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ABSTRACT

Various world model frameworks are being developed today based on autoregres-
sive frameworks that rely on discrete representations of actions and observations,
and these frameworks are succeeding in constructing interactive generative models
for the target environment of interest. Meanwhile, humans demonstrate remark-
able generalization abilities to combine experiences in multiple environments to
mentally simulate and learn to control agents in diverse environments. Inspired by
this human capability, we introduce World modeling through Lie Action (WLA),
an unsupervised framework that learns continuous latent action representations to
simulate across environments. WLA learns a control interface with high controlla-
bility and predictive ability by simultaneously modeling the dynamics of multiple
environments using Lie group theory and object-centric autoencoder. On bench-
mark synthetic and real-world datasets, we demonstrate that WLA can be trained
using only video frames and, with minimal or no action labels, can quickly adapt
to new environments with novel action sets.

1 INTRODUCTION

Originally proposed as a framework to support automatic planning and decision-making, world mod-
els (Ha & Schmidhuber, 2018) predict future states conditioned on actions, allowing agents to antic-
ipate the consequences of their interactions. There have been extensive efforts in the development
of world models and related learning methods. Many of them rely on discrete representations of
actions and/or images (Hafner et al., 2023; Hu et al., 2023) in order to leverage the techniques of
autoregressive inference that are extensively developed in language modeling. Recent works such as
Genie (Bruce et al., 2024) and LAPO (Schmidt & Jiang, 2023) have advanced the field by learning
interactive world models with few/no explicit action labels. These models have shown promising
results in capturing complex dynamics and discrete actions in specific environments.

Humans, however, possess an extraordinary ability to generalize learned skills across diverse envi-
ronments by leveraging continuous and compositional representations of actions. For example, after
mastering basic movements in a few 2D action-adventure games, a person can quickly adapt to a
game of a different type(e.g. Pac-Man) by leveraging the knowledge of common 2D concepts such
as moving in continuous directions (Schmidt, 1975; Poggio & Bizzi, 2004). Continuous action rep-
resentations allow for smooth transitions and fine-grained control, while compositionality enables
complex actions to be built from simpler primitives, facilitating generalization and transfer learning
(Flash & Hochner, 2005; Botvinick & Plaut, 2004).

Inspired by this human capability, we hypothesize that, in order to learn an interactive world model
that generalizes across environments, it is essential to construct an environment-agnostic simula-
tor that embraces continuous and compositional action representations. In this paper, we introduce
World modeling through Lie Action (WLA), an unsupervised framework that aims to learn such
a simulator. Our approach models the nonlinear and continuous transition operators in the obser-
vation space with a Lie group that acts linearly on partitioned latent vector spaces, where each
partition corresponds to different objects and fundamental action axes. This allows us to capture the
continuous and compositional nature of actions, enabling seamless generalization across different
environments. Our method extends the capabilities of existing world models by introducing the con-
tinuity and compositionality in the form of Lie group structure. We demonstrate the effectiveness of
WLA on 2D game and 3D robotics environments in terms of generalization and adaptability.
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Figure 1: The relation between observation space dynamics and latent space dynamics with Lie
group action. We elaborate the design of Φ,Ψ and the implementation of FΦ,Ψ in Section 4.

2 PROBLEM SETTING

Before introducing our framework, we formalize the problem that WLA is meant to solve. WLA is
a mathematical framework for learning an interface to interact with a family of diverse environments
sharing common basic rules of composition and continuity, such as a family of 2D games. To further
elaborate, we introduce our definition of environment.

2.1 ENVIRONMENT

Definition 1. An environment E is a pair (X , T ) where X is a space of observations, and T is a set
of nonlinear transition operators on X . Let us use XE and TE to denote the space of observations
and the set of transitions of E , respectively. Thus, if x : I → XE is a sample trajectory of E with
time domain I ⊂ R+, then for all t, t+ δ ∈ I , we have gt,δ(x(t)) = x(t+ δ) for some gt,δ ∈ TE .

We assume that the dataset consists of a set of trajectories sampled from all environments {Ej}j . For
example, in the family of simple 2D action games, the transitions in one environment may be related
to jumping and running. In another environment, actions may contain rotations and and powerups.

Strictly speaking, because gt,δ differs for each x, we should use the notation gt,δ,x to denote the
transition of x(·), and in cases where all trajectories in E can be enumerated, we should use the
notation gt,δ,i to denote the transition of xi(·). However, for brevity, we may use gt,δ in place of
gt,δ,i with the understanding that it is a variable that differs across trajectories. Also, because not
all the observation sequences in the real world are realized by a finite set of discrete actions like
buttons, we do not assume in this definition that the transitions in the environment can be grounded
on such actions (e.g., button presses).

2.2 CONTROLLER INTERFACE PROBLEM

We aim to construct an interactive interface for the world model that approximates a given (set of)
environment(s), which in this study is/are assumed deterministic. We propose constructing such
an interface through an inter-environmental simulator like WLA. In what follows, we rephrase this
goal with the definition of environment introduced above. If A is a topological space of all possible
instantaneous inputs to the interface, we informally define the Controller Interface Problem (CIP)
for the environment E as below:

Problem. Using DE = {x : I → XE} sampled from E , construct a controller map

CtrlE : X ×A → TE (1)
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for which there exists a map (a : I → A) such that CtrlE(x[0, t), a[0, t))(x(t)) = x(t+ dt) for all
trajectories x ∈ DE , where t+ dt is the infinitesimal future of t, and an abuse of notation was used
so that CtrlE takes as input the time series (x, a) up to t ∈ I , denoted as x[0, t) and a[0, t). 1

In more informal words, CIP is a problem of building a controller interface that approximates the rule
of dynamics in a target environment. There are two settings for CIP, which we call (1) unstructured
CIP and (2) structured CIP. In unstructured CIP, the problem includes that of specifying the space of
A itself. In structured CIP, the problem is to find the map with A that is prespecified, for example,
by hardware restrictions. When A is chosen to be finite, unstructured CIP may be analogous to
building a set of controller buttons for a game E , and structured CIP may be analogous to finding
the correspondence map between a given controller input and transitions in the environment. Once
the CIP is solved for E , the user may iteratively apply the action sequence of choice to x ∈ X to
generate a new trajectory within E .

