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Abstract

Crowdsourcing is an effective and efficient
paradigm for obtaining labels for unlabeled corpus
employing crowd workers. This work considers the
budget allocation problem for a generalized setting
on a graph of instances to be labeled where edges
encode instance dependencies. Specifically, given a
graph and a labeling budget, we propose an optimal
policy to allocate the budget among the instances to
maximize the overall labeling accuracy. We formu-
late the problem as a Bayesian Markov Decision
Process (MDP), where we define our task as an
optimization problem that maximizes the overall
label accuracy under budget constraints. Then, we
propose a novel stage-wise reward function that
considers the effect of worker labels on the whole
graph at each timestamp. This reward function is
utilized to find an optimal policy for the optimiza-
tion problem. Theoretically, we show that our pro-
posed policies are consistent when the budget is
infinite. We conduct extensive experiments on five
real-world graph datasets and demonstrate the ef-
fectiveness of the proposed policies to achieve a
higher label accuracy under budget constraints.

1 INTRODUCTION

Recently, crowdsourcing platforms like Amazon Mechani-
cal Turk (mTurk) 1 have provided convenient and affordable
ways to obtain labels for instances by employing a less
expensive crowd of non-expert workers. For labeling data
instances, each worker is incentivized with monetary re-
wards. Each instance can have a different labeling difficulty.
Therefore, to properly learn the underlying true label of a
hard instance, more workers may be needed compared to an
easy instance. Given a pre-fixed budget, it is challenging to

1https://www.mturk.com/mturk/

optimally allocate the labeling budget to a set of instances,
as the allocation decisions have to be made in an online man-
ner to gauge the labeling difficulty of the instances while
spending the budget2.

Previous methods tackle the challenge from different direc-
tions. Some of the directions include how to assign instances
to proper workers [Zheng et al., 2015, Zhang and Sugiyama,
2015], how to set price for each worker label [Miao et al.,
2022, Dizaji et al., 2020], and how to select an instance to
query worker label [Sheng et al., 2008, Frazier et al., 2008,
Chen et al., 2013, Li et al., 2016]. Specifically, Frazier et al.
[2008], Chen et al. [2013], Li et al. [2016] tackle the bud-
get allocation challenge by proposing policies to choose
the instances to label. The budget allocation problems are
formulated as optimization problems where the objective is
to either maximize the overall label accuracy [Frazier et al.,
2008, Chen et al., 2013] or maximize the labeling quality [Li
et al., 2016]. These studies consider each instance as i.i.d,
assuming no dependencies among the instances, and solve
the optimization problem using Bayesian Markov Decision
Process (MDP) [Bellman, 1957].

However, instances may be related, and the dependencies
can be utilized for budget allocation optimization. Specifi-
cally, if two instances are dependent, knowing the label of
one instance should help infer the label of the other instance.
For example, considering citation networks [Bojchevski and
Günnemann, 2017] where vertices are publications, and
edges indicate citation relationship between publications.
The connected publications are thus dependent and likely to
belong to the same research area since publications gener-
ally cite publications from peers in the same field. Similar
observations can be made for social networks [Leskovec
and Mcauley, 2012], trust networks [Kumar et al., 2016,
2018], etc.

In this work, we tackle the unique challenge of budget allo-
cation on graphs where each edge connects two dependent

2The code can be found at
https://github.com/kulkarniadithya/GraphOBA
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instances. The instances (i.e., vertices in the graph) cannot
be considered as i.i.d since the vertices are dependent. The
vertices connected by edges can have a positive or nega-
tive pairwise vertex dependency. Due to this dependency
and the graph structure, allocating a unit of labeling budget
to a vertex need to be considered carefully, as obtaining a
noisy label can influence the estimation of the labels of the
connected vertices in the graph, especially for high-degree
vertices that have more influence than low-degree vertices.

To find an optimal budget allocation policy for graph
datasets, we adopt the Bayesian setting and formulate an op-
timization problem for online budget allocation for labeling
instances connected in a graph. The objective is to maximize
the overall label accuracy under budget constraints. The fi-
nal expected accuracy is decomposed as a sum of stage-wise
rewards following the technique proposed in Xie and Frazier
[2012]. The problem discussed by Xie and Frazier [2012] is
an infinite-horizon one which optimizes the stopping time,
but Chen et al. [2013] shows that the technique can also
be applied for finite-horizon MDP problem. Our proposed
stage-wise expected reward computation considers the ag-
gregated change in the distributions of labels of all vertices
in the graph. To estimate the stage-wise expected reward
of annotating a specific vertex, we infer the label distribu-
tions of all vertices given the current noisy vertex labels at
stage t using belief propagation (BP) [Pearl, 2022]. Specif-
ically, we treat the noisy label(s) for each labeled vertex
as the parameter of the prior Beta distribution. Modulated
by the dependencies among the vertices, these noisy pri-
ors are then propagated to all the vertices in the graph to
infer the posterior vertex distributions. We propose two ap-
proximate policies using the proposed stage-wise expected
reward and prove that the policies are consistent; that is,
when the budget T goes to infinity, the accuracy converges
to 100% almost surely.

