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Abstract
The neural radiance fields (NeRF) have advanced the development
of 3D volumetric video technology, but the large data volumes they
involve pose significant challenges for storage and transmission. To
address these problems, the existing solutions typically compress
these NeRF representations after the training stage, leading to a
separation between representation training and compression. In
this paper, we try to directly learn a compact NeRF representation
for volumetric video in the training stage based on the proposed
rate-aware compression framework. Specifically, for volumetric
video, we use a simple yet effective modeling strategy to reduce
temporal redundancy for the NeRF representation. Then, during
the training phase, an implicit entropy model is utilized to estimate
the bitrate of the NeRF representation. This entropy model is then
encoded into the bitstream to assist in the decoding of the NeRF
representation. This approach enables precise bitrate estimation,
thereby leading to a compact NeRF representation. Furthermore,
we propose an adaptive quantization strategy and learn the opti-
mal quantization step for the NeRF representations. Finally, the
NeRF representation can be optimized by using the rate-distortion
trade-off. Our proposed compression framework can be used for
different representations and experimental results demonstrate that
our approach significantly reduces the storage size with marginal
distortion and achieves state-of-the-art rate-distortion performance
for volumetric video on the HumanRF and ReRF datasets. Com-
pared to the previous state-of-the-art method TeTriRF, we achieved
an approximately -80% BD-rate on the HumanRF dataset and -60%
BD-rate on the ReRF dataset.

CCS Concepts
• Computing methodologies → Computer graphics; Com-
puter vision; Virtual reality; Image compression.
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Figure 1: Comparison of compression performance with the
state-of-the-art method, TeTriRF [52]. Compared to TeTriRF,
our method achieves approximately 1 dB higher PSNR at a
similar bitrate, and the BD-rate is -83%.

1 Introduction
3D volumetric video can provide immersive experience for viewers
and exhibits a potential trend to be the next-generation video for-
mat. Previous works for volumetric videos reconstruction includes
point cloud-based approaches [15] and depth-based approaches [3].
Recently, the popularized 3D representation known as Neural Radi-
ance Fields (NeRF) [32], acclaiming for its photorealistic rendering
capabilities from novel viewpoints, have attracted tremendous at-
tention.

NeRF [32] utilizes Multilayer Perceptron (MLP) to model 3D
scenes and employ volume rendering techniques to generate im-
ages from novel perspectives. To increase the training and render-
ing speeds, the mainstream works [6, 34, 44] incorporate explicit
NeRF representations, such as grids [44], planes [6], and hash ta-
bles [34]. Furthermore, various methods [5, 10, 11, 28, 35, 36, 50]
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have been proposed to extend NeRF of static scenes to dynamic
scenes, i.e., volumetric videos. However, the majority of existing
research primarily emphasizes enhancing the reconstruction qual-
ity of NeRF representations, while often overlooks the critical need
for reducing the storage size and transmission bandwidth. This
oversight presents significant challenges for practical applications,
particularly in dynamic volumetric video scenarios.

To address these problems, several methods [14, 24, 25, 30, 41, 46]
have been proposed to compress explicit NeRF representations for
static scenes and dynamic scenes [48, 49, 52]. These methods uti-
lize prediction, transformation, quantization, and entropy coding
techniques, inspired from traditional video compression algorithms
to compress the dynamic NeRF representations after the training
stage, achieving significant compression rates. Among these ap-
proaches, ReRF [48] utilizes grid-based explicit representations to
model dynamic scenes and devises a compression method akin to
JPEG [47] to compress the representations. VideoRF [49] builds
upon ReRF [48] by integrating traditional 2D video codec into the
compression process. TeTriRF [52] employs a more compact tri-
plane representation to model dynamic NeRF and utilizes an HEVC
codec to compress the tri-plane representations. However, these
methods concentrate exclusively on compressing dynamic NeRF
representations post-training, neglecting the rate-distortion trade-
off during the training phase. Therefore, they fail to adequately
reduce spatial and temporal redundancy within the NeRF represen-
tations, thus their compression performance is far from optimal.

