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ABSTRACT

In document classification, graph-based models effectively capture document
structure and overcome sequence length limitations, enhancing contextual under-
standing. However, existing graph document representations often rely on heuris-
tics, domain-specific rules, or expert knowledge. We propose a novel method to
learn data-driven graph structures, eliminating the need for manual design and
reducing domain dependence. Our approach constructs homogeneous weighted
graphs with sentences as nodes, while edges are learned via a self-attention model
that identifies dependencies between sentence pairs. A statistical filtering strategy
retains only strongly correlated sentences, improving graph quality while reduc-
ing the graph size. Experiments1 on three datasets show that learned graphs con-
sistently outperform heuristic-based baselines and recent small language models,
achieving higher accuracy and F1 score. Furthermore, our study demonstrates
the effectiveness of the statistical filtering in improving classification robustness,
highlighting the potential of automatic graph generation over traditional heuristic
approaches and opening new directions for broader applications in NLP.

1 INTRODUCTION

Traditional vector-based text representation methods often struggle to effectively capture the struc-
tural information inherent in text, particularly when dealing with long documents. In contrast, graph-
based representations have emerged as a powerful alternative, enabling the modeling of dependen-
cies between textual units and leveraging their structure to better capture and differentiate local
contexts within a document. Such representations have demonstrated promising results in document
classification tasks (Zhang et al., 2020; Wang et al., 2023; Gu et al., 2023; Li et al., 2025b), with
various graph construction strategies proposed to date.

However, existing graph-based approaches heavily rely on domain-specific heuristics and expert
knowledge, limiting their generalizability across tasks. As noted by Wang et al. (2024), graph
structures in text classification are typically implicit and require manual design tailored to each
application. Consequently, these methods are typically effective only within narrow, predefined
scenarios (Bugueño & de Melo, 2023; Galke & Scherp, 2022). To reduce the reliance on manually
defined heuristics, a more robust and adaptive approach is needed.

While attention mechanisms have been widely adopted to model long-range dependencies, their
usage to induce latent relational structure remains underexplored in document classification. In
this work, we view attention scores as potential evidence for semantic ties between textual units,
serving as a data-driven proxy for graph topology. Through statistical filtering, we derive sparse,
task-conditioned relational structures that adapt to a document’s internal organization rather than
reflecting externally imposed heuristics.

We introduce a self-attention-based framework that, to our knowledge, is the first to automatically
learn graph structures for document representations without handcrafted heuristics (see Figure 1).
Our method builds homogeneous graphs where nodes represent sentences and edges are determined

1https://github.com/available/upon/publication
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Figure 1: Instead of using domain-specific heuristics for graph construction, we learn graph struc-
tures from text, eliminating task-specific design and enhancing generalization.

by an attention model that learns relationships between sentence pairs. A statistical filtering step–
using mean- or max-bound thresholds derived from the learned weight distribution–retains only the
most salient relationships.

We evaluate our approach on three document classification datasets of varying lengths, comparing
our learned graphs to five widely used heuristic-based construction strategies–complete graph, sen-
tence order (Castillo et al., 2015; Bugueño & de Melo, 2023), window-based co-occurrence (Hassan
& Banea, 2006; Rousseau et al., 2015; Zhang et al., 2020; Li et al., 2025b), and semantic similarity
under predefined thresholds (Li et al., 2025b; Mihalcea & Tarau, 2004; Bugueño et al., 2024)–as
well as competitive transformer and embedding-based models (Section 4.2). The results reveal that
attention-learned graphs consistently outperform heuristic graphs and recent non-graph baselines,
with gains becoming more pronounced as the document length increases. Further analysis finds that
max-bound filtering is most effective for long documents, while mean-bound filtering fares better
on medium-length documents. These findings highlight the potential of data-driven graph learning
over conventional heuristic approaches and open new directions for broader applications.

The key contributions of this paper are:

• A novel data-driven graph generation model: We introduce a self-attention-based approach that
learns sentence-level graph structure directly from data, eliminating reliance on heuristic rules
or domain-specific design. Unlike prior graph structure learning methods that jointly optimize
the graph and its downstream graph classifier, our method operates independently from the graph
encoder, enabling flexible and architecture-agnostic graph generation.

• A variance-aware statistical sparsification mechanism: We introduce mean- and max-bound filter-
ing strategies that convert dense and noisy attention patterns into sparse, reliable document graphs
by selecting statistically salient inter-sentence dependencies.

• Strong performance gains over heuristic graphs and non-graph baselines: Across datasets, our
learned graphs improve accuracy by up to 4 points and macro-F1 by 4.3 points over heuristic
graphs, and by up to 2.7 points over recent small language models.

• Comprehensive evaluation and analysis: We benchmark our approach against five heuristic-based
graph construction methods, two transformer baselines, and two embedding-based baselines, and
analyze structural properties, resource usage, and the behavior of our filtering strategies on three
publicly available datasets.

2 RELATED WORK

2.1 PREDEFINED GRAPH SCHEMES

Classic Approaches. Numerous graph-based text representation approaches have been used in
text classification, demonstrating their effectiveness in capturing textual relationships. Early meth-
ods primarily relied on co-occurrence statistics and linguistic patterns, often representing words as
nodes and connecting them if they co-occur within a fixed-size sliding window (Mihalcea & Tarau,
2004; Hassan & Banea, 2006; Rousseau et al., 2015; Zhang et al., 2020). Sequence-based graphs
offer a complementary approach, connecting words based on their original order. While early im-
plementations used weighted edges by frequency (Castillo et al., 2015), recent work suggests that
binarized edges can improve performance (Bugueño & de Melo, 2023).
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Figure 2: Overview of our framework. Non-trainable steps include data segmentation, statistical
filtering, and consolidation, while the Sentence Transformer is used with frozen parameters. Edge
widths in graph G reflect learned edge weights, with thicker edges denoting stronger dependencies.

Recent Approaches. More sophisticated methods have been introduced to enhance textual mod-
eling. TextGCN (Yao et al., 2019) builds a global heterogeneous graph with word and document
nodes, using Point-wise Mutual Information (PMI) for weighting word–word edges and TF-IDF for
word–document links, whereas TextLevelGCN (Huang et al., 2019) generates one graph per docu-
ment by connecting word nodes (duplicated when repeated) based on co-occurrence within a sliding
window, also weighted by PMI.

Extensions enrich graphs with additional heterogeneous elements, such as topic nodes (Gu et al.,
2023; Cui et al., 2020), word and character n-grams (Li & Aletras, 2022), label nodes (Li et al.,
2024), or document metadata including keywords, entities, and titles (Ai et al., 2023). Other studies
incorporate multiple edge types while maintaining a single node type, encoding features such as
titles, keywords, or events for document nodes (Ai et al., 2025), or combining co-occurrence, syn-
tactic dependencies, and self-loops for word nodes (Wang et al., 2023). An alternative strategy (Li
et al., 2025b) constructs separate graphs for words and sentences that are fused during training.