In summary, we made the following main contributions.

1. We are the first to address the budget allocation prob-
lem in the crowdsourcing tasks on a graph of instances
where each edge connects dependent instances.

2. We propose a novel stage-wise reward function that
considers the effect of worker labels on the whole graph
at each stage. Using the novel stage-wise reward func-
tion, we propose two optimal approximate policies and
theoretically prove that the policies are consistent. To
propagate labeling information to other vertices, we
model the dependency between vertices as a factor
graph and adopt belief propagation.

3. We conduct extensive experiments and ablation studies
on the benchmark datasets and empirically validate the
effectiveness of the proposed method.

2 RELATED WORKS

The convenient accessibility and affordability of crowd-
sourcing platforms have motivated many research studies
to develop new algorithms and designs for crowdsourcing
tasks.

Motivated by the labeling cost concern, some studies
[Karger et al., 2014, Zheng et al., 2015, Zhang and
Sugiyama, 2015, Wang et al., 2017, Sameki et al., 2019,
Liu and Xu, 2020, Tu et al., 2020, Yu et al., 2020] focus
on instance assignments to workers. These studies jointly
learn worker-instance distribution or the difficulty level of
the instances to make a knowledgeable decision on which
worker to assign. Another line of studies [Zhang et al., 2015,
Gan et al., 2017, Miao et al., 2022, Dizaji et al., 2020, Yin
and Chen, 2015] focuses on pricing for each worker label.
Specifically, Zhang et al. [2015], Gan et al. [2017] design an
online platform as a reverse auction where workers can bid
on a task. Zhang et al. [2015] consider a binary labeling task
whereas Gan et al. [2017] consider multi-class labeling task.
Miao et al. [2022], Yin and Chen [2015] propose a dynamic
pricing mechanism to incentivize workers to perform well.

Focusing on how to select instances to query worker labels,
Zhou et al. [2014] proposes to use the aggregate regret
to select K arms with the highest expected rewards in a
stochastic n-armed bandit game. However, this approach
does not perform sequential instance selection. More related
to our work, Sheng et al. [2008], Li et al. [2016], Frazier
et al. [2008], Chen et al. [2013], Raykar and Agrawal [2014]
aim to learn a budget allocation policy for the sequence of
instance selection. Sheng et al. [2008], Li et al. [2016] aim to
maximize the number of labeled instances while maintaining
the quality requirements under the given budget. Sheng et al.
[2008] assumes that data quality is the same in all instances,
whereas Li et al. [2016] assumes that data quality would be
higher for easy instances. Raykar and Agrawal [2014] aim
to maximize a utility function with consideration of the pull
market (i.e., workers may not accept jobs from requesters).
Frazier et al. [2008], Chen et al. [2013] have similar goals
to ours but consider each instance as i.i.d.. Frazier et al.
[2008] propose a knowledge gradient policy to sequentially
select instances to label. Chen et al. [2013] show that the
knowledge gradient policy is not consistent and propose an
optimistic knowledge gradient policy and show that it is a
consistent policy when the budget is infinite.

Unlike prior works, our goal is to obtain an optimal budget
allocation policy for a graph of instances where edge con-
nects dependent instances. Our proposed policy considers
dependency between instances and the influence of each
instance on other instances of the graph to obtain a policy
that maximizes the overall label accuracy under budget con-
straints. To the best of our knowledge, we are the first to
consider budget allocation policy for a graph of instances.



