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Abstract

Scientific reasoning poses an excessive chal-
lenge for even the most advanced Large Lan-
guage Models (LLMs). To make this task more
practical and solvable for LLMs, we introduce
a new task setting named tool-augmented sci-
entific reasoning. This setting supplements
LLMs with scalable toolsets, and shifts the
focus from pursuing an omniscient problem
solver to a proficient tool-user. To facilitate the
research of such setting, we construct a tool-
augmented training corpus named MATHFUNC
which encompasses over 30,000 samples and
roughly 6,000 tools. Building on MATHFUNC,
we develop SCIAGENT to retrieve, understand
and, if necessary, use tools for scientific prob-
lem solving. Additionally, we craft a bench-
mark, SCITOOLBENCH, spanning five scien-
tific domains to evaluate LLMs’ abilities with
tool assistance. Extensive experiments on SCI-
TOOLBENCH confirm the effectiveness of SCI-
AGENT. Notably, SCTAGENT-LLAMA3-8B
surpasses other LLMs with the comparable size
by more than 8.0% in absolute accuracy. Fur-
thermore, SCIAGENT-DEEPMATH-7B shows
much superior performance than ChatGPT.

1 Introduction

Scientific reasoning (Ouyang et al., 2023; Zhao
et al., 2023) aims to comprehend and make deci-
sions regarding problems among STEM (Science,
Technology, Engineering and Mathematics) do-
mains. It is a fundamental aspect of intelligence,
a demanding capability of Large Language Mod-
els (LLMs), and a notoriously challenging task.
For instance, even GPT-4 (OpenAl, 2023) achieves
only 50% and 35% accuracy on TheoremQA (Chen
et al., 2023b) and SciBench (Wang et al., 2023b),
respectively. Regarding open-source LLMs such as
Mistral (Jiang et al., 2023) and CodeLlama (Roz-
iere et al., 2023), their performances are only about
20% accuracy or even less.
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Figure 1: Two paradigms for scientific reasoning. Dif-
ferent colors represent different scientific domains. Left:
Collecting annotations and fine-tuning LLMs domain by
domain. Right: Our proposed tool-augmented setting.
LLMs are fine-tuned on math-related, tool-augmented
samples (color in red). When adapting LLMs to a spe-
cific domain, a pluggable and domain-specific toolset is
attached. No additional fine-tuning is further required.

The challenge in scientific reasoning arises from
the need for both mathematical (math) and domain-
specific reasoning abilities. To address the physical
problem in Figure 3, for example, it is necessary to
both understand Malus’ law (domain knowledge)
for analyzing the intensity of polarized light, and
possess quantitative ability for calculating the light
intensity ratios. A natural approach involves col-
lecting annotations and fine-tuning LLMs to en-
hance their math and domain-specific reasoning
abilities, as depicted in Figure 1 (left). However, an-
notating scientific reasoning problems is extremely
expensive. What is worse, adapting LLMS to a new
domain demands a fresh round of annotation and
fine-tuning, rendering this approach impractical.

In this paper, we draw inspirations from tool
learning (Qin et al., 2023a) to enhance LLMs’ sci-
entific reasoning capabilities. Instead of solving
scientific problem from scratch, humans have sum-
marized and wrapped various points as generalized
and well-documented functions in scientific com-
puting softwares, such as Matlab, WolframAlpha,
SymPy, etc. These functions', which could be

'In this work, tools refer to Python functions. We use tools
and functions interchangeably unless otherwise specified.



equivalently viewed as external tools, greatly facil-
itate math-adept users to solve difficult scientific
problems. In analogy with humans, we do not pur-
sue an omniscient solver across various scientific
domains. Instead, we assume the access to domain-
specific toolsets and purse a unified, generalized
LLM-based tool-user as shown in the Figure 1
(right). This approach tackles domain-specific rea-
soning challenges by enabling LLMs learn to use
a reusable and scalable toolkit. It alleviates the
reasoning challenges of LLMs by concentrating
solely on enhancing their tool-use abilities. These
abilities are not only easier to acquire but also ap-
plicable across a variety of scientific fields. By
attaching domain-specific toolsets, our tool-users
can be readily adapted to different fields without
the need for additional in-domain fine-tuning.

This work focuses on developing and bench-
marking the ability of LLMs in scientific reason-
ing with the help of tools. We envision a sce-
nario where LLMs have access to a domain-specific
toolset, comprising various specialized functions.
Upon this scenario, we propose a complete frame-
work of dataset construction, model training and
evaluation. Given a scientific question, LLMs are
supposed to retrieve functions from the toolset and
optionally incorporate functions into the formu-
lated solution. We employ an automatic pipeline
featuring GPT-4 to compile a large-scale, math-
related, tool-augmented training corpus named as
MATHFUNC. This corpus is designed to enable
LLMs to learn both essential math skills and how
to retrieve, understand and use functions properly.
As aresult, MATHFUNC contains 31,375 samples
and equipped with a toolset encompassing 5,981
generalized and well-documented functions. We
detail this training corpus in Section 3.

We fine-tune open-source LLMs on MATHFUNC
to develop tool-augmented agents named SCIA-
GENT detailed in Section 4. As shown in Figure 3,
SCIAGENT firstly generate a high-level planning
in response to a given question. The agents then
use this plan, along with the question, to retrieve
functions from the given toolset. Leveraging these
retrieved functions, the agents further complete the
low-level action integrating natural language and
Python code. Finally the agents execute the code
to complete the problem at hand.

To benchmark the tool-use abilities in scientific
reasoning, we develop a new benchmark named
SCITOOLBENCH as described in Section 5. Build-
ing upon TheoremQA (Chen et al., 2023b) and

SciBench (Wang et al., 2023b), it has 4,250 ques-
tions covering five domains: Mathematics, Phys-
ical, Chemistry, EECS, and Finance. It also con-
tains five domain-specific toolsets comprising a to-
tal of 2,285 functions. We evaluate SCIAGENT on
SCITOOLBENCH and another benchmark derived
from CREATOR-challenge (Qian et al., 2023).
Experimental results demonstrate that our agents
present remarkable scientific reasoning capabilities.
Notably, SCTAGENT-LLAMA3-8B surpasses the
best comparable open-source LLLMs by an absolute
8.0% accuracy, and SCIAGENT-DEEPMATH-7B
outperforms ChatGPT by a large margin. We also
conduct an extensive analysis of the benefits and
limitations of SCIAGENT series, providing valu-
able insights for future research.

2 Preliminary

Related Work. Current methods (Chen et al.,
2023b; Xu et al., 2023b; Ouyang et al., 2023), espe-
cially those based on open-source LLMs, perform
far from satisfactory on scientific reasoning bench-
marks (Chen et al., 2023b; Wang et al., 2023Db).
We attribute it to the scarcity of annotated samples
across diverse scientific domains. As a comparison,
LLMs present much more remarkable performance
on math problems (Yue et al., 2023b; Gou et al.,
2023b; Azerbayev et al., 2023) due to the abundant
training corpora and/or annotations. Different from
concurrent work (Zhang et al., 2024) which col-
lects physics and chemistry annotations, we do not
pursue a problem-solver on some specific scientific
domains. Instead, we consider to develop a gener-
alized tool-user being proficient on solving diverse
scientific problems with the aid of tools. Following
previous work on math domain (Qian et al., 2023;
Cai et al., 2023; Yuan et al., 2023a), the tools here
refer to Python functions. Please see more detailed
literature review in Appendix A.

Task Formulation. Given a scientific domain D
(e.g., physics), tool-augmented scientific reasoning
task assumes access to (1) a question ¢ € D and
(2) atoolset Fip. Fp encompasses large amounts
of well-documented, domain-specific functions
{f1,.--s fm}. Our objective is to develop an agent
M which selectively use functions in Fp to en-
hance the answering for the question q.

3 Training Corpus: MATHFUNC

To our best knowledge, there are no readily avail-
able tool-augmented datasets in scientific reason-
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Figure 2: Automatic pipeline for MATHFUNC construction. Please view it starting from the bottom left corner and
proceed clockwise. We disentangle the constructions of toolset (dashed lines) and function-augmented samples
(solid lines) for more generalized annotations. We do not visualize the function-free samples for simplicity.

ing domains. Therefore, we construct a corpus
named MATHFUNC teaching LLMs to better under-
stand and use functions. MATHFUNC is composed
of (1) a toolset F? including 5,981 generalized,
well-documented, math-related functions and (2) a
dataset D encompassing 31,375 samples in which
solutions call the function from the toolset if nec-
essary (e.g., @ in Figure 2). We build this corpus
based on MATH (Hendrycks et al., 2021b) training
set because we expect to teach LLMs both math
skills and tool-use abilities.
Sample Format. Each sample is a quintuple
(q,Gq, Fy, Sq, aq). Here q is a question, Gy is the
planning, F} is the function set filtered from the
toolset (F, C F, |Fy| < |F|), Sy is the solution
and a, is the answer. S, interleaves rationales Eq3
and programs P, which optionally call functions
in Fy to facilitate the problem solving.

We employ an automatic pipeline to construct
MATHFUNC. We illustrate the pipeline in Figure 2
and detail the process in the following subsections.

3.1 Planning and Toolset Construction

This module is depicted in the top-left side of Fig-
ure 2. Given a question ¢ and its ground-truth so-
lution (written in pure natural language) in MATH
training set, we ask GPT-4 to generate (1) a high-
level planning G, to analyze this question, (2) one
or more well-documented functions Fq and (3) a so-
lution S*q calling the functions above. The prompt
used is shown in Appendix H.1. In the prompt, we
emphasize that the functions should be as compos-
able and generalized as possible. Specifically, we
do not hope that each question generates only one
ad-hoc function (which could only be used by this

2We remove the domain-specific subscript D for expres-
sion simplicity. The same below.

*Here F, is written in natural language but formatted as
the annotation lines in the program.

question). Instead, we expect GPT-4 to generate
functions that follow the points in the planning G|,
and can be reused by other questions. Following
previous work (Qian et al., 2023; Pan et al., 2023),
we provide the error feedback to GPT-4 if the so-
lutions fail to execute, and ask GPT-4 to rectify
the errors in Fq or S’q. We repeat this procedure
until successful execution or reaching maximum
loop limitation. The prompt used for rectification
is shown in Appendix H.2.

We collect G4 (D in Figure 2, the same below)
and add Fq to the toolset (@) for question ¢ if the
rectified solution S’q leads to the correct answer a.
Regarding the toolset, it is iterated on all questions
and finally accumulated as below:

F = U E, -1(a, is correct)
qeD

3.2 Function-augmented Solutions

To collect function-augmented solution S, and £y,
a natural idea is to directly use the Sq and Fq gen-
erated above. However, we find that S’q tends to
be contrived and specifically tailored to fit the re-
quirements of function-calling. Moreover, some
functions in F}, tend to be ad-hoc*. For examples,
the function f(x, y) in Figure 2 merely parame-
terizes the hyperbola for a specific question. There-
fore we disentangle the construction of toolset and
function-augmented solutions. Given the devel-
oped toolset, we design a cross-retrieval strategy
to retrieve more generalized functions F; and gen-
erate more qualified solutions S,. Specifically, we
remove Fq from F' temporarily and then retrieve
new functions F, C (F\F,) for question q. This
strategy eliminates the likelihood of calling ad-hoc
functions from F, in S,. See examples of retrieved

*Despite we instruct GPT-4 to avoid generating ad-hoc
functions, there are still some ad-hoc functions in [y
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Figure 3: The model architecture of SCTAGENT. Given a domain-specific toolset 7, our agent answers the question
through four consecutive modules. (1) Planning A provides a high-level plan for this problem. (2) Retrieval Q.

retrieves related functions from attached toolset. (3) Action
and program. The program uses the retrieved functions if necessary. (4) Execution

o

“1: generates a low-level solution interleaving rationale
@ calls Python executor to run

the program and outputs the final answer. Not included in this figure for simplicity.

functions, all of which are derived from other ques-
tions, in the right side of Figure 2.

Retriever. The cross-retrieval strategy necessities
a retriever because it is impractical to enumerate
thousands of functions in F\Fq. We train a dense
retriever R () in Figure 2). We concatenate the
question ¢ and the generated planning G, as the
query, and view the generated functions Fq as the
keys. See details about R in Appendix B.1.
Solution Generation. Upon the toolset F' and the
retriever I, we retrieve three functions as Fj:

Fo= R([q, Gq]§F\Fq)

Then we employ GPT-4 to write solutions which
optionally call functions in F} to generate the solu-
tion S, (@). The prompt used is illustrated in Ap-
pendix H.3. We explicitly point out in the prompt
that f € Fj should be called if and only if when
they do lower the difficulty of problem solving. It
mitigates the over-exploitation of function calling
in S, and increases the robustness of models fine-
tuned on these samples. Specifically, we firstly
use GPT-4 with greedy decoding to generate solu-
tions. For those failing to yield correct answers, we
further apply nucleus sampling (Holtzman et al.,
2020) with 5 repeat times and 0.6 temperature. We
filter wrong solutions and collect remaining 6,229
samples as our function-augmented solutions.

