require 2D understanding of the UI
and interaction with x,y coordinates; we observe a notable performance gain when introducing 2D
features in Tab. 2. On the other hand, on WorkArena the tasks seem best solved using bid only.

More is not always better: As we gradually add more features, the prompt becomes longer and seems
to overwhelm the LLM. This is mostly observed on WorkArena where additional features lead to a
performance drop. We hypothesise that since the AXTree is already large, adding more features is
likely to distract the agent instead of helping it. We also note that in WorkArena, more features imply
more prompt truncation with GPT-3.5 and CodeLlama, due to limited context length (Fig. 4).

6 CONCLUSION

In this work, we introduced WorkArena, a new benchmark for the evaluation of web agents on
tasks inspired by the day-to-day workflow of knowledge workers in the ServiceNow platform. We
also introduced BrowserGym, a robust, general-purpose environment for automated web agents,
which encompasses an extensive list of features previously proposed in the literature (DOM, AXTree,
screenshot, code and high-level action space), as well as novel capabilities such as an interactive chat.

We presented an empirical evaluation of GPT-3.5, GPT-4 and CodeLlama – among the most advanced
general-purpose Large Language Models (LLMs) currently available for intruction-following and
coding. Specifically, we investigated their generalization performance as web agents in both WorkArena
and MiniWoB. Our results validate WorkArena as an unsolved, challenging benchmark that requires
advanced reasoning capabilities over long contexts (DOM or AXTree), which seem to emerge only in
very large models.

Due to the multi-modal nature of web observations (textual and visual), and the potentially unlimited
complexity of web tasks that can be designed (from toy setups like MiniWoB to harder benchmarks
like WebArena and WorkArena), we believe that browser-based task automation provides the perfect
testbed to evaluate the emergent capabilities of multimodal large language models. In future work,
we plan to integrate additional standard benchmarks into BrowserGym, such as WebShop (Yao et al.,
2022), WebArena (Zhou et al., 2023), and WebVoyager (He et al., 2024). We also plan to expand
WorkArena with tasks covering other, more visual parts of the ServiceNow platform (dashboards,
workspaces, application building), and compositional tasks based on common user trajectories inspired
by the platform’s certification curricula (e.g., Business Process Analyst).

Both WorkArena and BrowserGym are provided as open-source contributions to the community,
and are meant to serve as a catalyst to accelerate both the development of new web agents and their
evaluation in terms of capability and potential impact on the real world.

9



Published as a conference paper at the ICLR 2024 LLM Agents workshop

REFERENCES

Rim Assouel, Tom Marty, Massimo Caccia, Issam Laradji, Alexandre Drouin, Sai Rajeswar, Hector
Palacios, Quentin Cappart, David Vazquez, Nicolas Chapados, Maxime Gasse, and Alexandre
Lacoste. The unsolved challenges of LLMs in open-ended web tasks: A case study. In NeurIPS
2023 Foundation Models for Decision Making Workshop, 2023. URL https://openreview.net/
forum?id=jt3il4fC5B.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI gym, 2016.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2Web: Towards a generalist agent for the web. arXiv, abs/2306.06070, 2023.

Hiroki Furuta, Ofir Nachum, Kuang-Huei Lee, Yutaka Matsuo, Shixiang Shane Gu, and Izzeddin Gur.
Multimodal web navigation with instruction-finetuned foundation models. arXiv, abs/2305.11854,
2023. URL https://arxiv.org/abs/2305.11854.

Google. Chrome devtools protocol, 2023. URL https://chromedevtools.github.io/devtools-
protocol/.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and program
synthesis. arXiv preprint arXiv:2307.12856, 2023a.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world WebAgent with planning, long context understanding, and program
synthesis. arXiv, abs/2307.12856, 2023b. URL https://arxiv.org/abs/2307.12856.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan, and
Dong Yu. WebVoyager: Building an end-to-end web agent with large multimodal models. arXiv,
abs/2401.13919, 2024. URL https://arxiv.org/abs/2401.13919.