In this paper, we propose a rate-aware compression method tai-
lored for NeRF-based volumetric video. Our approach estimates the
bitrate of NeRF representations during its training stage and incor-
porates rate and distortion terms into the loss function, enabling
end-to-end training. Therefore, we can obtain a compact NeRF rep-
resentation with optimal rate-distortion performance. Specifically,
first of all, targeting explicit NeRF grid representations, we propose
inter prediction-based dynamic modeling technique by learning
residual information based upon the previous frame, which effec-
tively reduces the entropy of the NeRF representation. Second, we
propose an adaptive quantization strategy with learnable quantiza-
tion step to preserve more detailed information which contribute
better reconstruction quality at different locations and scales. Third,
in order to incorporate bitrate constraints into the training process
and leverage rate-distortion loss, we introduce a tiny MLP-based
implicit entropy model to estimate the rate. Given the potentially
complex distribution of the explicit NeRF representation, we use
temporal and spatial context for a more accurate rate estimation.
Experimental results demonstrate that by applying our method-
ology to grid-based explicit representation [7], we can achieve
state-of-the-art rate-distortion compression performance on the
representative HumanRF [17] and ReRF [48] datasets. Compared
with SOTA method TeTriRF [52], we achieve an approximate -80%
BD-rate on HumanRF dataset and -60% BD-rate on ReRF dataset.

Our main contributions can be summarized as follows:

• We proposed a rate-aware compression framework for NeRF
grid representations. Our pipeline introduces adaptive quan-
tization strategy and spatial-temporal implicit entropymodel
to achieve joint rate-distortion optimization during training,

which greatly enhances the compression performance than
post-training methods.

• Extensive experimental results on the benchmark datasets
demonstrate the effectiveness of our approach. We can save
more than 80% bitrate when compared with state-of-the-art
dynamic NeRF compression approach at the same recon-
struction quality.

2 Related Work
2.1 NeRF for Scene Representation
NeRF [32] enables the generation of images from arbitrary view-
points through volume rendering, by employing a large-scale Mul-
tilayer Perceptron (MLP) to fit the colors and densities of sampled
points in a scene. However, utilizing a large-scale MLP to represent
the scene for real-time rendering is infeasible, prompting several
works to propose combining explicit representations with smaller
MLPs as a substitute for the pure implicit representation of the
scene. This approach aims to reduce the computational complexity
associated with large-scale MLPs. Some existing works have ex-
plored various approaches in this regard. For instance, [12] utilizes
an octree, [44] employs a voxel grid, [34] implements hash tables,
and [6] utilizes tensors.

Expanding NeRF [32] to dynamic scenes is not a trivial task,
necessitating consideration of object movements within dynamic
scenes. [9, 13, 53] model dynamic scenes by using time as an ad-
ditional condition for the implicit MLP, yet these purely implicit
modeling methods are not only inefficient but also perform poorly
in motion-intensive settings. Alternatively, [26, 27, 35] incorporate
motion modeling of the scene using a deformation field to pre-
dict displacements in dynamic scenes between each frame and a
canonical frame. To expedite training and rendering, [10, 11] in-
troduce explicit representations to accelerate the reconstruction
of dynamic scenes. Essentially, these approaches utilize a single
NeRF model to fit all frames within a dynamic scene, achieving
commendable reconstruction results for short sequences. How-
ever, the reconstruction quality dramatically declines with longer
sequences. Consequently, to ensure high-quality reconstructions
in long-sequence settings, we adopt a frame-by-frame modeling
approach for dynamic scenes in this paper.

2.2 NeRF Representations Compression
Although NeRF has achieved superior rendering quality and fast
training speed via the explicit representations, it is at the cost
of additional model size and storage cost. Recently, numerous
works [14, 20, 24, 25, 30, 38, 41, 46, 57] have focused on compress-
ing the explicit representation of NeRF in static scenes. [24] em-
ploys post-processing techniques to compress trained voxel grids
through voxel pruning and vector quantization. [46] and [41] intro-
duce compression-related operations during training, such as vector
quantization [46] and binarization [41] to compress neural radiance
fields, yet they do not consider rate-distortion optimization during
training. [14, 20, 30] reduce the entropy of the NeRF representa-
tion by introducing rate loss during training, but their methods
of rate estimation are relatively simplistic, and the compression
performance is not optimal. NeRFCodec [25] compresses NeRF rep-
resentations by adjusting encoder and decoder heads, building on
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the reuse of 2D neural image codec, but this method is only applica-
ble to plane-based NeRF representations. Moreover, these methods
solely address compression in static scenes and do not account for
temporal redundancy in dynamic scenes.