In parallel, we use GPT-4 to generate function-
free solutions. Though not indispensable, we ex-
pect them to further enhance the math reasoning,
and accordingly the scientific reasoning, abilities
of LLMs. We collect a total of 24,946 function-
free solutions nucleus sampling with 5 repeat times
and 0.6 temperature. These samples share similar
format as ToRA-corpus (Gou et al., 2023b), and do
not retrieve/use any functions, i.e., Iy, = @.

4 Model: SCIAGENT

We develop SCTAGENT for tool-augmented scien-
tific reasoning task. It could make plan, retrieve
functions, and leverage retrieved functions to fa-
cilitate the reasoning. We describe its inference
procedure and training approach as below.

4.1 Overview

As shown in Figure 3, SCTAGENT comprises four
successive modules.

Planning. This module provides a high-level pro-
file for each question: Gy = Mplanning(¢). Such
planning instructs a more targeted retrieval process.
Retrieval. Given the question and generated plan-
ning G, the retriever M erieval is introduced to
retrieve related functions from the domain-specific
toolset: F; = Miewieval([q, G¢l; Fp) € Fp.
Action. This module aims to generate low-level
solutions. Specifically, the agent produces S, =
Macion(q; Fy). The solution Sy, is interleaved with
natural language rationale F; and program snippet
P,. The program F; call retrieved functions with
proper arguments if necessary.

Execution. This module is simply a Python Ex-
ecutor to run the program F; for the final answer:
a, = Python-Executor(F).

4.2 Training

Language models are used in three out of four mod-
ules in SCTAGENT: planning, retrieval and action.
Rearding retrieval, we directly use the retriever R
fine-tuned in Section 3.2 as M erieval. FOr planning
and action modules, they share the same LLMs:
M = Mplanning = Maction- We fine-tune M with
different instructions to make it act as planning and
action modules, respectively. We construct instruc-
tions from d = (q, Gy, Fy, Sy, a4) in MATHFUNC.



Dplanning = {(Iplan(Q)7 Gq)‘d S D}
D ction = {(Iaction(Qa Fq)v Sq)’d € D}

Here Ijjan and Iyeon are instruction templates
for planning and action modules. We show these
instructions in Appendix B.2, and mix up them as
the training set D = (Dplanning | Daction). Then
we apply imitation learning on D to fine-tune M.

> —logP(Y|X)

(X,Y)eD

Ly =

Implementation We detail the training process of
(1) the retriever M egieval and (2) the planner and
actor M in Appendix B.1 and B.2, respectively.

5 Benchmark: SCITOOLBENCH

There currently exists no benchmark assessing the
scientific reasoning capabilities of LLMs when
aided by tools. To address this gap, we develop
a benchmark called SCITTOOLBENCH. Our bench-
mark covers five domains: Mathematics (math)?,
Physics, Chemistry, Finance, Electrical Engineer-
ing and Computer Science (EECS). Each domain
is composed of a set of questions and a domain-
specific toolset. The toolset consists of abundant
generalized, high-quality and well-documented
functions. We expect LLMs to retrieve, understand
and, if necessary, use functions in it for reasoning.

Table 1: The statistics of our benchmark. #H.A./#Syn.:
The number of human-annotated/synthesized questions.
#Pos./ #Neg.: The number of positive/negative func-
tions in the toolset. FPQ (function per question): The
number of derived positive functions from each ques-
tion. Counted on H.A. questions only.

Question Function

# Question  #H.A./#Syn. \ #Function  #Pos. /#Neg.  Avg. FPQ
Math 2031 43471597 964 403 /561 1.47
Physics 855 156 /699 516 225/291 1.63
Chemistry 639 118 /521 349 138/211 1.34
Finance 369 66 /303 245 89/156 1.62
EECS 356 82/274 211 87/124 1.68
All | 4250 856/3394 | 2285 942 /1343 1.51

5.1 Dataset Overview.

The statistics of SCITOOLBENCH are presented
in Table 1. We leave more detailed statistics in
Appendix E.2. Briefly, our benchmark comprises a
total of 4,250 questions and 2,285 functions span-
ning across 5 scientific domains. SCITOOLBENCH

5Our benchmark contains college-level questions on calcu-

lus, differential equations, group theory, efc, which are differ-
ent from the questions in our training corpus MATHFUNC.

differs from previous tool-based benchmarks, such
as Creation Challenge (Qian et al., 2023), in several
aspects: (1) Our benchmark encompasses a diverse
range of scientific domains. (2) The provided
tools are both composable and generalized across
different questions: As indicated in Table 1, each
question requires an average of 1.51 functions for
resolution. And over 500 functions are designed
to be applicable to two or more questions, such
as integrate_function in math domain,
coulombs_law in physical domain, and cal-
culate_pressure_van_der_waals in
chemistry domain. It signifies that the functions
in our toolset are not ad-hoc solutions tailored for
specific questions. Instead, the effective utilization
of the toolset demands significant reasoning
abilities of tool-augmented LL.Ms. Thus we claim
this benchmark challenging and practical.

Human-annt questions

Toolset Construction

TheoremQA
SciBench

Original Dataset

Function Verification

(GG CnEaes] |caerasnan| |

Synthesized questions

By
Negative

Positive functions

Figure 4: Semi-automatic annotation pipeline for SCI-
TooLBENCH. ®: GPT-4. &: Human annotator.

5.2 Dataset Annotation

We design a pipeline shown in Figure 4 to annotate
the benchmark. It employs both GPT-4 and human
annotators to combine their merits. We introduce it
briefly as below and leave details in Appendix D.

Question Collection: Our benchmark comprises
4,250 questions from two sources. (1) Human-
annotated: We curate 856 questions from Theo-
remQA (Chen et al., 2023b) and SciBench (Wang
et al., 2023b) ((D in Figure 4, the same below). (2)
Synthesized: To further expand the question set, we
use these 856 questions as seeds and automatically
generate another 3,394 synthesized questions ().
Toolset Construction: We construct domain-
specific toolsets via two cascade modules: positive
and negative function construction. We define pos-
itive functions () as functions directly deriving
from questions. The candidate positive functions
are firstly generated from GPT-4. Then human an-
notators carefully check them and rewrite and/or
remove the unqualified ones. We further automat-
ically construct negative functions (@) based on
positive functions to reduce the shortcuts in our
benchmark. We finally combine both positive and
negative functions as the toolset in our benchmark.



Table 2: Main results on two benchmarks. We highlight our SCTAGENT series in blue . The best results (among all
open-source LLMs, the same below) are in bold face and the second best are underlined.

SCITOOLBENCH
Model Size Toolset | CREATION HUMAN-ANNOTATED SYNTHESIZED ALL
Math  Physics Chemistry ~Finance EECS | Math  Physics Chemistry ~Finance EECS |

ChatGPT X 54.6 334 19.2 18.6 53.0 25.6 36.3 22,6 23.0 353 36.5 31.0

v 59.8 320 314 339 53.0 48.8 32.6 27.5 225 259 359 30.9
GPT-4 X 60.0 52.8 429 475 652 354 62.3 58.4 543 69.6 66.7 59.2

v 69.8 63.1 63.5 63.6 80.3 80.5 60.0 59.1 50.2 582 58.7 59.7
CodeLlama 7B X 17.7 6.5 0.6 5.1 49 7.6 10.4 2.7 3.6 8.8 6.9 6.9
CodeLlama 7B v 26.1 9.2 83 10.2 24.2 25.6 6.6 43 4.2 8.0 122 74
ToRA-Coder 7B X 29.7 26.3 4.5 6.8 9.1 24.4 18.8 7.0 7.1 10.5 10.6 14.2
ToRA-Coder 7B v 21.4 21.7 4.5 5.1 13.6 15.9 17.8 9.6 9.9 9.9 13.9 112
MAmmoTH-Coder 7B v 21.6 14.8 18.5 11.0 25.8 40.0 14.3 7.3 6.7 13.1 129 12.8
Mistral 7B X 30.1 11.3 9.6 7.6 18.2 13.4 19.2 10.7 9.4 16.8 185 14.8
Mistral 7B 4 27.6 13.1 135 14.4 34.8 19.5 10.4 152 13.1 22.6 152 13.7
Deepseek-Math 7B X 44.7 26.5 19.2 17.8 273 20.7 31.6 21.9 23.6 28.8 248 26.7
Deepseek-Math 7B v 413 242 244 254 439 427 19.8 21.6 17.7 24.1 20.8 21.8
Llama-3 8B X 40.3 28.1 10.9 16.9 27.3 25.6 32.7 18.3 21.3 274 24.1 26.0
Llama-3 8B v 38.0 247 26.9 254 424 37.8 20.2 19.7 18.4 24.8 284 22.3
SCIAGENT-CODER 7B 4 53.0 30.0 28.3 24.6 393 57.3 29.8 20.1 229 26.3 297 | 276
SCIAGENT-MISTRAL 7B 4 54.0 313 333 339 48.5 51.2 303 25.6 21.9 358 36.6 | 303
SCIAGENT-LLAMA3 8B v 58.2 343 41.0 35.6 56.1 56.1 349 322 294 354 346 | 347
SCIAGENT-DEEPMATH 7B v/ 60.4 41.2 545 44.9 575 51.2 37.1 40.1 36.5 43.1 40.2 | 40.0
CodeLlama 13B X 23.0 9.9 32 1.7 9.1 6.1 135 4.4 4.8 8.8 129 9.3
CodeLlama 13B v 38.9 12.7 14.7 7.6 333 34.1 9.0 6.4 44 12.4 11.9 9.8
ToRA-Coder 13B X 30.9 28.6 3.8 42 16.7 30.5 22,6 9.0 8.5 13.1 16.5 17.1
ToRA-Coder 13B v 28.0 32.0 2.6 11.9 242 354 17.9 12.9 11.7 13.9 142 16.9
MAmmoTH-Coder 13B v 34.7 214 18.6 11.0 25.8 39.0 20.4 12.7 10.7 153 25.1 182
SCIAGENT-CODER 13B 4 54.4 35.0 321 28.8 42.4 51.2 30.9 25.0 22.6 30.6 30.0 29.8

6 Experiments

6.1 Setup

We conduct experiments on SCITOOLBENCH to
evaluate the tool-augmented scientific reasoning
abilities of LLMs. We report results categorized by
both question domains and construction methods
for fine-grained analysis. We also employ CRE-
ATION Challenge (Qian et al., 2023) as the second
benchmark. It comprises 2,047 samples, with each
sample consisting of a question and a ground-truth
function. We re-purpose all functions to assemble a
global toolset (thus including 2,047 functions). We
report accuracy as the metric in all experiments.

6.2 Baselines

We compare SCIAGENT series with six open-
source LLMs: (1) CodelLlama (Roziere et al.,
2023), (2) MAmmoTH-Coder (Yue et al., 2023b),
(3) ToRA-Coder (Gou et al., 2023b), (4) Mis-
tral (Jiang et al., 2023), (5) Deepseck-Math (Shao
et al., 2024), (6) Llama-3 (Touvron et al., 2023).
We also list the performance of ChatGPT and GPT-
4 for reference. For fair comparison, we provide
all LLMs the same retriever in Section 3.2 to re-
trieve functions from toolset (if attached). Please
see more details in Appendix C.

6.3 Main Results

We fine-tune CodelLlama, Mistral, L.lama-3 and
Deepseek-Math for different SCTAGENT variants.
We present their results, along with associated base-
lines, in Table 2 and draw following conclusions:

The importance of math skills. The LLMs pre-
trained on math-related corpus, i.e., Deepseek-
Math series, present more competitive performance
than others. And the models fine-tuned on math-
related datasets from CodeLlama, i.e., TORA- and
MAmmoTH-Coder, perform better than CodeL-
lama itself by 5.5% absolute accuracy. It presents
the importance of essential math skills among di-
verse scientific domains.