3 PRELIMINARIES

3.1 PROBLEM FORMULATION

Consider a graph G = (V,E), each vertex vi ∈ V for
1 ≤ i ≤ N of the graph represents an instance whose
true label is unknown, and the edge set E contains edges
connecting dependent instances. Since we consider binary
labeling tasks, for each edge e = (vi, vj) ∈ E, let Cij be a
2× 2 matrix representing the pairwise vertex dependency
between the vertices vi and vj . Each vertex vi ∈ V is
associated with a true label li ∈ {+1,−1} for 1 ≤ i ≤ N
and is characterized with the probability of being in class +1
denoted by θv ∈ [0, 1]. The label provided by a worker for
any given vertex v ∈ V at any given timestamp t denoted by
yvt is drawn from the underlying label distribution, yvt ∼
Bernoulli(θv). A label costs one unit of budget. Given a
budget T , the goal is to maximize the overall label accuracy,
which is measured on the inference of true labels of the
vertices given the worker labels. Intuitively, with a larger
budget, we can estimate θv more accurately for each vertex
v ∈ V and thus achieving better overall label accuracy.

3.2 BELIEF PROPAGATION

Belief propagation (BP) [Pearl, 2022] is a message-passing
algorithm. For each edge (vi, vj), two messages, µ

vi→vj

and

µ
vj→vi

, are propagated, one in each direction. A message

from vertex vi to vertex vj essentially contains all the infor-
mation from the subtree rooted at vi.

We convert the input graph G into a factor graph FG to
apply belief propagation. A factor graph FG = (V ∪F,E′)
is a bipartite graph with variables V and factors F as vertices
and edges E′ connecting variables and factors. The variables
V of the factor graph are the N instances of G, and for each
edge e = (vi, vj) ∈ E, we add a factor vertex Fe. Each
factor vertex f ∈ F has a function ϕf that models the
pairwise vertex dependency matrix Cij . The factor vertex
Fe is connected to the variable vertices vi and vj using
undirected edges.

For a factor graph FG, messages µ are passed between vari-
able vertex v ∈ V and factor vertex f ∈ F . The messages
are computed differently depending on whether the vertex
receiving the message is a variable vertex or a factor vertex.

µ
v→f

(xv) =
∏

f∗∈N (v)\{f}

µ
f∗→v

(xv), (1)

µ
f→v

(xv) =
∑

x′
f=xv,x′

v=xv

ϕf (x
′
f )

∏
v∗∈N (f)\{v}

µ
v∗→f

(x′
v∗)

 ,

(2)

where ∀ v ∈ V , xv ∈ {+1,−1} represents the labels that
variable vertex v can take, N (v) and N (f) represent the
sets of neighboring vertices of v and f , respectively.

In each iteration, an arbitrary vertex is chosen as a root, and
then messages are passed from leaf vertices in the graph FG
to the root (forward propagation) and then back to the leaf
vertices (backward propagation). In both forward and back-
ward propagations, the messages are initiated from variable
vertices v ∈ V . The message from each vertex v ∈ V is
initialized with its prior/posterior probability ωv . Following
forward and backward propagation, the message between
adjacent vertices is updated iteratively as per Eq. (1) and Eq.
(2) until convergence. Furthermore, the messages are nor-
malized in each step to avoid underflow. Upon convergence,
the marginal probability of each variable vertex v ∈ V is:

Pv(xv) ∝ ωv(xv)
∏

j∈N (v)

µ
j→v

(xv), (3)

where ωv(xv) is the prior/posterior probability of xv .

3.3 KG AND OPTKG POLICY

Knowledge Gradient (KG) [Frazier et al., 2008] and Opti-
mistic Knowledge Gradient (OPTKG) [Chen et al., 2013]
provide policies to sequentially select instances to obtain
worker labels. These methods consider each instance as
i.i.d and formulate the budget allocation problem as an opti-
mization problem. To find an optimal policy, these methods
define a stage-wise reward function. At each timestamp, they
select the next instance that maximizes the reward. Specif-
ically, KG is a single-step look-ahead policy that greedily
selects the next instance with the largest expected reward:

vt = argmax
v

(
R(St, v) =̇ p1 ∗R1(a

t
v, b

t
v) + p2 ∗R2(a

t
v, b

t
v)
)
,

(4)

where atv and btv represent the number of labels belonging
to positive and negative classes, respectively, of vertex v

at timestamp t. p1 =
at
v

at
v+btv

and p2 =
btv

at
v+btv

are posterior
probabilities of vt, and R1(a

t
v, b

t
v), R2(a

t
v, b

t
v) are the re-

wards of getting label +1 and −1, respectively, for vertex
v.

OPTKG selects the next instance based on the optimistic
outcome of the reward:

vt = argmax
v

(
R+(St, v) =̇ max(R1(a

t
v, b

t
v), R2(a

t
v, b

t
v))
)
.

(5)

Computationally, both KG and OPTKG have the time com-
plexity O(NT ) and space complexity O(N). However, their
reward estimation considers each instance separately since
instances are considered i.i.d.