For dynamic NeRF compression, the recent works [16, 48, 49, 52,
56, 58] adopt frame-by-frame modeling, which enables high-quality
reconstruction for long-duration sequences. These approaches also
incorporate compression algorithms to ensure efficient storage uti-
lization. ReRF [48] models the radiance field as a combination of mo-
tion fields and residual fields and employs traditional video compres-
sion pipelines to compress the representation of the radiance field.
Guo et al. [16] adopts a vector quantization approach to eliminate
the spatial-temporal redundancy of the radiance field. TeTriRF [52]
directly models the radiance field as a tri-plane representation and
applies a 2D video encoder to compress the representation. How-
ever, these methods do not consider the optimization of radiance
field representation guided by rate-distortion loss functions. Our
proposed method not only eliminates temporal redundancy but also
leverages rate-distortion functions to optimize the representation of
the radiance field, achieving optimal rate-distortion performance.

2.3 Image, Video and 3D Content Compression
To achieve efficient transmission, data compression has been inves-
tigated for other multimedia data, including image, video and 3D
contents. This work also inspires from these previous approaches,
thus we introduce them briefly.

In the field of image compression, various methods have been
developed to formulates the rate-distortion optimization problem as
an end-to-end training process to enhance compression efficiency
utilizing neural networks [1, 8, 18]. Balle [1] proposed a hyperprior-
based autoencoder to achieve better compression performance than
traditional codecs, such as JPEG [47] and JPEG2000 [42]. Cheng [8]
have employed discrete Gaussian mixture models to estimate the
distribution of latents, achieving compression performance that
exceeds the VVC-intra [4]. For video compression algorithms, tradi-
tional video coding standards [4, 45] utilize a hybrid coding frame-
work that compresses video through intra prediction, inter pre-
diction, transformation, quantization, and entropy coding. Neural
network-based end-to-end video compression methods [19, 21–
23, 29, 40] employ neural networks to replace modules within the
hybrid coding framework. By using rate-distortion optimization to
tune the entire network, the SOTA method have achieved compres-
sion performance surpassing the latest VVC standard [4].

3D content comes in various forms, such as NeRF, point clouds,
and multi-view videos. For point cloud compression, MPEG has
introduced G-PCC and V-PCC [39] to compress different types of
point clouds. With the advancement of neural networks in image
and video compression, numerous studies [37, 43] have explored
neural network-based point cloud compression. [54] introduced
3D wavelet transform to compress volumetric images. [37] sug-
gested enhancing the utilization of spatio-temporal information by
leveraging voxelized information from neighboring nodes within
an octree architecture, thereby further improving the efficiency of
point cloud compression. For the compression of multi-view videos,
MPEG has introduced MIV [3] standard, which encodes multi-view
videos using 2D encoders, eliminates inter-view redundancies, and

utilizes novel view synthesis algorithms to synthesize new view-
points. However, spatio-temporal redundancy reduction has not
yet fully investigated for NeRF representations.

3 Preliminaries
NeRF [32] is a continuous 3D scene representation technique that
learns a mapping fuction 𝑔𝜙 (x, d) : R𝑑 → R𝑐 , transforming the
coordinates x = (𝑥,𝑦, 𝑧) of sampled points along a ray and the
viewing direction d = (𝜃, 𝜙) into color c and density 𝜎 :

(c, 𝜎) = 𝑔𝜙 (x, d). (1)

When rendering images from novel viewpoints, given a target
camera extrinsic, the color 𝐶 (r) of corresponding pixel can be ob-
tained through volume rendering:

𝐶 (r) =
𝑁∑︁
𝑖=1

𝑇𝑖𝛼𝑖c𝑖 ,

𝑇𝑖 =

𝑖−1∏
𝑗=1

(1 − 𝛼𝑖 ) , 𝛼𝑖 = 1 − exp (−𝜎𝑖𝛿𝑖 ) .
(2)

where 𝑇𝑖 and 𝛼 represents the transmittance and alpha value of
𝑖-th sampled point and 𝛿𝑖 denotes the distance between adjacent
sampled points.

The original NeRF [32] employs a purely implicit MLP to ap-
proximate mapping function 𝑔. Subsequent works have introduced
explicit representations (such as grids [7], planes [6], etc.) combined
with a tiny rendering MLP to accelerate the training and rendering.
It should be noted that our proposed compression method can be
used for different explicit representations and we provide further
analysis in our experimental part. Here, we adopt the DiF [7] as
our default static representation in this paper and we extend it for
the dynamic scenes.

𝜎𝑐

𝑑 = 	 (𝜃, 𝜙)

Rendering
MLP

…

basis field 

coefficient field 
viewing direction

color density

sampled 
point

query

Figure 2: Demonstration of DiF representation.