Bruce et al. (2024) solve unstructured CIP through a Inverse Dynamic model fI : TE → A and a
Forward Dynamic model fF : X ×A → TE . Meanwhile, fF is trained so that fF (x(t), fI(gt,1)) =
x(t+1), where the transition gt,1 is represented as the pair (x(t), x(t+1)). This way, fF serves as
CtrlE itself in our formulation of unstructured CIP. However, in this paper, we will mainly focus on
structured CIP. The greatest challenge in structured CIP is the deficiency of action labels. We show
that WLA can efficiently solve the structured CIP with few labels by solving unstructured CIP with
Lie group action as part of the process. From this point onward, we use ”CIP” to imply structured
CIP unless described otherwise.

3 MATHEMATICAL CONCEPT OF WLA FRAMEWORK

WLA is a framework for solving CIP for multiple environments by leveraging the power of an inter-
environmental simulator to aggregate the compositional and continuity rules of the dynamics that
are shared across all environments. Our inter-environmental simulator uses the algebraic structure
of the Lie group and an object-centric autoencoder to represent the continuity and compositionality
of the group elements that realize the trajectories x, which are sampled across all environments.

Through the Lie-group theoretic structure of transitions learned across multiple environments, WLA
solves CIP for all environments by first mapping the input action to the transition operators in the
inter-environmental simulator and then by mapping the transitions in the simulator to the observation
space to generate the ”imagined” trajectory based on the user inputs. The map Ctrladapt from the
action signals to the transitions in the latent space is trained separately. By constructing Ctrl through
our inter-environmental simulator instead of the black-box autoregressive model, we can improve
the performance of Ctrl on multiple environments.

The core of the WLA framework is the environment-agnostic simulator, which consists of an
encoder-decoder pair (Φ,Ψ) that relates every observation to a state in a vector latent space. While
the previous approaches solve CIP separately for each environment, WLA solves the problem
through the simulator that describes, in the form of Lie group action, the common composition-
ality and continuity rules of dynamics in all environments. In the following subsections, we provide
an informal explanation to convey the rough idea of each component in our framework. Please see
Appendix section A for the formal explanation.

3.1 LATENT DYNAMICAL SYSTEM WITH LIE GROUP ACTION

We first describe the mathematical design of our latent space dynamics that ensures the compo-
sitionality and continuity of actions. In WLA, we design the transitions to be compositional and
continuous in the latent space and train (Φ,Ψ) so that the transitions in the latent space lift to the
observation space while maintaining these properties.

More precisely, if D = {xi : I → X}i =
⋃

E DE is a dataset of time-differentiable paths in X , we
assume that every transition xi(t) → xi(t+ δ) in the trajectory xi is realized by a group action of a
Lie group G. That is, for every xi(t) → xi(t + δ), we assume that there exists git,δ ∈ G such that

1Please see Section A for more formal definition of the controller map.
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git,δ · xi(t) = xi(t+ δ). 2 This assumption suits our model-desiderata because the set of git,δ in this
setting can be (i) composed, (ii) inverted, and (iii) differentiated with respect to time (δ, t.)

When a Lie group G acts non-linearly on X , there exists an equivariant autoencoder (Φ,Ψ) such
that G acts linearly in the latent space (Koyama et al., 2024). That is, for all x ∈ X and g ∈ G,

g · x = Ψ(M(g)Φ(x)) or Φ(g · x) = M(g)z(t) (2)

where z = Φ(x) and M(g) is the matrix representation of a Lie group element g ∈ G. To define
our inverse dynamic map, we use the following fact that can be readily verified.
Fact. When g ◦x = Ψ(M(g)Φ(x)) for all g ∈ G, then the inverse dynamic map FΦ,Ψ : g 7→ M(g)
induced by equation 2 satisfies

FΦ,Ψ(h · g) = FΦ,Ψ(g) · FΦ,Ψ(h), lim
δ→0

FΦ,Ψ(gt,δ) = I. (3)

This precisely means that our inverse dynamic map FΦ,Ψ preserves the compositionality and con-
tinuity rules in the observation space. In other words, the continuity and compositionality of the
continuity of the action in the latent space lifts to compositional and continuous action in the obser-
vation space through the autoencoder that satisfies equation 2. See Figure 1 for the schematics of
our design that relates the transition in the observation space to the transition in the latent space.

In our design of the transitions xi(t) → xi(t + δ) = git,δ · xi(t) modeled through the latent linear
transitions Φ(xi(t)) → M(gt,δ,i)Φ(x

i(t)) in equation 2, we are assuming that the trajectories x are
not just continuous but differentiable with respect to δ. Omitting i and writing Mt,δ := M(gt,δ)
for brevity, we therefore model ∂δMt,δ instead of Mt,δ itself. Writing ∂δMt,δ|δ=0 as A(t) and
z(t) = Φ(x(t)), we eventually arrive at the following latent linear dynamical system

d

dt
z(t) = A(t)z(t), or z(t) = exp

(∫ t

0

A(s)ds

)
z(0). (4)

As a part of our design, we also assume that G in question belongs to a well-known family of groups
whose matrix representations are scalings and rotations. For the group of rotation and scaling, every
A(s) =

⊕
k Ak(s) and Mt,δ =

⊕
k Mk,t,δ are respectively direct sums of the matrices of the form

Ak(s) =

(
λk(s) −θk(s)
θk(s) λk(s)

)
, Mk,t,δ = exp(Λk(t, δ))

(
cosΘk(t, δ) − sinΘk(t, δ)
sinΘk(t, δ) cosΘk(t, δ)

)
(5)

where Λk(t, δ) =
∫ t+δ

t
λk(s)ds, Θk(t, δ) =

∫ t+δ

t
θk(s)ds.