4 METHODOLOGY

Our goal is to find an optimal budget allocation policy for
graph datasets. The policy should properly estimate the
underlying true label of each vertex, considering the depen-
dency between vertices and the influence of each vertex on
other vertices in the graph. We formulate our problem in
the Bayesian setting. A detailed discussion is provided in
Section 4.1. According to the Bayesian setup, we define our
task as an optimization problem that maximizes the overall
label accuracy in the given budget T , which we discuss in
Section 4.2. The optimization problem is formulated into a
Markov Decision Process to find the optimal policy. Then,
we define our stage-wise expected reward that considers the
probability distribution of every vertex in the graph after
each iteration in Section 4.3. We define two approximate
policies for the problem and theoretically prove that the
policies are consistent. A detailed discussion is provided in
Section 4.4.

4.1 BAYESIAN SETUP

Since the true labels of the vertices in the graph are unknown,
we initialize θv with a Beta prior distribution Beta(α, β).
Specifically, α and β values are set to 0.1. This initializa-
tion can be interpreted as having α positive and β negative
pseudo-labels for the vertex v at the initial stage.

We aim to model each worker label’s effect on the whole
graph. A worker label can update the marginal probabilities
of vertices in the graph. Therefore, we define the state matrix
St as a N ×2 matrix representing the marginal probabilities
of the vertices in the graph. At each timestamp, depending
on the choice of vertex and the label obtained, the marginal
probabilities of vertices are updated, and we transition to
the new state St+1.

We can observe that St is a Markovian process because
St+1 is completely determined by the current state St, the
action vt and the obtained label yvt . Specifically, the change
in marginal probability of vertices in graph FG between
timestamps is only due to the action vt and obtained label
yvt . Moreover, suppose we choose vt to obtain a worker
label in the current state St. In that case, we can calculate
the state transition probability Pr(yvt |St, vt), which is the
posterior probability that we are in the next state St+1 since
each worker label at any given timestamp t is drawn from
the underlying label distribution.

Pr(yvt = +1|St, vt) = E(θvt |St) =
α+ atv

α+ atv + β + btv
,

(6)

where atv and btv are the number of positive and negative
worker labels obtained for vertex v till timestamp t and
Pr(yvt = −1|St, vt) = 1 − Pr(yvt = +1|St, vt). Fol-
lowing the above labeling process, a filtration {Ft}T−1

t=0 is

defined, where Ft is the σ-algebra generated by the sample
path (v0, yv0 , ..., vt−1, yvt−1 ). The choice of the next vertex
to label vt at timestamp t is done after observing the histori-
cal labeling results up to the timestamp t− 1. Therefore, vt
is Ft-measurable. Hence, the process of budget allocation
is defined as a sequence of choices π = (v0, ...., vT−1).

4.2 OBJECTIVE FUNCTION

Our goal is to maximize the overall prediction accuracy
once the budget is exhausted at timestamp T . The true label
of each variable vertex v ∈ V is inferred based on their
marginal probability at timestamp T . Since the task is binary,
we need to determine the positive set HT that maximizes
the conditional expected accuracy conditioning on FT :

HT = argmax
H⊂{1,....,N}

E

(∑
v∈H

1(v ∈ H∗) +
∑
v/∈H

1(v /∈ H∗)|FT

)
,

(7)
where H∗ refers to the set of vertices with ground truth
true labels +1, H refers to the set of vertices with the
estimated label +1, HT is the set H that maximizes Eq.
(7), and 1(.) is the indicator function. For 0 ≤ t < T ,
the conditional distribution θv|Ft is exactly the marginal
probability calculated using Eq. (3) that depends on the
historical sampling results only through St. Therefore, we
define

P t
v(+1) = Pr(v ∈ H∗|Ft) = Pr(θv ≥ 0.5|St). (8)

Xie and Frazier [2012] show that the final positive set HT

can be determined by the Bayes decision rule.

Similar to Chen et al. [2013], we define the following propo-
sition to solve Eq. (7).

Proposition 1 HT = {v : PT
v (+1) ≥ 0.5} solves Eq. (7)

and the expected accuracy on RHS of Eq. (7) can be written
as
∑N

v=1 h(P
T
v (+1)), where h(z) = max(z, 1− z).

