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Abstract

Large Language Models (LLMs) offer the po-001
tential for automatic time series analysis and002
reporting, which is a critical task across many003
domains, spanning healthcare, finance, climate,004
energy, and many more. In this paper, we005
propose a framework for rigorously evaluat-006
ing the capabilities of LLMs on time series007
understanding, encompassing both univariate008
and multivariate forms. We introduce a com-009
prehensive taxonomy of time series features, a010
critical framework that delineates various char-011
acteristics inherent in time series data. Lever-012
aging this taxonomy, we have systematically013
designed and synthesized a diverse dataset of014
time series, embodying the different outlined015
features, each accompanied by textual descrip-016
tions. This dataset acts as a solid foundation017
for assessing the proficiency of LLMs in com-018
prehending time series. Our experiments shed019
light on the strengths and limitations of state-020
of-the-art LLMs in time series understanding,021
revealing which features these models readily022
comprehend effectively and where they falter.023
In addition, we uncover the sensitivity of LLMs024
to factors including the formatting of the data,025
the position of points queried within a series026
and the overall time series length.027

1 Introduction028

Time series analysis and reporting are crucial in029

diverse fields like healthcare, finance, and climate030

(Liu et al., 2023). The recent progress in Large031

Language Models (LLMs) opens exciting possibil-032

ities for automating these processes. While recent033

studies have explored adapting LLMs for specific034

time series tasks, such as seizure localization in035

EEG time series (Chen et al., 2024), cardiovas-036

cular disease diagnosis in ECG time series (Qiu037

et al., 2023), weather and climate data understand-038

ing (Chen et al., 2023), and explainable financial039

time series forecasting (Yu et al., 2023), a system-040

atic evaluation of general-purpose LLMs’ inherent041

capabilities in understanding time series data is 042

lacking. One notable example of domain-specific 043

application is the BioSignal Copilot framework pre- 044

sented by (Liu et al., 2023), which focuses on lever- 045

aging LLMs for clinical report generation from 046

biomedical signals. 047

This paper aims to fill this gap by uncovering 048

the strengths and weaknesses of general-purpose 049

LLMs in time series understanding, without any 050

domain-specific fine-tuning. Our focus is on assess- 051

ing their potential for a key downstream task: time 052

series annotation and summarization. By under- 053

standing the baseline capabilities of LLMs, practi- 054

tioners can identify areas where these models are 055

readily applicable and areas where targeted fine- 056

tuning efforts may be necessary to improve perfor- 057

mance. 058

To systematically evaluate the performance of 059

general-purpose LLMs on generic time series un- 060

derstanding, we propose a taxonomy of time se- 061

ries features for both univariate and multivariate 062

time series. This taxonomy serves as a structured 063

framework for evaluating LLM performance and 064

provides a foundation for future research in this 065

domain. Based on this taxonomy, we have created 066

a diverse synthetic dataset of time series that cov- 067

ers a wide range of features, each accompanied by 068

qualitative and quantitative textual descriptions. 069

Our evaluations focus on tasks directly relevant 070

to time series annotation and summarization, such 071

as feature detection, classification, and data re- 072

trieval as well as arithmetic reasoning. Addition- 073

ally, we assess the LLMs’ ability to match tex- 074

tual descriptions to their corresponding time series, 075

leveraging the textual descriptions in our dataset. 076

These findings will be instrumental for develop- 077

ing LLM-powered tools for automated time series 078

annotation and summarization, ultimately enhanc- 079

ing data analysis and reporting workflows across 080

diverse domains. 081

Our contributions are three-fold: 082
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• Taxonomy - we introduce a comprehensive tax-083

onomy that provides a systematic categorization084

of important time series features, an essential085

tool for standardizing the evaluation of LLMs in086

time series understanding.087

• Diverse Time Series Dataset - we synthesize088

a diverse time series dataset with train/valida-089

tion/test splits, ensuring a broad representation090

of various time series types, encompassing the091

spectrum of features identified in our taxonomy,092

each with accompanying textual descriptions.093

• Evaluations of LLMs - our evaluations provide094

insights into LLMs’ strengths and weaknesses095

in understanding time series. We analyze how096

LLMs handle data format, query location, and097

time series length, providing a nuanced under-098

standing of their capabilities in this domain.099

2 Related Work100

Large Language Models Large Language Mod-101

els (LLMs), such as Llama2 (Touvron et al., 2023),102

PaLM (Chowdhery et al., 2023), GPT-3 (Brown103

et al., 2020), GPT4 (Achiam et al., 2023), and104

Vicuna-13B (Chiang et al., 2023), have demon-105

strated remarkable capabilities in various language-106

related tasks and have recently been explored for107

their potential in time series analysis.108

Language Models for Time Series Recent109

progress in time series forecasting has capitalized110

on the versatile and comprehensive abilities of111

LLMs, merging their language expertise with time112

series data analysis. This collaboration marks a sig-113

nificant methodological change, underscoring the114

capacity of LLMs to revolutionize conventional pre-115

dictive methods with their advanced information116

processing skills. Notably, (Gruver et al., 2023)117

have set benchmarks for pre-trained LLMs such118

as GPT-3 and Llama2 by assessing their capabil-119

ities for zero-shot forecasting. Similarly, (Xue120

and Salim, 2023) introduced Prompcast, adopt-121

ing a novel approach by treating forecasting as122

a question-answering activity, utilizing strategic123

prompts. Further, (Yu et al., 2023) delved into124

the potential of LLMs for generating explainable125

forecasts in financial time series, tackling inherent126

issues like cross-sequence reasoning, integration127

of multi-modal data, and interpretation of results,128

which pose challenges in conventional methodolo-129

gies. Additionally, (Zhou et al., 2023) demon-130

strated that leveraging frozen pre-trained language131

models, initially trained on vast corpora, for time 132

series analysis could achieve comparable or even 133

state-of-the-art performance across various princi- 134

pal tasks in time series analysis including imputa- 135

tion, classification and forecasting. 136

Recent advancements in the application of LLMs 137

to biomedical time series data have also shown 138

promise in the automated generation of clinical 139

reports. (Liu et al., 2023) introduce BioSignal 140

Copilot, a system that leverages LLMs for drafting 141

reports from biomedical signals, such as electro- 142

cardiograms (ECGs) and electroencephalograms 143

(EEGs). Their work highlights the importance of 144

domain-specific feature extraction in facilitating 145

LLM understanding of time series data, aligning 146

with our work on developing a comprehensive tax- 147

onomy of time series features to enhance LLM 148

interpretability and analysis in various applications. 149

Notably, their focus on automatic report genera- 150

tion from the processed signals serves as a specific 151

downstream task, further emphasizing the need for 152

a systematic evaluation of LLMs’ ability to under- 153

stand and extract relevant features from time series 154

data, such as the one presented in this work. 155

LLMs for arithmetic tasks Despite their ad- 156

vanced capabilities, LLMs face challenges with 157

basic arithmetic tasks, crucial for time series anal- 158

ysis involving quantitative data (Azerbayev et al., 159

2023; Liu and Low, 2023). Research has identified 160

challenges such as inconsistent tokenization and 161

token frequency as major barriers (Nogueira et al., 162

2021; Kim et al., 2021). Innovative solutions, such 163

as Llama2’s approach to digit tokenization Yuan 164

et al. (2023), highlight ongoing efforts to refine 165

LLMs’ arithmetic abilities, enhancing their appli- 166

cability in time series analysis. 167

3 Time Series Data 168

3.1 Taxonomy of Time Series Features 169

Our study introduces a comprehensive taxonomy 170

for evaluating the analytical capabilities of Large 171

Language Models (LLMs) in the context of time 172

series data. This taxonomy categorizes the intrinsic 173

characteristics of time series, providing a structured 174

basis for assessing the proficiency of LLMs in iden- 175

tifying and extracting these features. The proposed 176

taxonomy encompasses critical aspects of time se- 177

ries data that are frequently analyzed for different 178

applications and are commonly used in qualitative 179

descriptions of time series data. These features 180

are considered the most relevant for evaluating the 181
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Table 1: Taxonomy of time series characteristics.

Main Category Description Sub-category

Univariate

Trend Directional movements over time. Up , Down

Seasonality and

Cyclical Patterns

Patterns that repeat over a fixed or irregular pe-
riod.

Fixed-period , Shifting period ,

Multiple seasonality

Anomalies Significant deviations from typical patterns. Spikes , level shifts ,

temporal disruptions

Volatility Degree of dispersion of a series over time. Constant , Trending ,

Clustered , Dynamic

Structural Breaks Fundamental shifts in the series data, such as
regime changes or parameter shifts.

Regime changes , parameter shifts

Stationarity Properties Stationarity versus non-stationarity. Stationarity

Distribution Properties Characteristics like fat tails Fat tails

Multivariate

Correlation Measure the linear relationship between series.
Useful for predicting one series from another if
they are correlated.

Positive Negative

Cross-Correlation Measures the relationship between two series at
different time lags, useful for identifying lead or
lag relationships.

Positive - direct , Positive - lagged ,

Negative - direct , Negative - lagged

Dynamic Conditional

Correlation

Assesses situations where correlations between
series change over time.