The necessity of tool-augmented learning. Most
evaluated LLMs are not inherently proficient at
using tools. When equipped with toolsets, the per-
formance of LLMs that have not undergone tool-
augmented learning degrades significantly. For in-
stance, the 7~8B models such as ToRA-Coder,
Mistral, Deepseek-Math, and Llama-3 show per-
formance drops of 3.0%, 0.9%, 4.9%, and 3.7%,
respectively. As shown in Figure 5, LLMs demon-
strate proficient tool-use abilities and benefit from
the attached toolsets only when they have under-
gone tool-augmented learning, i.e., fine-tuning on
MATHFUNC. As a result, our agents outperform
other open-source LLLMs by a large margin. No-
tably, SCTAGENT-CODER surpasses ToRA-Coder
by absolute accuracy of 13.4% and 12.7% on the
7B and 13B versions. Our strongest agent, SCIA -
GENT-DEEPMATH-7B, substantially outperforms
ChatGPT (40.0% v.s. 31.0%).

The challenges of scientific reasoning. However,
our agents still lags far behind GPT-4. This gap
highlights the challenges of tool-augmented scien-
tific reasoning (as well as our benchmark).



Table 3: Ablation study on human-annotated subset of SCITOOLBENCH. We report the accuracy of samples across
(1) all domains, (2) four domains excluding the math domain (wo. math).

Planning Function-augmented Function-free | Accuracy (7B) Accuracy (13B)
solutions solutions All  wo.math | All  wo. math
SCIAGENT-Coder | v / (cross-retrieval) v/ | 32.2 346 | 357 36.5
Intermediate variants X /(cross-retrieval) v 30.3 33.9 32.8 34.4
13 X / (direct-use) v 17.8 17.3 26.6 31.0
X X v 26.3 26.1 30.4 31.7
CodeLlama | X X X | 119 147 | 160 194
wo. toolset w-ad-hoe tools (CREATOR) properly. (3) The absence of function-augmented
w. attached toolset w. attached toolset + tool-augmented learning . .
solutions results in a performance drop (row 1 v.s.
40 row 4 in Table 3) of 5.9% and 5.3% in absolute
230 accuracy for 7B and 13B LLMs, respectively. It
o .. .
220 underscores the critical role of function-augmented
“10 solutions to enhance LLLMSs’ tool-use abilities, and
0 the necessity of our MATHFUNC corpus. (4) The
Mistral-7B Llama-3-8B Deepseek-math-7B

Figure 5: Evaluated LLMs are not native tool-users.
Their performance drops when they are equipped with
either self-derived or external toolsets (color in blue and
red, respectively). Tool-augmented learning (color in
purple, i.e., fine-tuning on MATHFUNC) makes them
benefit from attached toolsets.

6.4 Ablation Study

We investigate the effectiveness of components in
our training data and agent modules. The specific
variants we considered are as follows. (1) We re-
move the planning module in the agent. (2) We
additionally drop the cross-retrieval strategy intro-
duced in Section 3.2. In its place, we construct
function-augmented solutions directly from F, and
S'q, (3) We further remove all function-augmented
solutions from our training data, and only keep
the solutions without function callings (function-
free solutions). (4) We do not fine-tune agents but
merely use CodeLLlama as M ¢on for inference.
We illustrate the performance of our agents and
their ablated variants in Table 3. We observe that
(1) Planning module significantly improves scien-
tific reasoning abilities. As detailed and targeted
queries for the retriever, the generated plannings
increase the relatedness of retrieved functions. For
instance, the function’s Recall@3 increases from
48.3% to 53.2% in physics domain, and from 37.3%
to 39.8% in chemistry domain. (2) The use of the
cross-retrieval strategy is essential. Otherwise, the
function-augmented solutions directly from Fq and
SN'Q degrade the performance because they are too
artificial and ad-hoc to teach LLMs using functions

removal of function-free solutions (row 4 v.s. row
5) leads to an absolutely 14.4% accuracy decrease.
Specifically focusing on non-math samples, there
is a notable performance drop of about 12% as well.
This clearly demonstrates the fundamental impor-
tance of math skills in diverse scientific reasoning
tasks, and highlights how our math-related samples
enhance LLMs’ capabilities in this area.

6.5 Analysis ¢

Robustness of Toolsets. We acknowledge the con-
struction and maintenance of toolsets is sometime
challenging. Therefore, we stress the importance
of our agents’ robustness. If a sub-par toolset were
provided, an robust agent should at the very least
perform comparably, if not better, than other com-
petitive LLMs without tool-use. To evaluate the
robustness of SCIAGENT-CODER, we simulate two
sub-par settings. (1) weak-related: for each ques-
tion, we restrict the agents from retrieving func-
tions that are directly derived from it. This set-
ting greatly decreases the likelihood of retrieving
a proper function from the toolset. (2) unrelated:
we completely remove the domain-specific toolset
in SCITOOLBENCH. As a substitution, we provide
the unrelated toolset constructed in MATHFUNC.
We compare our agents with two competitive
LLMs, i.e., TORA-Coder and MAmmoTH-Coder,
in above two settings. As shown in Table 4, (1)
SCIAGENT series with unrelated toolsets present
comparable performance with the two LLMs. In

We use the human-annotated subsets of SCTTOOLBENCH
for evaluations in this section. It is due to that samples in
this subset have ground-truth function-augmented solutions,
which are necessary for fine-grained discussion and analysis.



Table 4: Accuracy on SCIAGENT with sub-par toolsets.
WR: weak-related toolsets. UR: unrelated toolsets. NA:
No toolset. The subscripts indicate the difference from
the best LLMs (wo. toolsets) each column.

Accuracy (7B) Accuracy (13B)
Model Toolset All wo.math | All wo. math
SCIAGENT WR 18.8 18.0 24.6 199
-Coder UR 147 37 107 20.3 14.7
MAmmo-C NA 12.7 9.0 16.4 12.3
ToRA-C NA 18.1 9.7 20.0 11.1

other words, our tool-augmented agents are un-
likely to degrade the performance even under the
extreme scenarios. (2) Our agents with weak-
related toolsets significantly outperform the two
LLMs, which further validates the robustness.
The Effect of Retriever Quality. We explore
the effect of retriever quality on the ending per-
formance. We substitute our fine-tuned retriever
in SCTAGENT series by two competitive variants:
SimCSE (Gao et al., 2021) and Contriever (Izac-
ard et al., 2021). As shown in Figure 6 (top), our
retriever surpasses the other two. It shows that fine-
tuning on the math domain benefits the retrieval of
tools in the generalized scientific domains.

IS
o
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Accuracy
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Figure 6: Top: Performance of SCIAGENT-CODER
on SCITOOLBENCH with different retriever variants.
Bottom: Relationship between the performance and the
hit@3 of retrieved functions (artificially controlled).

We further dive deep into the relationship be-
tween the hit ratio of tools and the agents’ perfor-
mance. To this end, we manually control the hit@3
ratio by artificially adding/removing the positive
functions to/from the retrieved list. Results in Fig-
ure 6 (bottom) show a clearly positive correlation
between the hit ratio and the task accuracy. It il-
lustrates that the retrieved functions facilitate the
reasoning of scientific problems. However, we still
observe a limit (40% accuracy) when the hit ratios

reaching 100%, showing the challenge of scientific
reasoning even when aided by tools. We hope the
future work to bridge this performance gap.

SciAgent-Coder MAmmoTH-Coder

50 50

40 40
> >

30 S 30
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Figure 7: The performance of SCIAGENT-CODER (Ww.
toolset) and MAmmoTH-Coder (wo. toolset) on sam-
ples which (1) use and (2) not use retrieved functions.

How the Retrieved Functions Benefit. To assess
how the retrieved functions aid in the reasoning
process of LLMs, we divided the samples into two
subsets based on whether our agents use the re-
trieved functions to solve the problems. We eval-
uate the performance of these two subsets respec-
tively, comparing with MAmmoTH-Coder series
(without tool-use). The results in Figure 7 reveal
a two-fold benefit: (1) For samples where func-
tions are explicitly called to solve the questions,
our agents demonstrate a substantial 25% improve-
ment in absolute accuracy over LLMs that do not
have access to functions. (2) Even for samples
that do not directly use functions in their written
program, we still observe a slight improvement.
It suggests that our agents are capable of learn-
ing from retrieved functions as a reference, and
then imitate these functions to write their own pro-
grams. For instance, example in Figure 13 shows
the agents learn how to use scipy.integrate
by observing the retrieved function aver-
age_value_of_function(...).

7 Conclusion

This work proposes tool-augmented scientific rea-
soning, a task aiming to solve challenging scien-
tific problems aided by generalized and scalable
tools. To facilitate and evaluate the scientific tool-
use abilities of LLMs, we construct a math-related,
tool-augmented training corpus MATHFUNC and a
benchmark SCITOOLBENCH covering 5 scientific
domains. Additionally, we develop open-source
agents, SCIAGENT series, as competitive baselines.
Extensive experiments reveal that our agents ex-
hibit tool-use abilities exceeding ChatGPT in sci-
entific reasoning tasks.



Limitations

The primary limitation of our work comes from the
way we compile the toolsets in SciToolBench.
These tools are constructed directly based on the
benchmark’s questions, raising concerns about po-
tential information leakage. To address this, we
invest significant human effort in our annotation
process as detailed in Appendix D.3. We manually
review and, if necessary, revise all derived func-
tions to ensure their generalizability and quality.
As shown in Figure 6 (bottom), our agents achieve
only about 40% accuracy when we provide each
question the exact function from which it derives
(i.e., 100% hit ratio). It not only highlights the in-
herent challenge of scientific reasoning tasks, but
also suggests that our benchmark suffers minimal
impact from the potential information leakage.
We partly attribute this limitation to the absence
of a training corpus among scientific (excluding
math) domains. The scarcity of annotated solu-
tions for scientific reasoning problems makes it
unfeasible to set aside a portion of questions in
our benchmark for tool creation. In future work,
we plan to collect diverse and high-quality scien-
tific annotations which enable us to develop a more
practical and robust tool-augmented benchmark.

Ethics Statement

We ensure that SCTTOOLBENCH was constructed
in compliance with the terms of use of all source
materials and with full respect for the intellectual
property and privacy rights of the original authors
of the texts. We also provide details on the charac-
teristics and annotation steps of SCITOOLBENCH
in Section 5 and Appendix D. We believe our cre-
ated datasets do not cause any potential risks.
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A Detailed Related Work

A.1 Scientific Reasoning

Scientific reasoning can be roughly categorized
into two branches: (1) mathematical reasoning and
(2) reasoning across other scientific domains.

Mathematical Reasoning. Mathematical (math)
reasoning has attracted much more attentions re-
cently. Thanks to abundant training datasets and
corpus, there are intensive studies for more pow-
erful math-oriented LLMs by prompt engineer-
ing (Qian et al., 2023; Zhang et al., 2023b; Zhou
et al., 2023), instruction-tuning (Yuan et al., 2023b;
Yue et al., 2023b; Gou et al., 2023b; Yu et al., 2023;
Wang et al., 2023a) and even pre-training (Luo
et al., 2023; Azerbayev et al., 2023; Chern et al.,
2023). Regarding instruction-tuning, we notice
that recent studies have automatically constructed
high-quality instructions from GPT-4, i.e., fine-
tuning open-source LL.Ms by Program-of-thought
(PoT; Chen et al. 2023a) prompting. It enables
open-source LL.Ms to present remarkable perfor-
mance, even comparable with GPT-4.

Reasoning across Other Domains. There have
been intensive works on scientific LLMs (Bran
et al., 2023; Jin et al., 2023; Fang et al., 2023) and
benchmarks (Hendrycks et al., 2021a; Huang et al.,
2023; Zhang et al., 2023a; Yue et al., 2023a; Sun
et al., 2023). However, they primarily target on
problems involving less complicated reasoning like
knowledge retrieval or simple tool utilization.
Regarding complicated scientific reasoning prob-
lems (Chen et al., 2023b; Wang et al., 2023b),
questions are scattered among diverse topics and
each topic additionally requires domain-specific
knowledge. So annotating questions and their so-
lutions domain by domain is much more labor-
consuming. Most current benchmarks (Chen et al.,
2023b; Wang et al., 2023b; Zhao et al., 2023)
merely include hundreds of questions (in all; less
for each single domain) from textbooks and provide
no training samples. A concurrent work (Zhang
et al., 2024) develop a large-scale scientific training
corpus, but only focuses three common domains:
math, physical and chemistry. Accordingly, the
progress of reasoning tasks in these domains is
slower than that in math domain: the most com-
petitive approach only achieves 50% and 35% on
TheoremQA and SciBench, respectively, not to
mention methods built on open-source LL.Ms. In-
stead of developing an omniscient and proficient
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LLMs on reasoning tasks across various scientific
domains, we believe it is more practical to teach
LLMs the ability to use domain-specific tools to
facilitate their reasoning abilities in some domain
when external functions (toolset) are attached.