Peter C Humphreys, David Raposo, Tobias Pohlen, Gregory Thornton, Rachita Chhaparia, Alistair
Muldal, Josh Abramson, Petko Georgiev, Adam Santoro, and Timothy Lillicrap. A data-driven
approach for learning to control computers. In International Conference on Machine Learning
(ICML), 2022.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks. arXiv,
abs/2303.17491, 2023. URL https://arxiv.org/abs/2303.17491.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. In International Conference on
Learning Representations (ICLR), 2018.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie
Tang. AgentBench: Evaluating LLMs as agents. arXiv, abs/2308.03688, 2023a. URL https:
//arxiv.org/abs/2308.03688.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue, Shelby Heinecke, Rithesh Murthy, Yihao Feng,
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit, Ran Xu, Phil Mui, Huan Wang, Caiming Xiong,
and Silvio Savarese. BOLAA: Benchmarking and orchestrating LLM-augmented autonomous
agents. arXiv, abs/2308.05960, 2023b.
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A WORKARENA – ADDITIONAL DETAILS

A.1 TASKS

This section provides additional details on each type of task included in the benchmark.

Table 4: List of all tasks available in WorkArena, grouped by category. The number of instances corresponds to
the number of instantiations of the parameters of the tasks (e.g., values to input into a specific field). Due to the
combinatorial nature of list and form tasks, which resulted in an exceedingly large pool of potential instances, we
chose to cap the number of instances at 1,000, selected randomly.

Category Task Name Number of instances

Lists
(12 tasks)

FilterAssetList 1,000
FilterChangeRequestList 1,000
FilterHardwareList 1,000
FilterIncidentList 1,000
FilterServiceCatalogItemList 1,000
FilterUserList 1,000
SortAssetList 150
SortChangeRequestList 150
SortHardwareList 150
SortIncidentList 150
SortServiceCatalogItemList 150
SortUserList 150

Forms
(5 tasks)

CreateChangeRequest 1,000
CreateIncident 1,000
CreateHardwareAsset 1,000
CreateProblem 1,000
CreateUser 1,000

Knowledge Bases (1 task) KnowledgeBaseSearch 1,000

Service Catalogs
(9 tasks)

OrderDeveloperLaptopMac 1,000
OrderIpadMini 80
OrderIpadPro 60
OrderSalesLaptop 1,000
OrderStandardLaptop 1,000
OrderAppleWatch 10
OrderAppleMacBookPro15 10
OrderDevelopmentLaptopPC 40
OrderLoanerLaptop 350

Menus
(2 tasks)

AllMenu 1,000
Impersonation 600

Total 18,050

A.2 TASK USER INTERFACE EXAMPLES

In this section, we provide an example of the typical user interface encountered for each category of
task (Figs. 5 to 8). We omit “form” tasks, as such an example has already been presented in Fig. 2.
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2

3

BrowserGym

Hi! I am your UI assistant. I can perform web 
tasks for you. What can I help you with?

Create a filter for the "incident " list to 
extract all entries where  "Priority" is "1 - 
Critical" and "Category" is "Hardware".

Send

1

Figure 5: Example “FilterIncidentList” Task – The goal is given to the agent in natural language. As can be seen,
the goal is designed to be very explicit, leaving no ambiguity on the task to perform. Here, the agent must expose
the filter creation menu, by clicking on the appropriate icon 1 . Then, it must add conditions one by one and fill
them out accordingly 2 . Finally, it must apply the filter using the “Run” button 3 .

BrowserGym

Hi! I am your UI assistant. I can perform web 
tasks for you. What can I help you with?

Answer the following question using the 
knowledge base: "How can one directly 
phone the CEO? Respond with the complete 
phone number including the country code."

Send

+1 (555) 101-2020

1

2

3

4

Figure 6: Example “KnowledgeBaseSearch” Task – The goal is given to the agent in natural language. As can be
seen, the goal is designed to be very explicit, clearly stating which question must be answered and the expected
format. Here, the agent must conduct a search using the search bar 1 . It must then browse all resulting articles 2
and read their content in order to find the desired information 3 . Finally, it must return this information to the user
via the chat box for validation 4 .
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BrowserGym

Hi! I am your UI assistant. I can perform web 
tasks for you. What can I help you with?

Go to the hardware store and order 5 
"Developer Laptop (Mac)" with  
configuration {"Adobe Acrobat": True, 
"Eclipse IDE": False, "Adobe Photoshop": 
True, "Additional Software Requirements": 
"Zoom"}.