Limitation. Despite their progress, existing methods share a fundamental limitation: reliance on
predefined domain knowledge to establish node and edge types, making them heavily task- and
domain-specific. To address this, a learning-based approach for automatic graph structure discovery
can offer a more generalizable and adaptable alternative by removing the need for manual design.

2.2 LEARNING THE DOCUMENT STRUCTURE

To the best of our knowledge, no existing method learns document graph structures directly from raw
text. Instead, they depend on domain-specific heuristics for graph construction. While some studies
incorporate graph-based techniques to enrich contextual representations, they do not explicitly learn
the graph topology itself.

The most relevant work (Xu et al., 2021) combines a Graph Attention Network (GAT) (Veličković
et al., 2017) with a pre-trained Transformer encoder. In this approach, documents are segmented into
passages, encoded using RoBERTa (Liu et al., 2019), and structured as fully connected subgraphs
linked to a central node representing the document. A GAT captures multi-granularity document
representations, while contrastive learning further enhances representation learning. While effective,
this method does not learn the underlying graph topology. Rather, it relies on a fixed architecture
and predefined connections.

Recent research explores integrating predefined static graph structures with language models to
enhance document representation learning by combining local relational modeling with deep con-
textual encoding. One such study (Huang et al., 2022) proposes a unified model combining Graph
Neural Network (GNN) models and BERT (Devlin et al., 2019) to mitigate the overemphasis on
content-specific word usages. The method employs a sub-word graph to learn fine-grained syntactic
relationships. Similarly, Onan (2023) introduce a hierarchical graph-based framework where BERT
encodes contextual information at the node level, enhancing classification performance.

3
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In multi-label classification, Liu et al. (2025) use XLNet (Yang et al., 2019) embeddings and gen-
erate a graph structure based on label co-occurrence, learning label correlations exclusively through
graph attention. Moreover, class-specific and self-attention mechanisms enhance the model’s ability
to capture contextual dependencies within the text.

Graph Structure Learning (GSL). GSL (Franceschi et al., 2019; Chen et al., 2020) emerged
as an alternative to heuristic-based graph constructions, whose manually specified rules often yield
incomplete or task-misaligned topologies. GSL addresses these limitations by enabling parametric
graph induction, wherein graph topology and node representations are jointly optimized.

Early approaches refine an initial graph using shallow feature embeddings and typically follow a
metric-based method. Among them, IDGL (Chen et al., 2020) iteratively infers edges via node em-
bedding similarity, while SE-GSL (Zou et al., 2023) applies an entropy-based abstraction to form
hierarchical communities. More recent work leverages large language models (LLMs) to reduce
reliance on explicit graph structural information as supervision signals. GraphEdit (Guo et al.,
2024) uses instruction-tuning to fine-tune an LLM to predict edge relevance from node text, whereas
LLaTA (Zhang et al., 2025) leverages tree-based in-context learning to integrate topology and text
insights. While incorporating external knowledge improves robustness against noisy input graphs,
such methods suffer from substantial computational inefficiencies, limiting their scalability to large
graphs. Moreover, most GSL methods target non-textual domains such as citation and social net-
works (Franceschi et al., 2019; Chen et al., 2020; Zou et al., 2023). When applied to text, they
generally operate on corpus-level graphs, treating each document as a node. This formulation ne-
glects the semantic dependencies across text granularities, thereby restricting applicability to short
or structurally simple documents. Moreover, graph structure learning in these cases is jointly opti-
mized with the underlying graph encoder, thereby coupling the learned structure with model-specific
inductive biases.

Despite the growing use of graph-based methods, the challenge of automatically learning graph
topologies for document representation directly from raw text remains largely unexplored. Recent
efforts underscore the effectiveness of integrating attention mechanisms and pre-trained language
models for robust and adaptive graph-based document representations, while also highlighting the
limitations of heuristic-based graph constructions–particularly in handling diverse domains and cop-
ing with modern document processing requirements such as large-scale data, long-range dependen-
cies, and noisy and imbalanced data.

3 LEARNING DATA-DRIVEN DOCUMENT GRAPHS

We introduce a novel approach for learning data-driven graph structures, eliminating the reliance
on manual graph design and minimizing domain dependency. Building upon insights from previous
work (Xu et al., 2021; Liu et al., 2025) highlighting the capabilities of pre-trained language models
and attention mechanisms for capturing contextual relationships (Voita et al., 2019; Clark et al.,
2019), our methodology constructs homogeneous weighted graphs, where sentences serve as nodes
and inter-sentence dependencies are learned via a self-attention mechanism.

Motivation for Attention-Based Graphs. Self-attention computes pairwise relevance scores be-
tween representational units conditioned on task supervision. Let D be a document with L sentences
s1, s2, . . . , sL, X ∈ RL×d the sentence embedding matrix, and α = Attn(X) ∈ RL×L the result-
ing sentence-level attention matrix (aggregated across heads). Under mild assumptions, large entries
αij indicate that sj strongly influences si’s contribution to the document-level prediction. Thus,
thresholding α yields a data-adaptive sparsified graph G = (V,E), where V = {si, s2, . . . , sL} and
E = {(si, sj) | αij ≥ τi}, with each edge weighted by its corresponding attention score αij and
τi denoting a pre-calculated attention threshold for every sentence si ∈ D. This allows the graph
to capture functional rather than purely surface interactions, resulting in a lightweight alternative to
domain-engineered topologies. Notably, the resulting topology adapts to each document, enabling
different sparsity patterns even among texts with similar surface characteristics.

Our use of sentences as nodes is motivated by their proven effectiveness in capturing document
structure and their scalability for long texts (Song et al., 2020). Furthermore, we generate homoge-
neous rather than heterogeneous graphs to avoid the computational overhead and reliance on external

4
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Figure 3: Learned attention weights averaged across heads for a randomly selected document from
the BBC News dataset, consisting of 12 sentences.

tools (Sahu et al., 2019; Wang et al., 2023; Ai et al., 2025). Previous work also suggests that simpler
graph constructions often perform better than more specialized ones (Bugueño & de Melo, 2023).

After learning the attention weights for all sentence pairs, a statistical filtering mechanism defines a
minimum threshold for each row i (τi) in the attention matrix, ensuring that only strongly correlated
sentence pairs (αij) are retained. This step also mitigates isolated nodes, enhancing the graph quality
and reducing graph complexity. The overall framework is outlined in Figure 2, with a detailed
description provided below.

3.1 DATA SEGMENTATION

To define the units that will serve as nodes within the learned graphs, namely, the sentences, our
approach begins by segmenting the input document D into a sequence of its L preprocessed con-
stituent sentences s1, s2, . . . , sL. For this, we conduct a data-cleaning procedure followed by sen-
tence tokenization.2 Sentences containing fewer than five words are merged with the preceding one
to prevent the graph size from growing excessively, ensure computational efficiency, and maintain
meaningful sentence representations while reducing unnecessary complexity in graph construction.
This segmentation allows the model to later capture sentence-level dependencies that are essential
to accurately modeling the overall structure of the document graph.

