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Abstract— Change detection is the foundation of intelligent
video surveillance of the airport ground. However, experiments
have shown that change detection algorithms with good perfor-
mance on traditional datasets (e.g., CDnet2014) perform poorly
in airport ground surveillance. The reason is that traditional
datasets focus on the diversity of scenarios, while the practical
application requires robustness against various changes in a sin-
gle scene. We posit that the solution to this problem is to establish
a unique dataset for airport ground surveillance and develop
specific algorithms for this scenario. In this paper, we present
an Airport Ground Video Surveillance benchmark (AGVS) for
change detection of the airport ground. AGVS includes 25 long
videos, amounting to about 100000 frames and accurate ground
truth for all frames. Each video contains multiple challenges
specific to the airport ground (e.g., haze, camouflage, strip
shape, shadow and illumination change, simultaneous multi-scale
objects) and various appearance changes of the aircraft). Change
detection ground truth is generated by manual annotation. The
AGVS benchmark can be downloaded from www.agvs-caac.com.
Furthermore, we conduct a simple review of current change
detection algorithms, both unsupervised or supervised, and then
21 state-of-the-art algorithms are tested and analyzed on the
AGVS benchmark. Finally, we conclude with algorithm design
principles of change detection for airport ground surveillance.

Index Terms— Benchmark, change detection, background sub-
traction, airport ground, video surveillance.

I. INTRODUCTION

THE airport ground, as a typical transportation scene,
is becoming busier as air passenger and cargo volumes

continue to grow at a rapid pace. The airport ground needs
to become more advanced to meet the operational chal-
lenges, especially for capacity-constrained airports. Change
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detection, also known as background subtraction or fore-
ground/background modeling/detection/segmentation, aims to
segment the moving object from the scene background.
Change detection is the foundation of many intelligent video
surveillance tasks of the airport ground [1], such as aircraft
tracking, visual conflict alerts, and visual docking guidance.

Four state-of-the-art change detection algorithms are tested
in airport ground videos, as shown in Fig. 1. We can see
that the detection results are poor. Our further experiments
indicate that the performance of almost all change detection
algorithms is significantly reduced from fundamental research
to the airport ground, and the average reduction of detection
accuracy is about 25%. That is, there is a gap between change
detection in real application and that in fundamental research.
This phenomenon has also been noticed by other scholars,
such as Garcia-Garcia et al. [2].

The study of change detection in fundamental research
is based on CDnet [3] and similar datasets, which include
multiple scenes but with limited samples for a single scene.
In this case, excellent algorithms in fundamental research
imply applicability to various scenarios, that is, good general-
ization. However, in practice, even a single scene may have
complex changes, as in Fig. 1. Accordingly, what the real
application needs is robustness of change detection against
various changes in a specific scene, so generalization is
not the primary concern. In other words, the real application
and fundamental research put forward different requirements
for change detection. This is why state-of-the-art algorithms
in fundamental research fail in airport ground surveillance.
To bridge the gap between fundamental research and real
application, the best solution is to design datasets specific
to a single scene. Such a dataset should cover the wide
variety of challenges in the scene. Then, new change detection
algorithms for the challenges in the scenario can be designed.
Although such an algorithm may be not generalized, it is the
most practical algorithm for the scene.

In this paper, a new change detection benchmark called
the Airport Ground Video Surveillance benchmark (AGVS)
is presented. There are 25 long videos, amounting to about
100000 frames, in AGVS. All videos contain multiple chal-
lenges specific to the airport ground, such as haze, camouflage,
shadow, strip shape, simultaneous multi-scales, non-uniform
illumination change, various shape and color changes of
aircraft, and different weather conditions. For the given videos,
we adopt manual annotation to generate the pixel-wise ground

1558-0016 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on February 18,2023 at 05:19:13 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9726-0858
https://orcid.org/0000-0002-9938-0917
https://orcid.org/0000-0001-6853-5878
https://orcid.org/0000-0003-0537-4522


ZHANG et al.: AGVS: NEW CHANGE DETECTION DATASET FOR AIRPORT GROUND VIDEO SURVEILLANCE 20589

Fig. 1. Top row: typical frames with haze, camouflage, simultaneous multi-scales, shadow, and non-uniform illumination, respectively. Middle row: change
detection results by SuBSENSE [20], RGMP [41], KNN [26] and FGMM [27], respectively. Bottom row: ground truth.

truth. Some extreme cases like nighttime are not included in
AGVS, but six such videos without ground truth are also avail-
able on the AGVS website. Furthermore, we conduct a simple
review of change detection algorithms based on whether they
are supervised or not, and then 21 classic algorithms are
selected and tested on AGVS. Finally, we include an additional
discussion about how to develop change detection algorithms
for airport ground surveillance.