Send

1

2

3

4

5

Figure 7: Example “OrderDeveloperLaptopMac” Task – The goal is given to the agent in natural language. As
can be seen, the goal is designed to be very explicit, leaving no ambiguity on the task to perform. Here, the
agent must navigate the service catalog to reach the appropriate item 1 – 2 . Then, it must select the appropriate
configuration 3 and quantity 4 . Finally, it must submit the order by clicking on the “Order Now” button.

BrowserGym

Hi! I am your UI assistant. I can perform web 
tasks for you. What can I help you with?

Navigate to the "Open" module of the 
"Problem" application.

Send

1

2

3

Figure 8: Example “AllMenu” Task – The goal is given to the agent in natural language. As can be seen, the
goal is designed to be very explicit, leaving no ambiguity on the task to perform. Here, the agent must access the
“All” menu 1 , conduct a search 2 , and select the right module 3 . As an alternative to 2 , the agent could scroll
through the list. In this example, the agent must exercise caution when selecting the menu item to click, as many
applications have an “Open” module.

A.3 KNOWLEDGE BASE TASKS – ADDITIONAL DETAILS

This task consists of searching a company knowledge base for specific information to answer a given
question. Here, we explain how the knowledge base included in WorkArena is generated, how we
produce the questions and answers used in each task instance, and how validation is performed.

Generating the knowledge base: The knowledge base included in WorkArena consists of 100
articles generated using GPT-4 (OpenAI, 2023). To achieve this, we start from a list of 100 facts, which
are each composed of an item and a value. Tab. 5 shows a few examples. Then, for each fact, we use
GPT-4 to produce an article in HTML format and make sure that the exact string “the {fact} is {item}”
is included in the article. An example article is shown in Fig. 9.

Generating questions: For each fact, i.e., (item, value) pair, we produce a list of questions that
ask about item and whose answers are exactly value. We achieve this by prompting GPT-4 with the
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Table 5: Example facts included in the WorkArena knowledge base

Fact Item
Password to conference room A-561 roo918k
Address of office #456 42, Pizza street, New York, USA
CEO’s name Alex Johnson

Figure 9: Example of a generated knowledge base article. The fact (“password to conference room A-561”,
“roo918k”) is highlighted.

initial question “What is {item}?” and ask it to produce 10 alternative wordings for the question, as
well as formatting instructions, to ensure that the answer is exactly value. Then, we prompt GPT-3.5
with the generated article and each question, ensuring that every single one is answered correctly. If
the model fails to answer a question, we ask GPT-4 to improve it and we repeat the process. Note
that we use GPT-3.5 to answer the questions to avoid the pitfall where GPT-4 would cater to itself,
producing ambiguous questions that it somehow succeeds in answering correctly. Example questions
and formatting instructions are shown in Tab. 6.

Answer validation: Despite the precise formatting instructions included with each question, we
allow for slight variations in formatting and wording by verifying if the answer produced by the agent is
within a set of acceptable answers. To produce such alternative answers, we provide the expected value
to GPT-4 and ask it to produce 10 alternative formats. We include multiple examples in the prompt and
inspect the results to ensure coherence. An example is shown in Tab. 7.

Table 6: Example questions and formatting instructions produced for initial question “What is the address of
Office #456?”

Question Formatting Instructions
Could you provide the street location for Office #456? Make sure to include the Street Number, Street Name, City, and Country.
Where can Office #456 be found? Provide the exact street address, city, and country.
Where should one go to visit Office #456? Please respond with the format: Number, Street, City, Country.
What’s the precise location of Office #456? Answer with the Street Number, Street Name, City, and Country.
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Table 7: Example alternative answers for question “What is the address of Office #456?”, where the expected
answer is “42, Pizza street, New York, USA”.

Alternative Answer
42 Pizza Street, New York, USA
42, Pizza St., NY, United States
#42 Pizza Street, New York, U.S.
42 Pizza St, New York City, United States of America
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B BROWSERGYM – ADDITIONAL DETAILS

B.1 ACTION SPACE

Table 8: The complete action space of BrowserGym.