In order to find the optimal policy that maximizes the ex-
pected accuracy, the following optimization problem should
be solved:

V (S0)=̇sup
π

Eπ

E
 ∑

v∈HT

1(v ∈ H∗) +
∑

v/∈HT

1(v /∈ H∗)|FT


= sup

π
Eπ

(
N∑

v=1

h(PT
v (+1))

)
, (9)

where Eπ represents the expectation taken over the sample
paths (v0, yv0 , ..., vT−1, yvT−1

) generated by a policy π.
The second equality is due to Proposition 1 and V (S0) is
the value function at the initial state S0. Any policy π that
attains the supremum in Eq. (9) is the optimal policy π∗.



4.3 OPTIMAL POLICY

To obtain the optimal policy π∗, we formulate the optimiza-
tion problem in Eq. (9) into a Markov Decision Process
(MDP). The final expected accuracy is decomposed as a
sum of stage-wise rewards following the technique pro-
posed in Xie and Frazier [2012]. The problem discussed
by Xie and Frazier [2012] is an infinite-horizon one which
optimizes the stopping time, but Chen et al. [2013] shows
that the technique can also be applied for finite-horizon prob-
lem. We consider the marginal probability of every vertex
in the graph by taking the sum of marginal probabilities at
each timestamp. Then, we define the reward function as the
change in the sum of marginal probabilities between two
timestamps.

Proposition 2 The stage-wise expected reward is defined
as:

R(St, vt) = E(
N∑

k=1

h(P t+1
k (+1))−

N∑
k=1

h(P t
k(+1))|St, vt),

(10)
then the value function in Eq. (9) becomes:

V (S0) = G0(S
0) + sup

π
Eπ

(
T−1∑
t=0

R(St, vt)

)
, (11)

where G0(S
0) =

∑N
k=1 h(P

0
k (+1)) and any policy π that

attains the supremum is the optimal policy π∗.

The detailed steps of the derivation are provided in Appendix
A. Using Proposition 2, the maximization problem in Eq.
(9) is formulated as a T -stage MDP (Eq. (10)), which is
associated with a tuple {T, {St},A,Pt, R(St, vt)}. Here,
St, the state space at stage t, is all possible states that can be
reached at stage t. Once a label yvt is obtained for a variable
vertex v at timestamp t, the marginal probability of more
than one variable vertex v′ ∈ V can change. Therefore, we
have

St =
{
{pt1v , p

t
2v}

N
v=1 : pt1v , p

t
2v ∈ [0, 1], pt1v + pt2v = 1

}
.

(12)

The action space A = {1, 2, ..., N} is the set of instances
that could be labeled next. Pt = {P t

1 , P
t
2 , ..., P

t
N} is the

set of marginal probabilities at timestamp t of each variable
vertex v ∈ V and R(St, vt) is the expected reward defined
in Eq. (13). Moreover, due to the Markovian property of
{St}, it is sufficient to consider a Markovian policy [Powell,
2007], where vt is chosen only based on the state St.

4.4 EFFICIENT APPROXIMATE POLICY

Our goal is to choose the next vertex to obtain a worker
label. Since our problem is an optimization problem and we

model it as T -stage MDP (Eq. (10)), at each timestamp, we
need to select the vertex that has the maximum stage-wise
expected reward as the next vertex. At any given state St

at timestamp t, if any vertex v ∈ V is chosen to obtain
a worker label, it can get a label of +1 or −1. Therefore,
to compute the stage-wise expected reward, we need to
consider both possibilities. Let R1(S

t, vt), R2(S
t, vt) be

the reward of getting label +1 and −1, respectively. Then,
the expected reward is:

R(St, vt) = p1 ∗R1(S
t, vt) + p2 ∗R2(S

t, vt), (13)

where p1 =
α+at

v

α+at
v+β+btv

and p2 =
β+btv

α+at
v+β+btv

are posterior
probabilities of vt. Therefore, the next vertex is the one that
has the maximum expected reward:

vt = argmax
v

(
R(St, vt) =̇ p1 ∗R1(S

t, vt) + p2 ∗R2(S
t, vt)

)
.

(14)

Following Eq. (14), we can find the next vertex at each
timestamp 0 ≤ t < T and obtain the policy π̂ =
(v0, ...., vT−1) which we call GraphOBA-EXP. Further-
more, similar to Eq. (5), we can also choose the next
vertex based on the optimistic outcome of the reward:

vt = argmax
v

(
R+(St, vt) =̇ max(R1(S

t, vt), R2(S
t, vt))

)
.

(15)

We call the policy πo = (v0, ...., vT−1) obtained following
Eq. (15) GraphOBA-OPT.