3.2 LEARNING TASK-SPECIFIC DEPENDENCIES

Each sentence si is embedded into a fixed-dimensional vector xi ∈ Rd using a pre-trained Sentence
Transformer, with d = 384 in our experiments. The resulting set of embeddings xi, x2, . . . , xL

serves as the input representation of the document, effectively transforming the textual data into
vector representations for further processing.

Building upon these representations, a multi-head self-attention model is trained to learn inter-
sentence dependencies. The architecture comprises a multi-head attention mechanism, followed
by a ReLU-activated non-linear layer, and concludes with a classification head designed to per-
form document classification across the available classes. Following recent findings (Wortsman
et al., 2023), we substitute the conventional softmax activation function used during the scaled dot-
product attention computation with a ReLU activation normalized by sequence length. This variant
has been shown to yield a more efficient and effective attention mechanism (Bai et al., 2023; Zhao
et al., 2024). The resulting learned attention matrix is given by αij for each sentence pair (si, sj).
Motivated by prior work demonstrating that self-attention heads often correspond to interpretable
linguistic patterns (Voita et al., 2019; Clark et al., 2019), we compute αij by averaging the atten-
tion matrices across all heads in the model (see Figure 3). Additional implementation details and
visualizations of the resulting attention distributions are provided in Appendix B.

3.3 STATISTICAL FILTERING

To enhance the relevance of the attention weights produced by the multi-head self-attention model,
we apply a statistical filtering step that selectively discards weak dependencies while retaining
salient sentence pairs (αij) relevant to the classification task. This process effectively transforms
attention weights into graph edges representing meaningful inter-sentence relationships. Filtering

2Implemented using the NLTK library in Python.
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is conducted row-wise to prevent isolated nodes, establishing at least one edge per sentence, while
self-loops are explicitly removed. Two alternative filtering strategies are introduced.

Mean-bound. This approach computes the average attention score for each sentence si across
all other sentences within the document and derives a minimum attention threshold incorporating a
predefined tolerance degree δ. The threshold is given by:

τi =
1

L

l∑
j=1

αij + δ · std(αi) , (1)

where std(αi) is the standard deviation of the i-row of the learned attention matrix. This threshold
is slightly greater than the mean, which reduces the tolerance level and decreases the number of
retained entries in the attention matrix, thereby ensuring that only the most relevant dependencies
are preserved.

Max-bound. This strategy focuses on top-ranked dependencies, retaining attention scores proxi-
mate to the maximum observed value within each row, i.e., for each sentence si in the document.
The threshold is calculated as:

τi = maxj(αij)− δ · std(αi) , (2)

where std(αi), as in Equation 1, is the standard deviation of the i-row of the learned attention matrix.
Notably, we increase the tolerance for preserving entries around the peak attention score for each
row, yielding a more aggressive pruning criterion.

3.4 CONSOLIDATION

After statistical filtering, the resulting matrix is treated as the adjacency matrix of the learned graph.
To ensure structural consistency, two operations account for special edge cases.

Sentence Merging. When identical sentences occur at different positions in D, their corresponding
edges are merged to maintain the integrity of the graph representation and better reflect the semantic
structure of the document, while adjusting the set of effective sentence nodes in the final learned
graph. For instance, in Figure 2, s3 = s9 in D = {s1, s2, · · · , s10}. Therefore, their edges are
unified, resulting in a reduced graph with nine unique sentence nodes.

Connectivity Preservation. Isolated nodes need to be avoided. A typical scenario arises when
there is no plausible edge for the row αi (si) after statistical filtering, failing to establish meaningful
connections. To address this, additional edges are introduced between si and its immediately pre-
ceding and subsequent sentences. The attention weight associated with the self-loop αii is evenly
distributed between these new edges, preserving the original attention-based weighting scheme.

The final learned graph G = (V,E) consists of unique sentence nodes V ⊆ D, encoded via Sentence
Transformer embeddings, and undirected, attention-weighted edges E that effectively capture the
document structure. More details about the graph induction from α are available in Appendix D.

4 EXPERIMENTS

To study the merits of our learned graphs for document representation in various scenarios, we con-
ducted experiments on three publicly available text classification datasets, comparing our approach
against five heuristic-based construction schemes by training a GAT under consistent settings.

4.1 DATASETS

We assess our model’s generalizability across balanced and unbalanced scenarios, covering topic
classification and hyperpartisan news detection (see Table 1), using datasets of varying length: BBC
News3 (Greene & Cunningham, 2006), a moderately imbalanced collection of English news articles

3http://derekgreene.com/bbc/
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Table 1: Statistics of datasets. Imbalance rate (IR) denotes the ratio of minority to majority classes.

Dataset #Samples (train/val/test) Avg. Length #Classes IR
BBC News 2,225 (1,547/177/443) 438 words (19 sent.) 5 4:5
HND 1,270 (516/129/625) 912 words (21 sent.) 2 1:2
arXiv 33,000 (28,000/2,500/2,500) 10,554 words (539 sent.) 11 1:2

in the areas of business, entertainment, politics, sport, and technology; Hyperpartisan News Detec-
tion (HND)4 (Kiesel et al., 2019) binary annotated for partisan bias; and arXiv5 (He et al., 2019), a
corpus of 33,000 scientific papers in physics, mathematics, computer science, and biology.

As BBC News lacks predefined data splits, we apply an 80/20 train–test partition, allocating 10% of
the training for validation. Duplicate entries are removed across all datasets. Further dataset details
are provided in Appendix A.

4.2 COMPARISON METHODS

Heuristic-based Baselines. We compare our learned graphs against five widely adopted heuristic-
based homogeneous graph constructions. While recent work also explores heterogeneous graphs
(Section 2.1), they differ fundamentally from our homogeneous setup and are not directly compara-
ble. In all baselines, graph nodes represent the unique sentences in a document D. We consider:

• Complete Graph: A fundamental baseline, where each sentence node is fully connected to all
others using unweighted edges, forming a complete graph.

• Sentence Order: Constructs undirected binary edges based on the natural order of sentence oc-
currence within the document. This approach solely captures the sequential structure of the text.

• Window-based Co-Occurrence: Undirected edges connect sentence nodes if they co-occur
within a fixed sliding window of size 3. Therefore, each sentence is connected to its two preced-
ing and two subsequent sentences. Notably, this construction can be considered a generalization
of the sentence order-based graph by capturing broader contextual dependencies.

• Mean Semantic Similarity: Defines weighted edges based on a cosine similarity threshold ap-
plied to the corresponding sentence embeddings. The threshold is computed as described in Equa-
tion 1, providing a fair comparison against our learned graphs.

• Max Semantic Similarity: Sets a higher cosine similarity threshold by following the procedure
outlined in Equation 2. It retains only the strongest connections, resulting in sparser graphs.