DiF employs a grid-based explicit representation which decom-
poses the representation into a coefficient field and a basis field. As
illustrated in Fig 2, the coefficient field comprised of a single-scale
grid and the basis field consisting of six multi-scale grids. During
rendering, features are initially queried from the coefficient grid
and the basis grids through trilinear interpolation, followed by
the fusion of features via the Hadamard product. Finally, a tiny
rendering MLP maps the feature to color c and density 𝜎 .
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Figure 3: The training pipeline of our proposed method. (a) Firstly, the reconstructed representation𝐺𝑡−1 from the previous
frame is retrieved from the decode buffer, and based on this, the residual representation 𝑅𝑡 is trained. (b) During training,
adaptive quantization is utilized to enable representations at different scales to learn the optimal quantization step. Additionally,
the spatio-temporal context implicit entropy model is used to estimate the bitrate of the explicit representation 𝑅𝑡 . Ultimately,
rate-distortion optimization is performed by integrating distortion loss and rate loss.

4 Methodology
Fig. 3 illustrates the training pipeline of our method. This includes
a dynamic modeling method based on inter prediction, an adaptive
quantization strategy, and bitrate estimation for the radiance field
representation through a spatio-temporal implicit entropy model,
combined with distortion loss for rate-distortion optimization.

4.1 Inter Prediction-Based Dynamic Modeling
Given that directly modeling entire dynamic scenes using NeRF
representation like [5, 11] may result in poor performance for long
sequences [48], we extend the current static NeRF representation
DiF to dynamic scenes through a frame-by-frame inter prediction
based modeling approach in the time dimension.

Specifically, the components required for volume rendering of a
static scene include the explicit representation, occupancy grid, and
the rendering MLP. These are also the components that need to be
compressed and transmit. Tab 1 demonstrates the size of different
components in the grid-based representation [7]. It is evident that
independently modeling a NeRF for each frame without compres-
sion would require about 600 MBps (20MBx30fps) bandwidth for
volumetric video, which is unacceptable. Given that the explicit
representation occupies the majority of the model size, eliminating
the inter-frame redundancy of the explicit representation could
make dynamic NeRF more compact.

Table 1: Model Size of different components in DiF [7].

Explicit Repr. Occupancy Grid Rendering MLP Total
19.21 MB 1.08 MB 0.17 MB 20.46MB

To simplify the description, we collectively refer to the coeffi-
cient grid and the basis grid as the feature grid𝐺 . To model dynamic

scenes, we use a simple yet effective dynamic frame-by-frame mod-
eling strategy. Here, we first divide the entire sequence into equally
long groups, where the first frame of each group is an I-frame,
modeled independently, and subsequent frames are P-frames, mod-
eled only in terms of the residual relative to the previous frame.
Specifically, when modeling a P-frame, the reconstruction grid of
the previous frame 𝐺𝑡−1 is retrieved from the decoded buffer, and
we can learn the residual grid 𝑅𝑡 for the current frame. Then the
representation for current frame is expressed as:

𝐺𝑡 = 𝐺𝑡−1 + 𝑅𝑡 . (3)

Finally, 𝐺𝑡 is stored into decode buffer for the reconstruction of
the next frame. Furthermore, to ensure the temporal continuity and
facilitate compression, we have applied an L1 regularization to the
magnitude of the residual grid, i.e., L𝑟𝑒𝑔 = ∥𝑅𝑡 ∥1.

In addition, given the feature-level similarity of frames within the
same group, we allow frames within a group to share the rendering
MLP. This strategy significantly reduces bitrate consumption at
a lower bitrate range without incurring substantial performance
degradation.

4.2 Adaptive Quantization
In our proposed framework, the learned representation 𝐺𝑡 (𝐺𝑡

for I-frame and 𝑅𝑡 for P-frame) for the current frame should be
quantized before the actual entropy coding. One straightforward
approach is to use a uniform quantization step for all the items
in 𝐺𝑡 . However, the importance of different regions/scales in the
learned representation𝐺𝑡 may vary and uniform quantization may
be not the optimal solution.

In this paper, we have adopted an adaptive quantization training
strategy to identify the optimal quantization step for NeRF repre-
sentations. Taking DiF representation as an example, their explicit
representations encompass grids at different scales. During training,
we assign different quantization step parameters to grids of different
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scales. These parameters are set as trainable and are continuously
optimized throughout the training process. Then quantization is
defined as 𝐺𝑡 =

⌊
𝐺𝑡

𝑞𝑡

⌉
, where 𝑞𝑖 is trainable quantization step.