Correlated first half

Correlated second half

ability of LLMs to generate and understand textual182

reports of time series data.183

The features are organized in increasing order of184

complexity, starting with trend, seasonality, volatil-185

ity, anomalies, structural breaks, and distribution186

properties. Each main feature is further divided187

into sub-categories to provide a more nuanced eval-188

uation of LLM capabilities. This hierarchical orga-189

nization allows for a detailed assessment of LLM190

performance on both simple and complex time se-191

ries characteristics. Table 1 presents the selected192

features in order of increasing complexity and their193

sub-features. While we have strived to define the194

features as distinctly as possible, it is important to195

note that some overlap may exist between certain196

categories.197

Justification for the proposed taxonomy Our198

selection of features is based on extensive litera-199

ture review and expert consultations. Trends and200

seasonality are fundamental components widely201

recognized in time series analysis across various202

domains, such as finance and climate science (Hyn-203

dman and Athanasopoulos, 2018; Shumway and204

Stoffer, 2000). Volatility and anomalies are crucial205

for understanding dynamic behaviors and identi-206

fying significant deviations in data (Tsay, 2005;207

Chandola et al., 2009). Structural breaks and distri-208

bution properties are essential for capturing shifts209

in underlying data generation processes and under- 210

standing the statistical nature of the data (Perron, 211

2005; Cont, 2001). Table 5 provides definitions 212

of each sub-category along with domain examples 213

where these features could be referenced. 214

3.2 Synthetic Time Series Dataset 215

Leveraging our taxonomy, we construct a diverse 216

synthetic dataset of time series, covering the fea- 217

tures outlined in the previous section. We generated 218

in total 10 datasets, each with a training split (5000 219

samples), validation split (2000 samples), and test 220

split (200 samples) to facilitate model development 221

and evaluation. Within each dataset, the time series 222

length is randomly chosen between 30 and 150 to 223

encompass a variety of both short and long time 224

series data. In order to make the time series more 225

realistic, we add a time index, using predominantly 226

daily frequency. Each time series in the dataset is 227

accompanied by a qualitative description, a textual 228

summary of the main features present in the time 229

series (e.g., "This time series exhibits a downward 230

quadratic trend, commencing with higher figures 231

and falling gradually."), and a quantitative descrip- 232

tion, which includes the minimum and maximum 233

values, the date range, and a textual description of 234

the specific features present (e.g., "This daily time 235

series covers the period from 2024-01-01 to 2024- 236
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05-04. It exhibits multiple seasonal patterns with237

monthly seasonality, with 5 peaks and 4 troughs,238

and an average amplitude of 24.25."). Fig. 1 show-239

cases examples of our generated univariate time240

series. Each univariate dataset showcases a unique241

single-dimensional pattern, whereas multivariate242

data explore series interrelations to reveal under-243

lying patterns. See Table 6 and Table 7 in the244

appendix for visual examples of each dataset. For245

a detailed description of the generation of each246

dataset, refer to Appendix. B.247

Figure 1: Example synthetically generated time series.

4 Time Series Benchmark Tasks248

Our evaluation framework is designed to assess the249

LLMs’ capabilities in analyzing time series across250

the dimensions in our taxonomy (Sec. 3.1). The251

evaluation includes four primary tasks:252

Feature Detection This task evaluates the LLMs’253

ability to identify the presence of specific features254

within a time series, such as trend, seasonality, or255

anomalies. For instance, given a time series dataset256

with an upward trend, the LLM is queried to de-257

termine if a trend exists. Queries are structured as258

yes/no questions to assess the LLMs’ ability to rec-259

ognize the presence of specific time series features,260

such as "Is a trend present in the time series?"261

Feature Classification Once a feature is de-262

tected, this task assesses the LLMs’ ability to clas-263

sify the feature accurately. For example, if a trend264

is present, the LLM must determine whether it is265

upward, downward, or non-linear. This task in-266

volves a QA setup where LLMs are provided with267

definitions of sub-features within the prompt. Per-268

formance is evaluated based on the correct identifi-269

cation of sub-features, using the F1 score to balance270

precision and recall. This task evaluates the models’271

depth of understanding and ability to distinguish272

between similar but distinct phenomena.273

Information Retrieval Evaluates the LLMs’ ac- 274

curacy in retrieving specific data points, such as 275

values on a given date. 276

Arithmetic Reasoning Focuses on quantitative 277

analysis tasks, such as identifying minimum or 278

maximum values. Accuracy and Mean Absolute 279

Percentage Error (MAPE) are used to measure per- 280

formance, with MAPE offering a precise evaluation 281

of the LLMs’ numerical accuracy. 282

Additionally, to account for nuanced aspects of 283

time series analysis, we propose in Sec. 5.2 to study 284

the influence of multiple factors, including time 285

series formatting, location of query data point in 286

the time series and time series length. 287

Time Series Description To evaluate the ability 288

of LLMs to match time series to their correspond- 289

ing descriptions, even in the presence of distractors, 290

we introduce two new tasks: (1) Text Matching 291

(inter-dataset): the LLM is presented with a time 292

series and four different descriptions from the same 293

dataset, one of which is the correct description for 294

the given time series. The descriptions include both 295

qualitative commentaries and quantitative informa- 296

tion about the time series. The LLM is asked to 297

select the description that is closest to the time se- 298

ries. This task assesses the LLM’s ability to match 299

a time series to its corresponding description, even 300

in the case where the qualitative description is sim- 301

ilar; (2) Text Matching (cross-dataset): the LLM is 302

presented with a time series and four different qual- 303

itative descriptions, each from a different dataset. 304

This task assesses the LLM’s ability to match a 305

time series to its corresponding description based 306

only on qualitative features, without relying on any 307

quantitative information. 308

5 Performance Metrics and Factors 309

5.1 Performance Metrics 310

We employ the following metrics to report the per- 311

formance of LLMs on various tasks. 312

F1 Score Applied to feature detection and classi- 313

fication, reflecting the balance between precision 314

and recall. 315

Accuracy Used for assessing the information re- 316

trieval and arithmetic reasoning tasks. 317

Mean Absolute Percentage Error (MAPE) Em- 318

ployed for numerical responses in the information 319

retrieval and arithmetic reasoning tasks, providing 320

a measure of precision in quantitative analysis. 321

4



Table 2: Performances across all reasoning tasks (Bold indicates best performance).

METRIC GPT4 GPT3.5 LLAMA2 VICUNA PHI3
ZERO-SHOT COT ZERO-SHOT COT ZERO-SHOT COT ZERO-SHOT COT ZERO-SHOT COT

Univariate time series characteristics

Feature detection

TREND F1SCORE 0.79 0.89 0.45 0.66 0.51 0.56 0.58 0.58 0.72 0.78
SEASONALITY F1SCORE 0.94 0.98 0.43 0.55 0.64 0.35 0.49 0.48 0.82 0.83
ANOMALIES F1SCORE 0.84 0.81 0.57 0.47 0.47 0.51 0.49 0.52 0.43 0.71
VOLATILITY F1SCORE 0.68 0.73 0.43 0.43 0.42 0.53 0.45 0.48 0.73 0.69
STRUCT. BREAK F1SCORE 0.59 0.61 0.57 0.48 0.39 0.44 0.48 0.52 0.44 0.67
STATIONARITY F1SCORE 0.33 0.59 0.33 0.40 0.33 0.39 0.44 0.42 0.33 0.46
FAT TAILS F1SCORE 0.39 – 0.44 0.36 0.34 0.39 0.44 0.48 0.47 0.45

Feature classification

TREND F1SCORE 0.98 0.98 0.78 0.95 0.43 0.70 0.53 0.48 0.48 0.95
SEASONALITY F1SCORE 0.17 0.21 0.17 0.16 0.31 0.27 0.23 0.18 0.48 0.24
ANOMALIES F1SCORE 0.87 0.95 0.20 0.40 0.30 0.37 0.37 0.44 0.53 0.48
VOLATILITY F1SCORE 0.18 0.25 0.07 0.16 0.12 0.10 0.15 0.17 0.08 0.15
STRUCT. BREAK F1SCORE 0.42 0.41 0.56 0.57 0.30 0.43 0.41 0.35 0.51 0.47

Multivariate time series characteristics

FIXED CORR. F1SCORE 0.48 – 0.39 0.43 0.38 0.43 0.40 0.46 0.43 0.57
LAGGED CORR. F1SCORE 0.54 – 0.52 0.46 0.45 0.42 0.42 0.45 0.41 0.40
CHANGING CORR. F1SCORE 0.48 – 0.43 0.44 0.52 0.43 0.50 0.45 0.48 0.65

Information Retrieval

VALUE ON DATE ACC 1.00 1.00 0.99 0.99 0.54 0.49 0.61 0.62 0.93 0.89
VALUE ON DATE MAPE 0.00 0.00 0.03 0.03 1.06 0.73 0.75 0.76 0.19 0.17

Arithmetic Reasoning

MIN VALUE ACC 1.00 0.99 0.99 0.98 0.63 0.55 0.63 0.72 0.94 0.91
MAPE 0.00 0.00 0.01 0.01 3.89 7.42 3.96 4.70 0.10 0.41

MIN DATE ACC 0.98 0.94 0.93 0.93 0.40 0.32 0.42 0.49 0.85 0.82
MAX VALUE ACC 1.00 1.00 0.96 0.94 0.53 0.54 0.47 0.57 0.87 0.78

MAPE 0.00 0.00 3.66 3.96 3.23 1.09 3.12 2.27 0.11 0.26
MAX DATE ACC 0.99 0.93 0.91 0.90 0.32 0.34 0.29 0.37 0.77 0.70

5.2 Performance Factors322

We identified various factors that could affect the323

performance of LLMs on time series understanding,324

for each we designed deep-dive experiments to325

reveal the impacts.326

Time Series Formatting Extracting useful infor-327

mation from raw sequential data as in the case of nu-328

merical time series is a challenging task for LLMs.329

The tokenization directly influences how the pat-330

terns are encoded within tokenized sequences (Gru-331

ver et al., 2023), and methods such as BPE separate332

a single number into tokens that are not aligned. On333

the contrary, Llama2 has a consistent tokenization334

of numbers, where it splits each digit into an indi-335

vidual token, which ensures consistent tokenization336

of numbers (Liu and Low, 2023). We study differ-337

ent time series formatting approaches to determine338

if they influence the LLMs performance to capture339

the time series information. In total we propose340

9 formats, ranging from simple CSV to enriched341

formats with additional information.342

Time Series Length We study the impact that343

the length of the time series has in the retrieval task.344

Transformer-based models use attention mecha-345

nisms to weigh the importance of different parts of 346

the input sequence. Longer sequences can dilute 347

the attention mechanism’s effectiveness, potentially 348

making it harder for the model to focus on the most 349

relevant parts of the text (Vaswani et al., 2017). 350

Position Bias Given a retrieval question, the po- 351

sition of where the queried data point occurs in 352

the time series might impact the retrieval accuracy. 353

Studies have discovered recency bias (Zhao et al., 354

2021) in the task of few-shot classification, where 355

the LLM tends to repeat the label at the end. Thus, 356

it is important to investigate whether LLM exhibits 357

similar bias on positions in the task of time series 358

understanding. 359

6 Experiments 360

6.1 Experimental setup 361

6.1.1 Models 362

We evaluate the following LLMs on our proposed 363

framework using the test split of our dataset: 1) 364

GPT4. (Achiam et al., 2023) 2) GPT3.5. 3) 365

Llama2-13B (Touvron et al., 2023), 4) Vicuna- 366

13B (Chiang et al., 2023), and 5) Phi3-Medium 367

(14B)(et al., 2024). We selected three open-source 368
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models, Phi3, Llama2 and Vicuna, the first with369