A.2 Tool Learning

LLMs, both proprietary ones and open-source ones,
demonstrate promising capabilities leveraging ex-
ternal tools to solve problems beyond their lim-
its (Qin et al., 2023a). Combined with specific
tools, these rool-augmented 1.LLMs achieve great
success on various tasks such as machine learn-
ing (Wu et al., 2023; Shen et al., 2023; Patil et al.,
2023; Yang et al., 2023; Liu et al., 2023), question
answering (Peng et al., 2023; Gou et al., 2023a),
daily assistance (Xu et al., 2023a; Qin et al., 2023b;
Song et al., 2023; Gao et al., 2023), etc.

Previous work usually pre-defines several tools,
e.g., equation solver or calculator, to facilitate math
reasoning tasks (Gou et al., 2023a; Lu et al., 2023;
Hao et al., 2023; Chen et al., 2023c; Wang et al.,
2023c; Xu et al., 2023b; Yin et al., 2023). Cai
et al. (2023) generalize the concept of tools to
Program functions. Following this concept, CRE-
ATOR (Qian et al., 2023) scale up the function
number towards thousand level. However, these
ad-hoc, argument-free functions are more like so-
lution wrapper rather than well-generalized tools.
CRAFT (Yuan et al., 2023a) targetedly design an
automatic pipeline to extract generalized functions
for tool-use. Though leading to improvement, these
functions are still not generalized enough and serve
more as reference rather than as tools for direct
calling ”. Ouyang et al. 2023 ask LLM to generate
chemistry formulae as knowledge reference to as-
sist the following reasoning and achieve enhanced
performance on chemistry questions in SciBench.
Similar as our attached toolset, Zhao et al. (2023)
maintain a knowledge bank in which saves more
than 900 financial definitions/equations/models as
the format of functions for retrieval and use. To our
best knowledge, our work is the first which (1) fine-
tunes open-source, tool-augmented LLM agents
for scientific reasoning tasks and (2) provides a
benchmark covering multiple scientific domains to
evaluate LLMs’ tool-use abilities.

"We check CRAFT’s results on MATH test set under their
official repository. We observe that only 172 out of 880 test
instances (19.5%) explicitly call the retrieved functions for the
problem solving. Since the performance improvement shall be
attributed more to reference than explicit calling, we speculate
that the created functions are still not generalized enough.


https://github.com/lifan-yuan/CRAFT/blob/main/tab_and_math/MATH/results/results_algebra_CREATOR_retrieval.jsonl

B Training Details
B.1 Retriever

To fine-tune a retriever, we construct the training
samples from MATHFUNC. We concatenate the
question and its planning as the query, and view the
generated functions as the keys. We finally collect
a total of 8,603 query-key pairs for training, and
split 10% training samples as validation set.

query = [q; G|
key = f € Fq

We follow DPR (Karpukhin et al., 2020) to train
a dense retriever R. We use ROBERTA-BASE (Liu
et al., 2019) as the backbone. We set the training
step as 500, the batch size as 128 and the learning
rate as 2e-5. We also set the temperature coefficient
of the InfoNCE loss (van den Oord et al., 2019) as
0.07. We run this experiment on a single NVIDIA
Quadro RTX8000 GPU. The whole training pro-
cess lasts for about 20 minutes.

B.2 Planning and Action

We fine-tune Codellama (Roziere et al., 2023),
Mistral (Jiang et al., 2023), Llama-3 (Touvron et al.,
2023) and DeepMath (Shao et al., 2024) on MATH-
FUNC to develop the planning and action modules
in our tool-augmented agents SCTAGENT series.
We set the global batch size as 128. We use the
learning rate as 2e-5 for CodeLlama, 2e-6 for Mis-
tral and Llama-3, and 5e-6 for DeepMath. We
use a cosine scheduler with a 3% warm-up pe-
riod for 2 epochs. We train all models with ZeRO
Stage3 (Rajbhandari et al., 2021) on 8 V100 GPUs.
The whole training process lasts for about 3 hours
for 7B LLMs and 7.5 hours for 13B LLMs.

The planning and action modules share the same

model but act differently with different input in-
structions. We detail the format of planning and
action instructions as below:
Planning. Given a question ¢, we construct a plan-
ning sample as (Lplan(q), G¢), Where Ipjan(q) is the
input instruction, G, is the output, and Ipjan(.) is
the template for planning module. We provide an
example of planning instruction as below:

Listing 1: An example of the planning sample. We
separate the input instruction and output answer by the
dashed line.

Read the following question and provide

a high-level, step-by-step plan for
this problem.
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Question: Two complementary angles are
in a ratio of $3:2$. What 1is the
measure, in degrees, of the smaller
angle?

To solve this problem, we need to
perform the following steps:

- Set up an equation using the given
ratio and the fact that the angles
are complementary.

- Solve the equation for the variable
representing the ratio.

- Calculate the measure of the smaller
angle using the found variable value.

Action. Given a question ¢, we construct an action
sample as (Iaction(% Fq)a Sq)a where Iaction(qa Fq)
is the input instruction, S; is the output answer,
and Iyciion(-) is the template for action module. F,
are retrieved functions from the toolset in MATH-
FuNc. We adopt the retriever in Appendix B.1 to
retrieve three functions in the toolset. We provide
an example of action instruction as below:

Listing 2: An example of the action sample. We separate
the input instruction and output answer by the dashed
line. We only show one retrieved function in this sample
for visualization convenience.

Read the following mathematical question
and answer 1it. Please note that you
could (optionally, not required)

call the following functions when
writing the code:

def angle_ratio_to_degrees(ratio):

Computes the angle measures 1in
degrees given their ratio.

Parameters:

- ratio (tuple): The ratio of the
angles.

Returns:

- tuple: The angle measures 1in
degrees.

Formula:

- angle_1 = ratio[0] * x

- angle_2 = ratio[l] * x

- angle_3 = ratio[2] * x

- where x is the common variable such

that angle_1 + angle_2 + angle_3
= 180 degrees

mmun

sum_ratios sum(ratio)

X 180 / sum_ratios

return tuple(angle * x for angle 1in
ratio)

[...Two more retrieved functions...]



Question: Two complementary angles are
in a ratio of $3:2%. What s the
measure, in degrees, of the smaller
angle?

# Define the ratio of the angles.

ratio = (3, 2)

# Since the angles are complementary,
they add up to 90 degrees.

# We can find the value of each part of
the ratio by dividing 90 by the sum
of the parts of the ratio.

value_of_each_part 90 / sum(ratio)

# The measure of the smaller angle is
the value of each part times the
smaller part of the ratio.

smaller_angle = value_of_each_part * min
(ratio)

# Print the result.

print(smaller_angle)

C Evaluation Details

We evaluate (1) the tool-use abilities of LLMs in
scientific reasoning task, and (2) their performance
when supplemented without any toolsets for com-
parison. We detail these two settings as below:
With Toolsets. We use the unified PoT-based
prompt (Chen et al., 2023a) for all pretraining-
based models and our SCIAGENT series. The uni-
fied prompt consists of a short task description and
two demonstrations. We show the prompt in Ap-
pendix H.4. For each question, we provide three re-
trieved functions and instruct LLMs to use them if
(and only if) necessary. Note that we use the same
retriever, i.e., fine-tuned from MATHFUNC, for all
LLMs. For MAmmoTH-Coder and ToRA-Coder
which are fine-tuned on specific (tool-agnostic) in-
structions, we try to enable them to use retrieved
tools while keeping the formats of their original
instructions as much as possible. Specifically, we
append a short tool-augmented description at the
end of their original prompts:

[original prompt]

Please note that you could (optionally,
not required) call the following
functions when writing the program:

[retrieved functions]

Without Toolsets. Similar as above, we use the uni-
fied PoT-based prompt (Chen et al., 2023a) shown
in Appendix H.5 for all pretraining-based models
and our SCTAGENT series. And we follow the orig-
inal instructions used for MAmmoTH-Coder and
ToRA-Coder to evaluate their performance.
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D Details of SCITOOLBENCH Annotation

We provide a more thorough description about Sc-
ITOOLBENCH construction in this section. This
semi-automatic annotation pipeline involves both
GPT-4 and humans to balance the quality and cost.
Specifically, we enlist two authors to serve as hu-
man annotators. Both of them are graduate students
with proficiency in English. Additionally, they hold
Bachelor of Science and/or Engineering degrees
and have completed undergraduate-level courses
in the five scientific domains corresponding to our
benchmark. We detail the four subsequent sub-
modules in our annotation pipeline, i.e., human-
annotated question curation, synthesized question
generation, positive function construction and neg-
ative function construction, as below.

D.1 Human-annotated Question Curation

We curate the questions from TheoremQA (Chen
et al., 2023b) and SciBench (Wang et al., 2023b),
both of which are available under the MIT Li-
cense. Among 1,495 questions in these original
two datasets, we remove three kinds of questions.
Image-required: There are 37 questions from The-
oremQA which include images and necessitate vi-
sual understanding abilities. We remove these sam-
ples because our benchmark is text-oriented.
Reasoning-agnostic: There are some multi-choice
questions from TheoremQA which merely requires
the memorization of knowledge points but involves
little reasoning process. For example:

Question: The open mapping theorem can be
proved by

(a) Baire category theorem.

(b) Cauchy integral theorem.

(c) Random graph theorem.

(d) None of the above.

We manually check each samples and remove
68 such kind of samples.
Over-difficult: Too hard questions confuse all
models and weaken the discrimination of our
benchmark. To balance the difficulty and discrim-
ination, we employ 4 advanced proprietary mod-
els 8 to generate related functions and function-
augmented program solutions. We generate 6 so-
lutions for each model (one generated by greedy
decoding and the other five by nucleus sampling

8gpt-4, gpt4-32k, gpt-3.5-turbo, gpt-3.5-
turbo-16k



with 0.6 temperature) and 24 solutions in all. We
view questions that are answered incorrectly by
all 24 solutions as over-difficult questions. We re-
move all over-difficult questions, and retain 73.5%
questions in TheoremQA and 47.8% in SciBench.

By removing three kinds of samples mentioned
above, there are a total of 856 questions in our
SCcITOOLBENCH benchmark.

D.2 Synthesized Question Generation

The human-annotated questions mentioned above
are curated from two small-scale yet diverse
datasets. As a result, there are limited questions
that share the same knowledge points and, conse-
quently, the functions in the toolsets. This limita-
tion may constrain the validation of the toolset’s
generalizability. To address this gap, we expand
the question set for better varied applicability of
the functions. We synthesize new questions by a
two-step, automatic pipeline as below:

Question Generation. For each human-annotated
question, we employ GPT-40 to generate an addi-
tional six similar but not identical questions. To
ensure that the generated questions are as inde-
pendent as possible, we (1) set a high temperature
of 1.0, and (2) run GPT-40 six times in parallel,
generating one question in each run to prevent the
influence of previously generated questions on new
ones. We show the used prompt as below.

Listing 3: Prompt for synthesized question generation

Given a scientific question, you are
tasked to generate a new question
following the requirements as below:

The new question should be
quantitative, i.e., the answer 1is a
specific number.

The new question should share the same

scientific core knowledge or
formula as the original one.

The new question should not be too
similar to the original question.
You should make significant changes
to the question by altering the
narrative, context, specific numbers,

etc.

The background and settings of the new

question should be realistic,
avoiding any 1impossible scenarios
such as a 2000kg human or a
temperature of -100K.

Output format:
“*~Question
[New Question]

Question Filtering. The above step results in
the generation of 5,136 synthesized questions
WITHOUT ground-truth answers and function-
augmented solutions. To ensure the quality of these
questions, we have GPT-40 generate answers five
times for each synthesized question and adopt the
majority vote as the (silver) answer. Questions for
which GPT-4o fails to provide a major-voting an-
swer are removed. Additionally, a manual review
of some synthesized questions reveals that GPT-40
occasionally generates overly simplistic questions,
which diminishes the necessity for tool-use appli-
cations. Therefore, questions with unanimously
predictions (5/5) are considered overly simplistic
and downsampled at a ratio of 0.5. Consequently,
a total of 3,394 out of 5,136 synthesized questions
are finalized as part of our benchmark.

