
SCIAGENT: Tool-augmented Language Models for Scientific Reasoning

Anonymous ACL submission

Abstract

Scientific reasoning poses an excessive chal-001
lenge for even the most advanced Large Lan-002
guage Models (LLMs). To make this task more003
practical and solvable for LLMs, we introduce004
a new task setting named tool-augmented sci-005
entific reasoning. This setting supplements006
LLMs with scalable toolsets, and shifts the007
focus from pursuing an omniscient problem008
solver to a proficient tool-user. To facilitate the009
research of such setting, we construct a tool-010
augmented training corpus named MATHFUNC011
which encompasses over 30,000 samples and012
roughly 6,000 tools. Building on MATHFUNC,013
we develop SCIAGENT to retrieve, understand014
and, if necessary, use tools for scientific prob-015
lem solving. Additionally, we craft a bench-016
mark, SCITOOLBENCH, spanning five scien-017
tific domains to evaluate LLMs’ abilities with018
tool assistance. Extensive experiments on SCI-019
TOOLBENCH confirm the effectiveness of SCI-020
AGENT. Notably, SCIAGENT-LLAMA3-8B021
surpasses other LLMs with the comparable size022
by more than 8.0% in absolute accuracy. Fur-023
thermore, SCIAGENT-DEEPMATH-7B shows024
much superior performance than ChatGPT.025

1 Introduction026

Scientific reasoning (Ouyang et al., 2023; Zhao027

et al., 2023) aims to comprehend and make deci-028

sions regarding problems among STEM (Science,029

Technology, Engineering and Mathematics) do-030

mains. It is a fundamental aspect of intelligence,031

a demanding capability of Large Language Mod-032

els (LLMs), and a notoriously challenging task.033

For instance, even GPT-4 (OpenAI, 2023) achieves034

only 50% and 35% accuracy on TheoremQA (Chen035

et al., 2023b) and SciBench (Wang et al., 2023b),036

respectively. Regarding open-source LLMs such as037

Mistral (Jiang et al., 2023) and CodeLlama (Roz-038

ière et al., 2023), their performances are only about039

20% accuracy or even less.040

math + domain reasoning

LLM

sample

LLM sample

toolset

math reasoning + tool-use ability + domain tools

Figure 1: Two paradigms for scientific reasoning. Dif-
ferent colors represent different scientific domains. Left:
Collecting annotations and fine-tuning LLMs domain by
domain. Right: Our proposed tool-augmented setting.
LLMs are fine-tuned on math-related, tool-augmented
samples (color in red). When adapting LLMs to a spe-
cific domain, a pluggable and domain-specific toolset is
attached. No additional fine-tuning is further required.

The challenge in scientific reasoning arises from 041

the need for both mathematical (math) and domain- 042

specific reasoning abilities. To address the physical 043

problem in Figure 3, for example, it is necessary to 044

both understand Malus’ law (domain knowledge) 045

for analyzing the intensity of polarized light, and 046

possess quantitative ability for calculating the light 047

intensity ratios. A natural approach involves col- 048

lecting annotations and fine-tuning LLMs to en- 049

hance their math and domain-specific reasoning 050

abilities, as depicted in Figure 1 (left). However, an- 051

notating scientific reasoning problems is extremely 052

expensive. What is worse, adapting LLMs to a new 053

domain demands a fresh round of annotation and 054

fine-tuning, rendering this approach impractical. 055

In this paper, we draw inspirations from tool 056

learning (Qin et al., 2023a) to enhance LLMs’ sci- 057

entific reasoning capabilities. Instead of solving 058

scientific problem from scratch, humans have sum- 059

marized and wrapped various points as generalized 060

and well-documented functions in scientific com- 061

puting softwares, such as Matlab, WolframAlpha, 062

SymPy, etc. These functions1, which could be 063

1In this work, tools refer to Python functions. We use tools
and functions interchangeably unless otherwise specified.

1

equivalently viewed as external tools, greatly facil-064

itate math-adept users to solve difficult scientific065

problems. In analogy with humans, we do not pur-066

sue an omniscient solver across various scientific067

domains. Instead, we assume the access to domain-068

specific toolsets and purse a unified, generalized069

LLM-based tool-user as shown in the Figure 1070

(right). This approach tackles domain-specific rea-071

soning challenges by enabling LLMs learn to use072

a reusable and scalable toolkit. It alleviates the073

reasoning challenges of LLMs by concentrating074

solely on enhancing their tool-use abilities. These075

abilities are not only easier to acquire but also ap-076

plicable across a variety of scientific fields. By077

attaching domain-specific toolsets, our tool-users078

can be readily adapted to different fields without079

the need for additional in-domain fine-tuning.080

This work focuses on developing and bench-081

marking the ability of LLMs in scientific reason-082

ing with the help of tools. We envision a sce-083

nario where LLMs have access to a domain-specific084

toolset, comprising various specialized functions.085

Upon this scenario, we propose a complete frame-086

work of dataset construction, model training and087

evaluation. Given a scientific question, LLMs are088

supposed to retrieve functions from the toolset and089

optionally incorporate functions into the formu-090

lated solution. We employ an automatic pipeline091

featuring GPT-4 to compile a large-scale, math-092

related, tool-augmented training corpus named as093

MATHFUNC. This corpus is designed to enable094

LLMs to learn both essential math skills and how095

to retrieve, understand and use functions properly.096

As a result, MATHFUNC contains 31,375 samples097

and equipped with a toolset encompassing 5,981098

generalized and well-documented functions. We099

detail this training corpus in Section 3.100

We fine-tune open-source LLMs on MATHFUNC101

to develop tool-augmented agents named SCIA-102

GENT detailed in Section 4. As shown in Figure 3,103

SCIAGENT firstly generate a high-level planning104

in response to a given question. The agents then105

use this plan, along with the question, to retrieve106

functions from the given toolset. Leveraging these107

retrieved functions, the agents further complete the108

low-level action integrating natural language and109

Python code. Finally the agents execute the code110

to complete the problem at hand.111

To benchmark the tool-use abilities in scientific112

reasoning, we develop a new benchmark named113

SCITOOLBENCH as described in Section 5. Build-114

ing upon TheoremQA (Chen et al., 2023b) and115

SciBench (Wang et al., 2023b), it has 4,250 ques- 116

tions covering five domains: Mathematics, Phys- 117

ical, Chemistry, EECS, and Finance. It also con- 118

tains five domain-specific toolsets comprising a to- 119

tal of 2,285 functions. We evaluate SCIAGENT on 120

SCITOOLBENCH and another benchmark derived 121

from CREATOR-challenge (Qian et al., 2023). 122

Experimental results demonstrate that our agents 123

present remarkable scientific reasoning capabilities. 124

Notably, SCIAGENT-LLAMA3-8B surpasses the 125

best comparable open-source LLMs by an absolute 126

8.0% accuracy, and SCIAGENT-DEEPMATH-7B 127

outperforms ChatGPT by a large margin. We also 128

conduct an extensive analysis of the benefits and 129

limitations of SCIAGENT series, providing valu- 130

able insights for future research. 131

2 Preliminary 132

Related Work. Current methods (Chen et al., 133

2023b; Xu et al., 2023b; Ouyang et al., 2023), espe- 134

cially those based on open-source LLMs, perform 135

far from satisfactory on scientific reasoning bench- 136

marks (Chen et al., 2023b; Wang et al., 2023b). 137

We attribute it to the scarcity of annotated samples 138

across diverse scientific domains. As a comparison, 139

LLMs present much more remarkable performance 140

on math problems (Yue et al., 2023b; Gou et al., 141

2023b; Azerbayev et al., 2023) due to the abundant 142

training corpora and/or annotations. Different from 143

concurrent work (Zhang et al., 2024) which col- 144

lects physics and chemistry annotations, we do not 145

pursue a problem-solver on some specific scientific 146

domains. Instead, we consider to develop a gener- 147

alized tool-user being proficient on solving diverse 148

scientific problems with the aid of tools. Following 149

previous work on math domain (Qian et al., 2023; 150

Cai et al., 2023; Yuan et al., 2023a), the tools here 151

refer to Python functions. Please see more detailed 152

literature review in Appendix A. 153

Task Formulation. Given a scientific domain D 154

(e.g., physics), tool-augmented scientific reasoning 155

task assumes access to (1) a question q ∈ D and 156

(2) a toolset FD. FD encompasses large amounts 157

of well-documented, domain-specific functions 158

{f1, ..., fm}. Our objective is to develop an agent 159

M which selectively use functions in FD to en- 160

hance the answering for the question q. 161

3 Training Corpus: MATHFUNC 162

To our best knowledge, there are no readily avail- 163

able tool-augmented datasets in scientific reason- 164

2

To find the distance between the

foci of the hyperbola, we can follow

the steps below: (1)… (2)…….

The values in the hyperbola equation.
a_2, b_2 = 18, 2
calculate the distance between the foci.
distance = distance_between_foci_hyperbola(a_2, b_2)
Print the result.
print(distance)

Find the distance between

the foci of the hyperbola
𝒚𝟐

𝟏𝟖
−

𝒙𝟐

𝟐
= 𝟏

Answer: 𝟒 𝟓

def hyperbola_foci_distance(a_squared, b_squared):
 """
 Calculates the distance between the foci of a
hyperbola given the values of a^2 and b^2.
 """

def f(x, y):
 """
 Defines the function f(x, y) = y^2/18 - x^2/2.
 """ def distance_between_foci_hyperbola(a_squared,

b_squared):
 """
 Calculates the distance between the foci of a
hyperbola given the values of a^2 and b^2.
 """

def hyperbola_foci(center, a, b):
 """
 Finds the foci of a hyperbola with given
center, a, and b values.
 """

def hyperbola_distance_between_vertices(a_squared,
b_squared):
 """
 Finds the distance between the vertices of a
hyperbola given the values of a^2 and b^2.
 """

Retrieved functions 𝑭𝒒

Function-augmented solution 𝑺𝒒

Toolset 𝑭

Planning 𝑮𝒒 Generated functions ෩𝑭𝒒

Question 𝒒 (w. answer)
Retriever 𝑹

Self-rectification

Cross-retrieval

Figure 2: Automatic pipeline for MATHFUNC construction. Please view it starting from the bottom left corner and
proceed clockwise. We disentangle the constructions of toolset (dashed lines) and function-augmented samples
(solid lines) for more generalized annotations. We do not visualize the function-free samples for simplicity.

ing domains. Therefore, we construct a corpus165

named MATHFUNC teaching LLMs to better under-166

stand and use functions. MATHFUNC is composed167

of (1) a toolset F 2 including 5,981 generalized,168

well-documented, math-related functions and (2) a169

dataset D encompassing 31,375 samples in which170

solutions call the function from the toolset if nec-171

essary (e.g., 4⃝ in Figure 2). We build this corpus172

based on MATH (Hendrycks et al., 2021b) training173

set because we expect to teach LLMs both math174

skills and tool-use abilities.175

Sample Format. Each sample is a quintuple176

(q,Gq, Fq, Sq, aq). Here q is a question, Gq is the177

planning, Fq is the function set filtered from the178

toolset (Fq ⊂ F , |Fq| ≪ |F |), Sq is the solution179

and aq is the answer. Sq interleaves rationales Eq
3180

and programs Pq which optionally call functions181

in Fq to facilitate the problem solving.182

We employ an automatic pipeline to construct183

MATHFUNC. We illustrate the pipeline in Figure 2184

and detail the process in the following subsections.185

3.1 Planning and Toolset Construction186

This module is depicted in the top-left side of Fig-187

ure 2. Given a question q and its ground-truth so-188

lution (written in pure natural language) in MATH189

training set, we ask GPT-4 to generate (1) a high-190

level planning Gq to analyze this question, (2) one191

or more well-documented functions F̃q and (3) a so-192

lution S̃q calling the functions above. The prompt193

used is shown in Appendix H.1. In the prompt, we194

emphasize that the functions should be as compos-195

able and generalized as possible. Specifically, we196

do not hope that each question generates only one197

ad-hoc function (which could only be used by this198

2We remove the domain-specific subscript D for expres-
sion simplicity. The same below.

3Here Eq is written in natural language but formatted as
the annotation lines in the program.

question). Instead, we expect GPT-4 to generate 199

functions that follow the points in the planning Gq 200

and can be reused by other questions. Following 201

previous work (Qian et al., 2023; Pan et al., 2023), 202

we provide the error feedback to GPT-4 if the so- 203

lutions fail to execute, and ask GPT-4 to rectify 204

the errors in F̃q or S̃q. We repeat this procedure 205

until successful execution or reaching maximum 206

loop limitation. The prompt used for rectification 207

is shown in Appendix H.2. 208

We collect Gq (1⃝ in Figure 2, the same below) 209

and add F̃q to the toolset (2⃝) for question q if the 210

rectified solution S̃q leads to the correct answer ãq. 211

Regarding the toolset, it is iterated on all questions 212

and finally accumulated as below: 213

F =
⋃
q∈D

F̃q · I(ãq is correct) 214

215
3.2 Function-augmented Solutions 216

To collect function-augmented solution Sq and Fq, 217

a natural idea is to directly use the S̃q and F̃q gen- 218

erated above. However, we find that S̃q tends to 219

be contrived and specifically tailored to fit the re- 220

quirements of function-calling. Moreover, some 221

functions in F̃q tend to be ad-hoc4. For examples, 222

the function f(x, y) in Figure 2 merely parame- 223

terizes the hyperbola for a specific question. There- 224

fore we disentangle the construction of toolset and 225

function-augmented solutions. Given the devel- 226

oped toolset, we design a cross-retrieval strategy 227

to retrieve more generalized functions Fq and gen- 228

erate more qualified solutions Sq. Specifically, we 229

remove F̃q from F temporarily and then retrieve 230

new functions Fq ⊆ (F\F̃q) for question q. This 231

strategy eliminates the likelihood of calling ad-hoc 232

functions from F̃q in Sq. See examples of retrieved 233

4Despite we instruct GPT-4 to avoid generating ad-hoc
functions, there are still some ad-hoc functions in F̃q

3

def intensity_ratio(dB1, dB2):

def refraction_angle(incident_angle, refractive_index):

def malus_law_intensity(I0, theta):
 """
 Calculates the intensity of polarized light after
passing through a polarizer using Malus' Law.
 Parameters:
 - I0 (float): The intensity of polarized light before
the polarizer.
 - theta (float): The angle between the polarized
light and the polarizer in degrees.
 Returns:
 - float: The intensity of polarized light after
passing through the polarizer.
 """

Question: Unpolarized light passes through a polarizer at angle 40 degree to the first, and then another at angle

15 degree to the second. What percentage of the original intensity was the light coming out of the second polarizer?

Toolset

(1)Apply Malus’ law to calculate the intensity

of the light after each polarizer.

(2)Calculate the percentage of the original

intensity coming out of the third polarizer.

Planning

Define initial intensity
and angles of the polarizers.

I0 = 1
theta1, theta2 = 30, 50

Calculate intensity after
passing through the first
and the second polarizer.