3.2 OBJECT CENTRIC DYNAMICS MODEL

To introduce the notion of objects into our inter-environmental simulator, we adopt the idea of
object-centric modeling and train (Φ,Ψ) with a latent space partitioned into distinct objects. In
particular, we design the encoder Φ to map x into a set of N slots [zn]Nn so that the latent space Z
is partitioned into slot spaces Zn. Because the transitions happen for each slot, Ak in equation 5
are thus enumerated by both the number of objects N and number of rotation angles J , so that
[Ak]

J
k = [Anj ]

N,J
n,j by reindexing, and Zn = [Znj ]

J
j . Analogously, let us write Φn = [Φnj ]

N
n .

Likewise, we re-index (λk, θk) as (λnj , θnj) as well.

3.3 USING WLA TO SOLVE CIP

Technically, just like how humans can ”imagine” the trajectory in our abstract mental model without
buttons and levers, we can use the rotation parameters and scaling parameters in our trained simula-
tor as A itself in the setting of CIP. However, in this section, we consider the problem of leveraging
(Φ,Ψ) to solve CIP with pre-specified A. Such a situation may arise in robotics, for example.

As we have described in the previous section, once (Φ,Ψ) are obtained in a way that satisfies equa-
tion 2 on multiple environments, we have the inverse dynamic map (IDM), FΦ,Ψ, along with its

2Note that we wrote g · (x) instead of g(x) to designate a group action. Please see A for formal discussion.
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Figure 2: WLA is based on a slot-attention-based autoencoder. The latent space is partitioned into
slots, and the transition for each slot occurs by a linear Lie group action. (a) During the training of
WLA, the inverse dynamic map FΦ,Ψ converts the transition to a Lie algebra operator. (b) The for-
ward rollout simulation with a controller interface is implemented by mapping the contextual inputs
(past observations and external action signals) to Lie algebra parameters (λ, θ) and by multiplying
the resulting operators M to the slot token z[t] to create the future observations autoregressively.

inverse F−1
Φ,Ψ in equation 3. When there is a user-specified action signal space A, we can use

F−1
Φ,Ψ : A → T as an intermediate interface in our construction of CtrlE .

More specifically, given the action labeled sequence [(x(t), a(t))]t with (x(t), a(t)) ∈ XE × A,
we can learn a map CtrlE by training a model Ctrladapt that takes (x[0, t), a[0, t)) as the input
and outputs (λ(t), θ(t)) which are the parameters of A(t) := A(λ(t), θ(t)), where [λ]k = λk and
[θ]k = θk are as in equation 5. This way, we construct a controller map by composing Ctrladapt with
the F−1

Φ,Ψ. That is, we can construct the map CtrlE : X ×A → TE via the composition

CtrlE : x[0, t), a[0, t) −→
Ctrladapt

A(λ(t), θ(t)) −→
F−1

Φ,Ψ

Mt,δ (6)

where δ is the chosen time-discretization stepsize in approximating the continuous dynamics nu-
merically so that the λ(t) and θ(t) are assumed to take the same value over the interval [t, δ). The
output of CtrlE in the form of Mt,δ realizes the transition x(t) → x(t + δ) through x(t + δ) =
Ψ(Mt,δΦ(x(t))). We describe the learning scheme of Ctrladapt in the next section.

4 IMPLEMENTATION OF WLA MODEL

We use neural networks for the modeling of all components of WLA, including Ctrl and (Φ,Ψ). In
this section, we first remark on our practical handling of the dataset and then explain the training
loss and our architectural design choices. Also see Figure 2 along with the materials in this section.

4.1 TIME DISCRETIZATION

In an implementation, the time series dataset is discretized, and an interval I is represented as an
increasing subset {τ0 < τ1 < · · · < τT } ⊂ R+. As such, a trajectory x(·) is represented by the
discrete signal [x(τt)]t. From here on forward, whenever we use the “hard bracket” x[t] := x(τt),
we assume that the signal is discretized and that t is a natural number. Also, just for brevity, we
assume in this section that the observations are evenly spaced, so that τt − τt−1 = ∆. We also
denote the past observations as x[: t] := (x[0], . . . , x[t−1]). We can similarly define the discretized
version of other variables such as a[t], A[t], λ[t], θ[t].

In CIP, CtrlE was designed to take (x[: t], a[: t]) to compute λk[t] and θk[t]. Likewise, we implement
IDM FΦ,Ψ as a function that takes two consecutive frames (x[t], x[t+ 1]) as an input instead of the
actual transition gt, because the operator itself is not observable. This strategy has been successfuly
taken in the past (Mitchel et al., 2024; Koyama et al., 2024; Miyato et al., 2022). Because this
section pertains to implementation, we will use this discretized notation throughout this section. See
Appendix A for a more formal explanation.

5
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4.2 TRAINING OF (Φ,Ψ)

The WLA model is trained in an unsupervised manner using a set of trajectories sampled from
different environments. We use an approach similar to (Koyama et al., 2024; Mitchel et al., 2024)
except that because we are modeling a time series whose velocity changes with respect to time, we
use the prediction loss over the entire time sequence. Namely, if D is the dataset of trajectories, we
train the autoencoder Φ,Ψ and the IDM FΦ,Ψ along with the trainable parameters {λnj [t], θnj [t]}
of {Anj [t]} in the discretized version of equation 5 (defined for each x ∈ D and time t with the
reindexing of k with nj as in 3.2 3) by minimizing∑

x∈D

Lfwd(x) + Lbwd(x) + αL1(λ, θ) (7)

where Lfwd(x) =
∑
t

||x[t]− x̂f [t]||2, Lbwd(x) =
∑
t

||x[t]− x̂b[t]||2, (8)

in which the forward and backward predictions x̂f , x̂b are given by

x̂f [t] = Ψ

exp

∆
∑

0≤ℓ<t

A[ℓ]

 z(0)

 , x̂b[t] = Ψ

exp

−∆
∑

t≤ℓ<T

A[ℓ]

 z[T ]

 , (9)

where the summation inside the exponential is derived from modeling A(s) discretely as A[t] ·
1s∈[τt,τt+1) so that

∫ τt
0

A(s)ds = ∆
∑

ℓ<t A[ℓ]. Finally, we used the sparsity loss L1 =∑
j,n |λnj [ℓ]|+

∑
|θnj [ℓ]|. Once (Φ,Ψ) is solved, CIP provides its own controller maps defined by

Ctrl(gδ,t).