D.3 Positive Function Construction

Function Generation

In practice, we merge this sub-module to the
process of over-difficult question identification in
Appendix D.1. We randomly sample one set of
functions which yield correct solutions for each
question. As a result, we collect a total of 1,216
candidates for the next verification sub-module.
We additionally save other functions leading to
correct solutions and use them as reference in the
refinement sub-module.
Function Verification

We verify the generated functions from both cor-
rectness and generalizations. We detail them sepa-
rately as below.
1. Correctness: Since all candidate functions lead
to correct solutions, we speculate that almost all of
them are correct. We randomly sample 100 func-
tions (20 per domain) and manually check their
correctness. The results shown in Table 5 validate
our speculation. Therefore, we assume all candi-
date functions are correct and retain them.

Table 5: The correctness of 100 randomly sampled func-
tions across five domains.

‘ Correct  Partially Correct  Wrong — All
Math 18 2 0 20
Physics 19 1 0 20
Chemistry 20 0 0 20
Finance 19 0 1 20
EECS 17 3 0 20
All | 93 6 1 100
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2. Generalization: We encounter the similar prob-
lem as the function construction in MATHFUNC,
i.e., some of the auto-generated functions are not
generalized enough. If ad-hoc functions were in
the provided toolsets of our benchmark, they would
cause a significant overestimation of LLMs’ tool-
use abilities. To mitigate it as much as possible,
we manually check all candidate functions to en-
sure their generalization. Specifically, we design
a binary classification task and assign each func-
tion a label in {Retained, Refined}. We la-
bel a function as refined if it had one of the
problems listed below: (1) a pure solution wrapper.
(2) merely defining a non-generalized expression
(likely only occur in this question). (3) the argu-
ment names or document describing the special
scenario of corresponding question and not being
generalized/abstractive enough. (4) including ad-
hoc constants or code snippets. The annotators
firstly co-annotate 100 functions. We calculate Co-
hen’s kappa value of their annotation results as
0.85, illustrating an ideal agreement. Therefore,
the annotators separately annotate the remaining
functions. It takes about 6 hours per annotator
to classify about 650 functions. We show some
Ref1ined function cases in Figure 11, and the an-
notation interface in Figure 9.

As a result, we collect 1,012 Retained and
206 Ref1ined functions. We keep all Retained
as the component of positive functions. We also
feed the Refined functions to next refinement
sub-module to modify them as much as possible.
Function Refinement

This sub-module aims to rewrite 206 Refined
functions to make them qualified. To this end, we
associate each function with (1) the question from
which it is derived, (2) the function-augmented so-
lutions, and (3) the alternative functions from the
generation sub-module (if have). Then we pro-
vide them to the annotators. The annotators are
asked to rewrite the functions to improve their
generalization as much as possible. If one func-
tion were successfully rewritten, we also require
the annotator to write a solution involving the new
function to the related question. The solution must
yield correct answer to ensure the correctness of the
rewritten function. We show some rewritten cases
in Figure 11, and the screenshot of the annotation
interface in Figure 10.

It takes approximately 12 hours per annotator
to check each Refined function and, if appli-
cable, rewrite it. As a consequence, we success-
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fully rewrite 91 Ref1ined functions and drop the
remaining ones. We combine these 91 rewritten
functions and the 1,012 Retained functions to
construct 1,103 positive functions. At last step, we
deduplicate these functions and finalize a collection
of 942 functions.

D.4 Negative Function Construction

The positive functions constructed above have sat-
isfied the minimum requirements of the toolset in
our benchmark. However, we find that such kind of
benchmark contains shortcuts for LLM to retrieve
and use functions. Take a physical question about
[frequency-angular conversion as example, the pre-
vious modules construct a positive function named
angular_from_frequency(...) to solve this
question. Without any other similar functions, the
LLMs could readily select and use the only func-
tion by superficial shortcuts. These shortcuts sig-
nificantly weaken the function-understanding and
-use abilities evaluation of our benchmark. To miti-
gate this problem, we design an additional module
to eliminate the shortcuts by constructing some
(hard) negative functions for each positive func-
tion, like frequency_from_angular(...) and
frequency_from_energy(...) in the above
example. Among three similar functions, LLMs
are forced to understand their usages and choose
proper ones to use. In summary, we add negative
functions into the toolset to simulate a more chal-
lenging scenario and better evaluate LLMs’ tool-
use abilities.

Listing 4: Prompt for constructing negative functions

Given a function about the {subfield}
field, could you please write two
more functions which satisfy:

- The functions should be in the same
field with the provided function,
while the knowledge point dis not
compulsorily the same.

- The functions should be similar, but
not identical with the provided
function.

- The new written functions should be
wrapped as the below format:

New function 1:
“* python
[new_written_function_1]

New function 2:
“Tpython
[new_written_function_2]

Specifically, we employ GPT-4 for each positive



function to generate two similar but not identical
functions as the negative functions. The prompt
used is shown as below. We do not validate the cor-
rectness of negative functions for simplicity, as they
are not intended to be used for any question. We
filter the duplicated functions and retain the other
1,343 functions in all. By merging 942 positive
functions and 1,343 negative functions, we finally
collect a total of 2,285 functions in our toolset.

E More Details for Datasets

E.1 MATHFUNC

More Statistics We count the number of used func-
tions in each function-augmented solution, i.e., the
function occurrence, and show the results as below.

Function Occurrence \ Count

0 1250
1 712
2 91
3 20
4 18
>5 10

Table 6: Function occurrence in MATHFUNC

We find that (1) 40.3% of solutions do not call
any functions. We deliberately include these sam-
ples in MATHFUNCo enhance the model’s robust-
ness, i.e., learning not to use retrieved functions if
they were not appropriate. (2) For other solutions,
each of them calls 1.31 functions on average.
Function Examples We list the top-10 fre-
quent functions and other 10 representative high-
frequency functions in the toolset of MATHFUNC
in the following two tables.

Function name Frequency

44

Function name Frequency ‘

80

combinations solve_quadratic

ged 64 triangle_area 43
factorial 58 solve_quadratic 40
is_prime 52 circle_area 38

solve_linear_system 51 binomial_coefficient 37

Table 7: Top-10 frequent functions in MATHFUNC

Function name Frequency

14

Function name Frequency

24
19
17
15
15

repeating_decimal_to_fraction
dot_product 14
arrangements_with_repeats 11
arithmetic_sequence_nth_term 9
sum_of_arithmetic_sequence 9

mod_exp
base_n_to_base_10
degrees_to_radians
is_palindrome
simplify_expression

Table 8: Ten representative functions in MATHFUNC

E.2 SCITOOLBENCH

More Statistics We present additional statistics to
illustrate the composability and generalization of
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Figure 8: Left: Histogram of FPQ (function per ques-
tion). Higher values indicate greater composability.
Right: Histogram of function occurrence. Higher val-
ues indicate more generalization and wider application.

the toolsets in SCITOOLBENCH. (1) Regarding
composability, we count the FPQ (the number of
positive functions used in solutions) for each ques-
tion in the human-annotated subset, as shown in
Figure 8 (left). The results indicate that more than
36% questions call more than one functions in their
golden solutions, and each question requires an av-
erage of 1.51 functions. They demonstrate a high
degree of composability on these functions. (2)
For generalization, we provide the statistics about
the functions’ usage frequency among the whole
question set in Figure 8 (right) °. We observe a
clear bi-modal distribution pattern, which we at-
tribute to the presence of negative functions. As
explained in Appendix D.4, we include a number
of negative functions, i.e., functions that are never
used by any questions and are counted as O in the
aforementioned figure, in our toolset to eliminate
the potential shortcuts. While these negative func-
tions appear to reduce the average function occur-
rences, they enhance the overall generalization of
our toolsets. When excluding these negative func-
tions, the average function occurrences rise to 4.58,
with over 76% of positive functions being reused.
These results validate the robust generalization of
our toolsets in SCTTOOLBENCH.

° Although there are no golden function-augmented solu-
tions for the synthesized subset, we estimate the function
occurrences using the following approximation: The synthe-
sized questions inherit the human-annotated functions from
which they are derived. We argue that this approximation
is reasonable because the synthesized questions share the
same knowledge points as the original human-annotated ques-
tions. Additionally, the experimental results in Figure 2 clearly
demonstrate that our SCIAGENT series successfully utilize
functions to improve performance on the synthesized subsets,
validating the applicability of these functions for the synthe-
sized questions.



Model (7B) | Accuracy

MAmmoTH-Coder 32.1
TORA'COderiwo. output shaping 40.2
ToRA-Coder 44.6
SCIAGENT-Coder 41.0
Model (13B) | Accuracy
MAmmoTH-Coder 36.3
TORA'COderiwo. output shaping 44.6
ToRA-Coder 48.1
SCIAGENT-Coder 45.2

Table 9: Performance comparison on MATH test set.

F Discussion on In-domain Tool Using

This work facilitates LLMs’ scientific reasoning
abilities with the aid of tools. Due to the scarce
annotations across scientific domain, we construct
our training corpus, i.e., MATHFUNC, from math
domain. Here raises a natural question: whether
our fine-tuned tool-augmented agents improve the
in-domain performance?

To answer this question, we run experiments on
MATH test set and show their results in Table 9. It
demonstrates that our SCTAGENT-Coder surpasses
MAmmoTH-Coder and achieves comparable per-
formance with ToRA-Coder. However, we also do
not observe significant benefit from tool augmen-
tation on MATH test set. Though previous and
concurrent work (Qian et al., 2023; Yuan et al.,
2023a; Wang et al., 2024) have developed impres-
sive tool-augmented approaches to enhance various
kinds of reasoning tasks on models without addi-
tional fine-tuning, it is still an open question that
whether tools benefit fine-tuned, in-domain models
(especially when the tools are derived from the fine-
tuned annotations). And our primary experiments
here implicit that the answer might be No. We be-
lieve this question deserves deeper investigation as
a future work.
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[Question 29]:

Compute the double integrals over indicated rectangles $\iint\limits_{R} {{2x — 4{y"3}\,dA}}$, SR = [-5,4] \times [0, 3]
[Function 0]:

UVD)'(hOn

def double_integral(function, x_limits, y_limits):

Computes the double integral of a given function over a rectangular region.

Parameters:

- function (callable): The function to be integrated. It should take two arguments (x, y).

- x_limits (tuple): A tuple containing the lower and upper limits of integration for the x-variable.
- y_limits (tuple): A tuple containing the lower and upper limits of integration for the y-variable.

Returns:
- float: The value of the double integral.

Note:
- This function uses the scipy library to compute the double integral.

from scipy.integrate import nquad

# Define the limits of integration for the x and y variables.
limits = [x_limits, y_limits]

# Compute the double integral using the nquad function from scipy.
result, _ = nquad(function, limits)

return result

Let’s consider the [Function 0]

Retained

Refined

Figure 9: The screenshot of our annotation interface to evaluate functions’ generalization.

[Question 0]:
Square ABCD. Rectangle AEFG. The degree of ZAFG=20. Please find ZAEB in terms of degree. Return the numeric value.

[Function 0
*“python
def calculate_angle_in_rectangle(anglel, angle2):

Calculates the angle in a rectangle given two other angles.

Parameters:
- anglel (float): The first angle in degrees.
- angle2 (float): The second angle in degrees.

Returns:
- float: The calculated angle in degrees.

return anglel - angle2

[Solution]:

python
# Define the angles
angle_AFB # in degrees

angle AFG = 20 # in degrees

# Calculate the angle LAEB
angle_AEB = calculate_angle_in_rectangle(angle_AFB, angle_AFG)

print (angle_AEB)

Let’s consider to rewrite [Function 0]. You can optionally use one of the below alternative functions (if have) for substitution

Next

Figure 10: The screenshot of our annotation interface to rewrite functions. We provide no alternative functions in
this example for convenience of visualization.
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Function before rewriting Function after rewriting

e_vieta_iteration({polynomial] p, tol=le-3, max_iter=10@):

def birge_vieta(p, tol=le-3, max_iter=108):

Finds a real root of the polynomial[x"3 - 11x"2 + 32x - 22]using the Birge-Vieta method.

Parameters:

- p (float): The initial guess for the root.

- tol (float, optional): The desired tolerance for the root. Default is le-3.
- max_iter (int, optional): The maximum number of iterations. Default is 100.

- p (float): The initial guess for the root.
- tol (float): The desired tolerance for the root.
- max_iter (int): The maximum number of iterations allowed.