I1 = malus_law_intensity(I0, theta1)
I2 = malus_law_intensity(I1, theta2)

Calculate the percentage of the original
intensity that was the light coming out of
the third polarizer.

percentage = (I2 / I0) * 100

Action

Retrieved Functions

Retrieval Query:

(1) Question
(2) Planning

Print the result.

print(percentage)

Figure 3: The model architecture of SCIAGENT. Given a domain-specific toolset , our agent answers the question
through four consecutive modules. (1) Planning : provides a high-level plan for this problem. (2) Retrieval :
retrieves related functions from attached toolset. (3) Action : generates a low-level solution interleaving rationale
and program. The program uses the retrieved functions if necessary. (4) Execution : calls Python executor to run
the program and outputs the final answer. Not included in this figure for simplicity.

functions, all of which are derived from other ques-234

tions, in the right side of Figure 2.235

Retriever. The cross-retrieval strategy necessities236

a retriever because it is impractical to enumerate237

thousands of functions in F\F̃q. We train a dense238

retriever R (3⃝ in Figure 2). We concatenate the239

question q and the generated planning Gq as the240

query, and view the generated functions F̃q as the241

keys. See details about R in Appendix B.1.242

Solution Generation. Upon the toolset F and the243

retriever R, we retrieve three functions as Fq:244

Fq = R([q,Gq];F\F̃q)245

Then we employ GPT-4 to write solutions which246

optionally call functions in Fq to generate the solu-247

tion Sq (4⃝). The prompt used is illustrated in Ap-248

pendix H.3. We explicitly point out in the prompt249

that f ∈ Fq should be called if and only if when250

they do lower the difficulty of problem solving. It251

mitigates the over-exploitation of function calling252

in Sq and increases the robustness of models fine-253

tuned on these samples. Specifically, we firstly254

use GPT-4 with greedy decoding to generate solu-255

tions. For those failing to yield correct answers, we256

further apply nucleus sampling (Holtzman et al.,257

2020) with 5 repeat times and 0.6 temperature. We258

filter wrong solutions and collect remaining 6,229259

samples as our function-augmented solutions.260

In parallel, we use GPT-4 to generate function-261

free solutions. Though not indispensable, we ex-262

pect them to further enhance the math reasoning,263

and accordingly the scientific reasoning, abilities264

of LLMs. We collect a total of 24,946 function-265

free solutions nucleus sampling with 5 repeat times266

and 0.6 temperature. These samples share similar267

format as ToRA-corpus (Gou et al., 2023b), and do268

not retrieve/use any functions, i.e., Fq = ∅.269

4 Model: SCIAGENT 270

We develop SCIAGENT for tool-augmented scien- 271

tific reasoning task. It could make plan, retrieve 272

functions, and leverage retrieved functions to fa- 273

cilitate the reasoning. We describe its inference 274

procedure and training approach as below. 275

4.1 Overview 276

As shown in Figure 3, SCIAGENT comprises four 277

successive modules. 278

Planning. This module provides a high-level pro- 279

file for each question: Gq = Mplanning(q). Such 280

planning instructs a more targeted retrieval process. 281

Retrieval. Given the question and generated plan- 282

ning Gq, the retriever Mretrieval is introduced to 283

retrieve related functions from the domain-specific 284

toolset: Fq = Mretrieval([q,Gq];FD) ⊆ FD. 285

Action. This module aims to generate low-level 286

solutions. Specifically, the agent produces Sq = 287

Maction(q;Fq). The solution Sq is interleaved with 288

natural language rationale Eq and program snippet 289

Pq. The program Pq call retrieved functions with 290

proper arguments if necessary. 291

Execution. This module is simply a Python Ex- 292

ecutor to run the program Pq for the final answer: 293

aq = Python-Executor(Pq). 294

4.2 Training 295

Language models are used in three out of four mod- 296

ules in SCIAGENT: planning, retrieval and action. 297

Rearding retrieval, we directly use the retriever R 298

fine-tuned in Section 3.2 as Mretrieval. For planning 299

and action modules, they share the same LLMs: 300

M = Mplanning = Maction. We fine-tune M with 301

different instructions to make it act as planning and 302

action modules, respectively. We construct instruc- 303

tions from d = (q,Gq, Fq, Sq, aq) in MATHFUNC. 304

4

Dplanning = {(Iplan(q), Gq)|d ∈ D}305

Daction = {(Iaction(q, Fq), Sq)|d ∈ D}306

Here Iplan and Iaction are instruction templates307

for planning and action modules. We show these308

instructions in Appendix B.2, and mix up them as309

the training set D = (Dplanning
⋃
Daction). Then310

we apply imitation learning on D to fine-tune M.311

LM =
∑

(X,Y)∈D

−logP(Y |X)312

Implementation We detail the training process of313

(1) the retriever Mretrieval and (2) the planner and314

actor M in Appendix B.1 and B.2, respectively.315

5 Benchmark: SCITOOLBENCH316

There currently exists no benchmark assessing the317

scientific reasoning capabilities of LLMs when318

aided by tools. To address this gap, we develop319

a benchmark called SCITOOLBENCH. Our bench-320

mark covers five domains: Mathematics (math)5,321

Physics, Chemistry, Finance, Electrical Engineer-322

ing and Computer Science (EECS). Each domain323

is composed of a set of questions and a domain-324

specific toolset. The toolset consists of abundant325

generalized, high-quality and well-documented326

functions. We expect LLMs to retrieve, understand327

and, if necessary, use functions in it for reasoning.328

Table 1: The statistics of our benchmark. #H.A./#Syn.:
The number of human-annotated/synthesized questions.
#Pos./ #Neg.: The number of positive/negative func-
tions in the toolset. FPQ (function per question): The
number of derived positive functions from each ques-
tion. Counted on H.A. questions only.

Question Function
Question #H.A. / #Syn. # Function #Pos. / #Neg. Avg. FPQ

Math 2031 434 / 1597 964 403 / 561 1.47
Physics 855 156 / 699 516 225 / 291 1.63
Chemistry 639 118 / 521 349 138 / 211 1.34
Finance 369 66 / 303 245 89 / 156 1.62
EECS 356 82 / 274 211 87 / 124 1.68

All 4250 856 / 3394 2285 942 / 1343 1.51

5.1 Dataset Overview.329

The statistics of SCITOOLBENCH are presented330

in Table 1. We leave more detailed statistics in331

Appendix E.2. Briefly, our benchmark comprises a332

total of 4,250 questions and 2,285 functions span-333

ning across 5 scientific domains. SCITOOLBENCH334

5Our benchmark contains college-level questions on calcu-
lus, differential equations, group theory, etc, which are differ-
ent from the questions in our training corpus MATHFUNC.

differs from previous tool-based benchmarks, such 335

as Creation Challenge (Qian et al., 2023), in several 336

aspects: (1) Our benchmark encompasses a diverse 337

range of scientific domains. (2) The provided 338

tools are both composable and generalized across 339

different questions: As indicated in Table 1, each 340

question requires an average of 1.51 functions for 341

resolution. And over 500 functions are designed 342

to be applicable to two or more questions, such 343

as integrate_function in math domain, 344

coulombs_law in physical domain, and cal- 345

culate_pressure_van_der_waals in 346

chemistry domain. It signifies that the functions 347

in our toolset are not ad-hoc solutions tailored for 348

specific questions. Instead, the effective utilization 349

of the toolset demands significant reasoning 350

abilities of tool-augmented LLMs. Thus we claim 351

this benchmark challenging and practical. 352

Questions

Function Generation

……
Function Refinement

……

Function Verification

Correctness Generalization

Function Generation

……

Toolset Construction

Positive functions
Negative functions

Question Filtering

Toolset
TheoremQA

SciBench

Original Dataset

Retained

Refined

Rewritten

Question Expansion

……

Synthesized questions

Human-annt questions

Question

Collection

Figure 4: Semi-automatic annotation pipeline for SCI-
TOOLBENCH. : GPT-4. : Human annotator.

5.2 Dataset Annotation 353

We design a pipeline shown in Figure 4 to annotate 354

the benchmark. It employs both GPT-4 and human 355

annotators to combine their merits. We introduce it 356

briefly as below and leave details in Appendix D. 357

Question Collection: Our benchmark comprises 358

4,250 questions from two sources. (1) Human- 359

annotated: We curate 856 questions from Theo- 360

remQA (Chen et al., 2023b) and SciBench (Wang 361

et al., 2023b) (1⃝ in Figure 4, the same below). (2) 362

Synthesized: To further expand the question set, we 363

use these 856 questions as seeds and automatically 364

generate another 3,394 synthesized questions (2⃝). 365

Toolset Construction: We construct domain- 366

specific toolsets via two cascade modules: positive 367

and negative function construction. We define pos- 368

itive functions (3⃝) as functions directly deriving 369

from questions. The candidate positive functions 370

are firstly generated from GPT-4. Then human an- 371

notators carefully check them and rewrite and/or 372

remove the unqualified ones. We further automat- 373

ically construct negative functions (4⃝) based on 374

positive functions to reduce the shortcuts in our 375

benchmark. We finally combine both positive and 376

negative functions as the toolset in our benchmark. 377

5

Table 2: Main results on two benchmarks. We highlight our SCIAGENT series in blue . The best results (among all
open-source LLMs, the same below) are in bold face and the second best are underlined.

Model Size Toolset CREATION
SCITOOLBENCH

HUMAN-ANNOTATED SYNTHESIZED ALLMath Physics Chemistry Finance EECS Math Physics Chemistry Finance EECS

ChatGPT - ✗ 54.6 33.4 19.2 18.6 53.0 25.6 36.3 22.6 23.0 35.3 36.5 31.0
✓ 59.8 32.0 31.4 33.9 53.0 48.8 32.6 27.5 22.5 25.9 35.9 30.9

GPT-4 - ✗ 60.0 52.8 42.9 47.5 65.2 35.4 62.3 58.4 54.3 69.6 66.7 59.2
✓ 69.8 63.1 63.5 63.6 80.3 80.5 60.0 59.1 50.2 58.2 58.7 59.7

CodeLlama 7B ✗ 17.7 6.5 0.6 5.1 4.9 7.6 10.4 2.7 3.6 8.8 6.9 6.9
CodeLlama 7B ✓ 26.1 9.2 8.3 10.2 24.2 25.6 6.6 4.3 4.2 8.0 12.2 7.4
ToRA-Coder 7B ✗ 29.7 26.3 4.5 6.8 9.1 24.4 18.8 7.0 7.1 10.5 10.6 14.2
ToRA-Coder 7B ✓ 21.4 21.7 4.5 5.1 13.6 15.9 17.8 9.6 9.9 9.9 13.9 11.2
MAmmoTH-Coder 7B ✓ 21.6 14.8 18.5 11.0 25.8 40.0 14.3 7.3 6.7 13.1 12.9 12.8
Mistral 7B ✗ 30.1 11.3 9.6 7.6 18.2 13.4 19.2 10.7 9.4 16.8 18.5 14.8
Mistral 7B ✓ 27.6 13.1 13.5 14.4 34.8 19.5 10.4 15.2 13.1 22.6 15.2 13.7
Deepseek-Math 7B ✗ 44.7 26.5 19.2 17.8 27.3 20.7 31.6 21.9 23.6 28.8 24.8 26.7
Deepseek-Math 7B ✓ 41.3 24.2 24.4 25.4 43.9 42.7 19.8 21.6 17.7 24.1 20.8 21.8
Llama-3 8B ✗ 40.3 28.1 10.9 16.9 27.3 25.6 32.7 18.3 21.3 27.4 24.1 26.0
Llama-3 8B ✓ 38.0 24.7 26.9 25.4 42.4 37.8 20.2 19.7 18.4 24.8 28.4 22.3
SCIAGENT-CODER 7B ✓ 53.0 30.0 28.3 24.6 39.3 57.3 29.8 20.1 22.9 26.3 29.7 27.6
SCIAGENT-MISTRAL 7B ✓ 54.0 31.3 33.3 33.9 48.5 51.2 30.3 25.6 21.9 35.8 36.6 30.3
SCIAGENT-LLAMA3 8B ✓ 58.2 34.3 41.0 35.6 56.1 56.1 34.9 32.2 29.4 35.4 34.6 34.7
SCIAGENT-DEEPMATH 7B ✓ 60.4 41.2 54.5 44.9 57.5 51.2 37.1 40.1 36.5 43.1 40.2 40.0

CodeLlama 13B ✗ 23.0 9.9 3.2 1.7 9.1 6.1 13.5 4.4 4.8 8.8 12.9 9.3
CodeLlama 13B ✓ 38.9 12.7 14.7 7.6 33.3 34.1 9.0 6.4 4.4 12.4 11.9 9.8
ToRA-Coder 13B ✗ 30.9 28.6 3.8 4.2 16.7 30.5 22.6 9.0 8.5 13.1 16.5 17.1
ToRA-Coder 13B ✓ 28.0 32.0 2.6 11.9 24.2 35.4 17.9 12.9 11.7 13.9 14.2 16.9
MAmmoTH-Coder 13B ✓ 34.7 21.4 18.6 11.0 25.8 39.0 20.4 12.7 10.7 15.3 25.1 18.2
SCIAGENT-CODER 13B ✓ 54.4 35.0 32.1 28.8 42.4 51.2 30.9 25.0 22.6 30.6 30.0 29.8

6 Experiments378

6.1 Setup379

We conduct experiments on SCITOOLBENCH to380

evaluate the tool-augmented scientific reasoning381

abilities of LLMs. We report results categorized by382

both question domains and construction methods383

for fine-grained analysis. We also employ CRE-384

ATION Challenge (Qian et al., 2023) as the second385

benchmark. It comprises 2,047 samples, with each386

sample consisting of a question and a ground-truth387

function. We re-purpose all functions to assemble a388

global toolset (thus including 2,047 functions). We389

report accuracy as the metric in all experiments.390

6.2 Baselines391

We compare SCIAGENT series with six open-392

source LLMs: (1) CodeLlama (Rozière et al.,393

2023), (2) MAmmoTH-Coder (Yue et al., 2023b),394

(3) ToRA-Coder (Gou et al., 2023b), (4) Mis-395

tral (Jiang et al., 2023), (5) Deepseek-Math (Shao396

et al., 2024), (6) Llama-3 (Touvron et al., 2023).397

We also list the performance of ChatGPT and GPT-398

4 for reference. For fair comparison, we provide399

all LLMs the same retriever in Section 3.2 to re-400

trieve functions from toolset (if attached). Please401

see more details in Appendix C.402

6.3 Main Results403

We fine-tune CodeLlama, Mistral, Llama-3 and404

Deepseek-Math for different SCIAGENT variants.405

We present their results, along with associated base-406

lines, in Table 2 and draw following conclusions:407

The importance of math skills. The LLMs pre- 408

trained on math-related corpus, i.e., Deepseek- 409

Math series, present more competitive performance 410

than others. And the models fine-tuned on math- 411

related datasets from CodeLlama, i.e., ToRA- and 412

MAmmoTH-Coder, perform better than CodeL- 413

lama itself by 5.5% absolute accuracy. It presents 414

the importance of essential math skills among di- 415

verse scientific domains. 416

The necessity of tool-augmented learning. Most 417

evaluated LLMs are not inherently proficient at 418

using tools. When equipped with toolsets, the per- 419

formance of LLMs that have not undergone tool- 420

augmented learning degrades significantly. For in- 421

stance, the 7∼8B models such as ToRA-Coder, 422

Mistral, Deepseek-Math, and Llama-3 show per- 423

formance drops of 3.0%, 0.9%, 4.9%, and 3.7%, 424

respectively. As shown in Figure 5, LLMs demon- 425

strate proficient tool-use abilities and benefit from 426

the attached toolsets only when they have under- 427

gone tool-augmented learning, i.e., fine-tuning on 428

MATHFUNC. As a result, our agents outperform 429

other open-source LLMs by a large margin. No- 430

tably, SCIAGENT-CODER surpasses ToRA-Coder 431

by absolute accuracy of 13.4% and 12.7% on the 432

7B and 13B versions. Our strongest agent, SCIA- 433

GENT-DEEPMATH-7B, substantially outperforms 434

ChatGPT (40.0% v.s. 31.0%). 435

The challenges of scientific reasoning. However, 436

our agents still lags far behind GPT-4. This gap 437

highlights the challenges of tool-augmented scien- 438

tific reasoning (as well as our benchmark). 439

6

Table 3: Ablation study on human-annotated subset of SCITOOLBENCH. We report the accuracy of samples across
(1) all domains, (2) four domains excluding the math domain (wo. math).

Planning Function-augmented Function-free Accuracy (7B) Accuracy (13B)
solutions solutions All wo. math All wo. math

SCIAGENT-Coder ✓ ✓(cross-retrieval) ✓ 32.2 34.6 35.7 36.5

Intermediate variants
1-3

✗ ✓(cross-retrieval) ✓ 30.3 33.9 32.8 34.4
✗ ✓(direct-use) ✓ 17.8 17.3 26.6 31.0
✗ ✗ ✓ 26.3 26.1 30.4 31.7

CodeLlama ✗ ✗ ✗ 11.9 14.7 16.0 19.4

0

10

20

30

40

Mistral−7B Llama−3−8B Deepseek−math−7B

A
cc

ur
ac

y

w.o. toolset w. ad−hoc tools (CREATOR)

w. attached toolset w. attached toolset + tool−augmented learning

Figure 5: Evaluated LLMs are not native tool-users.
Their performance drops when they are equipped with
either self-derived or external toolsets (color in blue and
red, respectively). Tool-augmented learning (color in
purple, i.e., fine-tuning on MATHFUNC) makes them
benefit from attached toolsets.