Non-Graph Baselines. We include strong non-graph baselines in Table 2 for com-
parative reference. We fine-tune Longformer (Beltagy et al., 2020) using the pre-
trained longformer-base-40966 model with a sequence-classification head. LongT5
(Guo et al., 2022) is similarly fine-tuned using only the encoder of the pre-trained
google/long-t5-tglobal-base7 model, augmented with a linear classification head. We
additionally report previously published results for each dataset, including: fine-tuned RoBERTa
(Reusens et al., 2024; Liu et al., 2019) with Bayesian-optimized hyperparameters for BBC News;
CogLTX (Park et al., 2022; Ding et al., 2020), which selects informative sentences for document
classification, for HND; and Llama3.2 (Li et al., 2025a; Touvron et al., 2023) for the arXiv dataset.
An extensive comparison including additional non-graph models is provided in Table 6. We further
implement a simple baseline that represents each document as the mean of its Sentence Transformer
embeddings, followed by a two-layer MLP (SentenceEmb + MLP). This model operates entirely
independently of graph structure and provides a controlled lower bound against which the gains
of our graph-based architectures can be assessed. We also report results from our sentence-level
self-attention models (ReLUAttn-SentenceEmb + MLP), which induce our learned graphs, as de-
scribed in Section 3.2.

4https://zenodo.org/records/5776081
5https://huggingface.co/datasets/ccdv/arxiv-classification
6https://huggingface.co/allenai/longformer-base-4096
7https://huggingface.co/google/long-t5-tglobal-base
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Table 2: Classification performance of learned versus heuristic-based and non-graph models across
datasets. Metrics include accuracy, macro-averaged F1 score (mean ± std. over 5 independent runs),
graph statistics (average number of nodes, edges, and degree), and storage. Results for complete
and mean semantic similarity baselines are excluded on arXiv due to excessive computational and
runtime requirements. Best, second-best, and non-graph† results are highlighted as described. N/A
entries indicate that the corresponding feature is not applicable (i.e., for non-graph models).

Scheme Accuracy F1-ma |V| |E| Degree Disk
BBC News (2L-64U)

RoBERTa (Reusens et al., 2024)† 98.0 97.0 N/A N/A N/A N/A
Longformer-base† 97.9 ± 0.5 97.8 ± 0.5 N/A N/A N/A N/A
LongT5-tglobal-base† 96.3 ± 0.5 96.3 ± 0.5 N/A N/A N/A N/A
SentenceEmb + MLP† 95.2 ± 0.3 94.8 ± 0.3 N/A N/A N/A N/A
ReLUAttn-SentenceEmb + MLP† 95.9 ± 0.4 95.7 ± 0.4 N/A N/A N/A N/A
Complete Graph 99.9± 0.1 99.9± 0.1 19.30 481.67 18.3 105MB
Sentence Order 99.7 ± 0.3 99.7 ± 0.4 19.30 36.61 1.87 74MB
Window Co-occurrence 99.8 ± 0.3 99.8 ± 0.4 19.30 71.21 3.62 76MB
Mean Semantic Similarity 99.4 ± 0.5 99.3 ± 0.6 19.30 159.68 5.40 84MB
Max Semantic Similarity 99.7 ± 0.2 99.7 ± 0.2 19.30 36.66 1.88 74MB
Learned Mean-Bound 99.9± 0.1 99.9± 0.1 19.30 213.80 8.26 90MB
Learned Max-Bound 99.6 ± 0.5 99.6 ± 0.5 19.30 60.27 3.04 77MB

HND (3L-64U)
CogLTX (Park et al., 2022)† 94.8 Not Reported N/A N/A N/A N/A
Longformer-base† 85.4 ± 1.0 85.3 ± 1.0 N/A N/A N/A N/A
LongT5-tglobal-base† 74.6 ± 1.7 74.5 ± 1.7 N/A N/A N/A N/A
SentenceEmb + MLP† 74.8 ± 1.0 74.7 ± 1.0 N/A N/A N/A N/A
ReLUAttn-SentenceEmb + MLP† 75.4 ± 0.7 75.3 ± 0.7 N/A N/A N/A N/A
Complete Graph 94.6 ± 1.2 94.5 ± 1.2 19.48 710.55 18.48 70MB
Sentence Order 92.6 ± 2.3 92.6 ± 2.3 19.48 36.99 1.79 43MB
Window Co-occurrence 92.1 ± 2.9 92.1 ± 2.9 19.48 71.94 3.35 44MB
Mean Semantic Similarity 91.2 ± 4.9 91.1 ± 5.0 19.48 253.77 6.00 53MB
Max Semantic Similarity 92.8 ± 5.5 92.8 ± 5.6 19.48 36.93 1.78 43MB
Learned Mean-Bound 95.0 ± 2.2 94.9± 2.2 19.48 293.25 7.85 56MB
Learned Max-Bound 92.6 ± 5.6 92.6 ± 5.6 19.48 54.76 2.53 44MB

arXiv (3L-64U)
Llama-3.2-1B-Instruct (Li et al., 2025a)† 89.2 89.0 N/A N/A N/A N/A
Longformer-base† 86.9 ± 0.8 86.7 ± 0.7 N/A N/A N/A N/A
LongT5-tglobal-base† 87.8 ± 0.7 87.8 ± 0.7 N/A N/A N/A N/A
SentenceEmb + MLP† 79.9 ± 0.3 79.1 ± 0.3 N/A N/A N/A N/A
ReLUAttn-SentenceEmb + MLP† 84.7 ± 0.6 84.1 ± 0.6 N/A N/A N/A N/A
Sentence Order 87.8 ± 0.5 87.3 ± 0.5 510.33 1,034.28 2.02 25GB
Window Co-occurrence 87.9 ± 1.9 87.4 ± 2.0 510.33 2,064.93 4.03 26GB
Max Semantic Similarity 87.8 ± 0.8 87.3 ± 0.8 510.33 1,234.40 2.27 26GB
Learned Mean-Bound (10% train sample) 88.2 ± 3.1 87.6 ± 3.2 502.92 35,651.40 55.53 16GB
Learned Max-Bound (10% train sample) 91.7 ± 1.9 91.3 ± 2.1 502.92 1068.51 2.14 6GB
Learned Max-Bound (full data) 91.9± 1.1 91.7± 1.0 510.33 1082.22 2.14 25GB

4.3 EXPERIMENTAL SETUP

We established dataset-specific maximum sequence lengths to handle particularly long documents.
While BBC News and HND retained full texts, a maximum of 1,800 sentences was set for arXiv,
minimizing information loss and truncating less than 1.5% of document samples. To obtain sentence
embeddings, we used the pre-trained Sentence Transformer paraphrase-MiniLM-L6-v28.
The tolerance degree δ is fixed at 0.5 throughout all experiments.

Self-Attention Model: We employed a single-layer four-head multi-head self-attention model,
trained with a batch size of 32 for up to 20 epochs; however, additional experiments with a two-
layer architecture are reported in Table 4, Appendix B. Optimization was performed using Adam
(Kingma & Ba, 2014) with an initial learning rate of 0.001, employing early stopping if the valida-
tion macro-averaged F1 score did not improve for five consecutive epochs.