Category Primitive Description

bid

fill(bid, text) Fill an input field with text.
click(bid, button) Click an element.
dblclick(bid, button) Double-click an element.
hover(bid) Hover the mouse over an element.
press(bid, key comb) Focus an element and press a combination of keys.
focus(bid) Focus an element.
clear(bid) Clear an input field.
select option(bid, options) Select one or multiple options in a drop-down element.
drag and drop(from bid, to bid) Drag and drop one element to another.

coord

mouse move(x, y) Move the mouse to a location.
mouse down(x, y, button) Move the mouse to a location then press and hold a mouse

button.
mouse up(x, y, button) Move the mouse to a location then release a mouse button.
mouse click(x, y, button) Move the mouse to a location and click a mouse button.
mouse dblclick(x, y, button) Move the mouse to a location and double-click a mouse

button.
mouse drag and drop(from x, from y, to x, to y) Drag and drop from a location to a location.
keyboard down(key) Press and holds a keyboard key.
keyboard up(key) Release a keyboard key.
keyboard press(key comb) Press a combination of keys.
keyboard type(text) Types a string of text through the keyboard.
keyboard insert text(text) Insert a string of text in the currently focused element.

tab
new tab() Open a new tab.
tab close() Close the current tab.
tab focus(index) Bring a tab to front (activate tab).

nav
go back() Navigate to the previous page in history.
go forward() Navigate to the next page in history.
goto(url) Navigate to a url.

misc
scroll(dx, dy) Scroll pixels in X and/or Y direction.
send msg to user(text) Send a message to the user in the chat.
noop() Do nothing.

python Any python code (UNSAFE!) Executes code with playwright, the active page and the
send msg to user(text) primitive available.

B.2 MINIWOB

As part of BrowserGym, we provide a port of the MiniWoB benchmark (Shi et al., 2017a; Liu et al.,
2018). Whereas in MiniWoB the goal of each task is embedded in the HTML of the web page, in
BrowserGym the goal is provided in a separate chat window, accessible to the agent. We therefore run
a minimal Javascript snippet in the setup() function of MiniWoB tasks to extract the goal from the
web page and place it in the chat instead. Apart from that change and removing the hard time limit per
episode, porting MiniWoB to BrowserGym required minimal effort.
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BrowserGym

Hi! I am your UI assistant. I can perform web 
tasks for you. What can I help you with?

Create a line that bisects the angle evenly in 
two, then press submit.

Send

Figure 10: Example of a MiniWoB task as rendered in BrowserGym.
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C ANALYZING CODELLAMA’S SHORTCOMINGS IN WORKARENA

This section delves into specific failure modes exhibited by CodeLLAMA within the WorkArena
environment, with orange text emphasizing key aspects of these shortcomings.

C.1 MIMICKING ACTIONS FROM THE ACTION SPACE DESCRIPTION

In the scenario presented below, the agent navigates the BID (high-level) action space. Rather than
selecting an actionable step aligned with the objective and accessibility structure, it opts for an action
directly from the exemplars provided in the action space description.

Prompt� �
1 # System message
2

3 You are an agent trying to solve a web task based on the content of the page and a
user instructions. You can interact with the page and explore. Each time you
submit an action it will be sent to the browser and you will receive a new page.

4

5 # Instructions
6

7 Review the current state of the page and all other information to find the best
possible next action to accomplish your goal. You are in a benchmark and your
answer will be interpreted and executed by a program, make sure to follow the
formatting instructions.

8

9 ## Goal:
10

11 Navigate to the ”Live Workflows ¿ History” module of the ”Workflow” application.
12

13 # Observation of current step:
14

15 ## AXTree:
16 ...
17

18 # History of interaction with the task:
19

20 # Action space:
21

22 14 different types of actions are available.
23

24 select˙option(bid: str, options: str — list[str])
25 ...
26

27 dblclick(bid: str, button: Literal[’left’, ’middle’, ’right’] = ’left’, modifiers:
list[typing.Literal[’Alt’, ’Control’, ’Meta’, ’Shift’]] = [])

28 ...
29

30 focus(bid: str)
31 ...
32

33 hover(bid: str)
34 ...
35

36 scroll(delta˙x: float, delta˙y: float)
37 ...
38

39 send˙msg˙to˙user(text: str)
40 ...
41

42 clear(bid: str)
43 ...
44

45 noop()
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46 ...
47

48 press(bid: str, key˙comb: str)
49 ...
50

51 click(bid: str, button: Literal[’left’, ’middle’, ’right’] = ’left’, modifiers: list
[typing.Literal[’Alt’, ’Control’, ’Meta’, ’Shift’]] = [])