Fig. 4 illustrates the distribution histograms of quantized explicit
NeRF representations obtained through adaptive quantization train-
ing versus fixed quantization training. Fig. 4 demonstrates that the
representations obtained from adaptive quantization training have
a wider distribution range of [-150, 150] and a larger variance. On
the other hand, the representations obtained from fixed quantiza-
tion training are concentrated within the range of [-20, 20] and have
a smaller variance. Additionally, the bitrates of the two cases are
similar, indicating that adaptive quantization allows for more fine-
grained quantization step adjustments. It does not indiscriminately
remove high-frequency information but rather preserves useful
high-frequency information. As a result, it can improve reconstruc-
tion quality while maintaining the same bitrate. We also present
subjective result in the supplementary materials demonstrating
the effects of adaptive quantization. The results using adaptive
quantization are able to reconstruct more details.
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(b) w/o adaptive quantization

Figure 4: Quantized explicit representation amplitude distri-
bution histograms.

4.3 Spatial-Temporal Implicit Entropy Model
Considering that the NeRF representation is learned during train-
ing stage, it is plausible to incorporate a rate loss term into the
loss function to guide the NeRF representation towards a lower
compression bitrate direction. However, it is not feasible to ob-
tain the actual bitrate of the NeRF representation during training
stage because entropy coding is non-differentiable. Hence, we pro-
pose a spatial-temporal implicit entropy model for accurate rate
estimation. Furthermore, unlike the learned entropy model in im-
age compression [33], which is learned from large-scale training
datasets, our proposed implicit entropy model is learned on-the-fly
with the corresponding NeRF representation in the training stage.

Consequently, for each frame of the NeRF model, we opt to train
a specific implicit entropy model, enabling us to accurately estimate
the bitrate of the NeRF representation. Furthermore, we encode the
implicit entropy model into the bitstream and the decoded entropy
model will be used to decode NeRF representation at the decoder
side. In particular, we employ the autoregressive entropy model to
estimate the bitrate of the explicit NeRF representation. As shown
in Fig. 5, the implicit entropy model consists of a two-layer shallow
MLP network and incorporates both spatial and temporal context
information to estimate the distribution of the NeRF representation.

Implicit
Entropy Model 𝜇, 𝜎

Temporal Context

Current 
Representation

Previous
Representation

Spatial Context

𝑉!,#,$

𝑉"%!,%#,$
𝐺$

𝐺"$&'
𝑉"!,#,%$

Context
Already decoded

To be encoded

Not decoded

Figure 5: Illustration of spatial-temporal implicit entropy
model. Utilizing the decoded spatial and temporal contexts to
predict the distribution of the voxel to be encoded. Although
we are actually searching for spatial context in a 3D space, for
clarity, we use a 2D plane as an example in the illustration.

Here, to simplify the description, we assume the 𝐺𝑡 is 2D rep-
resentation and the voxel 𝑉𝑖, 𝑗,𝑡 represents the corresponding item
in the quantized representation 𝐺𝑡 , i.e., 𝑉𝑖, 𝑗,𝑡 ∈ 𝐺𝑡 , where (𝑖, 𝑗)
represents the spatial location. The essence of the autoregressive
model is to predict the distribution of undecoded voxel using the
already decoded voxel information. As shown in Fig 5, we model the
distribution of undecoded voxels using proposed implicit entropy
model. Assuming the current voxel to be encoded is 𝑉𝑖, 𝑗,𝑡 , we use
the spatially adjacent and causally decoded voxels as the spatial
context information, denoted as𝑉<𝑖,< 𝑗,𝑡 . At the same time, we take
the voxel 𝑉|𝑥−𝑖 | ≤1, |𝑦− 𝑗 | ≤1,𝑡−1 from the previous frame as the tem-
poral context information, denoted as𝑉𝑖, 𝑗,<𝑡 . As illustrated in Fig 5,
after concatenating the temporal and spatial context information,
we use a super-tiny MLP network to predict the current voxel’s
probability distribution:

𝜇, 𝜎 = 𝑓𝜓

(
𝑉<𝑖,< 𝑗,𝑡 ⊕ 𝑉𝑖, 𝑗,<𝑡

)
. (4)

𝑝
�̂�𝑖,𝑗,𝑡

(𝑉 |𝑉<𝑖,< 𝑗,𝑡 ,𝑉𝑖, 𝑗,<𝑡 ) =
∏
𝑖

(N (𝜇, 𝜎) ∗ U(−1
2
,
1
2
)) (𝑉𝑖, 𝑗,𝑡 ). (5)

where N(𝜇,𝜎) denotes the Laplace distribution.
Then we can calculate the distribution’s cumulative function