14B parameters and the remaining with 13 billion;370

the version of Vicuna is 1.5 and was trained by fine-371

tuning Llama2. Additionally we selected GPT4372

and GPT3.5 where the number of parameters is373

unknown. In the execution of our experiments, we374

used an Amazon Web Services (AWS) g5.12xlarge375

instance, equipped with four NVIDIA A10G Ten-376

sor Core GPUs, each featuring 24 GB of GPU377

RAM.378

6.1.2 Prompts379

The design of prompts for interacting with LLMs380

is separated into two approaches: retrieval/arith-381

metic reasoning and detection/classification ques-382

tioning. In addition to zero-shot prompting, we383

also use chain-of-thought (CoT) (Wei et al., 2022)384

prompting to enhance the reasoning capabilities of385

LLMs. We employ regular expressions to parse the386

responses for feature detection and classification387

tasks in the zero-shot setting. However, for chain-388

of-thought prompting, we utilize an LLM to parse389

the responses due to their increased complexity and390

length.391

Time series characteristics To evaluate the392

LLM reasoning over time series features, we use393

a two-step prompt with an adaptive approach, dy-394

namically tailoring the interaction based on the395

LLM’s responses. The first step involves detec-396

tion, where the model is queried to identify rele-397

vant features within the data. If the LLM success-398

fully detects a feature, we proceed with a follow-up399

prompt, designed to classify the identified feature400

between multiple sub-categories. For this purpose,401

we enrich the prompts with definitions of each sub-402

feature (e.g. up or down trend), ensuring a clearer403

understanding and more accurate identification pro-404

cess. The full list of prompts can be found in Sec. H405

of the supplementary.406

Information Retrieval/Arithmetic Reasoning407

We test the LLM’s comprehension of numerical408

data represented as text by querying it for informa-409

tion retrieval and numerical reasoning, as exempli-410

fied in Fig. 13 and detailed in the supplementary411

Sec. H.412

6.2 Benchmark Results413

In Table 2, we display the main results for the fea-414

ture detection, feature classification, information415

retrieval and arithmetic reasoning tasks outlined416

in Sec. 4. The results for univariate time series417

feature detection and classification tasks illustrate 418

GPT4’s robustness in trend and seasonality detec- 419

tion, substantially outperforming Llama2, Vicuna, 420

and GPT3.5 in zero-shot settings. This perfor- 421

mance is further enhanced when chain-of-thought 422

prompting is used. However, the detection of 423

structural breaks and volatility presents challenges 424

across all models, with lower accuracy scores, even 425

with chain-of-thought prompting. GPT4 tends to 426

always answer no for stationarity and fat tail de- 427

tection tasks, while in the case of chain-of-thought 428

prompting it does not answer, clarifying that it is 429

only an AI model and cannot perform the necessary 430

statistical tests. 431

For trend classification, GPT4 excels in zero- 432

shot and chain-of-thought prompting, demonstrat- 433

ing superior performance. Phi3 shows strong per- 434

formance in zero-shot settings for trend classifica- 435

tion, even surpassing GPT3.5 in zero-shot. In clas- 436

sifying seasonality, outliers, and structural breaks, 437

Phi3 also demonstrates competitive performance, 438

sometimes surpassing Llama2 and Vicuna, and out- 439

performing GPT3.5 in seasonality classification, 440

highlighting its distinct strengths. Additional plots 441

of confusion matrices are provided in Appendix D 442

to better understand how the models select their 443

choices, revealing potential biases such as consis- 444

tently selecting the same label. Figure 2 (a) summa- 445

rizes the F1 score for the feature detection task for 446

all models, showing the strong performance on the 447

four easier features, with Phi3 also being competi- 448

tive in trend, seasonality and volatility detection. 449

In multivariate time series feature detection and 450

classification tasks, all models achieve moderate 451

accuracy in zero-shot settings, suggesting poten- 452

tial for enhancement in intricate multivariate data 453

analysis. Chain-of-thought prompting does not sig- 454

nificantly improve performance in this context. 455

For information retrieval tasks, GPT4 outper- 456

forms GPT3.5 and other models, achieving perfect 457

accuracy in identifying the value on a given date. It 458

also maintains a low Mean Absolute Percentage Er- 459

ror (MAPE), indicative of its precise value predic- 460

tions. The arithmetic reasoning results echo these 461

findings, with GPT4 displaying superior accuracy, 462

especially in determining minimum and maximum 463

values within a series. Figure 2 summarizes the 464

accuracy performance for the information retrieval 465

and arithmetic reasoning tasks, where there are 466

two clear groups with similar performance, GPT4, 467

GPT3.5 and Phi3, and Llama2 and Vicuna. 468

In the text matching tasks, Table 3a shows results 469
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(a) Feature detection (b) IR and math reasoning

Figure 2: Feature detection and arithmetic reasoning
scores of GPT4, GPT3.5, Vicuna, Llama2 and Phi3.

Table 3: Accuracy of LLMs in matching time series
to their corresponding textual descriptions, given four
options. (Bold indicates best performance)

GPT-4 GPT-3.5 Llama2 Vicuna Phi3

Trend 1.00 0.74 0.67 0.53 0.73
Seasonality 0.93 0.64 0.58 0.47 0.64
Anomalies 1.00 0.69 0.62 0.47 0.69
Struct. break 0.99 0.63 0.57 0.39 0.63
Volatility 0.98 0.72 0.60 0.49 0.65
Stationarity 0.99 0.72 0.64 0.52 0.69
Fat Tails 0.99 0.69 0.61 0.43 0.68

(a) Intra-dataset matching

GPT-4 GPT-3.5 Llama2 Vicuna Phi3

Trend 0.46 0.21 0.32 0.36 0.34
Seasonality 0.41 0.50 0.32 0.35 0.31
Anomalies 0.46 0.16 0.32 0.36 0.34
Struct. break 0.28 0.1 0.26 0.27 0.24
Volatility 0.10 0.07 0.15 0.12 0.14
Stationarity 0.53 0.53 0.36 0.42 0.35
Fat Tails 0.10 0.04 0.10 0.10 0.09

(b) Cross-dataset matching

intra-datasets, where GPT-4 significantly outper-470

forms other models, achieving near-perfect accu-471

racy across all datasets. This suggests that GPT-4472

is capable of understanding the nuances of both473

qualitative and quantitative time series descriptions474

and effectively relating them to the underlying data.475

Table 3b shows the results for the matching cross-476

datasets where GPT-4 outperforms other models on477

all datasets except two, showcasing its superior ca-478

pability in understanding and matching qualitative479

descriptions even without explicit quantitative cues.480

The performance of GPT-3.5, Llama2, Vicuna, and481

Phi-3 is notably lower, indicating a greater reliance482

on quantitative information for accurate matching483

in these models. This overall decrease in perfor-484

mance, is in line with our overall findings that while485

numerical performance on simple arithmetic tasks486

is quite high, performance is generally lower for487

time series feature detection and classification.488

6.3 Deep Dive on Performance Factors 489

Time Series Formatting We present four 490

formatting approaches in this section, csv, 491

which is a common comma separated value, 492

plain where the time series is formatted as 493

Date:YYYY-MM-DD,Value:num for each pair date- 494

value. We also use the formatting approach pro- 495

posed by Gruver et al. (2023) which we denominate 496

spaces that adds blank spaces between each digit 497

of the time series, tokenizing each digit individ- 498

ually, and symbol, an enriched format where we 499

add a column to the time series with arrows indicat- 500

ing if the value has moved up, down or remained 501

unchanged. Examples of every approach can be 502

found in Sec. F in the Appendix. 503

Table 4 shows the results for the four time series 504

formatting strategies. For the information retrieval 505

and arithmetic reasoning tasks, the plain format- 506

ting yields better results across all models. This 507

approach provides more structure to the input, and 508

outperforms other formats in a task where the con- 509

nection between time and value is important. For 510

the detection and classification tasks, the plain 511

formatting does not yield better results. Interest- 512

ingly the symbol formatting that adds an additional 513

column to the time series yields better results in 514

the trend classification task. This indicates that 515

LLMs can effectively leverage symbolic represen- 516

tations of time series movements to enhance their 517

understanding in trend classification. 518

Time Series Length Figure 3 shows the perfor- 519

mance of GPT3.5, Phi3, Llama2 and Vicuna on 520

three datasets, trend, seasonality and outliers 521

which have time series with different lengths. We 522

observe that GPT3.5 and Phi3 retrieval perfor- 523

mance degrades slowly with increasing sequence 524

length. Llama2 and and Vicuna suffer a more steep 525

degradation especially from time series of length 526

30 steps to 60 steps. 527

Position Bias We carry out a series of experi- 528

ments to determine how the position of the target 529

value affects task performance across various types 530

of time series data. We address progressively more 531

complex objectives: 1) identifying the presence of 532

a value in a time series without a specified date 533

(E.1); 2) retrieving a value corresponding to a spe- 534

cific date (E.2); and 3) identifying the minimum 535

and maximum values (E.3). We cover a range of 536

time series data, from monotonic series without 537

noise to those with noise, sinusoidal patterns, data 538

7



Table 4: Top: Time series feature detection and classification performance measured with F1 score. Bottom: Time
series information retrieval and arithmetic reasoning performance measured by accuracy for different time series
formats. (Bold indicates best performance)

GPT3.5 Llama2 Vicuna
csv plain spaces symbol csv plain spaces symbol csv plain spaces symbol