GraphOBA-EXP and GraphOBA-OPT require computation
of R1(S

t, vt) and R2(S
t, vt). Therefore, we need to com-

pute the change in the sum of marginal probabilities due to
a new label +1 and −1, respectively.

For the computation, we utilize the belief propagation (BP)
algorithm to propagate labeling information throughout the
graph. Each factor vertex f ∈ F in graph FG has a function
ϕf that models the provided pairwise vertex dependency
Cij . To compute R1(S

t, vt)
3, assuming that BP converged

at timestamp t, we first compute marginal probabilities
of each variable vertex v ∈ V following Eq. (3). Then,∑N

v=1 h(P
t
v(+1)) is computed using the marginal probabil-

ities.

Following forward propagation, the messages are passed
from leaf vertices of the factor graph FG to the variable
vertex vt. Then, vt is assigned label +1 and the current
posterior distribution Beta(α+ atv, β + btv) of the variable
vertex vt is updated. Since Beta is the conjugate prior of
the Bernoulli, the posterior of θvt(ωv) at the timestamp
t + 1 will be updated as Beta(α + at+1

v , β + bt+1
v ) =

3To compute the expected reward of each vertex v ∈ V , differ-
ent temporary parallel environments similar to the main environ-
ment are created so that the main environment is not affected.



Table 1: Statistics of the Datasets
Dataset #Vertex #Pos #Neg #Train #Test

Cora 2708 1296 1412 2166 542
Citeseer 3312 1618 1694 2650 662
Pubmed 19717 7875 11842 15774 3943
WebKB 877 415 462 4705 1176
Bitcoin 5881 2914 2967 702 175

Beta(α + atv + 1, β + btv). Once ωv is updated, the mes-
sages are backward propagated from variable vertex vt to
the leaf vertices of FG. BP may not converge in one iter-
ation; therefore, forward and backward propagation steps
are run multiple times but without assigning any new la-
bel to vt. Upon convergence, Eq. (3) is used to compute
the updated marginal probability for each variable vertex
v ∈ V and compute

∑N
v=1 h(P

t+1
v (+1)). The difference

between
∑N

v=1 h(P
t+1
v (+1)) and

∑N
v=1 h(P

t
v(+1)) is the

reward R1(S
t, vt). Similarly, R2(S

t, vt) is computed where
the assigned label is −1.

R1 and R2 are computed for all vertices v ∈ V and the
next vertex is chosen following Eq. (14) if GraphOBA-EXP
is followed and Eq. (15) if GraphOBA-OPT is followed.
Once the vertex is chosen, a worker label is obtained for
the vertex. The marginal probabilities of each vertex of
the main environment are updated by propagating labeling
information using belief propagation.

Given the pairwise vertex dependency (Cij) among all pairs
of adjacent variable vertices vi and vj , the next theorem
shows that the policies π̂ and πo are consistent for the prob-
lem.

Theorem 1 Given the pairwise vertex dependency (Cij)
among all pairs of adjacent variable vertices vi and vj and
α, β > 0, the policies π̂ and πo are consistent, i.e., as the
budget T goes to infinity, the accuracy will be 100% almost
surely (i.e.,HT = H∗).

To prove the theorem, we show that the marginal probability
of each vertex v ∈ V is updated only due to its posterior
probability and posterior probabilities of leaf vertices in the
factor graph FG. Then, we show that the reward function is
proportional to the change in the posterior probability of cho-
sen vertex vt, and both GraphOBA-EXP and GraphOBA-
OPT will label each vertex infinitely many times as the
budget goes to infinity. Since we consider workers reliable,
if we label each vertex infinitely many times, we will con-
verge to θv for each v ∈ V . Therefore, the accuracy will be
100%, almost surely implying that π̂ and πo are consistent
policies. The theorem is proved in Appendix B.

5 EXPERIMENTS

In this section, we evaluate two versions of our proposed
approach, GraphOBA-EXP that chooses the next vertex to

label following Eq. (14) and GraphOBA-OPT that chooses
the next vertex to label following Eq. (15). We compare
our proposed approaches with baselines on five benchmark
graph datasets with different statistics and from different
domains. More studies can be found in the Appendix C.

5.1 DATASET

The performance of GraphOBA is evaluated across five
graph datasets. Three of the datasets, Cora, Citeseer,
Pubmed Bojchevski and Günnemann [2017] are citation
networks, Bitcoin [Kumar et al., 2016, 2018] is a trust net-
work between Bitcoin users, and WebKB [Craven et al.,
1998] is a dataset that includes web pages from computer
science departments of various universities. The datasets
are multi-class, so we combine the classes to convert the
datasets into binary-class datasets. Each dataset is split ran-
domly into train and test sets in an 8:2 ratio. All policies can
only label vertex in the train set. The labeling information
of vertices in the train set is propagated to vertices in the test
set using belief propagation. The statistics of the datasets
can be found in Table 1, and the pre-processing steps can be
found in Appendix D.