𝑃𝑐𝑑 𝑓 (·) using the predicted parameters 𝜇 and 𝜎 and estimate the
bitrate of the current voxel:

L𝑟𝑎𝑡𝑒 =
1
𝑁

∑︁
𝑉𝑖,𝑗,𝑡 ∈�̂�𝑡

− log2

[
𝑃𝑐𝑑 𝑓

(
�̃�𝑖, 𝑗,𝑡 +

1
2

)
− 𝑃𝑐𝑑 𝑓

(
�̃�𝑖, 𝑗,𝑡 −

1
2

)]
.

(6)
where 𝑁 denotes the total number of voxels in the grids, �̃�𝑖, 𝑗,𝑡
denote the simulated quantized 𝑉𝑖, 𝑗,𝑡 .

Rate-Distortion Loss Function. Striking a balance between bi-
trate and distortion is pivotal to efficient NeRF representation com-
pression. Thus, we estimate the bitrate of the NeRF representation
and optimize the NeRF representation by using the rate-distortion



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Zhiyu Zhang et al.

loss as follows,

L𝑡𝑜𝑡𝑎𝑙 =
∑︁
r∈R

∥𝐶 (r) −𝐶 (r)∥2 + 𝜆(L𝑟𝑎𝑡𝑒 + 𝛼L𝑟𝑒𝑔). (7)

where 𝐶 (r) is ground truth color, 𝐶 (r) is the rendered color as
shown in Equ. 2, and we use the L2 loss as the distortion loss. L𝑟𝑒𝑔

essentially serves as a rate constraint. By assigning a larger weight
to L𝑟𝑒𝑔 , the magnitude of the residual grid will be smaller, resulting
in a lower bitrate. Therefore, we categorized L𝑟𝑒𝑔 and L𝑟𝑎𝑡𝑒 as
bitrate-related loss. 𝜆 is a trade-off parameter for distortion and
rate. To ensure stable training and control the trade-off between
quality and bitrate solely through the 𝜆 parameter, we designed
the weights of L𝑟𝑎𝑡𝑒 and L𝑟𝑒𝑔 to have a fixed linear relationship,
specifically 𝜆𝑟𝑒𝑔 = 𝛼 ∗ 𝜆𝑟𝑎𝑡𝑒 .

4.4 Overall Encoding and Decoding Pipeline
In summary, within the NeRF model, the components that need to
be compressed and transmitted include the explicit representation,
occupancy grid, rendering MLP, and the implicit entropy model.
The encoding and decoding of the explicit representation rely on
the implicit entropy model, while the other parts can be encoded
and decoded independently.

Occupancy grid. The characteristic of the occupancy grid is that its
elements are either 0 or 1. Thus, for compression, it is first flattened
into a vector, grouped in sets of 8 to be packed into uint8 data, and
then these uint8 data are compressed. Since a significant portion
of the packed uint8 data consists of zeros, the LZMA dictionary
encoding algorithm is employed for compression.

Rendering MLP and Implicit entropy model. Both the compo-
nents are MLPs, with the parameters needing compression being
the network’s weights and biases. Given the small size of these
parameters, we simply quantize them and then apply entropy en-
coding using a range coder [31].

Explicit representation. The encoding and decoding of the ex-
plicit representation rely on the distribution parameters estimated
by the implicit entropy model. Hence, before encoding and decod-
ing the explicit representation, the implicit entropy model must
be encoded and decoded first. Based on the distribution parame-
ters estimated by the implicit entropy model, we employ a range
coder to encode and decode the explicit representation, following a
spatio-temporal causal order.

Decoding pipeline. Fig. 6 illustrates the decoding pipeline of our
compression framework. Initially, the occupancy grid, rendering
MLP, and implicit entropy model are decoded from the bitstream.
Subsequently, voxels in the explicit representation are decoded
from the bitstream in causal order. Using the already decoded vox-
els as context, the distribution of undecoded voxels is predicted
through an implicit entropy model. Based on the parameters of the
distribution, voxels are decoded from the bitstream.