6.4 Ablation Study440

We investigate the effectiveness of components in441

our training data and agent modules. The specific442

variants we considered are as follows. (1) We re-443

move the planning module in the agent. (2) We444

additionally drop the cross-retrieval strategy intro-445

duced in Section 3.2. In its place, we construct446

function-augmented solutions directly from F̃q and447

S̃q. (3) We further remove all function-augmented448

solutions from our training data, and only keep449

the solutions without function callings (function-450

free solutions). (4) We do not fine-tune agents but451

merely use CodeLlama as Maction for inference.452

We illustrate the performance of our agents and453

their ablated variants in Table 3. We observe that454

(1) Planning module significantly improves scien-455

tific reasoning abilities. As detailed and targeted456

queries for the retriever, the generated plannings457

increase the relatedness of retrieved functions. For458

instance, the function’s Recall@3 increases from459

48.3% to 53.2% in physics domain, and from 37.3%460

to 39.8% in chemistry domain. (2) The use of the461

cross-retrieval strategy is essential. Otherwise, the462

function-augmented solutions directly from F̃q and463

S̃q degrade the performance because they are too464

artificial and ad-hoc to teach LLMs using functions465

properly. (3) The absence of function-augmented 466

solutions results in a performance drop (row 1 v.s. 467

row 4 in Table 3) of 5.9% and 5.3% in absolute 468

accuracy for 7B and 13B LLMs, respectively. It 469

underscores the critical role of function-augmented 470

solutions to enhance LLMs’ tool-use abilities, and 471

the necessity of our MATHFUNC corpus. (4) The 472

removal of function-free solutions (row 4 v.s. row 473

5) leads to an absolutely 14.4% accuracy decrease. 474

Specifically focusing on non-math samples, there 475

is a notable performance drop of about 12% as well. 476

This clearly demonstrates the fundamental impor- 477

tance of math skills in diverse scientific reasoning 478

tasks, and highlights how our math-related samples 479

enhance LLMs’ capabilities in this area. 480

6.5 Analysis 6 481

Robustness of Toolsets. We acknowledge the con- 482

struction and maintenance of toolsets is sometime 483

challenging. Therefore, we stress the importance 484

of our agents’ robustness. If a sub-par toolset were 485

provided, an robust agent should at the very least 486

perform comparably, if not better, than other com- 487

petitive LLMs without tool-use. To evaluate the 488

robustness of SCIAGENT-CODER, we simulate two 489

sub-par settings. (1) weak-related: for each ques- 490

tion, we restrict the agents from retrieving func- 491

tions that are directly derived from it. This set- 492

ting greatly decreases the likelihood of retrieving 493

a proper function from the toolset. (2) unrelated: 494

we completely remove the domain-specific toolset 495

in SCITOOLBENCH. As a substitution, we provide 496

the unrelated toolset constructed in MATHFUNC. 497

We compare our agents with two competitive 498

LLMs, i.e., ToRA-Coder and MAmmoTH-Coder, 499

in above two settings. As shown in Table 4, (1) 500

SCIAGENT series with unrelated toolsets present 501

comparable performance with the two LLMs. In 502

6We use the human-annotated subsets of SCITOOLBENCH
for evaluations in this section. It is due to that samples in
this subset have ground-truth function-augmented solutions,
which are necessary for fine-grained discussion and analysis.

7

Table 4: Accuracy on SCIAGENT with sub-par toolsets.
WR: weak-related toolsets. UR: unrelated toolsets. NA:
No toolset. The subscripts indicate the difference from
the best LLMs (wo. toolsets) each column.

Model Toolset Accuracy (7B) Accuracy (13B)
All wo.math All wo. math

SCIAGENT
-Coder

WR 18.8+0.7 18.0+8.3 24.6+4.6 19.9+7.6

UR 14.7−3.7 10.7+1.0 20.3+0.3 14.7+2.4

MAmmo-C NA 12.7 9.0 16.4 12.3
ToRA-C NA 18.1 9.7 20.0 11.1

other words, our tool-augmented agents are un-503

likely to degrade the performance even under the504

extreme scenarios. (2) Our agents with weak-505

related toolsets significantly outperform the two506

LLMs, which further validates the robustness.507

The Effect of Retriever Quality. We explore508

the effect of retriever quality on the ending per-509

formance. We substitute our fine-tuned retriever510

in SCIAGENT series by two competitive variants:511

SimCSE (Gao et al., 2021) and Contriever (Izac-512

ard et al., 2021). As shown in Figure 6 (top), our513

retriever surpasses the other two. It shows that fine-514

tuning on the math domain benefits the retrieval of515

tools in the generalized scientific domains.516

20

25

30

35

40

7B 13B

A
cc

ur
ac

y

SimCSE Contriever Ours

20

25

30

35

40

0% 20% 40% 60% 80% 100%
Recall@3 of retrieved functions

A
cc

ur
ac

y

SciAgent−Coder−7B
SciAgent−Coder−13B

Figure 6: Top: Performance of SCIAGENT-CODER
on SCITOOLBENCH with different retriever variants.
Bottom: Relationship between the performance and the
hit@3 of retrieved functions (artificially controlled).

We further dive deep into the relationship be-517

tween the hit ratio of tools and the agents’ perfor-518

mance. To this end, we manually control the hit@3519

ratio by artificially adding/removing the positive520

functions to/from the retrieved list. Results in Fig-521

ure 6 (bottom) show a clearly positive correlation522

between the hit ratio and the task accuracy. It il-523

lustrates that the retrieved functions facilitate the524

reasoning of scientific problems. However, we still525

observe a limit (40% accuracy) when the hit ratios526

reaching 100%, showing the challenge of scientific 527

reasoning even when aided by tools. We hope the 528

future work to bridge this performance gap. 529

SciAgent−Coder MAmmoTH−Coder

0

10

20

30

40

50

Use funcs Not use funcs
7B

A
cc

ur
ac

y

0

10

20

30

40

50

Use funcs Not use funcs
13B

A
cc

ur
ac

y

Figure 7: The performance of SCIAGENT-CODER (w.
toolset) and MAmmoTH-Coder (wo. toolset) on sam-
ples which (1) use and (2) not use retrieved functions.

How the Retrieved Functions Benefit. To assess 530

how the retrieved functions aid in the reasoning 531

process of LLMs, we divided the samples into two 532

subsets based on whether our agents use the re- 533

trieved functions to solve the problems. We eval- 534

uate the performance of these two subsets respec- 535

tively, comparing with MAmmoTH-Coder series 536

(without tool-use). The results in Figure 7 reveal 537

a two-fold benefit: (1) For samples where func- 538

tions are explicitly called to solve the questions, 539

our agents demonstrate a substantial 25% improve- 540

ment in absolute accuracy over LLMs that do not 541

have access to functions. (2) Even for samples 542

that do not directly use functions in their written 543

program, we still observe a slight improvement. 544

It suggests that our agents are capable of learn- 545

ing from retrieved functions as a reference, and 546

then imitate these functions to write their own pro- 547

grams. For instance, example in Figure 13 shows 548

the agents learn how to use scipy.integrate 549

by observing the retrieved function aver- 550

age_value_of_function(...). 551

7 Conclusion 552

This work proposes tool-augmented scientific rea- 553

soning, a task aiming to solve challenging scien- 554

tific problems aided by generalized and scalable 555

tools. To facilitate and evaluate the scientific tool- 556

use abilities of LLMs, we construct a math-related, 557

tool-augmented training corpus MATHFUNC and a 558

benchmark SCITOOLBENCH covering 5 scientific 559

domains. Additionally, we develop open-source 560

agents, SCIAGENT series, as competitive baselines. 561

Extensive experiments reveal that our agents ex- 562

hibit tool-use abilities exceeding ChatGPT in sci- 563

entific reasoning tasks. 564

8

Limitations565

The primary limitation of our work comes from the566

way we compile the toolsets in SciToolBench.567

These tools are constructed directly based on the568

benchmark’s questions, raising concerns about po-569

tential information leakage. To address this, we570

invest significant human effort in our annotation571

process as detailed in Appendix D.3. We manually572

review and, if necessary, revise all derived func-573

tions to ensure their generalizability and quality.574

As shown in Figure 6 (bottom), our agents achieve575

only about 40% accuracy when we provide each576

question the exact function from which it derives577

(i.e., 100% hit ratio). It not only highlights the in-578

herent challenge of scientific reasoning tasks, but579

also suggests that our benchmark suffers minimal580

impact from the potential information leakage.581

We partly attribute this limitation to the absence582

of a training corpus among scientific (excluding583

math) domains. The scarcity of annotated solu-584

tions for scientific reasoning problems makes it585

unfeasible to set aside a portion of questions in586

our benchmark for tool creation. In future work,587

we plan to collect diverse and high-quality scien-588

tific annotations which enable us to develop a more589

practical and robust tool-augmented benchmark.590

Ethics Statement591

We ensure that SCITOOLBENCH was constructed592

in compliance with the terms of use of all source593

materials and with full respect for the intellectual594

property and privacy rights of the original authors595

of the texts. We also provide details on the charac-596

teristics and annotation steps of SCITOOLBENCH597

in Section 5 and Appendix D. We believe our cre-598

ated datasets do not cause any potential risks.599

References600

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,601
Marco Dos Santos, Stephen McAleer, Albert Q.602
Jiang, Jia Deng, Stella Biderman, and Sean Welleck.603
2023. Llemma: An open language model for mathe-604
matics.605

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldas-606
sari, Andrew D White, and Philippe Schwaller. 2023.607
Chemcrow: Augmenting large-language models with608
chemistry tools.609

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,610
and Denny Zhou. 2023. Large language models as611
tool makers.612

Wenhu Chen, Xueguang Ma, Xinyi Wang, and 613
William W. Cohen. 2023a. Program of thoughts 614
prompting: Disentangling computation from reason- 615
ing for numerical reasoning tasks. Transactions on 616
Machine Learning Research. 617

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, 618
Xueguang Ma, Jianyu Xu, Xinyi Wang, and Tony 619
Xia. 2023b. TheoremQA: A theorem-driven question 620
answering dataset. In Proceedings of the 2023 Con- 621
ference on Empirical Methods in Natural Language 622
Processing, pages 7889–7901, Singapore. Associa- 623
tion for Computational Linguistics. 624

Zhipeng Chen, Kun Zhou, Beichen Zhang, Zheng Gong, 625
Xin Zhao, and Ji-Rong Wen. 2023c. ChatCoT: 626
Tool-augmented chain-of-thought reasoning on chat- 627
based large language models. In Findings of the 628
Association for Computational Linguistics: EMNLP 629
2023, pages 14777–14790, Singapore. Association 630
for Computational Linguistics. 631

Ethan Chern, Haoyang Zou, Xuefeng Li, Jiewen Hu, Ke- 632
hua Feng, Junlong Li, and Pengfei Liu. 2023. Gener- 633
ative ai for math: Abel. https://github.com/ 634
GAIR-NLP/abel. 635

Yin Fang, Xiaozhuan Liang, Ningyu Zhang, Kangwei 636
Liu, Rui Huang, Zhuo Chen, Xiaohui Fan, and Hua- 637
jun Chen. 2023. Mol-instructions: A large-scale 638
biomolecular instruction dataset for large language 639
models. 640

Shen Gao, Zhengliang Shi, Minghang Zhu, Bowen Fang, 641
Xin Xin, Pengjie Ren, Zhumin Chen, Jun Ma, and 642
Zhaochun Ren. 2023. Confucius: Iterative tool learn- 643
ing from introspection feedback by easy-to-difficult 644
curriculum. 645

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. 646
SimCSE: Simple contrastive learning of sentence em- 647
beddings. In Proceedings of the 2021 Conference 648
on Empirical Methods in Natural Language Process- 649
ing, pages 6894–6910, Online and Punta Cana, Do- 650
minican Republic. Association for Computational 651
Linguistics. 652

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, 653
Yujiu Yang, Nan Duan, and Weizhu Chen. 2023a. 654
Critic: Large language models can self-correct with 655
tool-interactive critiquing. 656

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, 657
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu 658
Chen. 2023b. Tora: A tool-integrated reasoning 659
agent for mathematical problem solving. 660

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu. 661
2023. Toolkengpt: Augmenting frozen language 662
models with massive tools via tool embeddings. 663

Dan Hendrycks, Collin Burns, Steven Basart, Andy 664
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein- 665
hardt. 2021a. Measuring massive multitask language 666
understanding. In 9th International Conference on 667
Learning Representations, ICLR 2021, Virtual Event, 668
Austria, May 3-7, 2021. OpenReview.net. 669

9

http://arxiv.org/abs/2310.10631
http://arxiv.org/abs/2310.10631
http://arxiv.org/abs/2310.10631
http://arxiv.org/abs/2304.05376
http://arxiv.org/abs/2304.05376
http://arxiv.org/abs/2304.05376
http://arxiv.org/abs/2305.17126
http://arxiv.org/abs/2305.17126
http://arxiv.org/abs/2305.17126
https://doi.org/10.18653/v1/2023.emnlp-main.489
https://doi.org/10.18653/v1/2023.emnlp-main.489
https://doi.org/10.18653/v1/2023.emnlp-main.489
https://doi.org/10.18653/v1/2023.findings-emnlp.985
https://doi.org/10.18653/v1/2023.findings-emnlp.985
https://doi.org/10.18653/v1/2023.findings-emnlp.985
https://doi.org/10.18653/v1/2023.findings-emnlp.985
https://doi.org/10.18653/v1/2023.findings-emnlp.985
https://github.com/GAIR-NLP/abel
https://github.com/GAIR-NLP/abel
https://github.com/GAIR-NLP/abel
http://arxiv.org/abs/2306.08018
http://arxiv.org/abs/2306.08018
http://arxiv.org/abs/2306.08018
http://arxiv.org/abs/2306.08018
http://arxiv.org/abs/2306.08018
http://arxiv.org/abs/2308.14034
http://arxiv.org/abs/2308.14034
http://arxiv.org/abs/2308.14034
http://arxiv.org/abs/2308.14034
http://arxiv.org/abs/2308.14034
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
http://arxiv.org/abs/2305.11738
http://arxiv.org/abs/2305.11738
http://arxiv.org/abs/2305.11738
http://arxiv.org/abs/2309.17452
http://arxiv.org/abs/2309.17452
http://arxiv.org/abs/2309.17452
http://arxiv.org/abs/2305.11554
http://arxiv.org/abs/2305.11554
http://arxiv.org/abs/2305.11554
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul670
Arora, Steven Basart, Eric Tang, Dawn Song, and671
Jacob Steinhardt. 2021b. Measuring mathematical672
problem solving with the math dataset. NeurIPS.673

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and674
Yejin Choi. 2020. The curious case of neural text675
degeneration. In 8th International Conference on676
Learning Representations, ICLR 2020, Addis Ababa,677
Ethiopia, April 26-30, 2020. OpenReview.net.678

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei679
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,680
Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu,681
Maosong Sun, and Junxian He. 2023. C-eval: A682
multi-level multi-discipline chinese evaluation suite683
for foundation models.684

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-685
bastian Riedel, Piotr Bojanowski, Armand Joulin,686
and Edouard Grave. 2021. Unsupervised dense infor-687
mation retrieval with contrastive learning.688

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-689
sch, Chris Bamford, Devendra Singh Chaplot, Diego690
de las Casas, Florian Bressand, Gianna Lengyel, Guil-691
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,692
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,693
Thibaut Lavril, Thomas Wang, Timothée Lacroix,694
and William El Sayed. 2023. Mistral 7b.695

Qiao Jin, Yifan Yang, Qingyu Chen, and Zhiyong Lu.696
2023. Genegpt: Augmenting large language models697
with domain tools for improved access to biomedical698
information.699

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick700
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and701
Wen-tau Yih. 2020. Dense passage retrieval for open-702
domain question answering. In Proceedings of the703
2020 Conference on Empirical Methods in Natural704
Language Processing (EMNLP), pages 6769–6781,705
Online. Association for Computational Linguistics.706

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-707
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,708
Luke Zettlemoyer, and Veselin Stoyanov. 2019.709
Roberta: A robustly optimized bert pretraining ap-710
proach.711

Yuliang Liu, Xiangru Tang, Zefan Cai, Junjie Lu,712
Yichi Zhang, Yanjun Shao, Zexuan Deng, Helan Hu,713
Zengxian Yang, Kaikai An, Ruijun Huang, Shuzheng714
Si, Sheng Chen, Haozhe Zhao, Zhengliang Li, Liang715
Chen, Yiming Zong, Yan Wang, Tianyu Liu, Zhi-716
wei Jiang, Baobao Chang, Yujia Qin, Wangchunshu717
Zhou, Yilun Zhao, Arman Cohan, and Mark Gerstein.718
2023. Ml-bench: Large language models leverage719
open-source libraries for machine learning tasks.720

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-721
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and722
Jianfeng Gao. 2023. Chameleon: Plug-and-play com-723
positional reasoning with large language models.724

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian- 725
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei 726
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz- 727
ardmath: Empowering mathematical reasoning for 728
large language models via reinforced evol-instruct. 729

OpenAI. 2023. Gpt-4 technical report. 730

Siru Ouyang, Zhuosheng Zhang, Bing Yan, Xuan Liu, 731
Jiawei Han, and Lianhui Qin. 2023. Structured chem- 732
istry reasoning with large language models. 733

Liangming Pan, Alon Albalak, Xinyi Wang, and 734
William Wang. 2023. Logic-LM: Empowering large 735
language models with symbolic solvers for faithful 736
logical reasoning. In Findings of the Association 737
for Computational Linguistics: EMNLP 2023, pages 738
3806–3824, Singapore. Association for Computa- 739
tional Linguistics. 740

Shishir G. Patil, Tianjun Zhang, Xin Wang, and 741
Joseph E. Gonzalez. 2023. Gorilla: Large language 742
model connected with massive apis. 743

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng, 744
Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden, Zhou 745
Yu, Weizhu Chen, and Jianfeng Gao. 2023. Check 746
your facts and try again: Improving large language 747
models with external knowledge and automated feed- 748
back. 749

Cheng Qian, Chi Han, Yi Fung, Yujia Qin, Zhiyuan 750
Liu, and Heng Ji. 2023. CREATOR: Tool creation 751
for disentangling abstract and concrete reasoning of 752
large language models. In Findings of the Associa- 753
tion for Computational Linguistics: EMNLP 2023, 754
pages 6922–6939, Singapore. Association for Com- 755
putational Linguistics. 756