52 Description: Click an element.
53 Examples:
54 click(’51’)
55 ...
56

57 drag˙and˙drop(from˙bid: str, to˙bid: str)
58 ...
59

60 fill(bid: str, value: str)
61 ...
62

63 Only a single action can be provided at once. Example:
64 press(’88’, ’Backspace’)
65 Multiple actions are meant to be executed sequentially without any feedback from the

page.
66 Don’t execute multiple actions at once if you need feedback from the page.
67

68 # Abstract Example
69

70 Here is an abstract version of the answer with description of the content of each tag.
Make sure you follow this structure, but replace the content with your answer:

71

72 *action*
73 One single action to be executed. You can only use one action at a time.
74 *action*
75

76 # Concrete Example
77

78 Here is a concrete example of how to format your answer.
79 Make sure to follow the template with proper tags:
80

81 *action*
82 fill(’237’, ’example value’)
83 *action*� �

Agent’s Response� �
1 *action*
2 click(’51’)
3 *action*� �
As illustrated, CodeLLAMA directly replicated the example action listed on line 61.
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C.2 INADEQUATE UTILIZATION OF THE BID API

This example highlights CodeLLAMA’s errors in action selection and coding syntax. Initially, it opts
for an action outside the set of permitted actions. Subsequently, it commits a syntax error in the code.

Prompt� �
1

2 # System Message
3 ...
4

5 # Instructions
6 ...
7

8 ## Goal:
9 Sort the ”assets” list by the following fields:

10 - State (ascending)
11

12 # Observation of current step:
13

14 ## AXTree:
15 ...
16

17 # History of interaction with the task:
18

19 # Action space:
20

21

22 14 different types of actions are available.
23

24 select˙option(bid: str, options: str — list[str])
25 ...
26

27 dblclick(bid: str, button: Literal[’left’, ’middle’, ’right’] = ’left’, modifiers:
list[typing.Literal[’Alt’, ’Control’, ’Meta’, ’Shift’]] = [])

28 ...
29

30 focus(bid: str)
31 ...
32

33 hover(bid: str)
34 ...
35

36 scroll(delta˙x: float, delta˙y: float)
37 ...
38

39 send˙msg˙to˙user(text: str)
40 ...
41

42 clear(bid: str)
43 ...
44

45 noop()
46 ...
47

48 press(bid: str, key˙comb: str)
49 ...
50

51 click(bid: str, button: Literal[’left’, ’middle’, ’right’] = ’left’, modifiers: list
[typing.Literal[’Alt’, ’Control’, ’Meta’, ’Shift’]] = [])

52 ...
53

54 drag˙and˙drop(from˙bid: str, to˙bid: str)
55 ...
56
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57 fill(bid: str, value: str)
58 ...
59

60

61 Note:
62 ...
63

64 # Abstract Example
65 ...
66

67 # Concrete Example
68 ...� �

Agent’s Response� �
1 *action*
2 sort(’208-192’, ’State’, ’ascending’)
3 *action*� �

Enviroment Feedback� �
1 Error while parsing action: invalid action type sort.
2 Make sure your answer is restricted to the allowed actions.� �

Agent’s Response� �
1 I apologize for the mistake. You are correct, the action type ”sort” is not allowed.
2

3 Here is a revised version of the answer that uses a valid action type:
4

5 *action*
6 fill(’208-192’, ’State’, ’ascending’)
7 *action*
8

9 I hope this revised answer meets your requirements. Please let me know if you have
any further questions or concerns.� �

Enviroment Feedback� �
1 TypeError: fill() takes 2 positional arguments but 3 were given� �
As demonstrated, the agent initially selected the sort function, which does not exist. Following this, it
encountered a syntax error while attempting to use the fill function.
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C.3 INCORRECT APPLICATION OF THE PYTHON API

Subsequently, CodeLLAMA misapplies the Python API in an attempt to generate Playwright code.