5 Experiments
5.1 Experimental Setup
Datasets. We utilized two datasets: HumanRF [17] and ReRF [48],
to validate the effectiveness of our method. For the HumanRF

fy

Bitstream

Occupancy Grid Explicit Representation Rendering MLP

Volume
Rendering

Implicit Entropy Model
𝜇, 𝜎

Figure 6: Decoding pipeline.

dataset [17], we selected 100 viewpoints with the same camera in-
trinsics. The image resolution was approximately 1020x750. Among
these viewpoints, we designated viewpoints 15 and 25 as the test
viewpoints, while the remaining 98 viewpoints were used for train-
ing. Regarding the ReRF dataset [17], it comprised approximately
75 viewpoints with an image resolution of 1920x1080. We chose
viewpoints 6 and 39 as the test viewpoints following [52], while
the rest of the viewpoints were employed for training.

Evaluation Metrics. To assess the compression performance of
our method on the experimental datasets, we employ Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index (SSIM) [51], and
Learned Perceptual Image Patch Similarity (LPIPS) [55] as quality
evaluation metrics. Additionally, we utilize KB per frame as the
bitrate evaluation metric. Furthermore, for an overall comparison
of compression performance, we utilize the BD-rate metric [2].

Implementation Details. In the experiment, we set the group
size to 20, which means that an I-frame is inserted every 20 frames
within the dynamic scene. For the rate-distortion loss, we defined
four different 𝜆 values(7𝑒 − 4, 1𝑒 − 3, 2𝑒 − 3, and 5𝑒 − 3) to achieve
different compression ratios. We set 𝛼 to 10 for the regularization
loss. For the training details of NeRF, we refer to the default config-
uration of DiF [7].

5.2 Comparison Results
In our experiments, our primary benchmarks are the state-of-the-
art methods TeTriRF [52] and ReRF [48]. Fig. 7 and Fig. 8 illustrate
the rate-distortion curves on the HumanRF [17] and ReRF [48]
datasets respectively. The figures clearly show that our method
achieves the best rate-distortion performance on all metrics—PSNR,
SSIM, and LPIPS—both in the training and testing viewpoints. Due
to the substantial disparity in the bitrate range between our method
and ReRF [48], we only calculate the BD-rate in comparison with
TeTriRF [52]. When computing the BD-rate, PSNR is selected as the
quality metric. On the HumanRF dataset, our method achieves a
BD-rate reduction of -84.52% for training viewpoints and -85.49%
for testing viewpoints. On the ReRF dataset, our method attains a
BD-rate reduction of -60.58% for training viewpoints and -76.60%
for testing viewpoints.
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Table 2: The quantitative results on the HumanRF and ReRF datasets. Bold data indicate the best performance, while underlined
data indicate the second best.

HumanRF Dataset ReRF Dataset
training views testing views Size(KB) training views testing views Size (KB)PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

ReRF 33.60 0.960 0.111 32.27 0.950 0.128 221.86 36.08 0.972 0.046 30.69 0.961 0.055 200.25
TeTriRF 34.84 0.965 0.096 32.49 0.954 0.115 94.14 37.65 0.977 0.039 32.21 0.968 0.045 122.15

Ours(Low) 36.50 0.969 0.090 33.87 0.961 0.107 55.72 38.41 0.980 0.035 32.47 0.970 0.043 67.02
Ours(High) 37.40 0.973 0.079 34.30 0.965 0.095 80.63 39.28 0.984 0.031 32.70 0.973 0.039 116.64
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Figure 7: The rate-distortion performance comparison results
on HumanRF dataset. The BD-rate of our method compared
to TeTriRF is as follows: in the training viewpoints, the BD-
rate is -84.52%, and in the testing viewpoints, the BD-rate is
-85.49%.
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(a) Rate-distortion performance for the training views.
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Figure 8: The rate-distortion performance comparison results
on ReRF dataset. The BD-rate of our method compared to
TeTriRF is as follows: in the training viewpoints, the BD-
rate is -60.58%, and in the testing viewpoints, the BD-rate is
-76.60%.

Table 3: The comparison results of our method applied on
TensoRF [6] and the baseline applied on TensoRF.

Ours (TensoRF) Baseline (TensoRF)
PSNR SSIM LPIPS Size (KB) PSNR SSIM LPIPS Size(KB)
33.39 0.966 0.093 58.07 33.65 0.970 0.081 1745.43
32.30 0.963 0.099 47.14 32.45 0.962 0.097 1254.91
31.02 0.954 0.116 39.59 30.84 0.948 0.117 999.48
29.24 0.943 0.132 30.82 27.03 0.905 0.154 671.51

Tab. 2 shows the detailed quantitative results on HumanRF
dataset and ReRF dataset, where Ours(Low) and Ours(High) respec-
tively represent the results of our method under different 𝜆 config-
urations. The table indicates that both our method and TeTriRF can
achieve good reconstruction quality at lower bitrate range, while
ReRF requires significantly higher bitrate for similar quality level.
Moreover, Ours(Low) achieves a bitrate substantially lower than
TeTriRF with comparable reconstruction quality. And Ours(High)
offers much higher reconstruction quality at a bitrate similar to
TeTriRF, further demonstrating the rate-distortion performance
advantage of our method.