Min value 0.98 0.99 0.79 0.98 0.55 0.58 0.20 0.58 0.63 0.67 0.17 0.62
Min date 0.94 0.95 0.69 0.93 0.28 0.39 0.09 0.29 0.50 0.55 0.13 0.49
Max value 0.92 0.92 0.54 0.94 0.48 0.56 0.05 0.52 0.49 0.46 0.01 0.50
Max date 0.88 0.88 0.51 0.89 0.34 0.46 0.04 0.41 0.38 0.42 0.07 0.41
Value on date 0.94 0.94 0.82 0.94 0.39 0.38 0.07 0.34 0.36 0.48 0.09 0.41

Trend det 0.42 0.41 0.42 0.42 0.51 0.44 0.34 0.40 0.51 0.49 0.54 0.45
Trend class 0.74 0.55 0.53 0.92 0.41 0.48 0.43 0.62 0.49 0.58 0.44 0.64
Season det 0.61 0.77 0.63 0.47 0.55 0.24 0.40 0.50 0.47 0.47 0.53 0.54
Season class 0.27 0.19 0.17 0.18 0.11 0.13 0.08 0.10 0.14 0.14 0.14 0.15
Outlier det 0.55 0.52 0.52 0.62 0.44 0.35 0.41 0.47 0.49 0.53 0.54 0.49
Outlier class 0.17 0.17 0.17 0.17 0.13 0.14 0.14 0.08 0.19 0.14 0.14 0.08

(a) Trend (b) Seasonality (c) Outliers

Figure 3: Retrieval performance for different time series lengths.

featuring outliers (spikes), and Brownian motion539

scenarios, each adding a layer of complexity. We540

examine how the position of the target value within541

the four quadrants — 1st, 2nd, 3rd, and 4th— af-542

fects the efficacy of these tasks across the varied543

time series landscapes. This approach helps re-544

veal the influence of position on different LLMs545

(GPT3.5, Llama2, and Vicuna) in the task of time546

series understanding.547

We consider the presence of position bias when548

the maximum performance gap between quadrants549

exceeds 10%. Given this criterion, our analysis550

provides the following key takeaways on position551

bias impacting LLM performance across the de-552

fined tasks: (1) Pronounced position bias is ob-553

served across all tasks and LLMs: GPT models554

show significant bias exclusively in complex tasks555

that involve arithmetic reasoning. Both Llama2556

and Vicuna demonstrate position biases across all557

tasks, from the simplest to the most complex ones.558

(2) The degree of complexity in the time series559

data tends to increase the extent of position bias560

observed within each task. See Appendix E, where561

we offer a detailed analysis of position bias across562

each task to further substantiate these conclusions.563

7 Conclusion 564

In conclusion, we provide a critical examina- 565

tion of general-purpose Large Language Models 566

(LLMs) in the context of time series understand- 567

ing. Through the development of a comprehensive 568

taxonomy of time series features and the synthesis 569

of a diverse dataset that encapsulates these fea- 570

tures, including qualitative and quantitative textual 571

descriptions for each time series, we have laid a 572

solid foundation for evaluating the capabilities of 573

LLMs in understanding and interpreting time se- 574

ries data. Our systematic evaluation sheds light 575

on the inherent strengths and limitations of these 576

models, offering valuable insights for practition- 577

ers aiming to leverage LLMs in time series under- 578

standing. Recognizing the areas of weakness and 579

strength in general-purpose LLMs’ current capa- 580

bilities allows for targeted enhancements, ensuring 581

that these powerful models can be more effectively 582

adapted to specific domains. 583

8 Limitations 584

In this section, we detail the key limitations of our 585

study and suggest pathways for future research. 586

Time series data frequently intersects with data 587

8



from other domains. In the financial industry, for588

instance, analysis often combines time series data589

like stock prices and transaction volumes with sup-590

plementary data types such as news articles (text),591

economic indicators (tabular), and market senti-592

ment analysis (textual and possibly visual). Our593

future work aims to delve into how LLMs can fa-594

cilitate the integration of multimodal data, ensure595

cohesive data modality alignment within the em-596

bedding space, and accurately interpret the com-597

bined data insights.598

Currently, our application of LLMs in time se-599

ries analysis is primarily focused on comprehend-600

ing time series features. However, the lack of in-601

terpretability mechanisms within our framework602

stands out as a significant shortcoming. Moving603

forward, we plan to focus on developing and in-604

tegrating interpretability methodologies for LLMs605

specifically tailored to time series data analysis606

contexts.607

References608

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama609
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,610
Diogo Almeida, Janko Altenschmidt, Sam Altman,611
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.612
arXiv preprint arXiv:2303.08774.613

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,614
Marco Dos Santos, Stephen McAleer, Albert Q.615
Jiang, Jia Deng, Stella Biderman, and Sean Welleck.616
2023. Llemma: An open language model for mathe-617
matics.618

Tom Brown, Benjamin Mann, Nick Ryder, Melanie619
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind620
Neelakantan, Pranav Shyam, Girish Sastry, Amanda621
Askell, et al. 2020. Language models are few-shot622
learners. Advances in neural information processing623
systems, 33:1877–1901.624

Varun Chandola, Arindam Banerjee, and Vipin Kumar.625
2009. Anomaly detection: A survey. ACM Comput-626
ing Surveys (CSUR), 41(3):15.627

Shengchao Chen, Guodong Long, Jing Jiang, Dikai Liu,628
and Chengqi Zhang. 2023. Foundation models for629
weather and climate data understanding: A compre-630
hensive survey. arXiv preprint arXiv:2312.03014.631

Yuqi Chen, Kan Ren, Kaitao Song, Yansen Wang, Yifan632
Wang, Dongsheng Li, and Lili Qiu. 2024. Eegformer:633
Towards transferable and interpretable large-scale634
eeg foundation model.635

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,636
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan637
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion638

Stoica, and Eric P. Xing. 2023. Vicuna: An open- 639
source chatbot impressing gpt-4 with 90%* chatgpt 640
quality. 641

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 642
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul 643
Barham, Hyung Won Chung, Charles Sutton, Sebas- 644
tian Gehrmann, et al. 2023. Palm: Scaling language 645
modeling with pathways. Journal of Machine Learn- 646
ing Research, 24(240):1–113. 647

R. Cont. 2001. Empirical properties of asset returns: 648
stylized facts and statistical issues. Quantitative Fi- 649
nance, 1(2):223–236. 650

Abdin et al. 2024. Phi-3 technical report: A highly 651
capable language model locally on your phone. 652

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew Gor- 653
don Wilson. 2023. Large language models are zero- 654
shot time series forecasters. 655

Robin John Hyndman and George Athanasopoulos. 656
2018. Forecasting: Principles and Practice, 2nd 657
edition. OTexts, Australia. 658

Jeonghwan Kim, Giwon Hong, Kyung min Kim, Junmo 659
Kang, and Sung-Hyon Myaeng. 2021. Have you seen 660
that number? investigating extrapolation in question 661
answering models. In Conference on Empirical Meth- 662
ods in Natural Language Processing. 663

C Q Liu, Y.Q. Ma, Kavitha Kothur, Armin Nikpour, and 664
O. Kavehei. 2023. Biosignal copilot: Leveraging 665
the power of llms in drafting reports for biomedical 666
signals. medRxiv. 667

Tiedong Liu and Bryan Kian Hsiang Low. 2023. Goat: 668
Fine-tuned llama outperforms gpt-4 on arithmetic 669
tasks. 670

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. 2021. 671
Investigating the limitations of transformers with sim- 672
ple arithmetic tasks. 673

Pierre Perron. 2005. Dealing with Structural Breaks. 674
Technical Report WP2005-017, Boston University - 675
Department of Economics. 676

Jielin Qiu, William Han, Jiacheng Zhu, Mengdi Xu, 677
Michael Rosenberg, Emerson Liu, Douglas Weber, 678
and Ding Zhao. 2023. Transfer knowledge from nat- 679
ural language to electrocardiography: Can we detect 680
cardiovascular disease through language models? 681

Robert H. Shumway and David S. Stoffer. 2000. Time 682
Series Analysis and Its Applications. Springer. 683

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 684
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 685
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 686
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 687
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 688
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 689
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 690
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 691

9

http://arxiv.org/abs/2310.10631
http://arxiv.org/abs/2310.10631
http://arxiv.org/abs/2310.10631
http://arxiv.org/abs/2401.10278
http://arxiv.org/abs/2401.10278
http://arxiv.org/abs/2401.10278
http://arxiv.org/abs/2401.10278
http://arxiv.org/abs/2401.10278
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
http://arxiv.org/abs/2404.14219
http://arxiv.org/abs/2404.14219
http://arxiv.org/abs/2404.14219
http://arxiv.org/abs/2310.07820
http://arxiv.org/abs/2310.07820
http://arxiv.org/abs/2310.07820
https://api.semanticscholar.org/CorpusID:243865663
https://api.semanticscholar.org/CorpusID:243865663
https://api.semanticscholar.org/CorpusID:243865663
https://api.semanticscholar.org/CorpusID:243865663
https://api.semanticscholar.org/CorpusID:243865663
http://arxiv.org/abs/2305.14201
http://arxiv.org/abs/2305.14201
http://arxiv.org/abs/2305.14201
http://arxiv.org/abs/2305.14201
http://arxiv.org/abs/2305.14201
http://arxiv.org/abs/2102.13019
http://arxiv.org/abs/2102.13019
http://arxiv.org/abs/2102.13019
http://arxiv.org/abs/2301.09017
http://arxiv.org/abs/2301.09017
http://arxiv.org/abs/2301.09017
http://arxiv.org/abs/2301.09017
http://arxiv.org/abs/2301.09017


Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,692
Isabel Kloumann, Artem Korenev, Punit Singh Koura,693
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-694
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-695
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-696
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-697
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,698
Ruan Silva, Eric Michael Smith, Ranjan Subrama-699
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-700
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,701
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,702
Melanie Kambadur, Sharan Narang, Aurelien Ro-703
driguez, Robert Stojnic, Sergey Edunov, and Thomas704
Scialom. 2023. Llama 2: Open foundation and fine-705
tuned chat models.706

Ruey S. Tsay. 2005. Analysis of financial time series, 2.707
ed. edition. Wiley series in probability and statistics.708
Wiley-Interscience.709

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob710
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz711
Kaiser, and Illia Polosukhin. 2017. Attention is all712
you need. In Advances in Neural Information Pro-713
cessing Systems, volume 30. Curran Associates, Inc.714