The real root of the polynomial found using the Birge-Vieta metl
Returns:
- float: The real root of the polynomial, if found within the maximum number
of iterations.
Raises a ValueError if the root is not found within the maximum
number of iterations.

for _ in range(max_iter):
p_new = p -[polynomial(p) / polynomial_derivative(p)
if abs(p_new -~ p) < Tol:
return p_new
p = p_new
raise ValueError("Birge-Vieta method did not converge within the maxi

number of iterations.")

from sympy import lambdify, diff
import numpy as np

Rewrite the specific polynomial (and its derivative) to an # Extract the variable from the polynomial
X variables = list(polynonial.free_symbols)
argument of the function if not variables: . . .y
raise ValueError(“No variables found in the polynomial.")

if len(variables) >
raise ValueError("The polynomial contains more than one variable.")
aciable = variables[e]

# Compubesthe derivative of the polynomial

derivative Ndif(polynonial, variable)

# Convert the polynomial and its derivative to functions
£ = lambdify(variable, polynomial, 'numpy')
f_prime = lambdify(variable, derivative, ‘numpy')

# Iterate using the Birge-Vieta method
for _ in range(max_iter):
p_new = p - £(p) / f_prime(p)
if np.abs(p_new - p) < tol:
return p_new
p = p_new

raise ValueError("Maximum number of iterations reached without convergence.")

Function before rewriting Function after rewriting

def calculate_emptying_time(height, radius, side_length, g=9.81): def ulate_drain_time(volume, area, gravity=9.81):

Calculates the time it takes for a cylindrical tank to go from full to empty. Calculates the time it takes for a cylindrical object to drain using
Torricelli's Law.

Parameters:

- height (float): The height of the cylindrical tank. Parameters:

- radius (float): The radius of the cylindrical tank. - volume (float): The volume of the cylindrical object.

- side_length (float): The length of the side of the square hole in the bottom of the tank. - area (float): The area of the hole through which the object is draining.

- g (float): The acceleration due to gravity. - gravity (float): The acceleration due to gravity.

Returns: Returns:

- float: The time it takes for the tank to empty. - float: The time it takes for the object to drain.

from math import pi, sqrt from math import sqrt

# Calculate the area of the tank and the hole return volume / (area * sqrt(2*gravity))

tank_area = pi * radius**2

hole_area = side_length**2

iy . : i P ”

# Use Torricelli's law to calculate the time 1. Abstract the function description by changing “tank

time = (2 * height * tank_area) / (sqrt(2*g*height) * hole_area) ‘L "

return time to “object

2. Decompose the area calculation and Torricelli’s law

Function before rewriting Function after rewriting

def is_log_concave(): def is_log_concave(f, x):
Determines if[the cumulative distribution function (CDF) of the standard Gaussian distribution [— ines—34 3 given function f with respect to variable x |is log-
is log-concave. concave.
Returns: Parameters:
- int: 1 if the CDF is log-concave, @ otherwise. - f (sympy expression): The function for which the log-concavity is to be
checked.
Note: - x (sympy symbol): The variable with respect to which log-concavity is to be
- The second derivative of the natural logarithm of the CDF of the standard Gaussian checked.
distribution is always non-positive.
Therefore, the function is log-concave, and we can return 1 without performing any Returns:
calculations. - bool: True if the function is log-concave, False otherwise.
return 1
from sympy import diff, log, simplify, solveset, S

from sympy.calculus.util import continuous_domain

Rewrite the specific function (and its variable) to an argument e ete = ateractys oF e dogarithn of the function
Of the funCtlon # Compute the second derivative of the logarithm of the function

second_derivative = diff(first_derivative, x)

# simplify the second derivative
second_derivative_simplified = simplify(second_derivative)

# Check if the second derivative is nonpositive (<= @)

# We check if the second_derivative is nonpositive for all x in the domain of
£

# For a general solution, we attempt to prove the second derivative is always
nonpositive

return solveset(second_derivative_simplified<=8,
domain=5.Reals)==continuous_domain(second_derivative_simplified, x, S.Reals)

Figure 11: Three examples of Refined functions (before rewriting) and their rewritten functions (after rewriting).
We also briefly describe the modifications for each example (color in red).
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G Examples

Problem & Planing

Read the following mathematical question and answer it. Please note that you could (optionally, not
required) call the following functions when writing the code:

Question:Suppose a stock has the following information. It is listed on the London stock exchange and
operates throughout Europe. The yield on a UK 10 year treasury is 2.8%. The stock in question will earn
8.6% as per historical data. The Beta for the stock is 1.4, i.e., it is 140% volatile to the changes 1in
the general stock market. What 1is the expected rate of return?

(1) Calculate the expected return based on the beta and the yield on a UK 10 year treasury.
(2) Add the stock's historical return to the expected return.

\

Retrieved Functions

def expected_return(rf, beta, rm):
nmnn

Computes the expected return using the Capital Asset Pricing Model (CAPM) formula.

Parameters:

- rf (float): The risk-free rate.

- beta (float): The beta of the portfolio.
- rm (float): The return on the market.

Returns:
- float: The expected return.

return rf + beta *x (rm - rf)

def expected_stock_return(true_prob, u, d):
nnn

Calculates the expected return of the stock in a one-period binomial model.

Parameters:

- true_prob (float): The true probability of the stock price going up.

- u (float): One plus the rate of capital gain on the stock if the price goes up.

- d (float): One plus the rate of capital loss on the stock if the price goes down.

Returns:
- float: The expected return of the stock.

return true_prob * u + (1 - true_prob) x d

Solution

# Given values.

rf = 0.028 # The yield on a UK 10 year treasury

beta = 1.4 # The stock 1is 140% volatile to the changes in the general stock market
rm = 0.086 # The stock in question will earn 8.6% as per historical data

# Calculate the expected return

expected_return = expected_return(rf, beta, rm)

# Print the result.

print(expected_return)

Figure 12: An example of direct function call.
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Problem & Planing

Read the following mathematical question and answer it. Please note that you could (optionally, not
required) call the following functions when writing the code:

Question:The linear density in a rod $8 \mathrm{~m}$ long 1is $12 / \sqrt{x+1} \mathrm{~kg} / \mathrm{m}s$
, where $x$ is measured in meters from one end of the rod. Find the average density of the rod.

(1) Integrate the linear density function with respect to x from 0 to 8.
(2) Divide the result by the length of the rod.

Retrieved Functions

| r

def average_value_of_function(f, a, b):
nmnn
Calculates the average value of a function “f° on the dinterval “[a, b]".
Parameters: - f (sympy expression): The function for which the average value 1is to be found.
- a (float): The lower 1limit of the 1interval.
- b (float): The upper Llimit of the dinterval.
Returns: float: The average value of the function on the dinterval.
from sympy import integrate, symbols
x = symbols('x"')
integral = integrate(f, (x, a, b))
average_value = integral / (b - a)
return average_value

def avg_distance(vectors):

Wi

Finds the average distance from the origin that can be reached by adding and subtracting the given

vectors.

Parameters: - vectors (list of numpy arrays): The vectors.

Returns: float: The average distance.

nmnn

from itertools import product

import numpy as np

total_distance = 0

count = 0

for signs in product([-1, 1], repeat=len(vectors)):
resultant = sum(v * s for v, s in zip(vectors, signs))
distance = np.linalg.norm(resultant)
total_distance += distance
count += 1

return total_distance / count

| r

Solution

# The linear density 1is given by 12 / sqrt(x+1l) kg/m.

# The average density is the total mass of the rod divided by 1its length.
# The total mass of the rod 1is the dintegral of the linear density times the length of the rod from 0 to
8.

from sympy import symbols, integrate

x = symbols('x")

length = 8

# Define the linear density function.

linear_density = 12 / (x + 1)**0.5

# Calculate the total mass of the rod.

total_mass = integrate(linear_density, (x, 0, length))

# Calculate the average density by dividing the total mass by the length.
average_density = total_mass / length

print(average_density)

Figure 13: An example of implicitly using functions as a reference.
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H Prompts

H.1 Tool/Function Collection

Listing 5: Prompt used for planning and function collection

Given the question and the reference solution, do the following things:

- Think about what math knowledge points are required to solve this problem step by
step.

- write some python one or more functions to abstract the solution. Please note that
the functions should be well-documented as much as possible and not too
specific (for example, do not write the values 1in this problem within the
functions. Pass them as the function arguments). We hope your written functions
could be re-used 1in anywhere else.

-Instantiate these functions to solve the problem. The last line of your program
should be a 'print' command to print the final answer

Here are some examples you may refer to:

Question: There are integers $b,c$ for which both roots of the polynomial $x"2-x-1$
are also roots of the polynomial $x7A5-bx-c$. Determine the product $bcs.

Answer: Let $r$ be a root of $x72-x-1$. Then, rearranging, we have\n$$rr2 = r+1.
$SMultiplying both sides by $r$ and substituting gives\n\\begin{alignx}\nr~3 &=
rA2+r \\\\\n&= (r+1)+r \\\\\n&= 2r+1.\n\\end{align*}Repeating this process twice

more, we have\n\\begin{alignx}\nr*4 &= r(2r+1) \\\\\n&= 2r"2+r \\\\\n&= 2(r+1)+
r \\\\\n&= 3r+2\n\\end{align*}and\n\\begin{alignx}\nrA5 &= r(3r+2) \\\\\n&= 3r
A2+2r \\\\\n&= 3(r+1)+2r \\\\\n&= 5r+3.\n\\end{align*}Thus, each root of $x"2-x
-1$ is also a root of $xA5-5x-3$, which gives $bc = 5\\cdot 3 = \\boxed{15}S.

Think: To solve this question, we can follow the steps below: (1) Find the roots of
the polynomial $x"2-x-1$. (2) Substitute them into the the polynomial $x7"5-bx-c$

and obtain two equations. (3) Solve the equations.

Functions:

“~~function 1

def find_roots_of_polynomial(polynomial, variable):
nmmn

Finds the roots of a given polynomial using the sympy library.

Parameters:
- polynomial (sympy expression): The polynomial whose roots are to be found.
- variable (sympy symbol): The variable of the polynomial.

Returns:
- list: The roots of the polynomial.

from sympy import solve
roots = solve(polynomial, variable)
return roots

function 2

def substitute_roots_into_polynomial(roots, polynomial, variable):

nmmn

Substitutes the given roots 1into the polynomial and returns the resulting
expressions.

Parameters:

- roots (list): The list of roots to be substituted into the polynomial.

- polynomial (sympy expression): The polynomial into which the roots are to be
substituted.

- variable (sympy symbol): The variable of the polynomial.

Returns:

- list: The resulting expressions after substituting the roots into the

polynomial.
mmn

return [polynomial.subs(variable, root) for root in roots]
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“~~function 3
def solve_equations(equations, variables):

Solves a system of equations for the specified variables using the sympy library.

Parameters:
- equations (list of sympy expressions or a single sympy expression):
The equations to be solved. If solving a single equation, this can be a single
expression.
- variables (list of sympy symbols or a single sympy symbol):
The variables for which the solution 1is to be found. If solving for a single
variable, this can be a single symbol.

Returns:
- list of dictionaries: Each dictionary represents a solution, with keys being
the variables and values being their corresponding values.

If there's only one solution, the 1list will contain a single dictionary.
nmmn

from sympy import solve
solution = solve(equations, variables, dict=True)
return solution

Solution:

T python

# Import required functions and classes from sympy
from sympy import symbols, Eq

# Define the variable and the polynomials
x, b, ¢ = symbols('x b c')

polynomiall = x**2 - x - 1

polynomial2 x*x5 — b*x - c

# Find the roots of the first polynomial
roots = find_roots_of_polynomial(polynomiall, x)

# Substitute the roots into the second polynomial
resulting_expressions = substitute_roots_into_polynomial(roots, polynomial2, x)

# Set up the equations based on the resulting expressions
equations = [Eq(expr, 0) for expr in resulting_expressions]

# Solve the system of equations for b and c
solutions = solve_equations(equations, (b, c))
# This linear system has only one solution
solution = solutions[0]

# Calculate the product bc
product_bc = solution[b] * solution[c]
print(product_bc)

Question: Medians $\\overline{DP}$ and $\\overline{EQ}$ of $\\triangle DEF$ are
perpendicular. If $DP= 18$ and $EQ = 245, then what 1is ${DE}$?

Answer: Point $G$ is the centroid of $\\triangle DEFS$, so $DG:GP = EG:GQ = 2:1$.
Therefore, $DG = \\frac23(DP) = 12$% and $EG = \\frac23(EQ) =16$%, so applying the

Pythagorean Theorem to $\\triangle EGDS$ gives us $DE = \\sqrt{EG"2 + GD"2} = \\
boxed{20}%.

Think: Given two perpendicular medians in a triangle, we need to perform the
following steps: (1) Identify the relationship between the segments of medians
and the centroid. (2) Use the ratios provided to determine the lengths of the
individual segments from the centroid to the vertices. (3) Use the Pythagorean
theorem to determine the length of the side connecting the two vertices from
which the medians originate.

Functions:

“>~function 1
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def median_segments_length(median_length, ratio):

Computes the lengths of the segments of a median split by the centroid.