4.3 SOLVING CIP THROUGH WLA

To learn Ctrladapt(x[t], a[t]) 7→ A(λ[t], θ[t]) (the time-discretized version of3.3), we use a labeled
dataset {(x[t], a[t]} of sequences paired with action inputs. We minimize the sum of the following
adaptation loss and reconstruction loss, defined for all t, t0 and x as

Ladapt = ∥[λ(t), θ(t)]− Ctrladapt(x[: t], a[: t])∥2, Lrec(x; t, t0) := ∥x[t]− x̂[t | t0]∥2 (10)

where x̂[t | t0] is a rollout prediction from x[t0], constructed by iteratively applying a[t].

4.4 ARCHITECTURE

For the encoder-decoder pair (Φ,Ψ), we used a Transformer-based model with the slot attention
mechanism (Locatello et al., 2020). We employed the Vision Transformer (ViT)-based slot en-
coder (Wu et al., 2023) so that the slot attention module in the encoder partitions the input x into a
set of slots [zn]Nn through the cross-attention architecture with a learnable set of initial slot tokens.
To obtain the output, we used a standard ViT decoder which (1) first copies each slot token zn as the
initial values of patch tokens Pn := [pn,l]l and then (2) computes the RGB image un and the alpha
mask wn ∈ [0, 1]H×W of spatial size H ×W via self-attention mechanisms over Pn. The decoder
finally outputs x̂ as the weighted mean

∑
n wn ∗ un where ∗ is the element-wise product. For the

IDM, we use an MLP that takes the concatenation of the slots zn[t] ⊕ zn[t + 1] and outputs both
λn,j [t] and , θn,j [t].

There are two important hyperparameters in our modeling: the number of slots N and the number
of Lie group actions J . Increasing N and J generally improves performance but also increases
computational complexity. We will describe more details in Appendix.

Slot Alignment via least action principle A naive application of the slot attention mechanism
to dynamical scenarios tends to suffer from temporal inconsistencies, i.e., slots fail to track objects
consistently over time (Zhao et al., 2023). To encourage temporal consistency of object slot assign-
ments, we introduced the principle of least action (Siburg, 2004). Given the next and current frames
zn[t + 1], zn[t] ∈ Zn for all slots n = 1, . . . , N , we chose the permutation σ to the slots so that

3These parameters are ’not’ to be stored as parts of the model.
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the transition zn[t + 1] → zσ(n)[t + 1] in the latent space is minimal. Instead of computing A

indexed by slots, we thus computed [An1→n2 ]
N×N
n1,n2

and used a linear assignment problem solver
for the permutation σ that minimizes ∥An1→σ(n1)∥2, based on the implementation in Karpukhin &
Savchenko (2024)

5 RELATED WORK

Several works have been done on (latent) dynamics models that can generalize across environments,
many of them purporting to solve a reinforcement learning problem. Hafner et al. (2023) propose
a method designed for the purpose of solving reinforcement learning tasks in various environments
and uses a recurrent latent space and discretized states learned with action and reward-labeled se-
quences. Lee et al. (2022) also use multiple environments to train generalist reinforcement learning
agents. Our method, on the other hand, is an unsupervised generative interactive framework trained
to generate a video itself in response to user action inputs. Raad et al. (2024) use a language-
annotated dataset to build a world model that can be used to solve tasks in multiple environments.
Mondal et al. (2022) associate group actions with the transition as in our approach but focus on
embedding-invariant reward optimization and do not generate future observations.

The three major features of WLA are that it is (1) unsupervised, (2) object-centric, and (3) able
to capture the continuous dynamics in a way that all transitions are compositional by design. We
borrow much of the idea from (Wu et al., 2022), an object-centric framework with slot attention ar-
chitecture and temporal position embedding. It preserves the temporal consistency through residual
connections, in contrast to our algebraic structure. To encourage the compositionality of dynamics,
Rybkin et al. (2018) combine past frames through an MLP to predict future frames. Valevski et al.
(2024) use conditional diffusion to model the dynamics autoregressively, providing a high-quality
continuous simulator. Because the effect of the action is modeled in a black box, the input of ”no
action” does not necessarily map to an identity operator in the observation space, which corrupts the
generation in the long run. To mitigate this undesired effect, they use the technical trick of noise
augmentation. For the algebraic design of our Controller map that guarantees the compositional-
ity, we build on the theory of (Koyama et al., 2024; Mitchel et al., 2024), which are unsupervised
methods that learn the underlying symmetry structure by predictions. Their method, however, does
not consider continuous dynamics that are non-autonomous (time-dependent). Mondal et al. (2024)
consider Koopman-based modeling with complex diagonal latent transition operators related to our
A, but their latent actions are additive, and ambient transitions are time-homogeneous.

As an effort to learn an interactive generative environment, (Watter et al., 2015) have advocated to
control dynamical systems in latent space. However, our method has much more in common with
VPT (Baker et al., 2022). VPT learns FI : X × TE → A and CtrlF : X × A → TE separately
as noncausal and causal maps, and it learns the noncausal part with action labels. WLA is different
in that it learns without labels the E-agnostic noncausal structure in the form of an underlying Lie
group via equivariant autoencoder (Φ,Ψ). Genie (Bruce et al., 2024) and LAPO (Schmidt & Jiang,
2023) also share a similar philosophy as VPT, except that they do not use labels in learning CtrlI .
Unlike WLA, their controller interface does not map actions through the latent space that reflects the
structure of compositional and continuous action. (Goyal et al., 2021) took the approach of separat-
ing object files from schemata to describe the dynamics. However, in their context, our schemata is
modeled with much stronger inductive bias of compositionality and continuity. Chen et al. (2023)
build an interactive system by conditioning the diffusion generation on user stroke inputs. However,
they do not consider the dynamics behind the system with objects and compositionality.