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten715
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,716
and Denny Zhou. 2022. Chain-of-thought prompt-717
ing elicits reasoning in large language models. In718
Advances in Neural Information Processing Systems,719
volume 35, pages 24824–24837. Curran Associates,720
Inc.721

Hao Xue and Flora D. Salim. 2023. Promptcast: A722
new prompt-based learning paradigm for time series723
forecasting. IEEE Transactions on Knowledge and724
Data Engineering, pages 1–14.725

Xinli Yu, Zheng Chen, Yuan Ling, Shujing Dong,726
Zongying Liu, and Yanbin Lu. 2023. Temporal data727
meets llm - explainable financial time series forecast-728
ing. ArXiv, abs/2306.11025.729

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang,730
and Songfang Huang. 2023. How well do large lan-731
guage models perform in arithmetic tasks?732

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and733
Sameer Singh. 2021. Calibrate before use: Improv-734
ing few-shot performance of language models. In In-735
ternational Conference on Machine Learning, pages736
12697–12706. PMLR.737

Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, and738
Rong Jin. 2023. One fits all: Power general time739
series analysis by pretrained lm. arXiv preprint740
arXiv:2302.11939.741

10

http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.1109/TKDE.2023.3342137
https://doi.org/10.1109/TKDE.2023.3342137
https://doi.org/10.1109/TKDE.2023.3342137
https://doi.org/10.1109/TKDE.2023.3342137
https://doi.org/10.1109/TKDE.2023.3342137
http://arxiv.org/abs/2304.02015
http://arxiv.org/abs/2304.02015
http://arxiv.org/abs/2304.02015


A Additional details of Taxonomy 742

Feature Description Example Use Cases

Trend The general direction of a time series, either
increasing (upward) or decreasing (down-
ward) over a long period.

Finance: Stock price trends, inflation rates. Climate:
Global temperature trends. Energy: Long-term en-
ergy consumption trends.

Seasonality A repeating pattern in a time series that oc-
curs at regular intervals, such as daily, weekly,
monthly, or yearly.

Energy: Seasonal variations in electricity demand.
Retail: Seasonal sales patterns (e.g., holiday shop-
ping). Tourism: Seasonal fluctuations in visitor num-
bers.

Fixed-Period Seasonality with a constant, unchanging pe-
riod (e.g., monthly seasonality).

Energy: Monthly variations in electricity usage. Fi-
nance: Quarterly earnings reports.

Shifting Period Seasonal patterns where the length of the pe-
riod shifts over time.

Climate: Shifting seasonal temperature patterns due
to climate change. Retail: Shifting sales patterns
due to changing consumer behavior.

Multiple Seasonality Presence of multiple overlapping seasonal
patterns (e.g., both weekly and monthly sea-
sonality).

Finance: Weekly and monthly trading cycles.
Health: Weekly and annual cycles in flu cases.

Volatility The degree of variation of a time series over
time, often measured by the standard devia-
tion or variance.

Finance: Stock market volatility, exchange rate fluc-
tuations. Energy: Price volatility in commodity mar-
kets. Weather: Day-to-day fluctuations in tempera-
ture or precipitation.

Constant Volatility The degree of variation in the time series
remains consistent and predictable over time.

Finance: Stable bond markets. Energy: Consistent
electricity prices.

Trending Volatility The level of variation in the time series shows
a clear increasing or decreasing trend over
time.

Finance: Increasing volatility in emerging markets.
Climate: Increasing variability in weather patterns.

Clustered Volatility The time series exhibits periods where volatil-
ity is significantly higher or lower, with these
periods tending to cluster together.

Finance: Volatility clustering in financial markets
during crises. Economics: Clustered periods of high
inflation.

Dynamic Volatility The volatility of the time series changes over
time in response to external factors (e.g.,
leverage effect where the volatility of the time
series tends to increase when the series expe-
riences negative returns).

Finance: Changing volatility due to market inter-
ventions. Climate: Volatility changes in response to
natural disasters.

Anomalies Data points that deviate significantly from the
expected pattern of a time series.

Quality Control: Detecting defective products in a
manufacturing process. Network Security: Identify-
ing unusual traffic patterns that may indicate cyberat-
tacks. Finance: Detecting fraudulent transactions.

Spike A sudden and brief deviation from the overall
pattern of the data.

Finance: Sudden stock price jumps. Weather: Tem-
perature spikes during heatwaves.

Level Shift A sudden and lasting change in the average
value of a time series.

Economics: Changes in consumer confidence or
business sentiment. Energy: Shifts in energy con-
sumption patterns due to technological advance-
ments or policy changes. Environmental Science:
Changes in water levels or pollutant concentrations
due to natural or human-induced factors.

Temporal Disruption An interval where data is missing or not
recorded.

Network Security: Periods of data loss in network
traffic. Health: Missing data in patient records.

Structural Breaks Abrupt changes in the underlying structure of
a time series, often caused by external events
or policy changes.

Economics: Changes in economic policy or regula-
tions. Finance: Market crashes or financial crises.
Epidemiology: Changes in disease transmission pat-
terns due to interventions.

Stationarity A time series is stationary if its statistical
properties, such as mean and variance, do not
change over time.

Econometrics: Assumption for many time series
models. Finance: Assessing the stability of financial
markets.

Fat Tails A distribution of a time series where extreme
events are more likely than expected under a
normal distribution.

Finance: Modeling extreme price movements in fi-
nancial markets. Insurance: Pricing insurance poli-
cies for catastrophic events.

Table 5: Definitions and examples of time series analysis features and sub-categories.
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B Synthetic Time Series Dataset743

We provide the code for our work here: https://anonymous.4open.science/r/LLM4TS-BE76744

B.1 Univariate Time Series745

The primary characteristics considered in our univariate dataset include:746

1. Trend We generated time series data to analyze the impact of trends on financial market behavior. This dataset encompasses747
linear and quadratic trends. For linear trends, each series follows a simple linear equation a * t + b, where a (the slope)748
varies between 0.1 and 1, multiplied by the direction of the trend, and b (the intercept) is randomly chosen between 100749
and 110. This simulates scenarios of steadily increasing or decreasing trends. For quadratic trends, the series is defined by750
a ∗ t2 + b ∗ t+ c, with a varying between 0.01 and 0.05 (again adjusted for trend direction), b between 0 and 1, and c751
between 0 and 10, or adjusted to ensure non-negative values. The quadratic trend allows us to simulate scenarios where752
trends accelerate over time, either upwards or downwards, depending on the direction of the trend. This approach enables753
the exploration of different types of trend behaviors in financial time series, from gradual to more dynamic changes,754
providing a comprehensive view of trend impacts in market data.755

2. Seasonality In our study, we meticulously crafted a synthetic dataset to explore and analyze the dynamics of various756
types of seasonality within time series data, aiming to closely mimic the complexity found in real-world scenarios. This757
dataset is designed to include four distinct types of seasonal patterns, offering a broad spectrum for analysis: (1) Fixed758
Seasonal Patterns, showcasing regular and predictable occurrences at set intervals such as daily, weekly, or monthly,759
providing a baseline for traditional seasonality; (2) Varying Amplitude, where the strength or magnitude of the seasonal760
effect fluctuates over time, reflecting phenomena where seasonal influence intensifies or diminishes; (3) Shifting Seasonal761
Pattern, characterized by the drift of seasonal peaks and troughs over the timeline, simulating scenarios where the timing762
of seasonal effects evolves; and (4) Multiple Seasonal Patterns, which presents a combination of different seasonal cycles763
within the same series, such as overlapping daily and weekly patterns, to capture the complexity of real-world data where764
multiple seasonalities interact. This diverse dataset serves as a foundation for testing the sensitivity and adaptability of765
analytical models to detect and quantify seasonality under varying and challenging conditions.766

3. Anomalies and outliers refer to observations that significantly deviate from the typical pattern or trend observed in the767
dataset. The types of outliers included in our generated dataset are: 1) single sudden spike for isolated sharp increases, 2)768
double and triple sudden spikes for sequences of consecutive anomalies, 3) step spike and level shift for persistent changes,769
and 4) temporal disruption for sudden interruptions in the pattern. We also include a no outlier category as a control for770
comparative analysis. Parameters such as the location and magnitude of spikes, the duration and start of step spikes, the771
placement and size of level shifts, and the initiation and conclusion of temporal disruptions are randomly assigned to772
enhance the dataset’s diversity and relevance.773

4. Structural breaks in time series data signify substantial changes in the model generating the data, leading to shifts in774
parameters like mean, variance, or correlation. These are broadly classified into two types: parameter shifts and regime775
shifts, with a third category for series without breaks. Parameter shifts involve changes in specific parameters such as mean776
or variance, including sub-types like mean shifts, variance shifts, combined mean-variance shifts, seasonality amplitude777
shifts, and autocorrelation shifts. Regime shifts represent deeper changes that affect the model’s structure, including:778
distribution changes (e.g., normal to exponential), stationarity changes (stationary to non-stationary), linearity changes779
(linear to non-linear models), frequency changes, noise trend changes, error correlation changes, and variance type changes.780
The occurrence of these shifts is randomly determined within the time series.781

5. Volatility We generated synthetic time series data to simulate various volatility patterns, specifically targeting clustered782
volatility, leverage effects, constant volatility, and increasing volatility, to mimic characteristics observed in financial783
markets.784

For clustered volatility, we utilized a GARCH(1,1) model with parameters ω = 0.1, α = 0.2, and β = 0.7, ensuring the785
sum of α and β remained below 1 for stationarity, thus capturing high volatility persistence. The GARCH(1,1) model is786
defined by the equations:787

σ2
t = ω + αr2t−1 + βσ2

t−1788
789

rt = σtϵt790

where σ2
t is the conditional variance, rt is the return at time t, and ϵt is white noise.791