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, 757
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang, 758
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, 759
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun 760
Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen 761
Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi, 762
Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, 763
Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan, 764
Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng 765
Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, and 766
Maosong Sun. 2023a. Tool learning with foundation 767
models. 768

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan 769
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, 770
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, 771
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li, 772
Zhiyuan Liu, and Maosong Sun. 2023b. Toolllm: 773
Facilitating large language models to master 16000+ 774
real-world apis. 775

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, 776
Shaden Smith, and Yuxiong He. 2021. Zero-infinity: 777
Breaking the gpu memory wall for extreme scale 778
deep learning. In Proceedings of the International 779
Conference for High Performance Computing, Net- 780
working, Storage and Analysis, SC ’21, New York, 781
NY, USA. Association for Computing Machinery. 782

10

https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
http://arxiv.org/abs/2305.08322
http://arxiv.org/abs/2305.08322
http://arxiv.org/abs/2305.08322
http://arxiv.org/abs/2305.08322
http://arxiv.org/abs/2305.08322
https://arxiv.org/abs/2112.09118
https://arxiv.org/abs/2112.09118
https://arxiv.org/abs/2112.09118
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2304.09667
http://arxiv.org/abs/2304.09667
http://arxiv.org/abs/2304.09667
http://arxiv.org/abs/2304.09667
http://arxiv.org/abs/2304.09667
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2311.09835
http://arxiv.org/abs/2311.09835
http://arxiv.org/abs/2311.09835
http://arxiv.org/abs/2304.09842
http://arxiv.org/abs/2304.09842
http://arxiv.org/abs/2304.09842
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2311.09656
http://arxiv.org/abs/2311.09656
http://arxiv.org/abs/2311.09656
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
http://arxiv.org/abs/2305.15334
http://arxiv.org/abs/2305.15334
http://arxiv.org/abs/2305.15334
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
https://doi.org/10.18653/v1/2023.findings-emnlp.462
https://doi.org/10.18653/v1/2023.findings-emnlp.462
https://doi.org/10.18653/v1/2023.findings-emnlp.462
https://doi.org/10.18653/v1/2023.findings-emnlp.462
https://doi.org/10.18653/v1/2023.findings-emnlp.462
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,783
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi784
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom785
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish786
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-787
han Xiong, Alexandre Défossez, Jade Copet, Faisal788
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,789
Thomas Scialom, and Gabriel Synnaeve. 2023. Code790
llama: Open foundation models for code.791

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,792
Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu,793
and Daya Guo. 2024. Deepseekmath: Pushing the794
limits of mathematical reasoning in open language795
models.796

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,797
Weiming Lu, and Yueting Zhuang. 2023. Hugging-798
gpt: Solving ai tasks with chatgpt and its friends799
in huggingface. In Advances in Neural Information800
Processing Systems.801

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,802
Han Qian, Mingbo Song, Hailiang Huang, Cheng803
Li, Ke Wang, Rong Yao, Ye Tian, and Sujian Li.804
2023. Restgpt: Connecting large language models805
with real-world restful apis.806

Liangtai Sun, Yang Han, Zihan Zhao, Da Ma, Zhennan807
Shen, Baocai Chen, Lu Chen, and Kai Yu. 2023. Sci-808
eval: A multi-level large language model evaluation809
benchmark for scientific research.810

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-811
bert, Amjad Almahairi, Yasmine Babaei, Nikolay812
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti813
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton814
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,815
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,816
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-817
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan818
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,819
Isabel Kloumann, Artem Korenev, Punit Singh Koura,820
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-821
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-822
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-823
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-824
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,825
Ruan Silva, Eric Michael Smith, Ranjan Subrama-826
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-827
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,828
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,829
Melanie Kambadur, Sharan Narang, Aurelien Ro-830
driguez, Robert Stojnic, Sergey Edunov, and Thomas831
Scialom. 2023. Llama 2: Open foundation and fine-832
tuned chat models.833

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2019.834
Representation learning with contrastive predictive835
coding.836

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun837
Luo, Weikang Shi, Renrui Zhang, Linqi Song,838
Mingjie Zhan, and Hongsheng Li. 2023a. Mathcoder:839
Seamless code integration in llms for enhanced math-840
ematical reasoning.841

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu 842
Zhang, Satyen Subramaniam, Arjun R. Loomba, 843
Shichang Zhang, Yizhou Sun, and Wei Wang. 844
2023b. Scibench: Evaluating college-level scientific 845
problem-solving abilities of large language models. 846

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, 847
Lifan Yuan, Hao Peng, and Heng Ji. 2023c. Mint: 848
Evaluating llms in multi-turn interaction with tools 849
and language feedback. 850

Zhiruo Wang, Daniel Fried, and Graham Neubig. 2024. 851
Trove: Inducing verifiable and efficient toolboxes for 852
solving programmatic tasks. 853

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong 854
Wang, Zecheng Tang, and Nan Duan. 2023. Visual 855
chatgpt: Talking, drawing and editing with visual 856
foundation models. 857

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, 858
Zhengyu Chen, and Jian Zhang. 2023a. On the 859
tool manipulation capability of open-source large 860
language models. 861

Yiheng Xu, Hongjin Su, Chen Xing, Boyu Mi, Qian 862
Liu, Weijia Shi, Binyuan Hui, Fan Zhou, Yitao Liu, 863
Tianbao Xie, Zhoujun Cheng, Siheng Zhao, Ling- 864
peng Kong, Bailin Wang, Caiming Xiong, and Tao 865
Yu. 2023b. Lemur: Harmonizing natural language 866
and code for language agents. 867

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, 868
Xiu Li, and Ying Shan. 2023. Gpt4tools: Teaching 869
large language model to use tools via self-instruction. 870

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy- 871
athi Chandu, Kai-Wei Chang, Yejin Choi, and 872
Bill Yuchen Lin. 2023. Lumos: Learning agents 873
with unified data, modular design, and open-source 874
llms. 875

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, 876
Zhengying Liu, Yu Zhang, James T Kwok, Zhen- 877
guo Li, Adrian Weller, and Weiyang Liu. 2023. 878
Metamath: Bootstrap your own mathematical ques- 879
tions for large language models. ArXiv preprint, 880
abs/2309.12284. 881

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R. Fung, 882
Hao Peng, and Heng Ji. 2023a. Craft: Customiz- 883
ing llms by creating and retrieving from specialized 884
toolsets. 885

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting 886
Dong, Keming Lu, Chuanqi Tan, Chang Zhou, and 887
Jingren Zhou. 2023b. Scaling relationship on learn- 888
ing mathematical reasoning with large language mod- 889
els. 890

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, 891
Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu 892
Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao 893
Yu, Ruibin Yuan, Renliang Sun, Ming Yin, Boyuan 894
Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, 895
Huan Sun, Yu Su, and Wenhu Chen. 2023a. Mmmu: 896

11

http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2306.06624
http://arxiv.org/abs/2306.06624
http://arxiv.org/abs/2306.06624
http://arxiv.org/abs/2308.13149
http://arxiv.org/abs/2308.13149
http://arxiv.org/abs/2308.13149
http://arxiv.org/abs/2308.13149
http://arxiv.org/abs/2308.13149
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/2310.03731
http://arxiv.org/abs/2310.03731
http://arxiv.org/abs/2310.03731
http://arxiv.org/abs/2310.03731
http://arxiv.org/abs/2310.03731
http://arxiv.org/abs/2307.10635
http://arxiv.org/abs/2307.10635
http://arxiv.org/abs/2307.10635
http://arxiv.org/abs/2309.10691
http://arxiv.org/abs/2309.10691
http://arxiv.org/abs/2309.10691
http://arxiv.org/abs/2309.10691
http://arxiv.org/abs/2309.10691
http://arxiv.org/abs/2401.12869
http://arxiv.org/abs/2401.12869
http://arxiv.org/abs/2401.12869
http://arxiv.org/abs/2303.04671
http://arxiv.org/abs/2303.04671
http://arxiv.org/abs/2303.04671
http://arxiv.org/abs/2303.04671
http://arxiv.org/abs/2303.04671
http://arxiv.org/abs/2305.16504
http://arxiv.org/abs/2305.16504
http://arxiv.org/abs/2305.16504
http://arxiv.org/abs/2305.16504
http://arxiv.org/abs/2305.16504
http://arxiv.org/abs/2310.06830
http://arxiv.org/abs/2310.06830
http://arxiv.org/abs/2310.06830
http://arxiv.org/abs/2305.18752
http://arxiv.org/abs/2305.18752
http://arxiv.org/abs/2305.18752
http://arxiv.org/abs/2311.05657
http://arxiv.org/abs/2311.05657
http://arxiv.org/abs/2311.05657
http://arxiv.org/abs/2311.05657
http://arxiv.org/abs/2311.05657
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284
http://arxiv.org/abs/2309.17428
http://arxiv.org/abs/2309.17428
http://arxiv.org/abs/2309.17428
http://arxiv.org/abs/2309.17428
http://arxiv.org/abs/2309.17428
http://arxiv.org/abs/2308.01825
http://arxiv.org/abs/2308.01825
http://arxiv.org/abs/2308.01825
http://arxiv.org/abs/2308.01825
http://arxiv.org/abs/2308.01825
http://arxiv.org/abs/2311.16502
http://arxiv.org/abs/2311.16502

A massive multi-discipline multimodal understand-897
ing and reasoning benchmark for expert agi.898

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao899
Huang, Huan Sun, Yu Su, and Wenhu Chen. 2023b.900
Mammoth: Building math generalist models through901
hybrid instruction tuning.902

Dan Zhang, Ziniu Hu, Sining Zhoubian, Zhengxiao903
Du, Kaiyu Yang, Zihan Wang, Yisong Yue, Yuxiao904
Dong, and Jie Tang. 2024. Sciglm: Training scien-905
tific language models with self-reflective instruction906
annotation and tuning.907

Wenxuan Zhang, Sharifah Mahani Aljunied, Chang Gao,908
Yew Ken Chia, and Lidong Bing. 2023a. M3exam:909
A multilingual, multimodal, multilevel benchmark910
for examining large language models.911

Yifan Zhang, Jingqin Yang, Yang Yuan, and Andrew912
Chi-Chih Yao. 2023b. Cumulative reasoning with913
large language models.914

Yilun Zhao, Hongjun Liu, Yitao Long, Rui Zhang, Chen915
Zhao, and Arman Cohan. 2023. Knowledgemath:916
Knowledge-intensive math word problem solving in917
finance domains.918

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun919
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi Song,920
Mingjie Zhan, and Hongsheng Li. 2023. Solving921
challenging math word problems using gpt-4 code922
interpreter with code-based self-verification.923

12

http://arxiv.org/abs/2311.16502
http://arxiv.org/abs/2311.16502
http://arxiv.org/abs/2311.16502
http://arxiv.org/abs/2309.05653
http://arxiv.org/abs/2309.05653
http://arxiv.org/abs/2309.05653
http://arxiv.org/abs/2401.07950
http://arxiv.org/abs/2401.07950
http://arxiv.org/abs/2401.07950
http://arxiv.org/abs/2401.07950
http://arxiv.org/abs/2401.07950
http://arxiv.org/abs/2306.05179
http://arxiv.org/abs/2306.05179
http://arxiv.org/abs/2306.05179
http://arxiv.org/abs/2306.05179
http://arxiv.org/abs/2306.05179
http://arxiv.org/abs/2308.04371
http://arxiv.org/abs/2308.04371
http://arxiv.org/abs/2308.04371
http://arxiv.org/abs/2311.09797
http://arxiv.org/abs/2311.09797
http://arxiv.org/abs/2311.09797
http://arxiv.org/abs/2311.09797
http://arxiv.org/abs/2311.09797
http://arxiv.org/abs/2308.07921
http://arxiv.org/abs/2308.07921
http://arxiv.org/abs/2308.07921
http://arxiv.org/abs/2308.07921
http://arxiv.org/abs/2308.07921

A Detailed Related Work924

A.1 Scientific Reasoning925

Scientific reasoning can be roughly categorized926

into two branches: (1) mathematical reasoning and927

(2) reasoning across other scientific domains.928

Mathematical Reasoning. Mathematical (math)929

reasoning has attracted much more attentions re-930

cently. Thanks to abundant training datasets and931

corpus, there are intensive studies for more pow-932

erful math-oriented LLMs by prompt engineer-933

ing (Qian et al., 2023; Zhang et al., 2023b; Zhou934

et al., 2023), instruction-tuning (Yuan et al., 2023b;935

Yue et al., 2023b; Gou et al., 2023b; Yu et al., 2023;936

Wang et al., 2023a) and even pre-training (Luo937

et al., 2023; Azerbayev et al., 2023; Chern et al.,938

2023). Regarding instruction-tuning, we notice939

that recent studies have automatically constructed940

high-quality instructions from GPT-4, i.e., fine-941

tuning open-source LLMs by Program-of-thought942

(PoT; Chen et al. 2023a) prompting. It enables943

open-source LLMs to present remarkable perfor-944

mance, even comparable with GPT-4.945

Reasoning across Other Domains. There have946

been intensive works on scientific LLMs (Bran947

et al., 2023; Jin et al., 2023; Fang et al., 2023) and948

benchmarks (Hendrycks et al., 2021a; Huang et al.,949

2023; Zhang et al., 2023a; Yue et al., 2023a; Sun950

et al., 2023). However, they primarily target on951

problems involving less complicated reasoning like952

knowledge retrieval or simple tool utilization.953

Regarding complicated scientific reasoning prob-954

lems (Chen et al., 2023b; Wang et al., 2023b),955

questions are scattered among diverse topics and956

each topic additionally requires domain-specific957

knowledge. So annotating questions and their so-958

lutions domain by domain is much more labor-959

consuming. Most current benchmarks (Chen et al.,960

2023b; Wang et al., 2023b; Zhao et al., 2023)961

merely include hundreds of questions (in all; less962

for each single domain) from textbooks and provide963

no training samples. A concurrent work (Zhang964

et al., 2024) develop a large-scale scientific training965

corpus, but only focuses three common domains:966

math, physical and chemistry. Accordingly, the967

progress of reasoning tasks in these domains is968

slower than that in math domain: the most com-969

petitive approach only achieves 50% and 35% on970

TheoremQA and SciBench, respectively, not to971

mention methods built on open-source LLMs. In-972

stead of developing an omniscient and proficient973

LLMs on reasoning tasks across various scientific 974

domains, we believe it is more practical to teach 975

LLMs the ability to use domain-specific tools to 976

facilitate their reasoning abilities in some domain 977

when external functions (toolset) are attached. 978

A.2 Tool Learning 979

LLMs, both proprietary ones and open-source ones, 980

demonstrate promising capabilities leveraging ex- 981

ternal tools to solve problems beyond their lim- 982

its (Qin et al., 2023a). Combined with specific 983

tools, these tool-augmented LLMs achieve great 984

success on various tasks such as machine learn- 985

ing (Wu et al., 2023; Shen et al., 2023; Patil et al., 986

2023; Yang et al., 2023; Liu et al., 2023), question 987

answering (Peng et al., 2023; Gou et al., 2023a), 988

daily assistance (Xu et al., 2023a; Qin et al., 2023b; 989

Song et al., 2023; Gao et al., 2023), etc. 990

Previous work usually pre-defines several tools, 991

e.g., equation solver or calculator, to facilitate math 992

reasoning tasks (Gou et al., 2023a; Lu et al., 2023; 993

Hao et al., 2023; Chen et al., 2023c; Wang et al., 994

2023c; Xu et al., 2023b; Yin et al., 2023). Cai 995

et al. (2023) generalize the concept of tools to 996

Program functions. Following this concept, CRE- 997

ATOR (Qian et al., 2023) scale up the function 998

number towards thousand level. However, these 999

ad-hoc, argument-free functions are more like so- 1000

lution wrapper rather than well-generalized tools. 1001

CRAFT (Yuan et al., 2023a) targetedly design an 1002

automatic pipeline to extract generalized functions 1003

for tool-use. Though leading to improvement, these 1004

functions are still not generalized enough and serve 1005

more as reference rather than as tools for direct 1006

calling 7. Ouyang et al. 2023 ask LLM to generate 1007

chemistry formulae as knowledge reference to as- 1008

sist the following reasoning and achieve enhanced 1009

performance on chemistry questions in SciBench. 1010

Similar as our attached toolset, Zhao et al. (2023) 1011

maintain a knowledge bank in which saves more 1012

than 900 financial definitions/equations/models as 1013

the format of functions for retrieval and use. To our 1014

best knowledge, our work is the first which (1) fine- 1015

tunes open-source, tool-augmented LLM agents 1016

for scientific reasoning tasks and (2) provides a 1017

benchmark covering multiple scientific domains to 1018

evaluate LLMs’ tool-use abilities. 1019

7We check CRAFT’s results on MATH test set under their
official repository. We observe that only 172 out of 880 test
instances (19.5%) explicitly call the retrieved functions for the
problem solving. Since the performance improvement shall be
attributed more to reference than explicit calling, we speculate
that the created functions are still not generalized enough.