6 EXPERIMENTS

6.1 PHYRE

The Phyre benchmark provides a set of physical reasoning tasks in 2D simulated environments. We
used it as a sanity check to validate that our model possesses the capabilities of continuity and com-
positionality of actions. By focusing on physical interactions that require understanding continuous
dynamics and the compositional nature of actions (e.g., applying forces, combining movements),
Phyre is an ideal platform to assess these fundamental aspects of our model.
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Ground Truth

Interpolation

Figure 3: Phyre Interpolation. Top: Training frames at a low sampling rate (1 FPS). Bottom:
Reconstructed trajectory at a high sampling rate (8 FPS), with interpolated frames shown in blue.
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Figure 4: Composition results on Phyre. Left: Applying the sum of actions from the red and blue
ball to the blue ball. Since the red ball is climbing, its action counteracts the falling action of the
blue ball. Right: Applying the sum of actions to the red ball, showing similar compositional effects.

Results: Figure 3 demonstrates the interpolation capabilities of our model on Phyre. During train-
ing, the model observes frames at a low sampling rate (1 FPS). We tested the model’s ability to
recover trajectories at a higher sampling rate (8 FPS) by generating interpolated frames between ob-
served frames. The interpolated frames, displayed with blue padding, illustrate the model’s under-
standing of continuous dynamics and its ability to generate smooth transitions, validating the conti-
nuity aspect. In Figure 4, we showcase the compositionality of actions learned by our model. By ap-
plying combinations of actions to objects and observing the effects (e.g., counteracting movements),
we demonstrate that the model effectively captures the compositional nature of actions within the en-
vironment. These results validate that WLA has the capabilities of continuity and compositionality
of actions that are essential for simulating physical dynamics in complex environments.

6.2 PROCGEN

The ProcGen benchmark offers a suite of procedurally generated game-like environments, providing
diverse challenges for testing generalization and adaptability. We used datasets provided by Schmidt
& Jiang (2023). In this benchmark, we addressed the Controller Interface Problem for both in-
domain (seen) and out-of-domain (unseen) datasets, with and without action labels, referred to as in-
play and out-of-play settings, respectively. Importantly, in all experiments, we trained and evaluated
a single common model across all environments.

We compared our method specifically against Genie (Bruce et al., 2024). Although Genie is de-
signed to function without action labels, to evaluate it for the Controller Interface Problem with la-
bels, we incorporated trainable embeddings of action labels and appended them to the output of the
action embeddings in their latent action model (LAM). We utilized the open-source Genie codebase
implementation provided by Willi et al. with default settings. However, we increased the number
of training iterations from 0.2M to 0.4M to accommodate our multi-environment as opposed to the
original work, which trained separate models for different environments.

Evaluation Metrics: We used the following metrics to evaluate our methods (i) PSNR (Peak
Signal-to-Noise Ratio), (ii) ∆t PSNR, (iii) LPIPS (Learned Perceptual Image Patch Similar-
ity) (Zhang et al., 2018), and (iv) ActionACC (Action Accuracy). ∆t PSNR is a metric intro-
duced by Bruce et al. (2024) that measures the difference between the effect of the inferred ac-
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Figure 5: The controlling results through Ctrladapt on ProcGen. The figure contains 6 out of 16
frames, resulting from applying the action sequence written below the rendered frames.
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Figure 6: The controlling results through Ctrladapt on Android Dataset.

tion and the effect of the random action. Specifically, ∆t = PSNR(xt+1,Ctrladapt(x(t), a(t)) −
PSNR(xt+1,Ctrladapt(x(t), arandom(t)). ActionACC measures the accuracy of the estimated ac-
tions compared to the ground truth action labels. To estimate the actions, we trained a logistic linear
regressor that maps the model-inferred parameters (λ(t), θ(t)) to the ground truth action labels a(t)
and evaluated the label accuracy. For Genie, we similarly applied the logistic regression to the
inferred action tokens provided by LAM.

Results: The results of our experiments on seen environments are summarized in Table 2. Our
method consistently outperformed Genie across multiple metrics. Figure 5 illustrates the results of
applying controller inputs to various game environments via Ctrladapt. Each sequence shows 6 out of
16 frames resulting from applying the corresponding action inputs. The visualizations demonstrate
that our model can generate coherent and responsive sequences. Please also see the supplementary
material for the movies generated using our method.

Ablation Study: We conducted ablation studies to assess the impact of two key components of
WLA. (i) Lie Group Action (Rotation): We tested a version of our model without the rotational com-
ponents in the Lie group transitions in equation 4, i.e., using only scaling transformations. (ii) Least
Action Principle for Slot Alignment: We evaluated the model without using the least action principle
for aligning slots over time. The results, presented in Table 1, demonstrate that both components
significantly contribute to the model’s performance. Removing the rotational components adversely

MSE(↓)
Unseen Seen

w/o Rotation 0.683 0.059
w/o Least Action 0.675 0.056

Ours 0.602 0.046

ActionACC(↑)
Unseen Seen

Genie 8.30 10.25
Ours 14.62 21.07

Table 1: Left: ablation study for the effect of Lie group action and the least action principle. Right:
Action accuracy in the out-play setting.
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Environ. PSNR(↑) ∆tPSNR(↑) LPIPS(↓)
Genie Ours Genie Ours Genie Ours

bigfish 18.69 24.04 -0.09 1.26 0.14 0.04
bossfight 15.76 18.48 0.02 0.29 0.18 0.19
caveflyer 11.25 17.59 0.02 2.45 0.22 0.18

climber 15.22 19.41 0.03 2.68 0.21 0.18
coinrun 11.30 22.10 0.48 9.03 0.21 0.05

maze 18.44 21.68 -0.24 1.52 0.20 0.13
miner 18.85 21.75 -0.06 1.19 0.11 0.09
ninja 13.46 19.63 0.05 4.06 0.32 0.18

Table 2: Summary of the simulation performance through
Ctrladapt in the seen setting on ProcGen.

Genie Ours

PSNR(↑) 21.16 20.82
∆tPSNR(↑) 0.78 1.13

FVD(↓) 393.85 131.02

Table 3: Quantitative Results on
the android dataset.

affected the model’s ability to learn dynamics across diverse environments. Note that the ablated
version (w/o rotation) is similar to Mamba (Gu & Dao, 2023), which uses a state space model with
diagonal action. Similarly, omitting the least action principle decreased object-wise consistency,
which is crucial for maintaining our model’s compositional and continuous dynamics.