Graph Attention Network (GAT): We assessed GAT architectures with 1 to 3 hidden layers and
node embedding sizes in {64, 128, 256}. Dropout (rate=0.2) was applied after each convolutional

8https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2
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layer, edge weights were used as edge attributes, and average pooling aggregated node embeddings.
Final document representations were classified through a softmax layer. Training was conducted for
up to 50 epochs with a batch size of 64, utilizing the Adam optimizer (Kingma & Ba, 2014) and an
initial learning rate of 0.001. Early stopping was applied as in self-attention models.

Language Models: Longformer and LongT5 are trained with a learning rate of 2 × 10−5, a maxi-
mum of 10 epochs, and patience of 3. Due to the model size (148M and 109M parameters, respec-
tively) and computational constraints, we set the maximum sequence lengths to 1024, 2048, and
4096 for each dataset, while LongT5 uses a maximum length of 5120 for arXiv. Batch size is fixed
to 16.

5 RESULTS

Table 2 reports main results averaged over 5 runs, with accuracy and macro-averaged F1 score
accounting for class imbalance. Given the substantially longer documents in arXiv, GATs were
first trained on 10% of the training samples for the learned graph variants (mean- and max-bound),
and the best-performing model was subsequently scaled to the full dataset. GAT architectures were
adapted to the dataset length: 2-layer GAT (64 units) for BBC News, and 3-layer GAT (64 units)
for HND and arXiv, capturing the complex semantic relationships present in lengthy documents.
Importantly, additional experiments using two alternative GNN backbones–Graph Convolutional
Networks (GCN) (Kipf & Welling, 2017) and GraphSAGE (Hamilton et al., 2017)–are provided in
Table 5; Appendix C.
All experiments were implemented in PyTorch Geometric on an NVIDIA GeForce RTX3050.

Quality of the Results. Learned graphs consistently outperform heuristic-based schemes across
datasets, showing robust performance and proving competitive with non-graph methods, surpass-
ing recent small language models. Gains over heuristic graphs are marginal on BBC News but
become increasingly pronounced for longer documents. Notably, although the complete graph base-
line matches the performance of our learned mean-bound graphs, it requires nearly twice the edges
and 15 MB more storage. On HND, learned mean-bound graphs outperform the strongest heuristic
baseline (max semantic similarity) by up to 2.1 F1 points, with even larger improvements on arXiv
(4.3 F1 over window-based graphs, 2.7 F1 over Llama-3.2). Remarkably, training on only 10% of
the training data, our learned graphs outperform heuristic schemes and Longformer-base, with the
max-bound variant surpassing Llama-3.2. These results emphasize the effectiveness of our method
in capturing structural information in long texts.

Moreover, although ReLUAttn-SentenceEmb + MLP shows improvements over SentenceEmb +
MLP, both methods perform well on mid-length documents but degrade substantially as length in-
creases, highlighting the limitations of flat sentence pooling. In contrast, our learned graphs achieve
consistent gains–reaching up to +20 F1 on HND and +7 F1 on arXiv. These findings indicate that
modeling document structure, rather than relying solely on sentence-level content, is essential for
long-text classification.

Graph Structure Analysis. A key advantage of our proposal is its ability to capture global con-
textual dependencies within a document. Unlike heuristic graphs, which are limited to local context
via fixed window sizes, our approach allows edges between distant but relevant sentences, consider-
ing all sentences simultaneously and thereby enhancing the expressiveness of the learned structure.
Despite comparable storage requirements and average degree, our learned mean-bound graphs sub-
stantially outperform heuristic-based mean semantic similarity graphs. This indicates that the perfor-
mance gains stem not from graph density but from the semantic relevance and structural alignment
of the learned edges. On arXiv, even the strongest heuristic baselines (window co-occurrence and
max semantic similarity graphs) exhibit higher average degrees than our learned max-bound graphs,
yet achieve lower performance, underscoring the robustness and effectiveness of our approach.

Visualizations of adjacency matrices (Figure 4) underscore the importance of capturing comprehen-
sive document structures, highlighting the significance of both initial and final sentences for accurate
classification, particularly in long-form documents.For clarity, we include binarized versions of the
learned adjacency matrices, as they typically exhibit lower edge weights than heuristic-based graphs.
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Figure 4: Adjacency matrix comparison across graph schemes on random dataset samples.

Table 3: Ablation results on the HND dataset.

δ
Mean-bound Max-bound

F1-ma Degree Disk F1-ma Degree Disk
0.25 93.4 11.47 61MB 94.0 2.40 44MB
0.50 94.9 8.86 57MB 92.6 2.79 45MB
0.75 94.8 6.78 53MB 91.6 3.29 45MB
1.00 90.7 5.20 50MB 94.2 3.90 46MB

– No Filter: F1-ma: 89.6 / Degree: 39.96 / Disk: 104MB

Ablation and Sensitivity Analysis. Table 3 reports the contribution of key design choices on the
HND dataset: tolerance degree (δ), and filtering strategy. For mean-bound filtering, optimal perfor-
mance is achieved with δ values between 0.5 and 0.75, with macro-averaged F1 scores near 95%.
In contrast, retaining all edges close to the row-wise mean attention score results in overly dense
graphs (11.47 neighbors on average), leading to semantically noisy and undifferentiated message
passing in the GAT, which degrades classification accuracy. This issue is more notorious when no
filtering is applied and the full attention matrix is used as the adjacency matrix: The average node
degree rises to nearly 40, and the F1 score drops to 89.6%. Conversely, increasing the threshold to
1.0 substantially reduces the number of edges, proving insufficient for the task.

For the max-bound strategy, the GAT achieves competitive results by retaining only those edges
close to the row-wise maximum attention value, with a considerable decay when increasing the
tolerance degree. Notably, higher tolerance values in this setting retain more edges, in contrast to
mean-bound, where higher thresholds produce sparser graphs. Interestingly, at δ = 1.0, performance
partially recovers, resembling the results obtained by mean-bound filtering with a higher average
node degree.

These findings underscore the importance of statistical filtering to maintain a balance between graph
sparsity and semantic relevance. They also suggest a need for further investigation into the interplay
between edge semantics, node degree, and downstream task performance.

6 CONCLUSION

We introduced a data-driven framework that induces document graphs from supervised self-attention
and prunes them via statistical filtering, eliminating reliance on domain-specific heuristics. Com-
prehensive experiments on three document classification datasets demonstrate that our learned
graphs consistently outperform strong heuristic-based baselines, capturing the long-range and non-
sequential dependencies that sentences may have among themselves. An ablation and sensitivity
analysis confirms the importance of attention-guided sparsification and connectivity preservation.
Future work includes adaptive threshold learning, additional tasks, and hierarchical extensions that
incorporate multi-granular textual structure.
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A DATASETS

BBC News9 (Greene & Cunningham, 2006): A moderately imbalanced collection of 2,225 English
documents from the BBC News website (2004–2005) in the areas of business, entertainment, poli-
tics, sport, and technology. As BBC News lacks predefined data splits, after duplicate removal, we
partition the data into training (1,547), validation (177), and test (443) sets. Notably, the dataset is
available for non-commercial and research purposes only.