To simulate the leverage effect, our model increased volatility in response to negative returns, reflecting typical market792
dynamics. The leverage effect model was designed with a base volatility of 0.1 and a leverage strength of 0.3, ensuring793
that volatility would significantly increase after negative returns while gradually reverting to the base level after positive794
returns. The model is defined by:795

rt = σt−1ϵt796
797

σt =

{
σt−1(1 + leverage_strength) if rt < 0

max(σt−1(1− leverage_strength), 0.01) if rt ≥ 0
798

Additionally, we created time series with constant volatility by adding normally distributed random noise (standard799
deviation of 1) to a cumulative sum of random values. This produced a time series with a consistent level of volatility800
throughout the period. Mathematically, this is represented as:801

rt =

t∑
i=1

ϵi + ηt802
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where ϵi is white noise and ηt ∼ N(0, 1). 803

For increasing volatility, we scaled the noise in proportion to the increasing range of the series, with a scaling factor up to 804
5 towards the end of the series. This was achieved by multiplying the standard deviation of the random noise by a linearly 805
increasing factor, resulting in a volatility profile that progressively intensified. This can be described by: 806

σt = σ0

(
1 +

t

n
· 5

)
807

808
rt = ϵt · σt 809

where σ0 is the initial standard deviation and n is the total number of points. 810

To ensure non-negative volatility values across all simulations, we took the absolute values of the generated noise. These 811
methodologies enabled us to comprehensively represent different volatility behaviors in financial time series, including 812
constant, increasing, clustered, and leverage-induced volatilities. By using these varied approaches, we enriched our 813
analysis with diverse market conditions, providing a robust dataset for evaluating the performance of models designed to 814
handle different volatility patterns. 815

6. Statistical properties Next, we constructed a dataset to delve into significant features of time series data, centering 816
on fat tails and stationarity. The dataset sorts series into four categories: those exhibiting fat tails, characterized by a 817
higher likelihood of extreme values than in a normal distribution; non-fat-tailed, where extreme values are less probable; 818
stationary, with unchanging mean, variance, and autocorrelation; and non-stationary series. Non-stationary series are 819
further divided based on: 1) changing mean: series with a mean that evolves over time, typically due to underlying trends. 820
2) changing variance: series where the variance, or data spread, alters over time, suggesting data volatility. 3) seasonality: 821
series with consistent, cyclical patterns occurring at set intervals, like seasonal effects. 4) trend and seasonality: series 822
blending both trend dynamics and seasonal fluctuations. 823

B.2 Multivariate Time Series 824

For our analysis, we confined each multivariate series sample to include just 2 time series. The main features of our generated 825
multivariate dataset encompass: 826

1. Correlation involves analyzing the linear relationships between series, which is crucial for forecasting one time series 827
from another when a correlation exists. The randomly selected correlation coefficient quantifies the strength and direction 828
of relationships as positive (direct relationship), negative (inverse relationship), or neutral (no linear relationship) between 829
series. 830

2. Cross-correlation evaluates the relationship between two time series while considering various time lags, making it 831
valuable for pinpointing leading or lagging relationships between series. For our data generation, the time lag and 832
correlation coefficient are randomly chosen. 833

3. Dynamic conditional correlation focuses on scenarios where correlations between series vary over time. The points in 834
the time series at which correlation shifts take place are selected randomly. 835
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B.3 Data Examples836

Trend

(a) Positive trend (b) Negative trend (c) Positive trend (d) No clear trend

Seasonality

(a) Fixed seasonality (b) Varying amplitude (c) Shifting patterns (d) Multiple Seasonalities

Volatility

(a) Constant volatility (b) Increasing volatility (c) Clustered volatility (d) No volatility

Anomalies and Outliers

(a) Double sudden spikes (b) Step spike (c) Level shift (d) Temporal Disruption

Structural breaks

(a) Parameter shift
(change in variance)

(b) Parameter shift
(change in seasonality

amplitude)

(c) Regime shift
(noise trend change)

(d) Regime shift
(stationarity change)

Statistical properties
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(a) Fat tailed (b) Non-stationary
(trend)

(c) Non-stationary
(changing variance over time)

(d) Non-stationary
(seasonality)

Table 6: Examples of the generated univariate time series. The x- and y-axis are intentionally omitted to focus
exclusively on the shape and characteristics of the time series.

Correlation

(a) Positive correlation (b) Negative correlation (c) No correlation

Cross-correlation

(a) Lagged positive correlation (b) Lagged negative correlation

Dynamic conditional correlation

(a) Positive correlation
(first half)

(b) Negative correlation
(first half)

(d) Negative correlation
(second half)

Table 7: Examples of the generated multivariate time series. The x- and y-axis are intentionally omitted to focus
exclusively on the shape and characteristics of the time series.

C Additional datasets 837

Brownian Data: We generate a synthetic time series dataset exhibiting brownian motion. The data consists of 400 samples 838
where each time series has a length of 175. We control for the quadrant in the which the maximum and minimum values appear 839
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using rejection sampling i.e. there are 50 samples for which the maximum value in the time series occurs in the first quadrant, 50840
samples for which the maximum value appears in the second quadrant, and so on, upto the fourth quadrant. In a similar manner841
we control for presence of the minimum value in each quadrant.842
Outlier Data: We generate a synthetic time series dataset where each time series contains a single outlier which is the either the843
minimum or maximum values in the time series. The data consists of 400 samples where each time series has a length of 175.844
We control for the quadrant in the which the maximum and minimum (outlier) values appear using rejection sampling i.e. there845
are 50 samples for which the maximum value in the time series occurs in the first quadrant, 50 samples for which the maximum846
value appears in the second quadrant, and so on, upto the fourth quadrant. In a similar manner we control for presence of the847
minimum value in each quadrant.848
Monotone Data: We generate a synthetic time series dataset where each time series is monotonically increasing or decreasing.849
The data consists of 400 samples (200 each for increasing/decreasing) where each time series has a length of 175.850
Monotone (with Noise) Data: We generate a synthetic time series dataset where each time series is increasing or decreasing.851
The data consists of 400 samples (200 each for increasing/decreasing) where each time series has a length of 175. Note that852
dataset is different from the Monotone data as the time series samples are not strictly increasing/decreasing.853
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D Additional results 854

D.1 Trend 855

Figure 4: Trend detection

Figure 5: Trend classification

D.2 Seasonality 856

Figure 6: Seasonality detection

D.3 Anomalies 857

Figure 7: Anomaly detection

D.4 Volatility 858
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Figure 8: Anomaly classification

Figure 9: Volatility detection

Figure 10: Volatility classification

E Position Bias859

E.1 Does the position of the target value affect the performance of identifying its presence in860

various types of time series data?861

Refer to Figure 8, which includes a confusion matrix (with ‘1: yes’ indicating presence of the number in the series and ‘0: no’862
indicating its absence) and bar plot showing the accuracy in each quadrant for each LLM and type of time series data.863

GPT achieves nearly perfect performance across all quadrants and time series types, indicating an absence of position bias in864
detecting the presence of a number within the time series. Llama2 does not exhibit position bias in monotonic series without865
noise but begins to show position bias as the complexity of the time series increases, such as in monotonic series with noise and866
sinusoidal series. We believe this bias is also present in Brownian series; however, due to the higher complexity of the dataset,867
Llama2’s performance is poor across all quadrants, making the impact of the bias less discernible. Vicuna displays superior868
performance compared to Llama2 across all datasets but continues to exhibit position bias. Notably, this bias appears in most869
datasets, such as monotonic series without noise, sinusoidal series, and Brownian motion series.870

GPT 3.5
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(a) Monotonic (no noise) (b) Monotonic with noise (c) Sinusoidal (d) Brownian motion

Llama2

(a) Monotonic (no noise) (b) Monotonic with noise (c) Sinusoidal (d) Brownian motion

Vicuna

(a) Monotonic (no noise) (b) Monotonic with noise (c) Sinusoidal (d) Brownian motion

Table 8: Confusion matrix and accuracy by quadrant for the search task

E.2 Does the position impact the retrieval performance for a specific date’s value from time series 871

data? 872

Refer to Figure 9 for bar plots that illustrate the accuracy across each quadrant. 873
Once again, GPT achieves nearly perfect performance across all quadrants and time series types, suggesting no position 874

bias in the retrieval task either. Similar to the findings in E.1, Vicuna outperforms Llama2. Moreover, both Vicuna and Llama2 875
exhibit position bias in most datasets, including monotonic series both with and without noise, and sinusoidal series. 876

GPT 3.5
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(a) Monotonic (no noise) (b) Monotonic with noise (c) Spikes (d) Brownian motion

Llama2

(a) Monotonic (no noise) (b) Monotonic with noise (c) Spikes (d) Brownian motion

Vicuna

(a) Monotonic (no noise) (b) Monotonic with noise (c) Spikes (d) Brownian motion

Table 9: Confusion matrix and accuracy by quadrant for the retrieval task

E.3 Does the position impact the efficiency of identifying minimum and maximum values in877

different types of time series data?878

Refer to Figure 10 for bar charts illustrating the accuracy distribution across quadrants.879
For the first time, GPT models show position bias in the spikes dataset, attributed to the increased complexity of the task,880

which involves arithmetic reasoning. Llama2 exhibits position bias in most datasets, notably in monotonic series with noise,881
spikes, and Brownian motion series. Vicuna also demonstrates position bias in most datasets, including monotonic series both882
with and without noise, as well as spikes series.883

GPT 3.5

(a) Monotonic (no noise) (b) Monotonic with noise (c) Spikes (d) Brownian motion

Llama2
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(a) Monotonic (no noise) (b) Monotonic with noise (c) Spikes (d) Brownian motion

Vicuna

(a) Monotonic (no noise) (b) Monotonic with noise (c) Spikes (d) Brownian motion

Table 10: Confusion matrix and accuracy by quadrant for the min-max extraction task. Note that monotonic series
can have maximum or minimum values only in the first or fourth quadrant.
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F Time Series formatting884

Custom885

"Date|Value\n2020-01-01|100\n2020-01-02|105\n2020-01-03|103\n2020-01-04|103\n"886

Date|Value887
2020-01-01|100888
2020-01-02|105889
2020-01-03|103890
2020-01-04|103891

TSV892

"Date\tValue\n2020-01-01\t100\n2020-01-02\t105\n2020-01-03\t103\n2020-01-04\t103\n"893

Date Value894
2020-01-01 100895
2020-01-02 105896
2020-01-03 103897
2020-01-04 103898