6.3 ANDROID DATASET

To further validate our method, we compared WLA against Genie on the 1X World Model dataset4.
This dataset comprises over 100 hours of videos capturing the actions of android-type robots in
various environments and lighting conditions, including narrow hallways, spacious workbenches,
and tabletops with multiple objects. We slightly adapted the architecture of our method to suit this
setting, as detailed below, but otherwise, we followed the same experimental protocol as the ProcGen
dataset. We evaluated the models using three metrics: PSNR, ∆tPSNR, and Fréchet Video Distance
(FVD) (Unterthiner et al., 2018), utilizing the debiased version (Ge et al., 2024).

Results: We observed results that were consistent with those from the ProcGen dataset. While
Genie produces cleaner predictions for individual frames, it falls behind WLA in generating video
sequences that align with the provided action sequences. In contrast, our method successfully learns
the correct responses, producing videos more closely resembling the ground truth (Figure 6). These
qualitative observations are supported by the quantitative results shown in Table 3. Although our
method slightly underperforms Genie in frame-wise evaluation (PSNR), it performs better tempo-
rally local evaluation (∆tPSNR) and significantly outperforms Genie in FVD. Some of the predicted
videos are included in the supplementary material.

7 CONCLUSION

In this paper, we introduced WLA for the CIP, a method that uses a simulator to capture the rules
of composition and continuity between environments through the algebraic relations of a Lie group
and object-centric modeling. Using the structured latent model, we can improve the controllability
and predictive power of the controller interface. The empirical results demonstrate that WLA is
capable of modeling real-world robot actions in 3D environments, in addition to 2D game environ-
ments. Importantly, it is the first of its kind as a generative interactive framework that is based on
a state-space model. However, there are still several limitations that need to be resolved to scale up
the framework further. Firstly, our method does not account for the possible randomness of the en-
vironment. This problem might be addressed by utilizing stochastic process modeling, for example.
Secondly, in our model, we assume a priori that transitions in the environment commute with each
other, and the number of rotations in the latent dynamics is specified by the user. NFT (Koyama
et al., 2024), one source of our inspiration, however, learns the group dynamics without relying on
such an assumption. Future work, therefore, includes the development of methods to build a latent
state-space model with fewer prior assumptions and more freedom.

4Available at https://huggingface.co/datasets/1x-technologies/worldmodel; we used version 1.1.
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A MORE FORMAL SETUP OF WLA AND CIP PROBLEM

In this section, we provide a more formal version of the mathematical setup of our framework,
which is mostly built on the theory of NFT (Koyama et al., 2024), except that we use continuous and
nonstationary time series for training the model. We first provide the list of notations, and elaborate
the details in the following order: (1) Dataset, (2) Model, (3) CIP, and (4) practical modification of
the setups for implmentation purposes.

A.1 NOTATIONS

• X ; the space of observations, assumed to be some smooth manifold.

• XE ⊂ X ; the space of observations for environment E .

• G ; Lie Group.

• I ; Time domain, can be assumed to be a compact subset of R+.

• V ; D dimensional latent vector space over the field R.

• A ; a topological space containing the set of ’action’ signals.

• ThM ; a tangent space of a manifold M at h ∈ M.

• C(X,Y ) ; a continuous map from a topological space X to Y .

• Ck(X,Y ) ; a k-differentiable map from a smooth manifold X to Y .

• J̃ ; number of toric component in G

• D ; the dimension of the latent space.

• F ; number of irreducible representations / frequencies in the representation of G used in
our work

• h(X) ; a subset {h(x) | x ∈ X} ⊂ Y

• Φ ; an invertible encoder map in C∞(X , V )

• GL(V ) : General linear group of V .

• gl(V ) : Linear endomorphism of V .

• Ψ ; the inverse map of Φ, an element of C∞(V,X ).

• DE ; an E-labeled subset of C(I → XE)

• TE : a set of transition operators τ : X → X such that whenever x ∈ DE and t > 0, δ > 0,
there exists some τ ∈ TE such that x(t+ δ) = τ(x(t)).

• g · x ; an abbreviation of α(g, x) when α : G × X → X is a group action.

• expG ; exponential map for Lie group G. We omit the suffix when it is self-implied.

• h[0, t) ; {h(s)|s ∈ [0, t)}.
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A.2 ASSUMPTIONS OF DATASET

Let D = {xi}i ⊂ C1(I,X ) be a video dataset to be used to train the encoder Φ and the decoder Ψ
in our WLA framework, where i is the sample index. This dataset contains the videos sampled from
multiple environments so XE ⊂ X for all E . The underlying assumption of WLA is that, for every
x ∈ D, t > 0 and δ > 0, the transition x(t) → x(t + δ) is realized by some common group action
G×X → X of a some Lie group G. To be more precise, our standing assumption is as follows:
Assumption 1. For our dataset D = {xi : I → X}i consisting of movie samples from multiple
environments, there exists some (abelian) Lie group G that acts on X through a group action α :
G × X → X such that, for every xi ∈ D, t > 0 and δ > 0 there is some git,δ ∈ G such that
α(git,δ, x

i(t)) = xi(t+ δ).

For brevity, we notationaly identified g with the map αg : x 7→ α(g, x) (that is, we interpret
git,δ : X → X with git,δ(x

i(t)) = xi(t + δ). ) With this identification, we are therefore assuming
that the family of transitions TE can be identified with a subset of G for every E . We introduce this
assumption of the Lie group structure as our inductive bias because our desiderata of composition-
ality and continuity matches (almost exactly, except for the invertibility) with the definition of Lie
group as a topological set with smooth manifold structure and rules of compositions.

For the computational reasons that we will elaborate on momentarily, we also make an additional
assumption on G, that is, (1) G is connected and compact so that the exponential map is surjective
on G and (2) G is abelian. Although these restrictions may seem strong (especially the abelian
assumption), we will practically resolve this problem through non-autonomous modeling of the
time series.