Prompt� �
1 # System message
2 ...
3

4 # Instructions
5 ...
6

7 ## Goal:
8 Navigate to the ”Knowledge” module of the ”Self-Service” application.
9

10 # Observation of current step:
11

12 ## AXTree:
13 ...
14

15 # History of interaction with the task:
16

17 # Action space:
18

19 ...
20 The browser context is in page.context, and all open webpages (tabs)
21 are in page.context.pages. Here is an example of a valid action:
22

23 frame = page.frame˙locator(”.result-frame”)
24 button = frame.get˙by˙text(”Submit”)
25 button.click()
26

27 Here is another example:
28

29 frame = page.get˙by˙test˙id(”35”).frame˙locator(”:scope”)
30 frame.get˙by˙test˙id(”35-776”).click()
31

32 ...
33

34 # Abstract Example
35

36 Here is an abstract version of the answer with description of the content of
37 each tag. Make sure you follow this structure, but replace the content with your
38 answer:
39

40 *action*
41 One single bloc of Python code. Do not include any explanation, only valid Python

code.
42 *action*
43

44 # Concrete Example
45

46 Here is a concrete example of how to format your answer.
47 Make sure to follow the template with proper tags:
48

49 *action*
50 frame = page.get˙by˙test˙id(”23”).frame˙locator(”:scope”)
51 frame = frame.get˙by˙test˙id(”23-557”).frame˙locator(”:scope”)
52 frame.get˙by˙test˙id(”23-557-2”).fill(”Hello world!”)
53 frame.get˙by˙test˙id(”23-557-3”).click()
54 *action*� �
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Agent Response� �
1 *action*
2 page.get˙by˙test˙id(”Knowledge”).click()
3 *action*� �
As one witnesses, CodeLLAMA confuses the get by test id and the get by text functions.

C.4 STRUGGLING WITH IFRAME COMPLEXITY

In the final example, CodeLLAMA incorrectly navigates the complexities arising from handling
iFrames within Playwright.

Prompt� �
1 # System message
2 ...
3

4 # Instructions
5 ...
6

7 ## Goal:
8 Go to the hardware store and order 4 ”Apple Watch”
9

10 # Observation of current step:
11

12 ## AXTree:
13 ...
14

15 # History of interaction with the task:
16

17 # Action space:
18 ...
19

20 Note that Playwright’s get˙by˙test˙id() method is configured to use the bid
attribute to locate HTML elements, instead of the default data-testid. Also,
Playwright’s locators can not traverse iframes, so you have to locate parent
iframes first in order to locate an element in an iframe. The bid attribute
contains all the information required to recursively locate an element. For
example, an element with bid=”23-557-2” can be retrieved as follows:

21

22 frame = page.get˙by˙test˙id(”23”).frame˙locator(”:scope”)
23 frame = frame.get˙by˙test˙id(”23-557”).frame˙locator(”:scope”)
24 elem = frame.get˙by˙test˙id(”23-557-2”)
25 ...
26

27 # Abstract Example
28

29 Here is an abstract version of the answer with description of the content of each tag.
Make sure you follow this structure, but replace the content with your answer:

30

31 *memory*
32 Write down anything you need to remember for next steps. You will be presented with

the list of previous memories and past actions. Some tasks require to remember
hints from previous steps in order to solve it.

33 *memory*
34

35 *action*
36 One single bloc of Python code. Do not include any explanation, only valid Python

code.
37 *action*
38

39 # Concrete Example
40
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41 Here is a concrete example of how to format your answer.
42 Make sure to follow the template with proper tags:
43

44 *memory*
45 I clicked on bid 32 to activate tab 2. The accessibility tree should mention

focusable for elements of the form at next step.
46 *memory*
47

48 *action*
49 frame = page.get˙by˙test˙id(”23”).frame˙locator(”:scope”)
50 frame = frame.get˙by˙test˙id(”23-557”).frame˙locator(”:scope”)
51 frame.get˙by˙test˙id(”23-557-2”).fill(”Hello world!”)
52 frame.get˙by˙test˙id(”23-557-3”).click()
53 *action*� �

Agent response� �
1 *memory*
2

3 * I am currently on the ServiceNow Catalog page.
4 * I have not yet interacted with the page.
5 * I am trying to order 4 ”Apple Watch” items.
6

7 *memory*
8

9 *action*
10

11 # Find the search bar and enter ”Apple Watch”
12 search˙bar = page.get˙by˙test˙id(”212-88”)
13 search˙bar.fill(”Apple Watch”)
14

15 # Wait for the search results to load
16 page.wait˙for˙load˙state(”networkidle”)
17

18 # Find the ”Apple Watch” result and click on it
19 ...
20

21 *action*� �
As illustrated, CodeLLAMA overlooks the limitation that Playwright cannot traverse iframes directly.
It fails to acknowledge the need to first locate parent iframes before attempting to locate an element
within an iframe.
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