Plain899

"Date: 2020-01-01, Value: 100\ nDate: 2020-01-02, Value: 105\ nDate: 2020-01-03, Value900
: 103\ nDate: 2020-01-04, Value: 103"901

Date: 2020-01-01, Value: 100902
Date: 2020-01-02, Value: 105903
Date: 2020-01-03, Value: 103904
Date: 2020-01-04, Value: 103905

JSON906

{"Date ":"2020 -01 -01" ," Value ":100}\n{"Date ":"2020 -01 -02" ," Value ":105}\n{"Date907
":"2020 -01 -03" ," Value ":103}\n{"Date ":"2020 -01 -04" ," Value ":103}\n908

{"Date":"2020-01-01","Value":100}909
{"Date":"2020-01-02","Value":105}910
{"Date":"2020-01-03","Value":103}911
{"Date":"2020-01-04","Value":103}912

Markdown913

"|Date|Value|\n|---|---|\n|2020 -01 -01|100|\n|2020 -01 -02|105|\n|2020 -01 -03|103|\n914
|2020 -01 -04|103|\n"915

|Date|Value|916
|---|---|917
|2020-01-01|100|918
|2020-01-02|105|919
|2020-01-03|103|920
|2020-01-04|103|921

Spaces922

"Date ,Value\n2020 -01-01,1 0 0\n2020 -01-02,1 0 5\n2020 -01-03,1 0 3\n2020 -01-04,1 0 3\923
n"924

Date,Value925
2020-01-01,1 0 0926
2020-01-02,1 0 5927
2020-01-03,1 0 3928
2020-01-04,1 0 3929

Context930

"Date ,Value\n2020 -01 -01 ,[100]\ n2020 -01 -02 ,[105]\ n2020 -01 -03 ,[103]\ n2020 -01 -04 ,[103]\931
n"932

Date,Value933
2020-01-01,[100]934
2020-01-02,[105]935
2020-01-03,[103]936
2020-01-04,[103]937
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Symbol 938

"Date ,Value ,DirectionIndicator\n2020 -01-01,100,→\n2020 -01-02,105,↑\n2020 -01-03,103, 939
↓\n2020 -01-04,103,→\n" 940

Date ,Value ,DirectionIndicator 941
2020-01-01,100,→ 942
2020-01-02,105,↑ 943
2020-01-03,103,↓ 944
2020-01-04,103,→ 945

Base/csv 946

"Date ,Value\n2020 -01 -01 ,100\n2020 -01 -02 ,105\n2020 -01 -03 ,103\n2020 -01 -04 ,103\n" 947

Date,Value 948
2020-01-01,100 949
2020-01-02,105 950
2020-01-03,103 951
2020-01-04,103 952
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F.1 Additional results of time series formatting953

(a) GPT3.5

csv plain tsv custom contextual json markdown spaces symbol
Trend det 0.42 0.41 0.41 0.43 0.44 0.41 0.41 0.42 0.42
Trend class 0.74 0.55 0.72 0.61 0.85 0.50 0.56 0.53 0.92
Season det 0.61 0.77 0.69 0.60 0.58 0.87 0.44 0.63 0.47
Season class 0.27 0.19 0.21 0.16 0.23 0.22 0.09 0.17 0.18
Outlier det 0.55 0.52 0.50 0.49 0.46 0.49 0.48 0.52 0.62
Outlier class 0.17 0.17 0.17 0.16 0.17 0.17 0.17 0.17 0.17

AvgRank 3.33 5.75 4.00 6.08 4.50 5.25 7.25 4.83 4.00

(b) Llama2

csv plain tsv custom contextual json markdown spaces symbol
Trend det 0.51 0.44 0.63 0.56 0.46 0.50 0.56 0.34 0.40
Trend class 0.41 0.48 0.40 0.43 0.45 0.42 0.36 0.43 0.62
Season det 0.55 0.24 0.48 0.46 0.59 0.38 0.45 0.40 0.50
Season class 0.11 0.13 0.09 0.10 0.09 0.10 0.11 0.08 0.10
Outlier det 0.44 0.35 0.47 0.44 0.45 0.48 0.51 0.41 0.47
Outlier class 0.13 0.14 0.10 0.14 0.17 0.18 0.21 0.14 0.08

AvgRank 4.83 5.50 5.33 4.33 4.33 4.83 3.83 7.17 4.83

(c) Vicuna

csv plain tsv custom contextual json markdown spaces symbol
Trend det 0.51 0.49 0.47 0.47 0.55 0.44 0.51 0.54 0.45
Trend class 0.49 0.58 0.54 0.53 0.56 0.50 0.56 0.44 0.64
Season det 0.47 0.47 0.54 0.47 0.48 0.49 0.51 0.53 0.54
Season class 0.14 0.14 0.20 0.20 0.20 0.19 0.17 0.14 0.15
Outlier det 0.49 0.53 0.54 0.52 0.47 0.50 0.52 0.54 0.49
Outlier class 0.19 0.14 0.19 0.16 0.22 0.16 0.13 0.14 0.08

AvgRank 6.33 5.33 3.00 5.33 3.83 5.83 4.83 5.17 5.33

Table 11: Performance on Time Series Reasoning for different time series formatting.

G Memorization954

We evaluate the impact of memorization on the performance on downstream tasks using 3 real-world datasets- FX (Foreign955
exchange rates USD to GBP), EFFR (Effective Federal Funds Rate), and Brent Crude Oil. We verify that the models are familiar956
with the datasets as they are able to reproduce the values of the given datasets to a high degree of accuracy when queried. To957
investigate memorization, we adversarially modify the dates in the time series numbers; for example, we use FX data from 2022958
but relabel the dates as 2020. The aim is to assess whether the model accurately processes the given time series data or if it relies959
on its memorization of the FX rates in 2020, a year significantly impacted by COVID-19. Likewise, we adjust the dates of FX960
data from 2022 to align with 2021 and 2008, years marked by notable events such as the COVID-19 pandemic and the financial961
crisis, respectively, which were absent in 2022. Similar experiments are performed for the EFFR and Brent Crude oil datasets.962
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(a) GPT3.5

csv plain tsv custom contextual json markdown spaces symbol

Min value 0.98 0.99 0.98 0.98 0.98 0.98 0.98 0.79 0.98
Min date 0.94 0.95 0.94 0.95 0.94 0.94 0.93 0.69 0.93
Max value 0.92 0.92 0.91 0.92 0.92 0.91 0.91 0.54 0.94
Max date 0.88 0.88 0.88 0.88 0.88 0.86 0.86 0.51 0.89
Value on date 0.94 0.94 0.94 0.94 0.95 0.94 0.94 0.82 0.94

AvgRank 4.80 2.70 4.40 3.10 3.20 6.60 7.30 9.00 3.90

(b) Llama2

csv plain tsv custom contextual json markdown spaces symbol

Min value 0.55 0.58 0.54 0.54 0.56 0.58 0.55 0.20 0.58
Min date 0.28 0.39 0.30 0.28 0.29 0.36 0.34 0.09 0.29
Max value 0.48 0.56 0.49 0.48 0.50 0.55 0.54 0.05 0.52
Max date 0.34 0.46 0.40 0.38 0.37 0.45 0.44 0.04 0.41
Value on date 0.39 0.38 0.47 0.40 0.35 0.45 0.44 0.07 0.34

AvgRank 6.80 2.30 4.60 6.50 5.60 2.10 3.50 9.00 4.60

(c) Vicuna

csv plain tsv custom contextual json markdown spaces symbol

Min value 0.63 0.67 0.56 0.61 0.60 0.64 0.59 0.17 0.62
Min date 0.50 0.55 0.47 0.49 0.53 0.52 0.51 0.13 0.49
Max value 0.49 0.46 0.45 0.44 0.48 0.47 0.50 0.01 0.50
Max date 0.38 0.42 0.41 0.39 0.46 0.40 0.42 0.07 0.41
Value on date 0.36 0.48 0.39 0.39 0.42 0.40 0.37 0.09 0.41

AvgRank 5.40 2.40 6.50 6.60 3.00 4.00 4.30 9.00 3.80

Table 12: Accuracy for information retrieval and arithmetic reasoning tasks for different time series formatting.

Figure 11: Accuracy for information retrieval and arithmetic reasoning tasks for different time series tokenization.
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(a) GPT3.5

csv plain tsv custom contextual json markdown spaces symbol

Min value 0.04 0.04 0.05 0.04 0.04 0.06 0.07 0.32 0.04
Max value 0.06 0.07 0.07 0.07 0.07 0.10 0.09 1.01 0.10
Value on date 0.08 0.10 0.07 0.08 0.03 0.08 0.03 0.38 0.04

(b) Llama2

csv plain tsv custom contextual json markdown spaces symbol

Min value 10.15 16.18 10.38 19.57 22.46 11.14 21.15 0.69 21.12
Max value 1.03 0.95 1.09 1.04 0.91 1.01 1.00 2.58 0.90
Value on date 0.81 0.65 0.40 0.73 0.61 0.48 0.44 0.96 0.90

(c) Vicuna

csv plain tsv custom contextual json markdown spaces symbol

Min value 12.79 12.24 29.45 13.89 12.06 26.62 25.54 0.96 22.50
Max value 0.85 0.74 1.01 1.14 0.94 0.67 0.98 2.51 0.59
Value on date 0.44 0.78 0.83 0.94 0.31 0.65 0.38 0.95 0.38

Table 13: MAPE for information retrieval and arithmetic reasoning tasks for different time series formatting.
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Trend Prompts

"Input:<time series>."
Question 1: Detection

"Question: can you detect a general upward or downward trend in this time series? Answer yes or no only."
Question 2: Classification

"Select one of the following answers: (a) the time series has a positive trend, (b) the time series has a negative trend.
Provide your answer as either (a) or (b)."

Figure 12: Example of multi-turn prompt template used for time series feature detection and classification.

Information retrieval and arithmetic reasoning prompts

"Input:<time series>.
Given the input time series, please provide brief and precise answers to the following questions and format your
responses in a dictionary:
’max_value’: ’Maximum value and its date.’, ’min_value’: ’Minimum value and its date.’, ’value_on_date’: ’Value of
the time series on <date>’.
Note: Only provide the numerical value and/or the date as the answer for each question."