A.3 LATENT SPACE MODELING WITH LIE ACTION

According to the theory and results presented in NFT, when there is some group G acting on X with
a set of reasonable regularity conditions, there exists an autoencoder (Φ,Ψ) with latent vector space
V and a homomorphic map M : G → GL(V ) such that Φ(M(g)Ψ(x)) = g(x). This M is also
referred to as representation of G. Mitchel et al. (2024) and Miyato et al. (2022) had experimentally
shown that such (Φ,Ψ) and M can be learned from a time series dataset, and our work scales their
philosophy to the non-stationary, continuous dynamical system on large observation space.

To model the non-autonomous time series we assume that, for all x ∈ D there exists a time series
g(·) ∈ C(I,G) such that x(t) = g(t) · x(0). This way, we would have

x(t) = Ψ (M(g(t))Φ(x0)) .

Because we want to model the continuous evolution of x forward in time, we model its derivative
instead of modeling g(t) for each t. By our assumption on the surjectivity of the exponential map,
every g(t) may be written as expG (g(t)), where g ∈ TidG is a tangent vector of G at the identity
element id ∈ G, i.e., the Lie algebra of G. By the abelian assumption we can WLOG write

g(t) =

∫ t

0

a(s)ds

for a ∈ C(I, TidG). Writing M̃ : TidG → gl(V ) to be the Lie algebra representation associ-
ated with G so that expGL(V ) ◦M̃ = M ◦ expG, we arrive at the following continuous time series
dynamics through latent linear Lie action on V ⊃ Φ(X );

x(t) = Ψ

(
M

(
exp

(∫ t

0

(a(s))ds

))
Φ(x(0))

)
= Ψ

(
exp

(∫ t

0

M̃(a(s))ds

)
Φ(x(0))

)
(11)

:= Ψ

(
exp

(∫ t

0

A(s)ds

)
Φ(x(0))

)
(12)

where we denoted M̃(a(s)) = A(s), omiting the suffixes of exp for brevity. Altogether, we write

x(t) = Ψ

(
exp

(∫ t

0

A(s)ds

)
Φ(x(0))

)
(13)
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An remark Regarding the notation of gt,δ : In alignment with the gt,δ notation we introduced
in the A.2, an instance gt,δ ∈ G that realizes the transition x(t) 7→ x(t + δ) may be written as

gt,δ = expG

(∫ t+δ

t
a(s)ds

)
. Because we have tools in this Appendix section to elaborate our design

of continuous transition with integration, however, we do not use this notation in the subsequent
formal explanations of CIP.

A.4 CONTROLLER MAP

For the environment with Controller interface, we assume that there exists an environment-specific,
continuous Controller map

CtrlE : C(I,X )× C(I,A)× I → TidG

along with a possibly small paired dataset Dadapt ⊂ C1(I,X ) × C(I, A) such that, whenever
(x, a) ∈ Dadapt, we have

x(t) = Ψ

(
exp

(∫ t

0

M̃(CtrlE(x[0, s), a[0, s)))ds
)
Φ(x(0))

)
(14)

where we wrote CtrlE(x[0, s), a[0, s))) := CtrlE(x, a, s) to convey the contraint that the controller
output at s depends only on the history of x and a up to s. Indeed, the purpose of CIP is to train CtrlE
based on Dadapt. Because the input to CtrlE is not x(s), a(s), the controller map CtrlE is expected
to entail the causal mechanism that cannot be captured with (Φ,Ψ) alone.

A.5 PRACTICAL DETAILS FOR THE PURPOSE OF IMPLEMENTATION

Although we defined the formal output of CtrlE to be TidG , the Lie algebra TidG itself is an abstract
entity. To instantiate TidG in numerical form, we use the matrix representation M̃ : TidG → gl(V )
of Lie algebra. Also, we use the fact that a connected abelian Lie group is isomorphic to RJ1 ×TJ2

so that any element of G can be characterized by a set of pairs of scale λ and rotation angle θ.
Likewise, an element of corresponding Lie algebra g can be characterized by a set of pairs of scaling
speed and rotational speed. This way, we can conclude that the matrix representations M̃(g) of
our TidG are parametrized by a set of scale-rotation velocity pairs and irreducible representations
(frequencies). In this work, we assume J1 = J2 = J̃ for brevity and denote it so. 5

Reindexing these pairs of rotation and scale with the frequencies {rf |f = 1, ...F} ⊂ R (irreducible
representation) and the index of toric component {1, ..., J̃}, let us therefore rewrite A(s) in equa-
tion 12 as Ã({(λjf (s), θjf (s)}j,f ) =

⊕
j,f Ã(λjf (s), θjf (s)), where Ãjf : RJ̃ × TJ̃ → gl(V ) is

defined as6

Ãjf (λjf , θjf ) =

(
λjf −rfθjf
rfθjf λjf

)
.

This way, M̃(a(s)) is written as

M̃(a(s)) = Ã({(λjf (s), θjf (s)}) =
⊕
j,f

Ãjf (λjf , θjf (s)) (15)

=
⊕
j,f

(
λjf (s) −rfθjf (s)
rfθjf (s) λjf (s)

)
(16)

Thus, again with the abuse of notation, we practically define CtrlE to be

Ctrlprac
E : x[0, s)× a[0, s) 7→ {(λjf (s), θjf (s)}j,f ⊂ (R× S1)

J̃,F . (17)

5We note that, in this section, we are omitting the additional index n of slot attention architecture in order
to avoid the over-complication of notations.

6Here, {rf} in implementation was chosen in a way similar to RoPE. Please see the attached code for the
detailed setting.
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where S1 is the circle group. This practial Controller map Ctrlprac
E maps the input through M̃ , so the

following model emerges as the actual modeling of the time series in CIP

x(t) = Ψ

(
exp

(∫ t

0

Ã
(
Ctrlprac

E (x[0, s), a[0, s))
)
ds

)
Φ(x(0))

)
. (18)

We also remark that our J in the main part of the manuscript corresponds to J = J̃ F .