5.2 EVALUATION METRICS

Since the goal of the proposed method is to maximize accu-
racy under budget constraints. We compare with the base-
lines using accuracy as the evaluation metric.

5.3 BASELINE METHODS

We obtain instances to label following the baseline policies.
Once the policies are obtained, the baselines are compared
under two settings: (1) without BP and (2) with BP.

When the budget is lower than two times the number of
instances, KG and OPTKG policies follow a round-robin
policy and are equivalent. Since the budget for all our ex-
periments is lower than two times the number of instances,
we only compare with OPTKG. The following are the base-
lines4. We compare with the following:

1. Uniform: Randomly sample one vertex from the train
set of the graph.

2. OPTKG: Optimistic Knowledge Gradient [Chen et al.,
2013] policy that follows Eq. (5).

4Though Gittins et al. [2011] and Nino-Mora [2011] can be
used for the problem, they are computationally expensive. The
calibration method Gittins et al. [2011] and Nino-Mora [2011] and
state-of-the-art exact method Nino-Mora [2011] require O(T 3)
and O(T 6) time and space complexity, respectively. Therefore, we
do not compare them in our experiments.
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Figure 1: Performance comparison on datasets that follow homophily setting. The top three plots show the performance
on the train set, and the bottom three plots show the performance on the test set due to the train set labeling information
propagation using BP.
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Figure 2: Performance comparison on WebKB and Bitcoin
datasets. The top two plots show the performance on the
train set, and the bottom two plots show the performance on
the test set due to the train set labeling information propaga-
tion using BP.

3. Uniform+BP: Uniform policy and then apply belief
propagation to propagate labeling information.

4. OPTKG+BP: Optimistic Knowledge Gradient [Chen
et al., 2013] policy that follows Eq. (5). Belief propa-
gation is applied to propagate labeling information.

5.4 EXPERIMENTAL SETTINGS

For each dataset, we simulate reliable workers for the exper-
iments. Since Cora, Citeseer, Pubmed, and WebKB datasets
have features for vertices, a logistic regression model is
trained on the whole dataset with the vertex features as in-
put. Then, for each vertex v in the dataset, the trained model
provides a probability of being in class +1, which is used
as θv. Bitcoin dataset does not have features for vertices.
Therefore, we use ground truth to decide θv for each vertex

v. If the ground truth label of the vertex is +1, θv is set to
0.93; otherwise, it is set to 0.07. Finally, to obtain labels pro-
vided by reliable workers for each vertex v, random samples
are drawn from Bernoulli(θv).

The pairwise vertex dependency among adjacent vertices
follows a homophily setting in Cora, Citeseer, and Pubmed
datasets. Therefore, each factor vertex for these datasets
is initialized with the same value following the homophily
setting (probability of connect vertices having the same label
is 0.51 and different label is 0.49).

WebKB and Bitcoin datasets do not follow the homophily
setting. Therefore ground truth labels are used to infer pair-
wise vertex dependency. For a pair of adjacent vertices, the
probability of both vertices having the same label is set to
0.9 if the ground truth labels match; otherwise, it is set to
0.1. The experiments on these datasets represent the sce-
nario where we know the entire factor graph and the workers
are reliable.

Ideally, as per Eq. (14) and Eq. (15), we should compute the
expected reward for all vertices in the train set at each times-
tamp and choose the vertex with the maximum expected re-
ward. However, belief propagation (BP) is computationally
expensive since each iteration of BP has a time complexity
of O(|V ∪ F |2) on the factor graph FG, and BP can take
several iterations to converge. Therefore, at each timestamp,
we uniformly sample 10 vertices from the train set to com-
pute the expected reward and choose the vertex based on
the policy. All the experiments are conducted with a random
seed value of 11, and the value of α and β in the Beta prior
distribution Beta(α, β) is set to 0.1. We provide pseudo code
for optimal policy π∗ computation for GraphOBA-OPT and



GraphOBA-EXP in Algorithm 1 in Appendix C.

5.5 RESULTS AND DISCUSSION

In Figure 1, we compare the two versions of our proposed
approach with the baselines on datasets that follow a ho-
mophily setting. Considering the results on the train set for
different datasets, we can observe that since OPTKG fol-
lows a round-robin policy, its performance grows linearly
with the budget till all the vertices in the train set are labeled,
whereas the performance growth of Uniform policy follows
near logarithmic curve.