Hyperpartisan News Detection (HND)10 (Kiesel et al., 2019): English news articles labeled ac-
cording to whether they show blind or unreasoned allegiance to a single political party or entity, or
not. Although it comprises two parts, byarticle and bypublisher, we use the first one with
645 training and 625 test samples labeled through crowdsourcing. As HND does not have a prede-
fined validation split, we reserve 10% of the training samples for such a purpose. The collection is
licensed under a Creative Commons Attribution 4.0 International License.

arXiv11 (He et al., 2019): A collection of 33,000 very long scientific papers in physics, mathematics,
computer science, and biology sourced from arXiv. The documents were originally obtained in PDF
format and subsequently converted into plain text using the arXiv sanity preserver tool12. The corpus

9http://derekgreene.com/bbc/
10https://zenodo.org/records/5776081
11https://huggingface.co/datasets/ccdv/arxiv-classification
12https://github.com/karpathy/arxiv-sanity-preserver/
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is organized into 11 classes with a slight class imbalance, and partitioned into three splits: train
(28,000), validation (2,500), and test (2,500).

B SELF-ATTENTION FORMULATION

B.1 RELU-BASED ATTENTION

Self-attention provides a mechanism for modeling long-range dependencies by enabling each token
in a sequence to attend to all others, thus producing non-local contextualized representations. This is
achieved by projecting the input into three parameterized spaces (queries (Q), keys (K), and values
(V )) which define pairwise interactions across tokens. Classical self-attention computes token-level
similarity scores via scaled dot-products between queries and keys, followed by a nonlinear trans-
formation (typically softmax) that yields normalized attention weights. These weights are then used
to aggregate information from the values, producing context-aware token embeddings. Formally, a
single-head self-attention mechanism is often written as:

α = Attn = ϕ

(
QKT

√
dk

)
V, (3)

where ϕ(·) denotes the nonlinear activation (softmax in the standard formulation), dk = d
H is the

head dimension, and H heads are used in parallel to form multi-head self-attention.

In our setting, let be X ∈ RL×d denote the input representation of a document with at most L
sentence-tokens, each embedded into a d-dimensional space (e.g., d = 384 using the Sentence
Transformer).

We obtain queries, keys, and values via linear projections of X:
q, k, v = XWq,k,v, + bq,k,v ∈ RL×d, (4)

where Wq,k,v, ∈ Rd×d and bq,k,v ∈ Rd.

These are then reshaped and partitioned into per-head matrices Q,K, V ∈ RH×L×dk , so that for
each head h ∈ {1, . . . , H} we have:

Qh,Kh, V h ∈ RL×dk . (5)

Afterwards, we compute the scaled-dot product attention logits for each head:

Sh =
1√
dk

Qh(Kh)T ∈ RL×L. (6)

Unlike the softmax formulation, we employ the element-wise ReLU activation as the non-linearity,
which is normalized by sequence length L:

αh
ij =

ReLU(Sh
ij)

L
, i, j ∈ {1, . . . , L}, (7)

yielding a non-negative but not necessarily stochastic attention distribution.

Once the attention logits are obtained, the final head-averaged attention map is given by:

α =
1

H

H∑
h=1

αh ∈ RL×L. (8)

Head-specific outputs are computed as weighted value combinations, which are then concatenated
to obtain the final output projection:

Oh = αhV h ∈ RL×dk ,

O = Concat(O1, . . . , OH) ∈ RL×d,

Y = OWo + bo ∈ RL×d,

(9)
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Table 4: Results of a 1- and a 2-layer four-head multi-head self-attention model.

1-layer 2-layer
Acc F1-ma Acc F1-ma

BBC News

sport - 98.7 - 99.1
entertainment - 95.2 - 92.9
business - 94.1 - 93.5
tech - 96.8 - 97.4
politics - 91.4 - 93.2
macro-avg. 95.5 95.3 95.5 95.2

HND
non-hyperpartisan - 75.5 - 76.4
hyperpartisan - 77.3 - 76.2
macro-avg. 76.4 76.4 76.4 76.3

Figure 5: Learning curves of the 1-layer MHA model used for graph induction in the arXiv dataset.

where Wo ∈ Rd×d and bo ∈ Rd are learnable output projection parameters. The final document rep-
resentation Y thus encodes each token with information aggregated from all others through ReLU-
based multi-head self-attention.

For implementation details, please refer to our public repository: https://github.com/
available/upon/publication.

B.2 ROBUSTNESS OF MULTI-HEAD SELF-ATTENTION MODEL

As Table 4 shows, our method demonstrates strong robustness across model architectures. Even
shallow self-attention models induce strong document representations. Notably, it is essential for
the learned attention weights to exhibit sparsity, which is critical for effectively identifying potential
edges throughout the document. This sparsity facilitates the subsequent training of GAT models
by efficiently exploring and leveraging the local neighborhood structure within the learned graph,
enhancing its capacity to capture meaningful relationships within the document.

Model Convergence Figure 5 presents the learning curves of the multi-head attention model used
to induce graphs for the arXiv dataset. While the training loss decreases steadily throughout the
optimization process, the validation loss begins to rise after the initial training steps. Early stopping
is therefore applied to preserve the model checkpoint that achieves the best validation performance,
as described in Section 4.3.
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Figure 6: Learned attention weights for randomly selected samples from the BBC News dataset.

B.3 LEARNED ATTENTION DISTRIBUTIONS

Figure 6, Figure 7, and Figure 8 visualize, as heat maps, the attention-weight distributions learned by
the self-attention models used for our graph induction process across the three datasets. A different
colormap is employed than in Figure 2 and Figure 3 to enhance perceptual contrast, particularly for
longer documents such as those in the arXiv corpus.

As described in Section 3.2, we average the attention matrices across heads to obtain a unified
representation of the model’s learned dependencies. This averaging preserves patterns consistently
identified as important across heads: when a head assigns a high weight to a sentence pair (si, sj), its
contribution remains evident–albeit attenuated–in the aggregated matrix. In contrast, dependencies
that are weak and detected by only a small subset of heads are further diminished through averaging,
yielding values that approach zero.

C PERFORMANCE VARIABILITY ACROSS GNN BACKBONES

We conducted additional experiments varying the type of convolutional layer used in our graph
encoder models, including Graph Attention Networks (GAT) (Veličković et al., 2017), Graph Con-
volutional Networks (GCN) (Kipf & Welling, 2017), and GraphSAGE (Hamilton et al., 2017).
The results are reported in Table 5. The table shows that changing the underlying graph neural net-
work architecture yields variable performance. However, GAT consistently outperforms both GCN
and GraphSAGE across the three datasets examined in this work. Furthermore, we observe that
our learned graphs consistently achieve higher performance than those constructed using heuristic
methods, which emphasizes that the improvements stem from the graph–construction module rather
than from the choice of GNN.
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Figure 7: Learned attention weights for randomly selected samples from the HND dataset.