Parameters:

- median_length (float): Total length of the median.

- ratio (tuple): Ratio in which the centroid splits the median. Default 1is (2,1)
for standard triangles.

Returns:
- tuple: Lengths of the two segments.

Formula:
- segment_1 = ratio[0]/sum(ratio) x median_length
- segment_2 = ratio[l]/sum(ratio) x median_length

nmn

segment_1 = ratio[0] / sum(ratio) * median_length
segment_2 = ratio[l] / sum(ratio) x median_length
return segment_1, segment_2

function 2
def pythagorean_theorem(a, b):

nmnn

Computes the hypotenuse of a right triangle given two legs.

Parameters:
- a, b (float): Lengths of the two legs.

Returns:
- float: Length of the hypotenuse.

Formula:

- ¢ = sqrt(a”2 + b"2)
mnmn

from sympy import sqrt
return sqrt(ax*x2 + bxx2)

Solution:

T python

# Given values
DP 18

EQ = 24

# Point $GS$ is the centroid.

ratio = (2,1)

# Determine the lengths of the segments split by the centroid
DG, GP = median_segments_length(DP, ratio)

EG, GQ = median_segments_length(EQ, ratio)

# Use Pythagoras theorem to determine DE
DE = pythagorean_theorem(EG, DG)
print(DE)

H.2 Self-rectification

Listing 6: Prompt used for self-rectification

"role": "system",

"content": "Suppose you are writing Python programs to solve mathematical
questions. Your original program, however, can not run normally for some
reasons. Given the error message returned from the +interpreter, please debug
your program carefully and generate the new program. Your generated
correction MUST FOLLOW the following format:\n "~ function 1\n[the first
created function]\n ~"\n...\n ~~function N\n[the N-th created function]\n " "\n

26



3,
{

I
{

3
{

I

"~ python\n[solution]\n
solution]\n """

.\nDO NOT only quote your output as python\n[

"role": "user",
"content": "Original Program:\n

function 1\ndef solve_quadratic(a, b, c):\n

from sympy import symbols, Eq, solve\n x = symbols('x')\n quadratic = Eq(a *
x**x2 + b * x + c, 0)\n solutions = solve(quadratic, x)\n return solutions\n

> \n\n " "python\ndef find_d_values():\n a, b, ¢, d = symbols('a b c d')\n eql
= Eq(6 *x a x d, a + d)\n eq2 = Eq((6 xd - 1) *x (1L - a), a + d)\n eg3 = Eq(a,
4 % d - 1)\n solution = solve([eql, eq2, eq3], (a, b, c, d), dict=True)\n

d_values = [sol[d] for sol in solution]\n return d_values\nd_values =
find_d_values()\nprint(d_values)\n ~"\n\nError Message:\nFile <string>:15\n\
nFile <string>:9, in find_d_values()\n\nNameError: name 'Eq' is not defined"

"role": "assistant",
"content": "Analysis: The error is occurring because the Eq function from the

sympy module 1is not recognized in the find_d_values function. This is
happening because the ~~~from sympy import symbols, Eq, solve line 1is only
inside the "~~"solve_quadratic "~ function, so Eq and other imported functions
and classes are only available within the scope of that function. To fix this,
you should claim import statement within the " find_d_values "~ function as
well.\n\nNew Program:\n~~~function 1\ndef solve_quadratic(a, b, c):\n from
sympy import symbols, Eq, solve\n x = symbols('x')\n quadratic = Eq(a * xxx*2
+ b x x + c, 0)\n solutions = solve(quadratic, x)\n return solutions\n ~"\n\n
““~python\ndef find_d_values():\n from sympy import symbols, Eq, solve\n a, b,

c, d = symbols('a b c d')\n eql = Eq(6 * a * d, a + d)\n eq2 = Eq((6 * d -
1) x (1 - a), a + d)\n eq3 = Eq(a, 4 *x d - 1)\n solution = solve([eql, eq2,
eq3], (a, b, c, d), dict=True)\n d_values = [sol[d] for sol 1in solution]\n
return d_values\nd_values = find_d_values()\nprint(d_values)\n """

"role": "user",
"content": "finished"

"role": "user",
"content": "Original Program:\n

function 1\ndef matrix_square(matrix):\n from
sympy import Matrix\n if not disinstance(matrix, Matrix):\n matrix = Matrix(
matrix)\n return matrix * matrix\n ~~\n\n "~ function 2\ndef solve_equations(
equations, variables): \n from sympy import solve \n solution = solve(
equations, variables, dict=True) \n return solution \n ~~\n\n " "function 3\
ndef count_solutions(solutions):\n return len(solutions)\n ~~\n\n"~python)\
nfrom sympy import symbols, Eq \na, d = symbols('a d') \nmatrix = [[a, 3],
[-8, d]] \nsquared_matrix = matrix_square(matrix) \nidentity_matrix = [[1, 0],

[0, 1]] \nequations = [Eq(squared_matrix[i][j], identity_matrix[i][j]) for i
in range(2) for j 1in range(2)] \nsolution = solve_equations(equations, [a, d
1) \nans = count_solutions(solution)\nprint(ans)\n ~~\n\nError Message:\nFile
<string>:17\n\nFile <string>:17, in <listcomp>(.0)\n\nTypeError: 'Add'
object is not subscriptable"

"role": "assistant",
"content": "Analysis: The error message is occurring because when you are

creating the list of equations with the list comprehension, squared_matrix[i
1[3j] is not working as expected. The squared_matrix is a SymPy Matrix object,
and you should use the .row and .col methods.\n\nNew Program:\n "~ function 1\
ndef matrix_square(matrix):\n from sympy 1import Matrix\n if not isinstance(
matrix, Matrix):\n matrix = Matrix(matrix)\n return matrix * matrix\n ~~\n\n
“>~function 2\ndef solve_equations(equations, variables): \n from sympy
import solve \n solution = solve(equations, variables, dict=True) \n return
solution \n " ~\n\n "~ function 3\ndef count_solutions(solutions):\n return len(
solutions)\n "~ ~\n\n " "python\nfrom sympy import symbols, Eq \na, d = symbols('
a d') \nmatrix = [[a, 3], [-8, d]] \nsquared_matrix = matrix_square(matrix) \
nidentity_matrix = [[1, 0], [0, 1]] \nequations = [Eq(squared_matrix.row(i)[j
], identity_matrix[i][j]) for i in range(2) for j in range(2)] \nsolution =
solve_equations(equations, [a, d]) \nans = count_solutions(solution)\nprint(
ans)\n """
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"role": "user",
"content": "finished"

"role": "user",

"content": "Ordiginal Program:\n "~ function 1l\ndef sum_to_product_cos(alpha, beta)
:\n return (cmath.cos(alpha - beta) + cmath.cos(alpha + beta)) / 2\n ""\n\n "
function 2\ndef simplify_expression(expression): \n from sympy import
simplify \n return simplify(expression) \n ~~\n\n ~~python\nfrom sympy import
symbols, cos\n\nx = symbols('x')\nexpr = cos(x) + cos(3*x) + cos(7*x) + cos
(9*x)\n\n# Apply sum-to-product formula\nexprl = 2 % sum_to_product_cos(5*x,
4xx)\nexpr2 = 2 x sum_to_product_cos(5*%x, 2*xx)\n\n# Simplify the expression\
nsimplified_expr = simplify_expression(exprl + expr2)\n\n# Extract the values

of a, b, ¢, and d and sum them up\na, b, ¢, d = 4, 1, 3, 5\nans = a + b + ¢
+ d\nprint(ans)\n " "\n\nError Message:\nFile <string>:12\n\nFile <string>:2,
in sum_to_product_cos(alpha, beta)\n\nNameError: name 'cmath' is not defined"

"role": "assistant",

"content": "Analysis: The error message is occurring because the cmath module -s
being used in the sum_to_product_cos function but it has not been imported.
You can fix this by importing the cmath module in this function. New Program
:\n~ "~ function 1\ndef sum_to_product_cos(alpha, beta):\n import cmath\n
return (cmath.cos(alpha - beta) + cmath.cos(alpha + beta)) / 2\n " "\n\n "
function 2\ndef simplify_expression(expression): \n from sympy import
simplify \n return simplify(expression)\n =~ \n\n " ~python\nfrom sympy -import
symbols, cos\n\nx = symbols('x')\nexpr = cos(x) + cos(3*x) + cos(7xx) + cos
(9*x)\n\n# Apply sum-to-product formula\nexprl = 2 x sum_to_product_cos(5*x,
4xx)\nexpr2 = 2 *x sum_to_product_cos(5*x, 2*x)\n\n# Simplify the expression\
nsimplified_expr = simplify_expression(exprl + expr2)\n\n# Extract the values

of a, b, ¢, and d and sum them up\na, b, ¢, d = 4, 1, 3, 5\nans = a + b + ¢
+ d\nprint(ans)\n """

"role": "user",
"content": "Error message:\nTraceback (most recent call last):\n File, line 9, 1in
<module>\n exec(\n File '<string>', line 13, in <module>\n File '<string>',
line 3, 1in sum_to_product_cos\n File, line 356, in __complex__\n return
complex(float(re), float(im))\n File, line 351, in __float__\n raise
TypeError('Cannot convert expression to float')\nTypeError: Cannot convert
expression to float\n"

"role": "assistant",

"content": "Analysis: The error occurs because you are trying to use cmath.cos
function (which expects float or complex numbers as arguments) with SymPy
symbolic expressions (5x and 4x, 5x and 2x are symbolic expressions). To fix
this, you should use SymPy's cos function dinstead of cmath.cos function to
work with symbolic expressions.\n\nNew Program:\ndef sum_to_product_cos(alpha,

beta):\n from sympy import cos\n return (cos(alpha - beta) + cos(alpha +
beta)) / 2\ndef simplify_expression(expression): \n from sympy import
simplify \n return simplify(expression) \nfrom sympy import symbols, cos\n\nx

= symbols('x')\nexpr = cos(x) + cos(3*x) + cos(7*x) + cos(9*x)\n\n# Apply
sum-to-product formula\nexprl = 2 * sum_to_product_cos(5*x, 4*xx)\nexpr2 = 2 *
sum_to_product_cos(5*%x, 2*x)\n\n# Simplify the expression\nsimplified_expr =

simplify_expression(exprl + expr2)\n\n# Extract the values of a, b, c, and d

and sum them up\na, b, ¢, d = 4, 1, 3, 5\nans = a + b + ¢ + d\nprint(ans)"

"role": "user",
"content": "finished"

"role": "user",

"content": "Original Program:\n " function 1\ndef tan_double_angle(tan_theta):\n
return 2 * tan_theta / (1 - tan_theta**2)\n ~~\n\n "~ function 2\ndef
tan_triple_angle(tan_theta):\n return (3 * tan_theta - tan_theta*x3) / (1 - 3

* tan_theta*x*2)\n ~"\n\n" "~ function 3\ndef solve_polynomial(polynomial, x):\n
from sympy import solve\n return solve(polynomial, x)\n ~~\n\n "~ python\nfrom
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sympy import symbols\ntan_theta = symbols('tan_theta')\ntan_2_theta =
tan_double_angle(tan_theta)\ntan_3_theta = tan_triple_angle(tan_theta)\
nequation = tan_theta + tan_2_theta + tan_3_theta\nsimplified_equation =
simplify_expression(equation)\ntan_theta_solutions = solve_polynomial(
simplified_equation, tan_theta)\n\n# Find the solution in the given range (0
< tan_theta < 1)\ntan_theta_value = [solution for solution 1n
tan_theta_solutions if 0 < solution < 1][0]\nprint(tan_theta_value)\n " "\n\
nError Message:\nFile <string>:13\n\nNameError: name 'simplify_expression' is
not defined"
}s
{
"role": "assistant",
"content": "Analysis: The error message is occurring because there is no function
named simplify_expression defined in your script. To fix this, you can
define such a function that uses SymPy's simplify function to simplify
expressions.\n\nNew Program:\n~~~function 1\ndef simplify_expression(
expression): \n from sympy import simplify \n return simplify(expression)\n
> \n\n "~ function 2\ndef tan_double_angle(tan_theta):\n return 2 * tan_theta
/ (1 - tan_thetax*2)\n ~"\n\n "~ function 3\ndef tan_triple_angle(tan_theta):\n
return (3 * tan_theta - tan_thetax*3) / (1 - 3 * tan_theta**2)\n ~~\n\n "
function 4\ndef solve_polynomial(polynomial, x):\n from sympy import solve\n
return solve(polynomial, x)\n ~"\n\n " ~python\nfrom sympy import symbols)\
ntan_theta = symbols('tan_theta')\ntan_2_theta = tan_double_angle(tan_theta)\
ntan_3_theta = tan_triple_angle(tan_theta)\nequation = tan_theta +
tan_2_theta + tan_3_theta\nsimplified_equation = simplify_expression(equation
Y\ntan_theta_solutions = solve_polynomial(simplified_equation, tan_theta)\n\n
# Find the solution in the given range (0 < tan_theta < 1)\ntan_theta_value =
[solution for solution in tan_theta_solutions if 0 < solution < 1][0]\nprint
(tan_theta_value)\n-""
I
{
"role": "user",
"content": "finished"

H.3 Function-augmented Solutions

Listing 7: Prompt used for the generation of function-augmented solutions (cross-retrieval strategy)

You will encounter a mathematical problem and are required to write a piece of
Python code to solve this problem.