We can also observe that applying belief propagation sig-
nificantly improves the performance of both OPTKG and
Uniform policies for all three datasets. The results suggest
that propagating labeling information by considering depen-
dency among adjacent vertices can help achieve significantly
higher performance when the budget is low.

Comparing baselines with the proposed approaches, we can
observe that GraphOBA-EXP outperforms the baselines
for all three datasets, whereas GraphOBA-OPT comes in
second. The performance improvement of GraphOBA-EXP
and GraphOBA-OPT is significant when the budget is low.
The results suggest that the vertices chosen by the proposed
reward function are influential in the graph.

Considering the results on the test set for different datasets,
since OPTKG and Uniform policies do not propagate label-
ing information, their results correspond to the initial prior
distribution. Comparing the remaining baselines, we can ob-
serve that GraphOBA-EXP outperforms all the baselines for
all three datasets, whereas GraphOBA-OPT comes second.
The observation is similar to our observation for the train
set, suggesting the importance of choosing the right ver-
tex at each timestamp in labeling information propagation.
Choosing the right vertex can result in a larger change in
the marginal probabilities of vertices in the graph resulting
in faster convergence to the true label distribution.

Figure 2 compares our proposed approaches with the base-
lines on WebKB and Bitcoin datasets. The results show that
the proposed setup can achieve near 100% accuracy with
very little budget. Empirically, this suggests that when the
ground truth factor graph is known, applying belief propaga-
tion can achieve nearly 100% accuracy. The results suggest
that knowing the dependency among adjacent vertices in
the graph is important. From the figure, we can observe that
the proposed approaches outperform the baselines for the
WebKB dataset and achieve comparable performance on the
Bitcoin dataset for both train and test sets.

We also conduct experiments without splitting the dataset
into train and test sets. The results, along with the discussion,
can be found in Appendix C.
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Figure 3: Ablation study results of experiments with differ-
ent seed values (left plot) and sample sizes (right plot) on
the Cora dataset. We plot the means and standard deviations
for experiments obtained from different seed values (left
plot), and for experiments with different sample sizes (right
plot), we report the performance of GraphOBA-EXP.

6 ABLATION STUDIES

We conduct ablation studies to explore the importance of
various hyperparameters. All the experiments are conducted
on the entire Cora dataset without splitting it into train and
test sets. More studies can be found in the Appendix C.

The experiments in Figure 1 and 2 are conducted with a
random seed value of 11. However, different seed values
can result in different results. Therefore, we conduct ex-
periments with different seed values (1, 11, 42, 78, 96, 111),
and the mean and standard deviation are shown in Figure 3.
We observe from the results that the proposed approaches,
including the baselines Uniform+BP and OPTKG+BP, have
a larger variance when the budget is low, and the variance
gradually reduces as the budget increases. However, com-
pared to the baselines, the proposed approaches have lower
variance, suggesting that the proposed approaches are more
robust. The plot of average results of different seed initial-
ization is similar to Figure 1, suggesting that GraphOBA-
EXP and GraphOBA-OPT outperform baselines for differ-
ent seed initialization.

The experiments in Figure 1 and 2 are conducted with a sam-
ple size of 10. Intuitively, one may expect to achieve better
performance with a larger sample size since there are more
candidate vertices to choose from. Therefore, we conduct ex-
periments with different sample sizes (10, 20, 30, 40, 50, 60)
using GraphOBA-EXP, and the results are shown in Figure
3. The results confirm that policies with larger sample sizes
tend to perform better, but all the policies converge to similar
performance when the budget is sufficient.

We also conduct ablation studies with different initialization
of α and β and different initialization for factors on the Cora
dataset. Results and detailed discussions can be found in
Appendix C.



7 CONCLUSION

This work addresses the budget allocation problem in the
crowdsourcing tasks on a graph of instances where each
edge connects dependent instances. We formulate the prob-
lem as an MDP and define the task as an optimization prob-
lem that maximizes the overall label accuracy under budget
constraints. We propose a novel stage-wise reward function
to take advantage of the graph structure and dependency
among vertices. We propose two optimal policies using this
reward function and theoretically prove that the policies are
consistent when the budget is infinite. To propagate label-
ing information throughout the graph, we convert the input
graph into a factor graph and apply belief propagation. The
results on five real-world graph datasets demonstrate the
effectiveness of the proposed approach.
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