13

https://github.com/lifan-yuan/CRAFT/blob/main/tab_and_math/MATH/results/results_algebra_CREATOR_retrieval.jsonl

B Training Details1020

B.1 Retriever1021

To fine-tune a retriever, we construct the training1022

samples from MATHFUNC. We concatenate the1023

question and its planning as the query, and view the1024

generated functions as the keys. We finally collect1025

a total of 8,603 query-key pairs for training, and1026

split 10% training samples as validation set.1027

query = [q;Gq]1028

key = f ∈ F̃q1029

We follow DPR (Karpukhin et al., 2020) to train1030

a dense retriever R. We use ROBERTA-BASE (Liu1031

et al., 2019) as the backbone. We set the training1032

step as 500, the batch size as 128 and the learning1033

rate as 2e-5. We also set the temperature coefficient1034

of the InfoNCE loss (van den Oord et al., 2019) as1035

0.07. We run this experiment on a single NVIDIA1036

Quadro RTX8000 GPU. The whole training pro-1037

cess lasts for about 20 minutes.1038

B.2 Planning and Action1039

We fine-tune CodeLlama (Rozière et al., 2023),1040

Mistral (Jiang et al., 2023), Llama-3 (Touvron et al.,1041

2023) and DeepMath (Shao et al., 2024) on MATH-1042

FUNC to develop the planning and action modules1043

in our tool-augmented agents SCIAGENT series.1044

We set the global batch size as 128. We use the1045

learning rate as 2e-5 for CodeLlama, 2e-6 for Mis-1046

tral and Llama-3, and 5e-6 for DeepMath. We1047

use a cosine scheduler with a 3% warm-up pe-1048

riod for 2 epochs. We train all models with ZeRO1049

Stage3 (Rajbhandari et al., 2021) on 8 V100 GPUs.1050

The whole training process lasts for about 3 hours1051

for 7B LLMs and 7.5 hours for 13B LLMs.1052

The planning and action modules share the same1053

model but act differently with different input in-1054

structions. We detail the format of planning and1055

action instructions as below:1056

Planning. Given a question q, we construct a plan-1057

ning sample as (Iplan(q), Gq), where Iplan(q) is the1058

input instruction, Gq is the output, and Iplan(.) is1059

the template for planning module. We provide an1060

example of planning instruction as below:1061

Listing 1: An example of the planning sample. We
separate the input instruction and output answer by the
dashed line.

1062
Read the following question and provide1063

a high-level, step-by-step plan for1064
this problem.1065

Question: Two complementary angles are 1066
in a ratio of $3:2$. What is the 1067
measure, in degrees, of the smaller 1068
angle? 1069

1070
Answer: 1071
-- 1072
To solve this problem, we need to 1073

perform the following steps: 1074
- Set up an equation using the given 1075

ratio and the fact that the angles 1076
are complementary. 1077

- Solve the equation for the variable 1078
representing the ratio. 1079

- Calculate the measure of the smaller 1080
angle using the found variable value. 1081

10821083

Action. Given a question q, we construct an action 1084

sample as (Iaction(q, Fq), Sq), where Iaction(q, Fq) 1085

is the input instruction, Sq is the output answer, 1086

and Iaction(.) is the template for action module. Fq 1087

are retrieved functions from the toolset in MATH- 1088

FUNC. We adopt the retriever in Appendix B.1 to 1089

retrieve three functions in the toolset. We provide 1090

an example of action instruction as below: 1091

Listing 2: An example of the action sample. We separate
the input instruction and output answer by the dashed
line. We only show one retrieved function in this sample
for visualization convenience.

1092
Read the following mathematical question 1093

and answer it. Please note that you 1094
could (optionally, not required) 1095

call the following functions when 1096
writing the code: 1097

1098
def angle_ratio_to_degrees(ratio): 1099

""" 1100
Computes the angle measures in 1101

degrees given their ratio. 1102
1103

Parameters: 1104
- ratio (tuple): The ratio of the 1105

angles. 1106
1107

Returns: 1108
- tuple: The angle measures in 1109

degrees. 1110
1111

Formula: 1112
- angle_1 = ratio[0] * x 1113
- angle_2 = ratio[1] * x 1114
- angle_3 = ratio[2] * x 1115
- where x is the common variable such 1116

that angle_1 + angle_2 + angle_3 1117
= 180 degrees 1118

""" 1119
sum_ratios = sum(ratio) 1120
x = 180 / sum_ratios 1121
return tuple(angle * x for angle in 1122

ratio) 1123
1124

[...Two more retrieved functions...] 1125
1126
1127

14

Question: Two complementary angles are1128
in a ratio of $3:2$. What is the1129
measure, in degrees, of the smaller1130
angle?1131

1132
Answer:1133
--1134
Define the ratio of the angles.1135
ratio = (3, 2)1136
Since the angles are complementary,1137

they add up to 90 degrees.1138
We can find the value of each part of1139

the ratio by dividing 90 by the sum1140
of the parts of the ratio.1141

value_of_each_part = 90 / sum(ratio)1142
The measure of the smaller angle is1143

the value of each part times the1144
smaller part of the ratio.1145

smaller_angle = value_of_each_part * min1146
(ratio)1147

Print the result.1148
print(smaller_angle)11491150

C Evaluation Details1151

We evaluate (1) the tool-use abilities of LLMs in1152

scientific reasoning task, and (2) their performance1153

when supplemented without any toolsets for com-1154

parison. We detail these two settings as below:1155

With Toolsets. We use the unified PoT-based1156

prompt (Chen et al., 2023a) for all pretraining-1157

based models and our SCIAGENT series. The uni-1158

fied prompt consists of a short task description and1159

two demonstrations. We show the prompt in Ap-1160

pendix H.4. For each question, we provide three re-1161

trieved functions and instruct LLMs to use them if1162

(and only if) necessary. Note that we use the same1163

retriever, i.e., fine-tuned from MATHFUNC, for all1164

LLMs. For MAmmoTH-Coder and ToRA-Coder1165

which are fine-tuned on specific (tool-agnostic) in-1166

structions, we try to enable them to use retrieved1167

tools while keeping the formats of their original1168

instructions as much as possible. Specifically, we1169

append a short tool-augmented description at the1170

end of their original prompts:1171
1172

[original prompt]1173
1174

Please note that you could (optionally,1175
not required) call the following1176
functions when writing the program:1177

1178
[retrieved functions]11791180

Without Toolsets. Similar as above, we use the uni-1181

fied PoT-based prompt (Chen et al., 2023a) shown1182

in Appendix H.5 for all pretraining-based models1183

and our SCIAGENT series. And we follow the orig-1184

inal instructions used for MAmmoTH-Coder and1185

ToRA-Coder to evaluate their performance.1186

D Details of SCITOOLBENCH Annotation 1187

We provide a more thorough description about SC- 1188

ITOOLBENCH construction in this section. This 1189

semi-automatic annotation pipeline involves both 1190

GPT-4 and humans to balance the quality and cost. 1191

Specifically, we enlist two authors to serve as hu- 1192

man annotators. Both of them are graduate students 1193

with proficiency in English. Additionally, they hold 1194

Bachelor of Science and/or Engineering degrees 1195

and have completed undergraduate-level courses 1196

in the five scientific domains corresponding to our 1197

benchmark. We detail the four subsequent sub- 1198

modules in our annotation pipeline, i.e., human- 1199

annotated question curation, synthesized question 1200

generation, positive function construction and neg- 1201

ative function construction, as below. 1202

D.1 Human-annotated Question Curation 1203

We curate the questions from TheoremQA (Chen 1204

et al., 2023b) and SciBench (Wang et al., 2023b), 1205

both of which are available under the MIT Li- 1206

cense. Among 1,495 questions in these original 1207

two datasets, we remove three kinds of questions. 1208

Image-required: There are 37 questions from The- 1209

oremQA which include images and necessitate vi- 1210

sual understanding abilities. We remove these sam- 1211

ples because our benchmark is text-oriented. 1212

Reasoning-agnostic: There are some multi-choice 1213

questions from TheoremQA which merely requires 1214

the memorization of knowledge points but involves 1215

little reasoning process. For example: 1216

Question: The open mapping theorem can be
proved by
(a) Baire category theorem.
(b) Cauchy integral theorem.
(c) Random graph theorem.
(d) None of the above.

1217

We manually check each samples and remove 1218

68 such kind of samples. 1219

Over-difficult: Too hard questions confuse all 1220

models and weaken the discrimination of our 1221

benchmark. To balance the difficulty and discrim- 1222

ination, we employ 4 advanced proprietary mod- 1223

els 8 to generate related functions and function- 1224

augmented program solutions. We generate 6 so- 1225

lutions for each model (one generated by greedy 1226

decoding and the other five by nucleus sampling 1227

8gpt-4, gpt4-32k, gpt-3.5-turbo, gpt-3.5-
turbo-16k

15

with 0.6 temperature) and 24 solutions in all. We1228

view questions that are answered incorrectly by1229

all 24 solutions as over-difficult questions. We re-1230

move all over-difficult questions, and retain 73.5%1231

questions in TheoremQA and 47.8% in SciBench.1232

By removing three kinds of samples mentioned1233

above, there are a total of 856 questions in our1234

SCITOOLBENCH benchmark.1235

D.2 Synthesized Question Generation1236

The human-annotated questions mentioned above1237

are curated from two small-scale yet diverse1238

datasets. As a result, there are limited questions1239

that share the same knowledge points and, conse-1240

quently, the functions in the toolsets. This limita-1241

tion may constrain the validation of the toolset’s1242

generalizability. To address this gap, we expand1243

the question set for better varied applicability of1244

the functions. We synthesize new questions by a1245

two-step, automatic pipeline as below:1246

Question Generation. For each human-annotated1247

question, we employ GPT-4o to generate an addi-1248

tional six similar but not identical questions. To1249

ensure that the generated questions are as inde-1250

pendent as possible, we (1) set a high temperature1251

of 1.0, and (2) run GPT-4o six times in parallel,1252

generating one question in each run to prevent the1253

influence of previously generated questions on new1254

ones. We show the used prompt as below.1255

Listing 3: Prompt for synthesized question generation
1256

Given a scientific question, you are1257
tasked to generate a new question1258
following the requirements as below:1259

- The new question should be1260
quantitative, i.e., the answer is a1261
specific number.1262

- The new question should share the same1263
scientific core knowledge or1264

formula as the original one.1265
- The new question should not be too1266

similar to the original question.1267
You should make significant changes1268
to the question by altering the1269
narrative, context, specific numbers,1270
etc.1271

- The background and settings of the new1272
question should be realistic,1273

avoiding any impossible scenarios1274
such as a 2000kg human or a1275
temperature of -100K.1276

1277
Output format:1278
```Question1279
[New Question]1280
```12811282

Question Filtering. The above step results in 1283

the generation of 5,136 synthesized questions 1284

WITHOUT ground-truth answers and function- 1285

augmented solutions. To ensure the quality of these 1286

questions, we have GPT-4o generate answers five 1287

times for each synthesized question and adopt the 1288

majority vote as the (silver) answer. Questions for 1289

which GPT-4o fails to provide a major-voting an- 1290

swer are removed. Additionally, a manual review 1291

of some synthesized questions reveals that GPT-4o 1292

occasionally generates overly simplistic questions, 1293

which diminishes the necessity for tool-use appli- 1294

cations. Therefore, questions with unanimously 1295

predictions (5/5) are considered overly simplistic 1296

and downsampled at a ratio of 0.5. Consequently, 1297

a total of 3,394 out of 5,136 synthesized questions 1298

are finalized as part of our benchmark. 1299

D.3 Positive Function Construction 1300

Function Generation 1301

In practice, we merge this sub-module to the 1302

process of over-difficult question identification in 1303

Appendix D.1. We randomly sample one set of 1304

functions which yield correct solutions for each 1305

question. As a result, we collect a total of 1,216 1306

candidates for the next verification sub-module. 1307

We additionally save other functions leading to 1308

correct solutions and use them as reference in the 1309

refinement sub-module. 1310

Function Verification 1311

We verify the generated functions from both cor- 1312

rectness and generalizations. We detail them sepa- 1313

rately as below. 1314

1. Correctness: Since all candidate functions lead 1315

to correct solutions, we speculate that almost all of 1316

them are correct. We randomly sample 100 func- 1317

tions (20 per domain) and manually check their 1318

correctness. The results shown in Table 5 validate 1319

our speculation. Therefore, we assume all candi- 1320

date functions are correct and retain them. 1321

Table 5: The correctness of 100 randomly sampled func-
tions across five domains.

Correct Partially Correct Wrong All

Math 18 2 0 20
Physics 19 1 0 20
Chemistry 20 0 0 20
Finance 19 0 1 20
EECS 17 3 0 20

All 93 6 1 100

16

2. Generalization: We encounter the similar prob-1322

lem as the function construction in MATHFUNC,1323

i.e., some of the auto-generated functions are not1324

generalized enough. If ad-hoc functions were in1325

the provided toolsets of our benchmark, they would1326

cause a significant overestimation of LLMs’ tool-1327

use abilities. To mitigate it as much as possible,1328

we manually check all candidate functions to en-1329

sure their generalization. Specifically, we design1330

a binary classification task and assign each func-1331

tion a label in {Retained, Refined}. We la-1332

bel a function as refined if it had one of the1333

problems listed below: (1) a pure solution wrapper.1334

(2) merely defining a non-generalized expression1335

(likely only occur in this question). (3) the argu-1336

ment names or document describing the special1337

scenario of corresponding question and not being1338

generalized/abstractive enough. (4) including ad-1339

hoc constants or code snippets. The annotators1340

firstly co-annotate 100 functions. We calculate Co-1341

hen’s kappa value of their annotation results as1342

0.85, illustrating an ideal agreement. Therefore,1343

the annotators separately annotate the remaining1344

functions. It takes about 6 hours per annotator1345

to classify about 650 functions. We show some1346

Refined function cases in Figure 11, and the an-1347

notation interface in Figure 9.1348

As a result, we collect 1,012 Retained and1349

206 Refined functions. We keep all Retained1350

as the component of positive functions. We also1351

feed the Refined functions to next refinement1352

sub-module to modify them as much as possible.1353

Function Refinement1354

This sub-module aims to rewrite 206 Refined1355

functions to make them qualified. To this end, we1356

associate each function with (1) the question from1357

which it is derived, (2) the function-augmented so-1358

lutions, and (3) the alternative functions from the1359

generation sub-module (if have). Then we pro-1360

vide them to the annotators. The annotators are1361

asked to rewrite the functions to improve their1362

generalization as much as possible. If one func-1363

tion were successfully rewritten, we also require1364

the annotator to write a solution involving the new1365

function to the related question. The solution must1366

yield correct answer to ensure the correctness of the1367

rewritten function. We show some rewritten cases1368

in Figure 11, and the screenshot of the annotation1369

interface in Figure 10.1370

It takes approximately 12 hours per annotator1371

to check each Refined function and, if appli-1372

cable, rewrite it. As a consequence, we success-1373

fully rewrite 91 Refined functions and drop the 1374

remaining ones. We combine these 91 rewritten 1375

functions and the 1,012 Retained functions to 1376

construct 1,103 positive functions. At last step, we 1377

deduplicate these functions and finalize a collection 1378

of 942 functions. 1379

D.4 Negative Function Construction 1380

The positive functions constructed above have sat- 1381

isfied the minimum requirements of the toolset in 1382

our benchmark. However, we find that such kind of 1383

benchmark contains shortcuts for LLM to retrieve 1384

and use functions. Take a physical question about 1385

frequency-angular conversion as example, the pre- 1386

vious modules construct a positive function named 1387

angular_from_frequency(...) to solve this 1388

question. Without any other similar functions, the 1389

LLMs could readily select and use the only func- 1390

tion by superficial shortcuts. These shortcuts sig- 1391

nificantly weaken the function-understanding and 1392

-use abilities evaluation of our benchmark. To miti- 1393

gate this problem, we design an additional module 1394

to eliminate the shortcuts by constructing some 1395

(hard) negative functions for each positive func- 1396

tion, like frequency_from_angular(...) and 1397

frequency_from_energy(...) in the above 1398

example. Among three similar functions, LLMs 1399

are forced to understand their usages and choose 1400

proper ones to use. In summary, we add negative 1401

functions into the toolset to simulate a more chal- 1402

lenging scenario and better evaluate LLMs’ tool- 1403

use abilities. 1404

Listing 4: Prompt for constructing negative functions
1405

Given a function about the {subfield} 1406
field, could you please write two 1407
more functions which satisfy: 1408

- The functions should be in the same 1409
field with the provided function, 1410
while the knowledge point is not 1411
compulsorily the same. 1412

- The functions should be similar, but 1413
not identical with the provided 1414
function. 1415