Now we have a suite of wrapped functions. Take note:
- The newly provided wrapped functions have NOT been verified. They may be
irrelevant or potentially flawed.

- It's essential that the solution doesn't overly depend on wrapped functions.

You're welcome to utilize one or more functions from the new set in your solution
but only after you've determined:

(1) Their accuracy.
(2) Their dinclusion significantly streamlines the problem-solving approach.

Additionally take note that

(1) The last line of your written code shall be a 'print' command to print the
final answer.

(2) The wrapped functions should not be duplicated within your code. Instead,
call them directly if needed.

(3) Should you need to create custom functions, do so without adding
documentation comments for the sake of brevity.

(4) Write simple but clear annotations interleaving your code solution.

Retrieved functions:

[List of called function names from the new set]
T Tpython

[Your Written Python Code.]
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For example:

Question: What is the 100th digit to the right of the decimal point in the decimal
representation of $\frac{13}{90}$?

New provided functions:

““"New Function 0

def decimal_representation(numerator, denominator, max_digits=1000):
nmmnn

Computes the decimal representation of a fraction.

Parameters:

- numerator (int): The numerator of the fraction.

- denominator (int): The denominator of the fraction.

- max_digits (int): The maximum number of decimal digits to compute.

Returns:

- str: The decimal representation of the fraction as a string.
mmn

result = ""
remainder = numerator % denominator
for _ 1in range(max_digits):
remainder %= 10
result += str(remainder // denominator)
remainder %= denominator
if remainder ==
break
return result

““"New Function 1

def decimal_to_scientific(decimal_number):
from sympy import log, floor
exponent = -floor(log(decimal_number, 10))
coefficient = decimal_number * 10xx(-exponent)
return coefficient, exponent

““"New Function 2
def repeating_decimal_representation(numerator, denominator):
nmmn

Computes the repeating decimal representation of a fraction.

Parameters:
- numerator (int): The numerator of the fraction.
- denominator (int): The denominator of the fraction.

Returns:
- str: The repeating decimal representation of the fraction as a string.

# Initialize the result string and a dictionary to store remainders.
result = ""
remainders = {}

# Perform long division to find the decimal representation.
while numerator != 0:
# If the remainder has been seen before, we found the repeating block.
if numerator in remainders:
start = remainders[numerator]
return result[:start] + "(" + result[start:] + ")"
# Otherwise, store the remainder and continue the division.
remainders[numerator] = len(result)
numerator *= 10
result += str(numerator // denominator)
numerator %= denominator

return result
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“““New Function 3
def nth_digit_of_decimal_representation(numerator, denominator, n):

Computes the nth digit after the decimal point of the decimal representation of a
fraction.

Parameters:

- numerator (int): The numerator of the fraction.

- denominator (int): The denominator of the fraction.

- n (int): The position of the digit after the decimal point.

Returns:
- int: The nth digit after the decimal point of the decimal representation of the

fraction.
nmn

# Get the repeating decimal representation of the fraction.
decimal_representation = repeating_decimal_representation(numerator, denominator)

# Remove the parentheses from the repeating block.
decimal_representation = decimal_representation.replace("(", "").replace(")", "")

# Calculate the nth digit using the repeating block.
return int(decimal_representation[(n - 1) % len(decimal_representation)])

Retrieved functions:
[decimal_representation, nth_digit_of_decimal_representation]

T python

# Use the nth_digit_of_decimal_representation function to find the 100th digit
numerator = 13

denominator = 90

n = 100

# Call the function and print the result
result = nth_digit_of_decimal_representation(numerator, denominator, n)
print(result)

Question: The square root of $x$ is greater than 3 and less than 4. How many integer

values of $x$ satisfy this condition?

New provided functions:
““"New Function 0
def solve_square_root_equation(a, b, c):

nmnn

Solves a square root equation of the form sqrt(ax - b) = c.

Parameters:

- a (float): Coefficient of x 1inside the square root.

- b (float): Constant term inside the square root.

- ¢ (float): Constant term on the right side of the equation.

Returns:
- float: The value of x that satisfies the equation.

Formula:
- x = (chr2 +b) / a

nmn

return (c*xx2 + b) / a

“““New Function 1
def find_integer_square_less_than_double():

nmn

Finds the only integer whose square 1is less than its double.
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Returns:
- 1int: The integer that satisfies the condition.

Method:
- Iterate through integers starting from 1, and check if the square of the
integer is less than +its double.
- If the condition is satisfied, return the integer.
- If the condition is not satisfied for any integer up to a certain limit, return
None.
nmmn
limit = 100
for x 1in range(l, limit):
if xxx2 < 2xx:
return x
return None

“**New Function 2

def solve_equation():
nmn

Solves the equation (x-2)7(25-x72) = 1 for integer solutions.

Returns:

- list: A list of integer solutions for x.
nmn

solutions = []

# Case 1l: Exponent is 0 (25 - x"2 = 0)

x1l =5

x2 = -5

solutions.extend([x1, x2])

# Case 2: Base is 1 (x - 2 = 1)
x3 = 3
solutions.append(x3)

# Case 3: Base is -1 and exponent 1is even (x - 2 = -1 and 25 - x*2 = 2n for some
integer n)
x4 =1

solutions.append(x4)

return solutions

**“New Function 3
def count_integers_in_range(lower_bound, upper_bound, exclude_zero=True):
nmn

Counts the number of 1integers within a given range.

Parameters:

- lower_bound (int): The lower bound of the range.

- upper_bound (int): The upper bound of the range.

- exclude_zero (bool): Whether to exclude 0 from the count. Default is True.

Returns:

- int: The number of dintegers within the range.

mnmn

count = upper_bound - lower_bound + 1

if exclude_zero and lower_bound <= 0 and upper_bound >= 0:
count -= 1

return count

Retrieved functions:

[l

“TTpython
# The lower and upper bounds of x for which sqrt(x) > 3 and sqrt(x) < 4
lower_bound = 9
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upper_bound = 16

# Counting the number of 1integers between 9 (exclusive) and 16 (exclusive)
num_integers = len([x for x in range(lower_bound + 1, upper_bound)])

# Printing the result
print(num_integers)

H.4 Evaluation with Toolsets

Listing 8: Prompt used for evaluation (setting with toolsets)

Read the following questions and answer them. For each question, you are required to

write a Python program to solve it.

Please note that we provide you several functions for each question. You could (
optionally, not required) call the functions to help you to solve the question
if necessary.

Note that the last line of your program should be a 'print' command to print the
final answer

Question:
What is the 100th digit to the right of the decimal point in the decimal
representation of $\\frac{13}{90}$?

Functions:
def repeating_decimal_representation(numerator, denominator):
nmmn

Computes the repeating decimal representation of a fraction.

Parameters:
- numerator (int): The numerator of the fraction.
- denominator (int): The denominator of the fraction.

Returns:
- str: The repeating decimal representation of the fraction as a string.

# Initialize the result string and a dictionary to store remainders.
result = ""
remainders = {}

# Perform long division to find the decimal representation.
while numerator != 0:
# If the remainder has been seen before, we found the repeating block.
if numerator in remainders:
start = remainders[numerator]
return result[:start] + "(" + result[start:] + ")"
# Otherwise, store the remainder and continue the division.
remainders[numerator] = len(result)
numerator *= 10
result += str(numerator // denominator)
numerator %= denominator

return result

def nth_digit_of_decimal_representation(numerator, denominator, n):
nmn
Computes the nth digit after the decimal point of the decimal representation of a
fraction.

Parameters:

- numerator (int): The numerator of the fraction.

- denominator (int): The denominator of the fraction.

- n (int): The position of the digit after the decimal point.

Returns:
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- 1int: The nth digit after the decimal point of the decimal representation of the

fraction.
mnmn

# Get the repeating decimal representation of the fraction.
decimal_representation = repeating_decimal_representation(numerator, denominator)

# Remove the parentheses from the repeating block.
decimal_representation = decimal_representation.replace(" (", "").replace(")", "")

# Calculate the nth digit using the repeating block.
return int(decimal_representation[(n - 1) % len(decimal_representation)])

def decimal_representation(numerator, denominator, max_digits=1000):
nmmn

Computes the decimal representation of a fraction.

Parameters:

- numerator (int): The numerator of the fraction.

- denominator (int): The denominator of the fraction.

- max_digits (int): The maximum number of decimal digits to compute.

Returns:

- str: The decimal representation of the fraction as a string.
nmmn

result = ""
remainder = numerator % denominator
for _ 1in range(max_digits):
remainder x= 10
result += str(remainder // denominator)
remainder %= denominator
if remainder ==
break
return result

Solution:

# find the 100th digit.
numerator = 13
denominator = 90

n = 100

# Call the function and print the result.
result = nth_digit_of_decimal_representation(numerator, denominator, n)
print(result)

Question:
The square root of $x$ is greater than 3 and less than 4. How many integer values of
$x$ satisfy this condition?

Functions:
def count_integers_in_range(lower_bound, upper_bound, exclude_zero=True):

Counts the number of +integers within a given range.

Parameters:

- lower_bound (int): The lower bound of the range.

- upper_bound (int): The upper bound of the range.

- exclude_zero (bool): Whether to exclude 0 from the count. Default is True.

Returns:

- int: The number of dintegers within the range.

nmn

count = upper_bound - lower_bound + 1

if exclude_zero and lower_bound <= 0 and upper_bound >= 0:
count -= 1
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return count

def find_integer_square_less_than_double():
mnmn

Finds the only 1integer whose square is less than its double.

Returns:
- int: The integer that satisfies the condition.

Method:
- Iterate through integers starting from 1, and check if the square of the
integer is less than +its double.
- If the condition is satisfied, return the integer.
- If the condition is not satisfied for any integer up to a certain limit, return
None.
nmmn
Timit = 100
for x 1in range(l, limit):
if x*x*x2 < 2%x:
return x
return None

def solve_square_root_equation(a, b, c):
nmmn

Solves a square root equation of the form sqrt(ax - b) = c.

Parameters:

- a (float): Coefficient of x inside the square root.

- b (float): Constant term inside the square root.

- ¢ (float): Constant term on the right side of the equation.

Returns:
- float: The value of x that satisfies the equation.

Formula:
- x = (cr2 +b) / a

return (cxx2 + b) / a

Solution:
# We need to find the -integer values of x for which sqrt(x) > 3 and sqrt(x) < 4. To
this end, we can count the number of dintegers in the range (9, 16) directly.
result = 0
for x 1in range(10, 16):
if 9 < x < 16:
result += 1
print(result)

H.5 Evaluation without Toolsets

Listing 9: Prompt used for evaluation (setting without toolsets)

Read the following questions and answer them. For each question, you are required to

write a Python program to solve it.

Please note that we provide you several functions for each question. You could (
optionally, not required) call the functions to help you to solve the question
if necessary.

Note that the last line of your program should be a 'print' command to print the
final answer

Question:
What is the 100th digit to the right of the decimal point in the decimal
representation of $\\frac{13}{90}s$?

Solution:
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from decimal import Decimal, getcontext

# Set the precision to 101 (100 digits after decimal + 1 digit before decimal)
getcontext().prec = 101

# Calculate the decimal representation of 13/90
dec = Decimal(13) / Decimal(90)

# Convert the decimal to a string
dec_str = str(dec)

# Get the 100th digit to the right of the decimal point
digit_100th = dec_str[101]

print(digit_100th)

Question:
The square root of $x$ is greater than 3 and less than 4. How many integer values of
$x$ satisfy this condition?

Solution:
# We need to find the 1integer values of x for which sqrt(x) > 3 and sqrt(x) < 4. To
this end, we can count the number of -integers in the range (9, 16) directly.
result = 0
for x 1in range(10, 16):
if 9 < x < 16:
result += 1
print(result)
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