Figure 8: Learned attention weights for randomly selected samples from the arXiv dataset.
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Table 5: Classification performance of learned versus heuristic-based graphs across datasets. Re-
sults encompass three different encoder models, including Graph Attention Network (GAT), Graph
Convolutional Network (GCN), and GraphSAGE. Metrics include accuracy and macro-averaged F1

score (mean ± std. over 5 independent runs). Results for complete and mean semantic similarity
baselines are excluded on arXiv due to excessive computational and runtime requirements. Best and
second-best results for each GNN backbone, as well as the overall ⋆best result at the dataset level,
are highlighted as described.

GAT GCN GraphSAGE
Scheme Accuracy F1-ma Accuracy F1-ma Accuracy F1-ma

BBC News (2L-64U)
Complete Graph ⋆99.9± 0.1 ⋆99.9± 0.1 99.8 ± 0.1 99.8 ± 0.1 99.5 ± 0.3 99.4 ± 0.3
Sentence Order 99.7 ± 0.3 99.7 ± 0.4 99.1 ± 0.4 99.1 ± 0.4 99.6 ± 0.2 99.6 ± 0.2
Window Co-occurrence 99.8 ± 0.3 99.8 ± 0.4 98.4 ± 1.1 98.3 ± 1.2 99.0 ± 0.5 98.9 ± 0.6
Mean Semantic Similarity 99.4 ± 0.5 99.3 ± 0.6 99.4 ± 0.5 99.4 ± 0.5 98.8 ± 0.6 98.8 ± 0.7
Max Semantic Similarity 99.7 ± 0.2 99.7 ± 0.2 99.1 ± 0.8 99.1 ± 0.9 99.4 ± 0.2 99.4 ± 0.2
Learned Mean-Bound ⋆99.9± 0.1 ⋆99.9± 0.1 99.5 ± 0.2 99.4 ± 0.2 98.5 ± 0.7 98.4 ± 0.7
Learned Max-Bound 99.6 ± 0.5 99.6 ± 0.5 99.1 ± 0.3 99.1 ± 0.3 98.8 ± 0.7 98.8 ± 0.7

HND (3L-64U)
Complete Graph 94.6 ± 1.2 94.5 ± 1.2 92.3 ± 3.5 92.3 ± 3.5 91.0 ± 4.0 91.0 ± 4.0
Sentence Order 92.6 ± 2.3 92.6 ± 2.3 88.7 ± 3.5 88.7 ± 3.5 91.1 ± 4.0 91.1 ± 4.0
Window Co-occurrence 92.1 ± 2.9 92.1 ± 2.9 88.3 ± 2.4 88.2 ± 2.4 93.5 ± 0.5 93.5 ± 0.5
Mean Semantic Similarity 91.2 ± 4.9 91.1 ± 5.0 90.8 ± 3.8 90.8 ± 3.8 93.6 ± 1.9 93.6 ± 1.9
Max Semantic Similarity 92.8 ± 5.5 92.8 ± 5.6 91.8 ± 3.5 91.8 ± 3.5 92.4 ± 3.9 92.4 ± 4.0
Learned Mean-Bound ⋆95.0± 2.2 ⋆94.9± 2.2 86.0 ± 3.4 85.9 ± 3.4 93.1 ± 3.4 93.1 ± 3.4
Learned Max-Bound 92.6 ± 5.6 92.6 ± 5.6 92.5 ± 1.7 92.5 ± 1.7 94.9 ± 1.1 94.8 ± 1.1

arXiv (3L-64U)
Sentence Order 87.8 ± 0.5 87.3 ± 0.5 85.5 ± 0.8 84.9 ± 0.9 85.9 ± 0.7 85.3 ± 0.7
Window Co-occurrence 87.9 ± 1.9 87.4 ± 2.0 85.8 ± 0.8 85.1 ± 0.9 87.0 ± 1.0 86.4 ± 1.1
Max Semantic Similarity 87.8 ± 0.8 87.3 ± 0.8 85.6 ± 1.0 84.9 ± 1.1 86.3 ± 0.9 85.7 ± 1.0
Learned Mean-Bound (sample) 88.2 ± 3.1 87.6 ± 3.2 84.1 ± 1.5 83.5 ± 1.5 88.4 ± 0.9 87.9 ± 1.1
Learned Max-Bound (sample) ⋆91.7± 1.9 ⋆91.3± 2.1 83.5 ± 1.6 82.9 ± 1.6 89.9 ± 1.4 89.6 ± 1.3

D GRAPH CONSTRUCTION STRATEGY AND STORAGE

Symmetrizing Attention Matrices. Although attention coefficients are learned in a directed man-
ner, we transform the resulting attention matrix α = Attn(X) ∈ RL×L into an undirected weighted
graph. After statistical filtering, we follow a row-wise operation. Given the row i, for each non-zero
entry αij , we introduce an edge (i, j) with weight wij = αij . To enforce symmetry, each edge
induces its inverse edge by adding the edge (j, i) with its corresponding weight. If subsequent rows
in α reveal dependencies already calculated, we compare their attention coefficient and redefine the
edge weight as

wij = wji = max(αij , αji). (10)

This process ensures a consistent undirected representation while preserving the strongest depen-
dencies between sentence nodes.

Single-Pass Graph Construction. The resulting learned document graphs are precomputed and
stored as PyTorch Geometric objects. Unlike alternative approaches constructing graphs on the fly,
our implementation incurs the graph-creation cost only once, significantly reducing computational
overhead by eliminating the need for graph reconstruction across epochs and model variations.

E GRAPH-BASED VS. NON-GRAPH APPROACHES

E.1 CLASSIFICATION METHODS

While the focus of this work is on graph-based strategies for document representation and their
impact on document classification tasks, we also provide a comparative overview of recent non-
graph-based approaches utilizing traditional vector-based representations for document classifica-
tion. Table 6 summarizes the performance of recently proposed models on the datasets considered
in this paper.
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Table 6: Classification results of our proposed learned graph structures compared to heuristic-based
graph construction methods and recent non-graph approaches. Reported metrics include accuracy
and macro-averaged F1 score. Results marked with ‡ are not directly comparable, as they use a
subsample of the arXiv dataset and only abstracts for classification.