- The new written functions should be 1416
wrapped as the below format: 1417

1418
New function 1: 1419
```python 1420
[new_written_function_1] 1421
``` 1422

1423
New function 2: 1424
```python 1425
[new_written_function_2] 1426
``` 14271428

Specifically, we employ GPT-4 for each positive 1429

17

function to generate two similar but not identical1430

functions as the negative functions. The prompt1431

used is shown as below. We do not validate the cor-1432

rectness of negative functions for simplicity, as they1433

are not intended to be used for any question. We1434

filter the duplicated functions and retain the other1435

1,343 functions in all. By merging 942 positive1436

functions and 1,343 negative functions, we finally1437

collect a total of 2,285 functions in our toolset.1438

E More Details for Datasets1439

E.1 MATHFUNC1440

More Statistics We count the number of used func-1441

tions in each function-augmented solution, i.e., the1442

function occurrence, and show the results as below.1443

Function Occurrence Count

0 1250
1 712
2 91
3 20
4 18

≥ 5 10

Table 6: Function occurrence in MATHFUNC

We find that (1) 40.3% of solutions do not call1444

any functions. We deliberately include these sam-1445

ples in MATHFUNCo enhance the model’s robust-1446

ness, i.e., learning not to use retrieved functions if1447

they were not appropriate. (2) For other solutions,1448

each of them calls 1.31 functions on average.1449

Function Examples We list the top-10 fre-1450

quent functions and other 10 representative high-1451

frequency functions in the toolset of MATHFUNC1452

in the following two tables.1453

Function name Frequency Function name Frequency

combinations 80 solve_quadratic 44
gcd 64 triangle_area 43

factorial 58 solve_quadratic 40
is_prime 52 circle_area 38

solve_linear_system 51 binomial_coefficient 37

Table 7: Top-10 frequent functions in MATHFUNC

Function name Frequency Function name Frequency

mod_exp 24 repeating_decimal_to_fraction 14
base_n_to_base_10 19 dot_product 14
degrees_to_radians 17 arrangements_with_repeats 11

is_palindrome 15 arithmetic_sequence_nth_term 9
simplify_expression 15 sum_of_arithmetic_sequence 9

Table 8: Ten representative functions in MATHFUNC

E.2 SCITOOLBENCH1454

More Statistics We present additional statistics to1455

illustrate the composability and generalization of1456

0

100

200

300

400

500

1 2 3 4
#positive−function per question

F
re

qu
en

cy

0

300

600

900

1200

0 1 2 3 4 5 6 7 >=8
Function Occurrence

F
re

qu
en

cy

Figure 8: Left: Histogram of FPQ (function per ques-
tion). Higher values indicate greater composability.
Right: Histogram of function occurrence. Higher val-
ues indicate more generalization and wider application.

the toolsets in SCITOOLBENCH. (1) Regarding 1457

composability, we count the FPQ (the number of 1458

positive functions used in solutions) for each ques- 1459

tion in the human-annotated subset, as shown in 1460

Figure 8 (left). The results indicate that more than 1461

36% questions call more than one functions in their 1462

golden solutions, and each question requires an av- 1463

erage of 1.51 functions. They demonstrate a high 1464

degree of composability on these functions. (2) 1465

For generalization, we provide the statistics about 1466

the functions’ usage frequency among the whole 1467

question set in Figure 8 (right) 9. We observe a 1468

clear bi-modal distribution pattern, which we at- 1469

tribute to the presence of negative functions. As 1470

explained in Appendix D.4, we include a number 1471

of negative functions, i.e., functions that are never 1472

used by any questions and are counted as 0 in the 1473

aforementioned figure, in our toolset to eliminate 1474

the potential shortcuts. While these negative func- 1475

tions appear to reduce the average function occur- 1476

rences, they enhance the overall generalization of 1477

our toolsets. When excluding these negative func- 1478

tions, the average function occurrences rise to 4.58, 1479

with over 76% of positive functions being reused. 1480

These results validate the robust generalization of 1481

our toolsets in SCITOOLBENCH. 1482

9Although there are no golden function-augmented solu-
tions for the synthesized subset, we estimate the function
occurrences using the following approximation: The synthe-
sized questions inherit the human-annotated functions from
which they are derived. We argue that this approximation
is reasonable because the synthesized questions share the
same knowledge points as the original human-annotated ques-
tions. Additionally, the experimental results in Figure 2 clearly
demonstrate that our SCIAGENT series successfully utilize
functions to improve performance on the synthesized subsets,
validating the applicability of these functions for the synthe-
sized questions.

18

Model (7B) Accuracy

MAmmoTH-Coder 32.1
ToRA-Coder_wo. output shaping 40.2
ToRA-Coder 44.6
SCIAGENT-Coder 41.0

Model (13B) Accuracy

MAmmoTH-Coder 36.3
ToRA-Coder_wo. output shaping 44.6
ToRA-Coder 48.1
SCIAGENT-Coder 45.2

Table 9: Performance comparison on MATH test set.

F Discussion on In-domain Tool Using1483

This work facilitates LLMs’ scientific reasoning1484

abilities with the aid of tools. Due to the scarce1485

annotations across scientific domain, we construct1486

our training corpus, i.e., MATHFUNC, from math1487

domain. Here raises a natural question: whether1488

our fine-tuned tool-augmented agents improve the1489

in-domain performance?1490

To answer this question, we run experiments on1491

MATH test set and show their results in Table 9. It1492

demonstrates that our SCIAGENT-Coder surpasses1493

MAmmoTH-Coder and achieves comparable per-1494

formance with ToRA-Coder. However, we also do1495

not observe significant benefit from tool augmen-1496

tation on MATH test set. Though previous and1497

concurrent work (Qian et al., 2023; Yuan et al.,1498

2023a; Wang et al., 2024) have developed impres-1499

sive tool-augmented approaches to enhance various1500

kinds of reasoning tasks on models without addi-1501

tional fine-tuning, it is still an open question that1502

whether tools benefit fine-tuned, in-domain models1503

(especially when the tools are derived from the fine-1504

tuned annotations). And our primary experiments1505

here implicit that the answer might be No. We be-1506

lieve this question deserves deeper investigation as1507

a future work.1508

19

Figure 9: The screenshot of our annotation interface to evaluate functions’ generalization.

Figure 10: The screenshot of our annotation interface to rewrite functions. We provide no alternative functions in
this example for convenience of visualization.

20

def birge_vieta(p, tol=1e-3, max_iter=100):
 """
 Finds a real root of the polynomial x^3 - 11x^2 + 32x - 22 using the Birge-Vieta method.

 Parameters:
 - p (float): The initial guess for the root.
 - tol (float, optional): The desired tolerance for the root. Default is 1e-3.
 - max_iter (int, optional): The maximum number of iterations. Default is 100.

 Returns:
 - float: The real root of the polynomial found using the Birge-Vieta method.
 """
 for _ in range(max_iter):
 p_new = p - polynomial(p) / polynomial_derivative(p)
 if abs(p_new - p) < tol:
 return p_new
 p = p_new
 raise ValueError("Birge-Vieta method did not converge within the maximum number of iterations.")

def birge_vieta_iteration(polynomial, p, tol=1e-3, max_iter=100):
 """
 Finds a real root of a polynomial using the Birge-Vieta method.

 Parameters:
 - polynomial (sympy expression): The polynomial for which the root is to be
found.
 - p (float): The initial guess for the root.
 - tol (float): The desired tolerance for the root.
 - max_iter (int): The maximum number of iterations allowed.

 Returns:
 - float: The real root of the polynomial, if found within the maximum number
of iterations.
 Raises a ValueError if the root is not found within the maximum
number of iterations.
 """

 from sympy import lambdify, diff
 import numpy as np

 # Extract the variable from the polynomial
 variables = list(polynomial.free_symbols)
 if not variables:
 raise ValueError("No variables found in the polynomial.")
 if len(variables) > 1:
 raise ValueError("The polynomial contains more than one variable.")
 variable = variables[0]

 # Compute the derivative of the polynomial
 derivative = diff(polynomial, variable)

 # Convert the polynomial and its derivative to functions
 f = lambdify(variable, polynomial, 'numpy')
 f_prime = lambdify(variable, derivative, 'numpy')

 # Iterate using the Birge-Vieta method
 for _ in range(max_iter):
 p_new = p - f(p) / f_prime(p)
 if np.abs(p_new - p) < tol:
 return p_new
 p = p_new

 raise ValueError("Maximum number of iterations reached without convergence.")

Function before rewriting Function after rewriting

Rewrite the specific polynomial (and its derivative) to an
argument of the function

def calculate_emptying_time(height, radius, side_length, g=9.81):
 """
 Calculates the time it takes for a cylindrical tank to go from full to empty.

 Parameters:
 - height (float): The height of the cylindrical tank.
 - radius (float): The radius of the cylindrical tank.
 - side_length (float): The length of the side of the square hole in the bottom of the tank.
 - g (float): The acceleration due to gravity.

 Returns:
 - float: The time it takes for the tank to empty.
 """
 from math import pi, sqrt
 # Calculate the area of the tank and the hole
 tank_area = pi * radius**2
 hole_area = side_length**2

 # Use Torricelli's law to calculate the time
 time = (2 * height * tank_area) / (sqrt(2*g*height) * hole_area)
 return time

def calculate_drain_time(volume, area, gravity=9.81):
 """
 Calculates the time it takes for a cylindrical object to drain using
Torricelli's Law.

 Parameters:
 - volume (float): The volume of the cylindrical object.
 - area (float): The area of the hole through which the object is draining.
 - gravity (float): The acceleration due to gravity.

 Returns:
 - float: The time it takes for the object to drain.
 """
 from math import sqrt
 return volume / (area * sqrt(2*gravity))

Function before rewriting Function after rewriting

1. Abstract the function description by changing “tank”
to “object”
2. Decompose the area calculation and Torricelli’s law

Function before rewriting Function after rewriting
def is_log_concave():
 """
 Determines if the cumulative distribution function (CDF) of the standard Gaussian distribution
is log-concave.

 Returns:
 - int: 1 if the CDF is log-concave, 0 otherwise.

 Note:
 - The second derivative of the natural logarithm of the CDF of the standard Gaussian
distribution is always non-positive.
 Therefore, the function is log-concave, and we can return 1 without performing any
calculations.
 """
 return 1

def is_log_concave(f, x):
 """
 Determines if a given function `f` with respect to variable `x` is log-
concave.

 Parameters:
 - f (sympy expression): The function for which the log-concavity is to be
checked.
 - x (sympy symbol): The variable with respect to which log-concavity is to be
checked.

 Returns:
 - bool: True if the function is log-concave, False otherwise.
 """

 from sympy import diff, log, simplify, solveset, S
 from sympy.calculus.util import continuous_domain

 # Compute the first derivative of the logarithm of the function
 first_derivative = diff(log(f), x)

 # Compute the second derivative of the logarithm of the function
 second_derivative = diff(first_derivative, x)

 # Simplify the second derivative
 second_derivative_simplified = simplify(second_derivative)

 # Check if the second derivative is nonpositive (<= 0)
 # We check if the second_derivative is nonpositive for all x in the domain of
f
 # For a general solution, we attempt to prove the second derivative is always
nonpositive
 return solveset(second_derivative_simplified<=0,
domain=S.Reals)==continuous_domain(second_derivative_simplified, x, S.Reals)

Rewrite the specific function (and its variable) to an argument
of the function

Figure 11: Three examples of Refined functions (before rewriting) and their rewritten functions (after rewriting).
We also briefly describe the modifications for each example (color in red).

21

G Examples1509

Problem & Planing

Read the following mathematical question and answer it. Please note that you could (optionally, not
required) call the following functions when writing the code:

Question:Suppose a stock has the following information. It is listed on the London stock exchange and
operates throughout Europe. The yield on a UK 10 year treasury is 2.8%. The stock in question will earn
8.6% as per historical data. The Beta for the stock is 1.4, i.e., it is 140% volatile to the changes in
the general stock market. What is the expected rate of return?

(1) Calculate the expected return based on the beta and the yield on a UK 10 year treasury.
(2) Add the stock's historical return to the expected return.

Retrieved Functions

def expected_return(rf, beta, rm):
"""
Computes the expected return using the Capital Asset Pricing Model (CAPM) formula.

Parameters:
- rf (float): The risk-free rate.
- beta (float): The beta of the portfolio.
- rm (float): The return on the market.

Returns:
- float: The expected return.
"""
return rf + beta * (rm - rf)

def expected_stock_return(true_prob, u, d):
"""
Calculates the expected return of the stock in a one-period binomial model.

Parameters:
- true_prob (float): The true probability of the stock price going up.
- u (float): One plus the rate of capital gain on the stock if the price goes up.
- d (float): One plus the rate of capital loss on the stock if the price goes down.

Returns:
- float: The expected return of the stock.
"""
return true_prob * u + (1 - true_prob) * d

...

Solution

Given values.
rf = 0.028 # The yield on a UK 10 year treasury
beta = 1.4 # The stock is 140% volatile to the changes in the general stock market
rm = 0.086 # The stock in question will earn 8.6% as per historical data
Calculate the expected return .
expected_return = expected_return(rf, beta, rm)
Print the result.
print(expected_return)

Figure 12: An example of direct function call.

22

Problem & Planing

Read the following mathematical question and answer it. Please note that you could (optionally, not
required) call the following functions when writing the code:

Question:The linear density in a rod $8 \mathrm{~m}$ long is $12 / \sqrt{x+1} \mathrm{~kg} / \mathrm{m}$
, where x is measured in meters from one end of the rod. Find the average density of the rod.

(1) Integrate the linear density function with respect to x from 0 to 8.
(2) Divide the result by the length of the rod.

Retrieved Functions

def average_value_of_function(f, a, b):
"""
Calculates the average value of a function `f` on the interval `[a, b]`.
Parameters: - f (sympy expression): The function for which the average value is to be found.
- a (float): The lower limit of the interval.
- b (float): The upper limit of the interval.
Returns: float: The average value of the function on the interval.
"""
from sympy import integrate, symbols
x = symbols('x')
integral = integrate(f, (x, a, b))
average_value = integral / (b - a)
return average_value

def avg_distance(vectors):
"""
Finds the average distance from the origin that can be reached by adding and subtracting the given
vectors.
Parameters: - vectors (list of numpy arrays): The vectors.
Returns: float: The average distance.
"""
from itertools import product
import numpy as np
total_distance = 0
count = 0
for signs in product([-1, 1], repeat=len(vectors)):

resultant = sum(v * s for v, s in zip(vectors, signs))
distance = np.linalg.norm(resultant)
total_distance += distance
count += 1

return total_distance / count

...

Solution

The linear density is given by 12 / sqrt(x+1) kg/m.
The average density is the total mass of the rod divided by its length.
The total mass of the rod is the integral of the linear density times the length of the rod from 0 to
8.
from sympy import symbols, integrate
x = symbols('x')
length = 8
Define the linear density function.
linear_density = 12 / (x + 1)**0.5
Calculate the total mass of the rod.
total_mass = integrate(linear_density, (x, 0, length))
Calculate the average density by dividing the total mass by the length.
average_density = total_mass / length
print(average_density)

Figure 13: An example of implicitly using functions as a reference.