Figure 13: The prompt template used for information retrieval and arithmetic reasoning evaluation.

H Prompts 963

Seasonality Prompts

Prompt 1: Detection
"Input:<time series>.
Question: can you detect any cyclic or periodic patterns in this time series? Only answer ’Yes’ or ’No’."
Prompt 2: Classification

"Given the following definitions:
Fixed seasonal patterns: Regular, predictable patterns occurring at fixed intervals (e.g., daily, weekly, monthly).
Varying amplitude: Seasonal patterns where the magnitude of the seasonal effect changes over time.
Shifting seasonal pattern: When the timing of the seasonal pattern shifts over time.
Multiple seasonal pattern: Presence of more than one seasonal pattern, such as daily and weekly patterns.
Select one of the following answers:
(a) the time series has a fixed seasonal pattern, (b) the time series has seasonal pattern with varying amplitude, (c) the
time series has a shifting seasonal pattern, (d) the time series has multiple seasonal patterns.
Only answer (a), (b), (c) or (d)"

964

Anomaly Prompts

"Input:<time series>.
Prompt 1: Detection

Question: can you detect any irregularities in this time series? Only answer ’Yes’ or ’No’."
Prompt 2: Classification

"Given the following definitions:
Outlier: data point that notably deviates from the overall pattern of the data.
Step-spike: sudden, sustained change in the data level, followed by a return to the original baseline.
Level shift: sudden and lasting change in the average value of the series.Temporal disruption: interval where data is
missing or not recorded.
Select one of the following answers that best describes the provided time series:
(a) the time series has one or more outliers, (b) the time series has a step-spike, (c) the time series has a level shift, (d)
the time series has a temporal disruption.
Only answer (a), (b), (c) or (d)"

965
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Structural Break Prompts

"Input:<time series>.
Prompt 1: Detection

Question: can you detect any regime switches or structural breaks in this time series? Only answer ’Yes’ or ’No’."
Prompt 2: Classification

"Given the following definitions:
Regime Change: A shift in the time series data’s statistical properties, such as mean, variance, or auto-correlation, that
persists over time. This change is often gradual and represents a new phase or ’regime’ in the data.
Structural Break: An abrupt change in the time series data that leads to a new level or trend. This change is typically
sudden and can be linked to specific events or shifts in the underlying process.
Examine the provided time series data and select the correct option:
(a) The time series data exhibits a Regime Change. (b) The time series data exhibits a Structural Break.
Provide your answer as either (a) or (b)."

966

Volatility Prompts

"Input:<time series>.
Prompt 1: Detection

Question: can you detect any volatility in this time series? Only answer ’Yes’ or ’No’."
Prompt 2: Classification

"Given the following definitions:
Constant Volatility: The degree of variation in the time series remains consistent and predictable over time.
Variable Volatility: The level of variation in the time series changes unpredictably over time, without a clear pattern or
structure.
Clustered Volatility: The time series exhibits periods where volatility is significantly higher or lower, with these periods
tending to cluster together.
Leverage Effect: The volatility of the time series tends to increase when the series experiences negative returns, reflecting
an asymmetric response to negative versus positive market movements.
Select one of the following answers:
(a) The time series has constant volatility, (b) The time series has variable volatility, (c) The time series has clustered
volatility, (d) The time series has leverage effect volatility
Only answer (a), (b), (c) or (d)"

967

I Licenses968

Table 14 lists the licenses for the assets used in the paper.969

Asset License

Llama2 Link
Vicuna1.5 Link

Phi3 Link

Table 14: License of assets used.

J Datasheet970

We provide a datasheet for evaluating large language models on time series feature understanding, following the framework in971
Gebru et al. (2021).972

Table 15: Datasheet for Time Series Feature Understanding

Motivation
For what purpose was the
dataset created?

The dataset was created to evaluate the capabilities of Large Language Mod-
els (LLMs) in understanding and captioning time series data, specifically in
detecting, classifying, and reasoning about various time series features.

Who created the dataset and
on behalf of which entity?

The dataset was created by the authors of this paper for the purposes of this
research project.

Who funded the creation of
the dataset?

The creation of the dataset was funded by the coauthors employers.
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Any other comment? The dataset is intended for benchmarking the performance of LLMs on time
series annotation and summarization tasks, highlighting both strengths and
limitations.

Composition
What do the instances that
comprise the dataset repre-
sent?

Instances are synthetic time series data points, representing various time series
features such as trends, seasonality, anomalies, and more.

How many instances are there
in total?

The dataset comprises 9 synthetic datasets with 5000 samples in the train split,
2000 samples in the validation split and 200 time series samples in the test set.

Does the dataset contain all
possible instances or is it a
sample (not necessarily ran-
dom) of instances from a
larger set?

The dataset is a curated sample representing a wide range of time series features
and complexities.

What data does each instance
consist of?

Each instance is a time series data point with associated features, metadata, and
annotations for trend, seasonality, anomalies, etc.

Is there a label or target asso-
ciated with each instance?

No. The dataset is primarily for evaluation of time series description and under-
standing tasks performed by LLMs.

Is any information missing
from individual instances?

No.

Are relationships between in-
dividual instances made ex-
plicit?

No. Each instance is considered independently for the purpose of this benchmark.

Are there recommended data
splits?

Yes, the dataset includes splits for training, validation, and test to ensure consis-
tent evaluation metrics.

Are there any errors, sources
of noise, or redundancies in
the dataset?

We make efforts to remove errors and noise, but some synthetic data may contain
intentional anomalies for testing purposes.

Is the dataset self-contained,
or does it link to or otherwise
rely on external resources?

The dataset is self-contained.

Does the dataset contain data
that might be considered con-
fidential?

No. All data used in the dataset is synthetically generated.

Collection Process
How was the data associated
with each instance acquired?

The synthetic data was generated using predefined rules for each feature.

Was the data directly obtained
from the individuals, or was it
provided by third parties or
obtained from publicly avail-
able sources?

The data was synthesized using algorithmic generation methods.

Were the individuals in ques-
tion notified about the data
collection?

Not applicable. The dataset does not contain individual personal data.

Did the individuals in question
consent to the collection and
use of their data?

Not applicable. The dataset does not contain individual personal data.

If consent was obtained, were
the consenting individuals pro-
vided with any mechanism to
revoke their consent in the fu-
ture or for certain uses?

Not applicable. The dataset does not contain individual personal data.

Has an analysis of the poten-
tial impact of the dataset and
its use on data subjects been
conducted?

Not applicable. The dataset does not contain individual personal data.

Preprocessing/Cleaning/Labeling
What preprocessing/cleaning
was done?

Synthetic data was generated with controlled features.

Was the “raw” data saved in
addition to the preprocessed/-
cleaned/labeled data?

Yes, both raw and preprocessed data are saved for transparency and reproducibil-
ity.

Is the software used to prepro-
cess/clean/label the instances
available?

Yes, preprocessing scripts and tools are available in the project repository.

Uses
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Has the dataset been used for
any tasks already?

Yes, the dataset has been used for evaluating LLMs on time series feature
detection, classification, and arithmetic reasoning tasks.

Is there a repository that links
to any or all papers or systems
that use the dataset?

Yes, the dataset and related works are available at https://anonymous.4open.
science/r/LLM4TS-BE76.

What (other) tasks could the
dataset be used for?

The dataset could be used for further time series analysis, forecasting, anomaly
detection, and other machine learning tasks involving time series data.

Is there anything about the
composition of the dataset
or the way it was collected
and preprocessed/cleaned/la-
beled that might impact future
uses?

The synthetic nature of some datasets might limit their applicability to real-world
scenarios, but they are useful for controlled benchmarking.

Are there tasks for which the
dataset should not be used?

The dataset is not suitable for tasks requiring personal data or highly sensitive
financial predictions without further analysis.

Distribution
Will the dataset be distributed
to third parties outside of the
entity on behalf of which the
dataset was created?

Yes, the dataset will be publicly available for research purposes.

How will the dataset be dis-
tributed?

The dataset will be distributed via an online repository with appropriate licensing.

When will the dataset be dis-
tributed?

The dataset will be available for distribution after the publication of the paper.

Will the dataset be distributed
under a copyright or other
intellectual property license,
and/or under applicable terms
of use?

Yes.

Have any third parties im-
posed IP-based or other re-
strictions on the data associ-
ated with the instances?

No.

Do any export controls or
other regulatory restrictions
apply to the dataset or to in-
dividual instances?

No.

Maintenance
Who is supporting/hosting/-
maintaining the dataset?

The dataset is maintained by the research team and contributors.

How can the owner/curator/-
manager of the dataset be con-
tacted?

Contact details will be provided in the repository and the paper.

Is there an erratum? Not yet, but any updates or errors will be documented in the repository.
Will the dataset be updated? Yes, future updates will be made to improve and expand the dataset.
If the dataset relates to people,
are there applicable limits on
the retention of the data asso-
ciated with the instances?

Not applicable.

Will older versions of the
dataset continue to be support-
ed/hosted/maintained?

Yes, previous versions will remain available for reference.

If others want to extend/aug-
ment/build on/contribute to
the dataset, is there a mech-
anism for them to do so?

Yes, contributions are welcomed via the repository, and code for expanding the
dataset is provided.

Ethical Considerations
Were any ethical review pro-
cesses conducted (e.g., by an
institutional review board)?

No formal ethical review was conducted as the dataset does not contain sensitive
personal information.

Does the dataset contain data
that, if viewed directly, might
be offensive, insulting, threat-
ening, or might otherwise
cause anxiety?

No. The dataset contains time series data without any sensitive or potentially
offensive content.

Does the dataset relate to peo-
ple?

No.
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Does the dataset identify any
subpopulations (e.g., by age,
gender)?

No.

Is it possible to identify indi-
viduals (i.e., one or more peo-
ple) from the dataset?

No.

Does the dataset contain data
that might be considered sensi-
tive in any way (e.g., data that
reveals racial or ethnic origins,
sexual orientations, religious
beliefs, political opinions or af-
filiations, health data)?

No.

Are there any known risks
to individuals that are repre-
sented in the dataset?

No.

Does the dataset contain data
that might be subject to
GDPR or other data protec-
tion laws?

No.
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