Fig. 9 displays qualitative comparison results on the HumanRF’s
actor07 sequence and the ReRF’s kpop sequence. The figure illus-
trates that our method can reconstruct more details at a lower
bitrate, such as the beard in actor07 and the clothing logo in kpop,
which are lost in the reconstructions by TeTriRF and ReRF. This
demonstrates that our method also provides a superior subjective
experience.

5.3 Evaluation on Plane Representaion
Our method is universally applicable to a large amount of explicit
representation. To verify the effectiveness of our method, we fur-
ther evaluated its performance on the plane-based representation
TensoRF [6]. The comparison baseline is: modeling each frame in
dynamic scenes with an independent TensoRF model, followed by
quantization and entropy encoding of TensoRF after modeling is
complete.

Tab. 3 shows the comparison results between our method and
the baseline method at various compression ratios. It is evident that
our method achieves significantly lower bitrates than the baseline
method, without a noticeable decline in reconstruction quality.
This demonstrates that our method is not only suitable for DiF [7]
but also applicable to TensoRF [6], proving its effectiveness across
different explicit representations.
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Figure 9: Qualitative comparisons of actor07 sequence from HumanRF [17] and kpop sequence from ReRF [48]. PSNR and size
results are given at lower-left.

5.4 Ablation Studies
In the ablation studies, we aim to verify the efficacy of inter prediction-
based dynamic modeling, adaptive quantization, and rate-distortion
joint optimization we proposed. We conduct ablation studies on the
actor02 sequence from the HumanRF [17] dataset. Based on the full
method, we disable dynamic modeling and adaptive quantization
separately during training. Tab. 4 shows the bitrates for different
ablation experiments at the same quality level (PSNR = 34 dB). The
definition of "Baseline" is similar to Sec. 5.3, where each frame of
the dynamic scene is modeled using an independent DiF model, fol-
lowed by quantization and entropy encoding of the representation
after modeling is complete.

Table 4: At the same quality level (PSNR = 34 dB), the bitrates
for different ablation experiments. "w/o Dynamic" signifies
the disabling of dynamic modeling, and "w/o Adaptive" indi-
cates the disabling of adaptive quantization.

Baseline w/o Dynamic w/o Adaptive Full
1193.29 KB 137.45 KB 80.31 KB 66.61 KB

From Tab. 4, it is apparent that, based on the "Full" method, either
disabling dynamic modeling or adaptive quantization results in an
increase in bitrate, indicating the effectiveness of these two mod-
ules. Comparing the "Baseline" with the other three experiments,
it is evident that the bitrates of the other three experiments are
significantly lower than that of the "Baseline", demonstrating the
efficacy of our proposed rate-distortion joint optimization.

Moreover, we analyze the average bit consumption for I-frame
and P-frame under different 𝜆 configurations, and the result is
illustrated in Tab. 5. It is evident that the bit consumption of P-
frames is significantly lower than that of I-frames, which validates

Table 5: Analysis of average bit consumption for I-frame and
P-frame.

𝜆 = 0.0007 𝜆 = 0.001 𝜆 = 0.002 𝜆 = 0.005
I-frame (KB) 272.28 207.69 161.42 116.25
P-frame (KB) 94.05 79.67 61.28 46.48

the effectiveness of our dynamic modeling method in removing
inter-frame redundancy and reducing the bitrate of P-frames.

6 Conclusion
In this paper, we present a dynamic modeling and rate-distortion
optimization framework tailored for explicit NeRF representation.
By incorporating a rate-aware training strategy into the NeRF train-
ing process, our approach demonstrates enhanced compression
efficiency. Utilizing an implicit entropy model for accurate rate
estimation of NeRF representations, coupled with adaptive quanti-
zation, we further amplify the compression efficacy. Experimental
results reveal that our method secures the highest compression ef-
ficiency across two benchmark datasets. The NeRF-based modeling
and compression methodology we propose is capable of reducing
the data volume of a single frame of radiance field to below 100KB,
markedly advancing the transmission of volumetric videos.
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