A.5.1 REGARDING THE TIME DISCRETIZATION

Although our framework is built for continuous and compositional dynamics, a real-world dataset
is bound to be temporally discrete, and x ∈ C(I,X ) is represented as a discrete sequence x̄ =
[x(τm);m ∈ Z] with τm < τm+1, and we will be forced to learn CtrlE as well as Φ,Ψ with the
piecewise interpolated model

A(s) =
∑
m

A(τm)1s∈[τm,τm+1) :=
∑
m

Ā[m]1s∈[τm,τm+1)

where Ā[m] := A(τm) = Ã({λjf (s), θjf (s)}) is constructed from (λjf (s), θjf (s)) defined analo-
gously with the discretized (λjf [m], θjf [m]). Putting ∆m = τm+1 − τm, we therefore have∫ τt

0

A(s)ds =
∑
ℓ<t

Ā[ℓ]∆ℓ

and the equation 13 becomes

x(t) = Ψ

(
exp

(∑
ℓ<m

Ā[ℓ] min(∆ℓ, τℓ − t)

)
Φ(x(0))

)
(19)

Giving the same consideration to CtrlE , the predicted time series in CIP training defined with CtrlE
is therefore computed as

x̂[m] = Ψ

(
exp

(∑
ℓ<m

Ã
(
Ctrlprac

E (x̄[: ℓ], ā[: ℓ])∆ℓ

))
Φ(x(0))

)
(20)

= Ψ

(
exp

(
Ã

(∑
ℓ<m

(
Ctrlprac

E (x̄[: ℓ], ā[: ℓ])∆ℓ

)))
Φ(x(0))

)
(21)

where ā is defined analogously to x̄ and the notation of Ctrlprac
E is abused to take as input the dis-

cretized version of (x[0, s), a[0, s)). In the final equality we used the linearity of Ã with respect to
its input.

A.5.2 A REMARK REGARDING THE REPRESENTATION POWER OF OUR MODEL

Because our fundamental assumption is that all G is a the group, every g ∈ G is assumed invert-
ible. Also, as we have mentioned earlier, we assume G to be abelian as well. Therefore, strictly
speaking, transitions operators that are nilpotent or idempotent cannot be expressed. While this
might seem to restrict our modeling capability, our model can construct a transition that mimics

these operators. Firstly, because M(g(t)) =
⊕

k exp(Λ(t))

(
cosΘk(t) − sinΘk(t)
sinΘk(t) cosΘk(t)

)
with

Λk(t) =
∫ t

0
λk(s)ds, Θk(t) =

∫ t

0
θk(s)ds, we can create a sequence M(g(t)) → 0 by considering

Λ(t) → −∞. Likewise, because limt→t∗ a(t) → 0 for some fixed t∗ ∈ I is plausible for equa-
tion 12, we can also model a sequence similar to g(t) → g∗ for some fixed g∗ ∈ G as well. In fact,
in experiment, we are succeeding in modeling a complex dynamics in both real world setting like
1X World model dataset and simulated world setting like ProcGen which are both likely to involve
transitions like nilpotent and idempotent operations.
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B IMPLEMENTATION DETAILS

B.1 PHYRE

The encoder was configured with a depth of 9 layers, a width of 216, a patch size of 8, 12 attention
heads, and 6 slots. The decoder had a depth of 3 layers and a patch size of 16, converting the latent
slots to images using the mechanism from slot attention (Locatello et al., 2020). For the attention
modules on the patch tokens, we employed GTA (Miyato et al., 2023).

We trained the model using the AdamW optimizer with a learning rate of 5 × 10−4 and a weight
decay of 0.1 for 100 epochs. We set the sparsity regularizer scale α to 0.01. Linear warmup cosine
annealing was applied with 10 warmup epochs and an initial learning rate of 1× 10−5.

B.2 PROCGEN

For the encoder and the decoder, we used the same setting as for the Phyre experiment, except
that the number of slots is 20. The IDM module, which converts latent states z into latent action
parameters (λ, θ), was implemented using a 1D convolutional architecture with SiLU activation and
LayerNorm. We trained the model using the AdamW optimizer with a learning rate of 5×10−4 over
200 epochs. We trained the model with 16 frames: 12 frames for prediction, followed by 4 burn-in
frames.

When training Ctrladapt with action labels (as described in Section 4.3), we input the action label
sequences a(t) together with the latent states z(t) into a spatio-temporal transformer (Xu et al., 2020)
configured with a depth of 4 layers and 4 attention heads. Ctrladapt was trained using the AdamW
optimizer with a learning rate of 5 × 10−4 for 100 epochs. The encoder-decoder pair (Φ,Ψ) was
frozen during the training of Ctrladapt.

B.3 ANDROID DATASET

In this experiment, each 256×256 RGB video frame was converted into an 8×8 grid of 18-bit binary
tokens using MAGVIT2. Consequently, we trained our model on the time series of these tokens
and replaced the reconstruction losses with logistic losses, as the tokens are binary. Additionally,
since Slot Attention expects images as input, we employed a standard Vision Transformer (ViT)
architecture to model the time evolution and alignment of the encoded tokens. Specifically, since
there are 8 × 8 = 64 tokens in total, we treat them as if they are “slot” tokens. Also, we set the
number of rotation angles to J = 16.

B.4 HYPERPARAMETER SELECTION

The number of slots N and the number of Lie group actions J play an important role. Generally, in-
creasing N and J enhances the model capacity but also affects computational complexity, especially
N , which directly impacts runtime. The same applies to J since D = 2J .

We observed that the internal construction of D significantly improves performance. Inspired by
sinusoidal positional embeddings and NFT, we parameterized each rotation with a “frequency.” We
indexed θ with i, j such that θi,j(t) = miθ̃j(t), where {mi ∈ R | i = 1, . . . , F} are the rotation
speeds and j ∈ 1, . . . , J̃ with J̃ = J/F . We fixed F , with D = 2J = J̃F .

We conducted additional small-scale experiments on ProcGen to study the effect of varying J̃ and
N . The results are summarized in the following table:

These results indicate that increasing J̃ with a smaller F improves performance. Similarly, increas-
ing N reduces reconstruction error, highlighting the importance of these hyperparameters.
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N J̃ Reconstruction Error (MSE)

16 3 0.0583
16 6 0.0587
16 12 0.0439
16 24 0.0378

8 6 0.0641
16 6 0.0587
24 6 0.0397

Table 4: Effect of varying J̃ and N on reconstruction error.
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