23

H Prompts1510

H.1 Tool/Function Collection1511

Listing 5: Prompt used for planning and function collection
1512

Given the question and the reference solution, do the following things:1513
1514

- Think about what math knowledge points are required to solve this problem step by1515
step.1516

- write some python one or more functions to abstract the solution. Please note that1517
the functions should be well-documented as much as possible and not too1518

specific (for example, do not write the values in this problem within the1519
functions. Pass them as the function arguments). We hope your written functions1520
could be re-used in anywhere else.1521

-Instantiate these functions to solve the problem. The last line of your program1522
should be a 'print' command to print the final answer1523

1524
Here are some examples you may refer to:1525

1526
Question: There are integers b,c for which both roots of the polynomial $x^2-x-1$1527

are also roots of the polynomial x^5-bx-c. Determine the product bc.1528
Answer: Let r be a root of x^2-x-1. Then, rearranging, we have\n$$r^2 = r+1.1529

$$Multiplying both sides by r and substituting gives\n\\begin{align*}\nr^3 &=1530
r^2+r \\\\\n&= (r+1)+r \\\\\n&= 2r+1.\n\\end{align*}Repeating this process twice1531
more, we have\n\\begin{align*}\nr^4 &= r(2r+1) \\\\\n&= 2r^2+r \\\\\n&= 2(r+1)+1532

r \\\\\n&= 3r+2\n\\end{align*}and\n\\begin{align*}\nr^5 &= r(3r+2) \\\\\n&= 3r1533
^2+2r \\\\\n&= 3(r+1)+2r \\\\\n&= 5r+3.\n\\end{align*}Thus, each root of $x^2-x1534
-1$ is also a root of x^5-5x-3, which gives $bc = 5\\cdot 3 = \\boxed{15}$.1535

Think: To solve this question, we can follow the steps below: (1) Find the roots of1536
the polynomial x^2-x-1. (2) Substitute them into the the polynomial x^5-bx-c1537
and obtain two equations. (3) Solve the equations.1538

Functions:1539
```function 11540
def find_roots_of_polynomial(polynomial, variable):1541

"""1542
Finds the roots of a given polynomial using the sympy library.1543

1544
Parameters:1545
- polynomial (sympy expression): The polynomial whose roots are to be found.1546
- variable (sympy symbol): The variable of the polynomial.1547

1548
Returns:1549
- list: The roots of the polynomial.1550
"""1551

1552
from sympy import solve1553
roots = solve(polynomial, variable)1554
return roots1555

```1556
1557

```function 21558
def substitute_roots_into_polynomial(roots, polynomial, variable):1559

"""1560
Substitutes the given roots into the polynomial and returns the resulting1561

expressions.1562
1563

Parameters:1564
- roots (list): The list of roots to be substituted into the polynomial.1565
- polynomial (sympy expression): The polynomial into which the roots are to be1566

substituted.1567
- variable (sympy symbol): The variable of the polynomial.1568

1569
Returns:1570
- list: The resulting expressions after substituting the roots into the1571

polynomial.1572
"""1573

1574
return [polynomial.subs(variable, root) for root in roots]1575

```1576

24

1577
```function 3 1578
def solve_equations(equations, variables): 1579

""" 1580
Solves a system of equations for the specified variables using the sympy library. 1581

1582
Parameters: 1583
- equations (list of sympy expressions or a single sympy expression): 1584

The equations to be solved. If solving a single equation, this can be a single 1585
expression. 1586

- variables (list of sympy symbols or a single sympy symbol): 1587
The variables for which the solution is to be found. If solving for a single 1588

variable, this can be a single symbol. 1589
1590

Returns: 1591
- list of dictionaries: Each dictionary represents a solution, with keys being 1592

the variables and values being their corresponding values. 1593
If there's only one solution, the list will contain a single dictionary. 1594

""" 1595
1596

from sympy import solve 1597
solution = solve(equations, variables, dict=True) 1598
return solution 1599

``` 1600
1601

Solution: 1602
```python 1603
# Import required functions and classes from sympy 1604
from sympy import symbols, Eq 1605

1606
# Define the variable and the polynomials 1607
x, b, c = symbols('x b c') 1608
polynomial1 = x**2 - x - 1 1609
polynomial2 = x**5 - b*x - c 1610

1611
# Find the roots of the first polynomial 1612
roots = find_roots_of_polynomial(polynomial1, x) 1613

1614
# Substitute the roots into the second polynomial 1615
resulting_expressions = substitute_roots_into_polynomial(roots, polynomial2, x) 1616

1617
# Set up the equations based on the resulting expressions 1618
equations = [Eq(expr, 0) for expr in resulting_expressions] 1619

1620
# Solve the system of equations for b and c 1621
solutions = solve_equations(equations, (b, c)) 1622
# This linear system has only one solution 1623
solution = solutions[0] 1624

1625
# Calculate the product bc 1626
product_bc = solution[b] * solution[c] 1627
print(product_bc) 1628
``` 1629

1630
--- 1631

1632
Question: Medians $\\overline{DP}$ and $\\overline{EQ}$ of $\\triangle DEF$ are 1633

perpendicular. If $DP= 18$ and $EQ = 24$, then what is ${DE}$? 1634
Answer: Point G is the centroid of $\\triangle DEF$, so $DG:GP = EG:GQ = 2:1$. 1635

Therefore, $DG = \\frac23(DP) = 12$ and $EG = \\frac23(EQ) =16$, so applying the 1636
Pythagorean Theorem to $\\triangle EGD$ gives us $DE = \\sqrt{EG^2 + GD^2} = \\ 1637

boxed{20}$. 1638
Think: Given two perpendicular medians in a triangle, we need to perform the 1639

following steps: (1) Identify the relationship between the segments of medians 1640
and the centroid. (2) Use the ratios provided to determine the lengths of the 1641
individual segments from the centroid to the vertices. (3) Use the Pythagorean 1642
theorem to determine the length of the side connecting the two vertices from 1643
which the medians originate. 1644

Functions: 1645
```function 1 1646

25



def median_segments_length(median_length, ratio):1647
"""1648
Computes the lengths of the segments of a median split by the centroid.1649

1650
Parameters:1651
- median_length (float): Total length of the median.1652
- ratio (tuple): Ratio in which the centroid splits the median. Default is (2,1)1653

for standard triangles.1654
1655

Returns:1656
- tuple: Lengths of the two segments.1657

1658
Formula:1659
- segment_1 = ratio[0]/sum(ratio) * median_length1660
- segment_2 = ratio[1]/sum(ratio) * median_length1661
"""1662
segment_1 = ratio[0] / sum(ratio) * median_length1663
segment_2 = ratio[1] / sum(ratio) * median_length1664
return segment_1, segment_21665

```1666
1667

```function 21668
def pythagorean_theorem(a, b):1669

"""1670
Computes the hypotenuse of a right triangle given two legs.1671

1672
Parameters:1673
- a, b (float): Lengths of the two legs.1674

1675
Returns:1676
- float: Length of the hypotenuse.1677

1678
Formula:1679
- c = sqrt(a^2 + b^2)1680
"""1681
from sympy import sqrt1682
return sqrt(a**2 + b**2)1683

```1684
1685

Solution:1686
```python1687
# Given values1688
DP = 181689
EQ = 241690

1691
# Point $G$ is the centroid.1692
ratio = (2,1)1693
# Determine the lengths of the segments split by the centroid1694
DG, GP = median_segments_length(DP, ratio)1695
EG, GQ = median_segments_length(EQ, ratio)1696

1697
# Use Pythagoras theorem to determine DE1698
DE = pythagorean_theorem(EG, DG)1699
print(DE)1700
```17011702

H.2 Self-rectification1703

Listing 6: Prompt used for self-rectification
1704
1705

{1706
"role": "system",1707
"content": "Suppose you are writing Python programs to solve mathematical1708

questions. Your original program, however, can not run normally for some1709
reasons. Given the error message returned from the interpreter, please debug1710
your program carefully and generate the new program. Your generated1711
correction MUST FOLLOW the following format:\n```function 1\n[the first1712
created function]\n```\n...\n```function N\n[the N-th created function]\n```\n1713

26


```python\n[solution]\n```.\nDO NOT only quote your output as ```python\n[ 1714
solution]\n```" 1715

}, 1716
{ 1717

"role": "user", 1718
"content": "Original Program:\n```function 1\ndef solve_quadratic(a, b, c):\n 1719

from sympy import symbols, Eq, solve\n x = symbols('x')\n quadratic = Eq(a * 1720
x**2 + b * x + c, 0)\n solutions = solve(quadratic, x)\n return solutions\n 1721
```\n\n```python\ndef find_d_values():\n a, b, c, d = symbols('a b c d')\n eq1 1722
= Eq(6 * a * d, a + d)\n eq2 = Eq((6 * d - 1) * (1 - a), a + d)\n eq3 = Eq(a, 1723
4 * d - 1)\n solution = solve([eq1, eq2, eq3], (a, b, c, d), dict=True)\n 1724

d_values = [sol[d] for sol in solution]\n return d_values\nd_values = 1725
find_d_values()\nprint(d_values)\n```\n\nError Message:\nFile <string>:15\n\ 1726
nFile <string>:9, in find_d_values()\n\nNameError: name 'Eq' is not defined" 1727

}, 1728
{ 1729

"role": "assistant", 1730
"content": "Analysis: The error is occurring because the Eq function from the 1731

sympy module is not recognized in the find_d_values function. This is 1732
happening because the ```from sympy import symbols, Eq, solve``` line is only 1733
inside the ```solve_quadratic``` function, so Eq and other imported functions 1734
and classes are only available within the scope of that function. To fix this, 1735
you should claim import statement within the ```find_d_values``` function as 1736

well.\n\nNew Program:\n```function 1\ndef solve_quadratic(a, b, c):\n from 1737
sympy import symbols, Eq, solve\n x = symbols('x')\n quadratic = Eq(a * x**2 1738
+ b * x + c, 0)\n solutions = solve(quadratic, x)\n return solutions\n```\n\n 1739
```python\ndef find_d_values():\n from sympy import symbols, Eq, solve\n a, b, 1740
c, d = symbols('a b c d')\n eq1 = Eq(6 * a * d, a + d)\n eq2 = Eq((6 * d - 1741

1) * (1 - a), a + d)\n eq3 = Eq(a, 4 * d - 1)\n solution = solve([eq1, eq2, 1742
eq3], (a, b, c, d), dict=True)\n d_values = [sol[d] for sol in solution]\n 1743
return d_values\nd_values = find_d_values()\nprint(d_values)\n```" 1744

}, 1745
{ 1746

"role": "user", 1747
"content": "finished" 1748

}, 1749
{ 1750

"role": "user", 1751
"content": "Original Program:\n```function 1\ndef matrix_square(matrix):\n from 1752

sympy import Matrix\n if not isinstance(matrix, Matrix):\n matrix = Matrix( 1753
matrix)\n return matrix * matrix\n```\n\n```function 2\ndef solve_equations( 1754
equations, variables): \n from sympy import solve \n solution = solve( 1755
equations, variables, dict=True) \n return solution \n```\n\n```function 3\ 1756
ndef count_solutions(solutions):\n return len(solutions)\n```\n\n```python\ 1757
nfrom sympy import symbols, Eq \na, d = symbols('a d') \nmatrix = [[a, 3], 1758
[-8, d]] \nsquared_matrix = matrix_square(matrix) \nidentity_matrix = [[1, 0], 1759
[0, 1]] \nequations = [Eq(squared_matrix[i][j], identity_matrix[i][j]) for i 1760
in range(2) for j in range(2)] \nsolution = solve_equations(equations, [a, d 1761

]) \nans = count_solutions(solution)\nprint(ans)\n```\n\nError Message:\nFile 1762
<string>:17\n\nFile <string>:17, in <listcomp>(.0)\n\nTypeError: 'Add' 1763

object is not subscriptable" 1764
}, 1765
{ 1766

"role": "assistant", 1767
"content": "Analysis: The error message is occurring because when you are 1768

creating the list of equations with the list comprehension, squared_matrix[i 1769
][j] is not working as expected. The squared_matrix is a SymPy Matrix object, 1770
and you should use the .row and .col methods.\n\nNew Program:\n```function 1\ 1771

ndef matrix_square(matrix):\n from sympy import Matrix\n if not isinstance( 1772
matrix, Matrix):\n matrix = Matrix(matrix)\n return matrix * matrix\n```\n\n 1773
```function 2\ndef solve_equations(equations, variables): \n from sympy 1774
import solve \n solution = solve(equations, variables, dict=True) \n return 1775
solution \n```\n\n```function 3\ndef count_solutions(solutions):\n return len(1776
solutions)\n```\n\n```python\nfrom sympy import symbols, Eq \na, d = symbols(' 1777
a d') \nmatrix = [[a, 3], [-8, d]] \nsquared_matrix = matrix_square(matrix) \ 1778
nidentity_matrix = [[1, 0], [0, 1]] \nequations = [Eq(squared_matrix.row(i)[j 1779
], identity_matrix[i][j]) for i in range(2) for j in range(2)] \nsolution = 1780
solve_equations(equations, [a, d]) \nans = count_solutions(solution)\nprint(1781
ans)\n```" 1782

}, 1783

27

{1784
"role": "user",1785
"content": "finished"1786

},1787
{1788

"role": "user",1789
"content": "Original Program:\n```function 1\ndef sum_to_product_cos(alpha, beta)1790

:\n return (cmath.cos(alpha - beta) + cmath.cos(alpha + beta)) / 2\n```\n\n```1791
function 2\ndef simplify_expression(expression): \n from sympy import1792
simplify \n return simplify(expression) \n```\n\n```python\nfrom sympy import1793
symbols, cos\n\nx = symbols('x')\nexpr = cos(x) + cos(3*x) + cos(7*x) + cos1794
(9*x)\n\n# Apply sum-to-product formula\nexpr1 = 2 * sum_to_product_cos(5*x,1795
4*x)\nexpr2 = 2 * sum_to_product_cos(5*x, 2*x)\n\n# Simplify the expression\1796
nsimplified_expr = simplify_expression(expr1 + expr2)\n\n# Extract the values1797
of a, b, c, and d and sum them up\na, b, c, d = 4, 1, 3, 5\nans = a + b + c1798
+ d\nprint(ans)\n```\n\nError Message:\nFile <string>:12\n\nFile <string>:2,1799
in sum_to_product_cos(alpha, beta)\n\nNameError: name 'cmath' is not defined"1800

},1801
{1802

"role": "assistant",1803
"content": "Analysis: The error message is occurring because the cmath module is1804

being used in the sum_to_product_cos function but it has not been imported.1805
You can fix this by importing the cmath module in this function. New Program1806
:\n```function 1\ndef sum_to_product_cos(alpha, beta):\n import cmath\n1807
return (cmath.cos(alpha - beta) + cmath.cos(alpha + beta)) / 2\n```\n\n```1808
function 2\ndef simplify_expression(expression): \n from sympy import1809
simplify \n return simplify(expression)\n``` \n\n```python\nfrom sympy import1810
symbols, cos\n\nx = symbols('x')\nexpr = cos(x) + cos(3*x) + cos(7*x) + cos1811
(9*x)\n\n# Apply sum-to-product formula\nexpr1 = 2 * sum_to_product_cos(5*x,1812
4*x)\nexpr2 = 2 * sum_to_product_cos(5*x, 2*x)\n\n# Simplify the expression\1813
nsimplified_expr = simplify_expression(expr1 + expr2)\n\n# Extract the values1814
of a, b, c, and d and sum them up\na, b, c, d = 4, 1, 3, 5\nans = a + b + c1815

+ d\nprint(ans)\n```"1816
},1817
{1818

"role": "user",1819
"content": "Error message:\nTraceback (most recent call last):\n File, line 9, in1820

<module>\n exec(\n File '<string>', line 13, in <module>\n File '<string>',1821
line 3, in sum_to_product_cos\n File, line 356, in __complex__\n return1822
complex(float(re), float(im))\n File, line 351, in __float__\n raise1823
TypeError('Cannot convert expression to float')\nTypeError: Cannot convert1824
expression to float\n"1825

},1826
{1827

"role": "assistant",1828
"content": "Analysis: The error occurs because you are trying to use cmath.cos1829

function (which expects float or complex numbers as arguments) with SymPy1830
symbolic expressions (5x and 4x, 5x and 2x are symbolic expressions). To fix1831
this, you should use SymPy's cos function instead of cmath.cos function to1832
work with symbolic expressions.\n\nNew Program:\ndef sum_to_product_cos(alpha,1833
beta):\n from sympy import cos\n return (cos(alpha - beta) + cos(alpha +1834

beta)) / 2\ndef simplify_expression(expression): \n from sympy import1835
simplify \n return simplify(expression) \nfrom sympy import symbols, cos\n\nx1836
= symbols('x')\nexpr = cos(x) + cos(3*x) + cos(7*x) + cos(9*x)\n\n# Apply1837

sum-to-product formula\nexpr1 = 2 * sum_to_product_cos(5*x, 4*x)\nexpr2 = 2 *1838
sum_to_product_cos(5*x, 2*x)\n\n# Simplify the expression\nsimplified_expr =1839
simplify_expression(expr1 + expr2)\n\n# Extract the values of a, b, c, and d1840
and sum them up\na, b, c, d = 4, 1, 3, 5\nans = a + b + c + d\nprint(ans)"1841

},1842
{1843

"role": "user",1844
"content": "finished"1845

},1846
{1847

"role": "user",1848
"content": "Original Program:\n```function 1\ndef tan_double_angle(tan_theta):\n1849

return 2 * tan_theta / (1 - tan_theta**2)\n```\n\n```function 2\ndef1850
tan_triple_angle(tan_theta):\n return (3 * tan_theta - tan_theta**3) / (1 - 31851
* tan_theta**2)\n```\n\n```function 3\ndef solve_polynomial(polynomial, x):\n1852
from sympy import solve\n return solve(polynomial, x)\n```\n\n```python\nfrom1853

28

sympy import symbols\ntan_theta = symbols('tan_theta')\ntan_2_theta = 1854
tan_double_angle(tan_theta)\ntan_3_theta = tan_triple_angle(tan_theta)\ 1855
nequation = tan_theta + tan_2_theta + tan_3_theta\nsimplified_equation = 1856
simplify_expression(equation)\ntan_theta_solutions = solve_polynomial(1857
simplified_equation, tan_theta)\n\n# Find the solution in the given range (0 1858
< tan_theta < 1)\ntan_theta_value = [solution for solution in 1859
tan_theta_solutions if 0 < solution < 1][0]\nprint(tan_theta_value)\n```\n\ 1860
nError Message:\nFile <string>:13\n\nNameError: name 'simplify_expression' is 1861
not defined" 1862