BBC News HND arXiv
Graph Scheme Acc F1-ma Acc F1-ma Acc F1-ma
Non-graph-based strategies
Longformer-base 97.9 97.8 85.4 85.3 86.9 86.7
LongT5-tglobal-base 96.3 96.3 74.6 74.5 87.8 87.8
BERT (Park et al., 2022) – – 92.0 – – –
CogLTX (Park et al., 2022) – – 94.8 – – –
rRF (Singh et al., 2022) 96.2 96.1 – – – –
ConfliBERT-SCR (Hu et al., 2022) – 98.1 – – – –
Prefix-Propagation (Li et al., 2023a) – – – 81.8 – 83.3
LSG (Condevaux & Harispe, 2023) – – – – – 87.9
RAN+Random (Li et al., 2023b) – – 93.9 – 80.1 –
RAN+GloVe (Li et al., 2023b) – – 95.4 – 83.4 –
RAN+Pretrain (Li et al., 2023b) – – 96.9 – 85.9 –
PFC (Yun et al., 2023) 98.1 97.1 – – ‡76.0 ‡61.0
RoBERTa (Reusens et al., 2024) 98.0 97.0 – – – –
Llama-3.2-1B-Instruct (Li et al., 2025a) – – – – 89.2 89.0
Llama-3.2-3B-Instruct (Li et al., 2025a) – – – – 90.4 90.3
ModernBERT-base (Li et al., 2025a) – – – – 81.0 81.1
AChorDS-LVQ (Mohammadi & Ghosh, 2025) – – 91.8 – – –
Heuristic-based graphs
complete graph 99.9 99.9 94.6 94.5 – –
sentence order 99.7 99.7 92.6 92.6 87.8 87.3
window co-occurrence 99.8 99.8 92.1 92.1 87.9 87.4
mean semantic similarity 99.4 99.3 91.2 91.1 – –
max semantic similarity 99.7 99.7 92.8 92.8 87.8 87.3
Our learned graphs
learned mean-bound 99.9 99.9 95.0 94.9 – –
learned max-bound 99.6 99.6 92.6 92.6 91.9 91.7

Park et al. (2022) fine-tuned several Transformer-based models, including BERT (Devlin et al.,
2018) and CogLTX (Ding et al., 2020). BERT was fine-tuned on truncated inputs to the first 512
tokens, using a fully connected layer on the [CLS] token for classification. In turn, the Cognize
Long TeXts (CogLTX) model was included in the study with the hypothesis that a small set of key
sentences is sufficient for accurate document classification.

Another method, rRF (removal of Redundant Feature) (Singh et al., 2022) applies dimensionality
reduction by eliminating redundant information based on word-level similarity scores computed
using GloVe embeddings (Pennington et al., 2014), followed by a Naive Bayes classifier.

ConfliBERT (Hu et al., 2022) is a domain-specific pre-trained language model for conflict and po-
litical violence detection. Although the authors explore both pretraining from scratch and continual
pretraining strategies, Table 6 only reports the best-performing variant – pretrained from scratch
using cased data (SCR).

Although parameter-efficient tuning methods aim to reduce memory overhead while attaining com-
parable performance to fine-tuning of pretrained language models, they often fail to model long
documents. To address this, Li et al. (2023a) propose Prefix-Propagation, a technique that allows
prefix hidden states to dynamically evolve across layers by incorporating them into the attention
mechanism.

To further mitigate the quadratic complexity of Transformer self-attention for long sequences, Lo-
cal Sparse Global (LSG) attention is proposed in (Condevaux & Harispe, 2023). LSG follows a
block-based processing of the input and applies local attention to capture local context for nearby
dependencies, sparse attention for extended context, and global attention to improve information
flow inside the model.

In a similar direction, Li et al. (2023b) propose the Recurrent Attention Network (RAN), which
introduces a recurrent formulation of self-attention to handle long sequences, enabling long-
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term memory and extracting global semantics in both token-level and document-level representa-
tions. RAN processes sequences in non-overlapping windows, applying positional multi-head self-
attention to a window area, and propagates a global perception cell vector across windows to capture
long-term dependencies. Table 6 presents results for three RAN variants: i) RAN+Random, with
randomly initialized weights; ii) RAN+GloVe, using GloVe embedding (Pennington et al., 2014) as
word representation; and iii) RAN+Pretrain, pretrained with a masked language modeling objective
on the BookCorpus (Zhu et al., 2015) and C4 (RealNews-like subset) (Raffel et al., 2020).

To further reduce the computation of self-attention, Yun et al. (2023) propose a PFC strategy, which
integrates a token pruning step to eliminate less important tokens from attention computations, and
a token combining step to condense input sequences into smaller sizes.

Despite such innovations, full model fine-tuning remains widely adopted in document classification.
For instance, a fine-tuned RoBERTa (Liu et al., 2019) was used by Reusens et al. (2024), combin-
ing Bayesian search with author recommendations for hyperparameter setting. Similarly, Li et al.
(2025a) evaluate small language models in real-world classification tasks, focusing on best practices
and tuning strategies to address text classification effectively. The study included Llama3.2 (1B-3B)
(Touvron et al., 2023) and ModernBERT-base (Warner et al., 2024).

Finally, Adaptive Chordal Distance and Subspace-based LVQ (AChorDS-LVQ) (Mohammadi &
Ghosh, 2025) is introduced as a prototype-based approach for learning on the manifold of linear
subspaces derived from input vectors. The method learns a set of subspace prototypes to represent
class characteristics and relevance factors, automating the selection of subspace dimensionalities
and the influence of each input vector on classification outcomes.

E.2 CLASSIFICATION RESULTS

In both the BBC News and arXiv datasets, our learned graph structures consistently outperform all
baseline models, including both heuristic-based graphs and recent non-graph approaches. On BBC
News, our learned mean-bound graphs achieve near-perfect performance with 99.9% accuracy and
F1 score, significantly surpassing the best non-graph alternative, PFC, which reaches 98.1% accu-
racy and 97.1% F1 score. Similarly, on arXiv, our learned max-bound graphs have a considerable
advantage over other graphs as well as over the strongest non-graph model, fine-tuned Llama-3.2.
While Llama-3.2 reports 90.4% accuracy for the 3B version and 89.2% accuracy for the 1B variant,
our learned graphs yield 91.9% accuracy and 91.7% F1 score without requiring manual construc-
tions or task-specific expert knowledge. In contrast, on the HND dataset, heuristic-based graph
methods underperform compared to non-graph baselines. However, our learned graphs remain com-
petitive with top-performing models, such as RAN and CogLTX, demonstrating their capacity to
capture the document structure.

The observed results underscore the effectiveness of automatically identifying task-relevant seg-
ments within input sequences, supporting the integration of local contextual information at lower
textual granularities while preserving global semantics at higher levels. Moreover, the performance
of RAN demonstrates the benefit of attention mechanisms that operate over windows with explicit
propagation of information from fine-grained units (e.g., tokens) to higher-level representations.
Such a strategy offers a clear advantage over conventional sequential models in constructing com-
prehensive document representations. The results from Table 6 further motivate future work to
explore alternative filtering strategies, other attention mechanisms, and hierarchical approaches to
constructing graphs over multiple text granularities (e.g., sentences, sections) via heterogeneous
graph structures.

Use of Large Language Models. AI assistants were only used for paraphrasing and spell-
checking. All content, ideas, and claims presented in this paper remain the original work of the
authors.
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