}, 1863
{ 1864

"role": "assistant", 1865
"content": "Analysis: The error message is occurring because there is no function 1866

named simplify_expression defined in your script. To fix this, you can 1867
define such a function that uses SymPy's simplify function to simplify 1868
expressions.\n\nNew Program:\n```function 1\ndef simplify_expression(1869
expression): \n from sympy import simplify \n return simplify(expression)\n 1870
```\n\n```function 2\ndef tan_double_angle(tan_theta):\n return 2 * tan_theta 1871
/ (1 - tan_theta**2)\n```\n\n```function 3\ndef tan_triple_angle(tan_theta):\n 1872
return (3 * tan_theta - tan_theta**3) / (1 - 3 * tan_theta**2)\n```\n\n``` 1873

function 4\ndef solve_polynomial(polynomial, x):\n from sympy import solve\n 1874
return solve(polynomial, x)\n```\n\n```python\nfrom sympy import symbols\ 1875
ntan_theta = symbols('tan_theta')\ntan_2_theta = tan_double_angle(tan_theta)\ 1876
ntan_3_theta = tan_triple_angle(tan_theta)\nequation = tan_theta + 1877
tan_2_theta + tan_3_theta\nsimplified_equation = simplify_expression(equation 1878
)\ntan_theta_solutions = solve_polynomial(simplified_equation, tan_theta)\n\n 1879
# Find the solution in the given range (0 < tan_theta < 1)\ntan_theta_value = 1880
[solution for solution in tan_theta_solutions if 0 < solution < 1][0]\nprint 1881

(tan_theta_value)\n```" 1882
}, 1883
{ 1884

"role": "user", 1885
"content": "finished" 1886

} 18871888

H.3 Function-augmented Solutions 1889

Listing 7: Prompt used for the generation of function-augmented solutions (cross-retrieval strategy)
1890

You will encounter a mathematical problem and are required to write a piece of 1891
Python code to solve this problem. 1892

1893
Now we have a suite of wrapped functions. Take note: 1894
- The newly provided wrapped functions have NOT been verified. They may be 1895

irrelevant or potentially flawed. 1896
- It's essential that the solution doesn't overly depend on wrapped functions. 1897
You're welcome to utilize one or more functions from the new set in your solution 1898

but only after you've determined: 1899
(1) Their accuracy. 1900
(2) Their inclusion significantly streamlines the problem-solving approach. 1901

1902
Additionally take note that 1903

(1) The last line of your written code shall be a 'print' command to print the 1904
final answer. 1905

(2) The wrapped functions should not be duplicated within your code. Instead, 1906
call them directly if needed. 1907

(3) Should you need to create custom functions, do so without adding 1908
documentation comments for the sake of brevity. 1909

(4) Write simple but clear annotations interleaving your code solution. 1910
1911

""" 1912
Retrieved functions: 1913
[List of called function names from the new set] 1914

1915
```python 1916
[Your Written Python Code.] 1917
``` 1918
""" 1919

1920

29



For example:1921
---1922
Question: What is the 100th digit to the right of the decimal point in the decimal1923

representation of $\frac{13}{90}$?1924
1925

New provided functions:1926
```New Function 01927
def decimal_representation(numerator, denominator, max_digits=1000):1928

"""1929
Computes the decimal representation of a fraction.1930

1931
Parameters:1932
- numerator (int): The numerator of the fraction.1933
- denominator (int): The denominator of the fraction.1934
- max_digits (int): The maximum number of decimal digits to compute.1935

1936
Returns:1937
- str: The decimal representation of the fraction as a string.1938
"""1939

1940
result = ""1941
remainder = numerator % denominator1942
for _ in range(max_digits):1943

remainder *= 101944
result += str(remainder // denominator)1945
remainder %= denominator1946
if remainder == 0:1947

break1948
return result1949

```1950
1951

```New Function 11952
def decimal_to_scientific(decimal_number):1953

from sympy import log, floor1954
exponent = -floor(log(decimal_number, 10))1955
coefficient = decimal_number * 10**(-exponent)1956
return coefficient, exponent1957

```1958
1959

```New Function 21960
def repeating_decimal_representation(numerator, denominator):1961

"""1962
Computes the repeating decimal representation of a fraction.1963

1964
Parameters:1965
- numerator (int): The numerator of the fraction.1966
- denominator (int): The denominator of the fraction.1967

1968
Returns:1969
- str: The repeating decimal representation of the fraction as a string.1970
"""1971

1972
Initialize the result string and a dictionary to store remainders.1973
result = ""1974
remainders = {}1975

1976
Perform long division to find the decimal representation.1977
while numerator != 0:1978

If the remainder has been seen before, we found the repeating block.1979
if numerator in remainders:1980

start = remainders[numerator]1981
return result[:start] + "(" + result[start:] + ")"1982

Otherwise, store the remainder and continue the division.1983
remainders[numerator] = len(result)1984
numerator *= 101985
result += str(numerator // denominator)1986
numerator %= denominator1987

1988
return result1989

```1990

30



1991
```New Function 3 1992
def nth_digit_of_decimal_representation(numerator, denominator, n): 1993

""" 1994
Computes the nth digit after the decimal point of the decimal representation of a 1995

fraction. 1996
1997

Parameters: 1998
- numerator (int): The numerator of the fraction. 1999
- denominator (int): The denominator of the fraction. 2000
- n (int): The position of the digit after the decimal point. 2001

2002
Returns: 2003
- int: The nth digit after the decimal point of the decimal representation of the 2004

fraction. 2005
""" 2006

2007
Get the repeating decimal representation of the fraction. 2008
decimal_representation = repeating_decimal_representation(numerator, denominator) 2009

2010
Remove the parentheses from the repeating block. 2011
decimal_representation = decimal_representation.replace("(", "").replace(")", "") 2012

2013
Calculate the nth digit using the repeating block. 2014
return int(decimal_representation[(n - 1) % len(decimal_representation)]) 2015

``` 2016
2017

Retrieved functions: 2018
[decimal_representation, nth_digit_of_decimal_representation] 2019

2020
```python 2021
Use the nth_digit_of_decimal_representation function to find the 100th digit 2022
numerator = 13 2023
denominator = 90 2024
n = 100 2025

2026
Call the function and print the result 2027
result = nth_digit_of_decimal_representation(numerator, denominator, n) 2028
print(result) 2029
``` 2030

2031
2032

--- 2033
Question: The square root of $x$ is greater than 3 and less than 4. How many integer 2034

values of $x$ satisfy this condition? 2035
2036

New provided functions: 2037
```New Function 0 2038
def solve_square_root_equation(a, b, c): 2039

""" 2040
Solves a square root equation of the form sqrt(ax - b) = c. 2041

2042
Parameters: 2043
- a (float): Coefficient of x inside the square root. 2044
- b (float): Constant term inside the square root. 2045
- c (float): Constant term on the right side of the equation. 2046

2047
Returns: 2048
- float: The value of x that satisfies the equation. 2049

2050
Formula: 2051
- x = (c^2 + b) / a 2052
""" 2053
return (c**2 + b) / a 2054

``` 2055
2056

```New Function 1 2057
def find_integer_square_less_than_double(): 2058

""" 2059
Finds the only integer whose square is less than its double. 2060

31

2061
Returns:2062
- int: The integer that satisfies the condition.2063

2064
Method:2065
- Iterate through integers starting from 1, and check if the square of the2066

integer is less than its double.2067
- If the condition is satisfied, return the integer.2068
- If the condition is not satisfied for any integer up to a certain limit, return2069

None.2070
"""2071
limit = 1002072
for x in range(1, limit):2073

if x**2 < 2*x:2074
return x2075

return None2076
```2077

2078
```New Function 22079
def solve_equation():2080

"""2081
Solves the equation (x-2)^(25-x^2) = 1 for integer solutions.2082

2083
Returns:2084
- list: A list of integer solutions for x.2085
"""2086
solutions = []2087

2088
Case 1: Exponent is 0 (25 - x^2 = 0)2089
x1 = 52090
x2 = -52091
solutions.extend([x1, x2])2092

2093
Case 2: Base is 1 (x - 2 = 1)2094
x3 = 32095
solutions.append(x3)2096

2097
Case 3: Base is -1 and exponent is even (x - 2 = -1 and 25 - x^2 = 2n for some2098

integer n)2099
x4 = 12100
solutions.append(x4)2101

2102
return solutions2103

```2104
2105

```New Function 32106
def count_integers_in_range(lower_bound, upper_bound, exclude_zero=True):2107

"""2108
Counts the number of integers within a given range.2109

2110
Parameters:2111
- lower_bound (int): The lower bound of the range.2112
- upper_bound (int): The upper bound of the range.2113
- exclude_zero (bool): Whether to exclude 0 from the count. Default is True.2114

2115
Returns:2116
- int: The number of integers within the range.2117
"""2118
count = upper_bound - lower_bound + 12119
if exclude_zero and lower_bound <= 0 and upper_bound >= 0:2120

count -= 12121
return count2122

```2123
2124

Retrieved functions:2125
[]2126

2127
```python2128
The lower and upper bounds of x for which sqrt(x) > 3 and sqrt(x) < 42129
lower_bound = 92130

32

upper_bound = 16 2131
2132

Counting the number of integers between 9 (exclusive) and 16 (exclusive) 2133
num_integers = len([x for x in range(lower_bound + 1, upper_bound)]) 2134

2135
Printing the result 2136
print(num_integers) 2137
``` 21382139

H.4 Evaluation with Toolsets 2140

Listing 8: Prompt used for evaluation (setting with toolsets)
2141

Read the following questions and answer them. For each question, you are required to 2142
write a Python program to solve it. 2143

Please note that we provide you several functions for each question. You could ( 2144
optionally, not required) call the functions to help you to solve the question 2145
if necessary. 2146

Note that the last line of your program should be a 'print' command to print the 2147
final answer 2148

2149
---------------------------------------------------- 2150
Question: 2151
What is the 100th digit to the right of the decimal point in the decimal 2152

representation of $\\frac{13}{90}$? 2153
2154

Functions: 2155
def repeating_decimal_representation(numerator, denominator): 2156

""" 2157
Computes the repeating decimal representation of a fraction. 2158

2159
Parameters: 2160
- numerator (int): The numerator of the fraction. 2161
- denominator (int): The denominator of the fraction. 2162

2163
Returns: 2164
- str: The repeating decimal representation of the fraction as a string. 2165
""" 2166

2167
# Initialize the result string and a dictionary to store remainders. 2168
result = "" 2169
remainders = {} 2170

2171
# Perform long division to find the decimal representation. 2172
while numerator != 0: 2173

# If the remainder has been seen before, we found the repeating block. 2174
if numerator in remainders: 2175

start = remainders[numerator] 2176
return result[:start] + "(" + result[start:] + ")" 2177

# Otherwise, store the remainder and continue the division. 2178
remainders[numerator] = len(result) 2179
numerator *= 10 2180
result += str(numerator // denominator) 2181
numerator %= denominator 2182

2183
return result 2184

2185
2186

def nth_digit_of_decimal_representation(numerator, denominator, n): 2187
""" 2188
Computes the nth digit after the decimal point of the decimal representation of a 2189

fraction. 2190
2191

Parameters: 2192
- numerator (int): The numerator of the fraction. 2193
- denominator (int): The denominator of the fraction. 2194
- n (int): The position of the digit after the decimal point. 2195

2196
Returns: 2197

33



- int: The nth digit after the decimal point of the decimal representation of the2198
fraction.2199

"""2200
2201

# Get the repeating decimal representation of the fraction.2202
decimal_representation = repeating_decimal_representation(numerator, denominator)2203

2204
# Remove the parentheses from the repeating block.2205
decimal_representation = decimal_representation.replace("(", "").replace(")", "")2206

2207
# Calculate the nth digit using the repeating block.2208
return int(decimal_representation[(n - 1) % len(decimal_representation)])2209

2210
2211

def decimal_representation(numerator, denominator, max_digits=1000):2212
"""2213
Computes the decimal representation of a fraction.2214

2215
Parameters:2216
- numerator (int): The numerator of the fraction.2217
- denominator (int): The denominator of the fraction.2218
- max_digits (int): The maximum number of decimal digits to compute.2219

2220
Returns:2221
- str: The decimal representation of the fraction as a string.2222
"""2223

2224
result = ""2225
remainder = numerator % denominator2226
for _ in range(max_digits):2227

remainder *= 102228
result += str(remainder // denominator)2229
remainder %= denominator2230
if remainder == 0:2231

break2232
return result2233

2234
2235

Solution:2236
# find the 100th digit.2237
numerator = 132238
denominator = 902239
n = 1002240

2241
# Call the function and print the result.2242
result = nth_digit_of_decimal_representation(numerator, denominator, n)2243
print(result)2244

2245
2246

----------------------------------------------------2247
Question:2248
The square root of $x$ is greater than 3 and less than 4. How many integer values of2249

$x$ satisfy this condition?2250
2251

Functions:2252
def count_integers_in_range(lower_bound, upper_bound, exclude_zero=True):2253

"""2254
Counts the number of integers within a given range.2255

2256
Parameters:2257
- lower_bound (int): The lower bound of the range.2258
- upper_bound (int): The upper bound of the range.2259
- exclude_zero (bool): Whether to exclude 0 from the count. Default is True.2260

2261
Returns:2262
- int: The number of integers within the range.2263
"""2264
count = upper_bound - lower_bound + 12265
if exclude_zero and lower_bound <= 0 and upper_bound >= 0:2266

count -= 12267

34



return count 2268
2269
2270

def find_integer_square_less_than_double(): 2271
""" 2272
Finds the only integer whose square is less than its double. 2273

2274
Returns: 2275
- int: The integer that satisfies the condition. 2276

2277
Method: 2278
- Iterate through integers starting from 1, and check if the square of the 2279

integer is less than its double. 2280
- If the condition is satisfied, return the integer. 2281
- If the condition is not satisfied for any integer up to a certain limit, return 2282

None. 2283
""" 2284
limit = 100 2285
for x in range(1, limit): 2286

if x**2 < 2*x: 2287
return x 2288

return None 2289
2290
2291

def solve_square_root_equation(a, b, c): 2292
""" 2293
Solves a square root equation of the form sqrt(ax - b) = c. 2294

2295
Parameters: 2296
- a (float): Coefficient of x inside the square root. 2297
- b (float): Constant term inside the square root. 2298
- c (float): Constant term on the right side of the equation. 2299

2300
Returns: 2301
- float: The value of x that satisfies the equation. 2302

2303
Formula: 2304
- x = (c^2 + b) / a 2305
""" 2306
return (c**2 + b) / a 2307

2308
2309

Solution: 2310
# We need to find the integer values of x for which sqrt(x) > 3 and sqrt(x) < 4. To 2311

this end, we can count the number of integers in the range (9, 16) directly. 2312
result = 0 2313
for x in range(10, 16): 2314

if 9 < x < 16: 2315
result += 1 2316

print(result) 23172318

H.5 Evaluation without Toolsets 2319

Listing 9: Prompt used for evaluation (setting without toolsets)
2320

Read the following questions and answer them. For each question, you are required to 2321
write a Python program to solve it. 2322

Please note that we provide you several functions for each question. You could ( 2323
optionally, not required) call the functions to help you to solve the question 2324
if necessary. 2325

Note that the last line of your program should be a 'print' command to print the 2326
final answer 2327

2328
---------------------------------------------------- 2329
Question: 2330
What is the 100th digit to the right of the decimal point in the decimal 2331

representation of $\\frac{13}{90}$? 2332
2333

Solution: 2334

35



from decimal import Decimal, getcontext2335
2336

# Set the precision to 101 (100 digits after decimal + 1 digit before decimal)2337
getcontext().prec = 1012338

2339
# Calculate the decimal representation of 13/902340
dec = Decimal(13) / Decimal(90)2341

2342
# Convert the decimal to a string2343
dec_str = str(dec)2344

2345
# Get the 100th digit to the right of the decimal point2346
digit_100th = dec_str[101]2347

2348
print(digit_100th)2349

2350
----------------------------------------------------2351
Question:2352
The square root of $x$ is greater than 3 and less than 4. How many integer values of2353

$x$ satisfy this condition?2354
2355

Solution:2356
# We need to find the integer values of x for which sqrt(x) > 3 and sqrt(x) < 4. To2357

this end, we can count the number of integers in the range (9, 16) directly.2358
result = 02359
for x in range(10, 16):2360

if 9 < x < 16:2361
result += 12362

print(result)23632364

36


	Introduction
	Preliminary
	Training Corpus: MathFunc
	Planning and Toolset Construction
	Function-augmented Solutions

	Model: SciAgent
	Overview
	Training

	Benchmark: SciToolBench
	Dataset Overview.
	Dataset Annotation

	Experiments
	Setup
	Baselines
	Main Results
	Ablation Study
	Analysis We use the human-annotated subsets of SciToolBench for evaluations in this section. It is due to that samples in this subset have ground-truth function-augmented solutions, which are necessary for fine-grained discussion and analysis.

	Conclusion
	Detailed Related Work
	Scientific Reasoning
	Tool Learning

	Training Details
	Retriever
	Planning and Action

	Evaluation Details
	Details of SciToolBench Annotation
	Human-annotated Question Curation
	Synthesized Question Generation
	Positive Function Construction
	Negative Function Construction

	More Details for Datasets
	MathFunc
	SciToolBench

	Discussion on In-domain Tool Using
	Examples
	Prompts
	Tool/Function Collection
	Self-rectification
	Function-augmented Solutions
	Evaluation with Toolsets
	Evaluation without Toolsets