The rest of this paper is organized as follows. Related work
is reviewed in Section II. The AGVS benchmark is introduced
in Section III. Section IV presents details of the experiments
and discussions, and the conclusion is given in Section V.

II. RELATED WORK

There are already some datasets related to airports, such
as the FGVC-Aircraft dataset [4] and ALERT dataset [5].
The FGVC-Aircraft dataset is for recognition, which con-
tains pictures of hundreds of aircraft and the corresponding
category labels. The ALERT dataset is used for pedestrian
re-identification, and all samples are collected in an airport
terminal. Therefore, the above datasets are not change detec-
tion datasets. There have been some change detection datasets
and a large number of change detection algorithms, which are
discussed briefly below.

A. Change Detection Datasets
The website of the book by Bouwmans et al. [6] links

to many video-surveillance-type datasets, some of which are
change detection datasets. These datasets are broadly divided

into two categories, for humans and for animals, but there are
no airport-themed datasets. We note that some datasets do not
provide pixel-wise ground truth, so they cannot be used as a
change detection benchmark.

Wallflower [7] was the first change detection dataset. It con-
tains seven short clips; each represents a single challenge, like
moved objects, time of day, light switch, waving trees, camou-
flage, bootstrapping, and foreground aperture. The pixel-wise
ground truth is provided for only one frame of each clip. The
TUVD dataset [8] is one of the latest datasets, which includes
55 videos and ground truth for all frames under degraded
atmospheric weather conditions, such as fog, dust, and poor
illumination. The famous PETS series [9], which starts from
year 2000, was designed with the primary goal of tracking
and recognition, and only the bounding-box-type ground truth
is provided. Therefore, such datasets cannot be used as the
change detection benchmark.

There are also some synthetic or semi-synthetic change
detection datasets. The advantage of synthetic datasets is
that the ground truth can be generated automatically by
a computer without time-consuming manual annotation.
Brutzer et al. [10] presented a synthetic dataset rendered by
Mental Ray, and ground truth data were generated by Maya
Vector. All sequences in this dataset show only one scene,
a street corner, but cover different challenges, such as dynamic
background, bootstrapping, darkening, noisy night, shadow,
camouflage, and video compression. There are 29 outdoor
video clips in BMC [11], most of which are synthetic.
Complete pixel-wise ground truth are provided for nine real
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videos and ten synthetic videos. This dataset focuses on
outdoor environments such as wind, sun or rain. Although the
computer-generated ground truth is precise, the data diversity
of synthetic data is relatively insufficient, as the natural scenes
are diverse and full of changes.

Currently, CDnet2012 and CDnet2014 [3] are the most
widely used change detection benchmarks. All clips in the two
datasets are real videos, and the complete pixel-wise ground
truth is available. The CDnet2012 has 31 videos and a total
of about 70000 frames. This dataset covers such challenges as
indoor and outdoor situations, dynamic background, cameral
jitter, shadow, thermal, and intermittent object motion. Based
on CDnet2012, the CDnet2014 adds another 22 real videos,
which have about 70000 frames. The new challenges shown
in CDnet2014 are bad weather, a low frame rate, night,
PTZ, and air turbulence. The scenarios are diverse in CDnet
series, such as a corridor, park, lakeside, bus station, street,
highway, library, office, and blizzard. In terms of the data
diversity and high-quality ground truth of the CDnet series,
they are frequently used to evaluate the generalization of
change detection algorithms.

All the above datasets are visible spectrum datasets. There
are also a few change detection datasets based on non-visible
spectral sensors, such as infrared sensors and RGBD sensors.
The RSIR dataset [12] was captured by a medium-wave
infrared sensor and focuses on remote scenes. Pure infrared
data have some disadvantages such as the lack of object
details, so the fusion of visible video and infrared video
is a more effective approach. Such a dataset is presented
in [13], which includes 25 aligned grayscale-thermal video
pairs with high diversity. The SBM-RGBD dataset [14] was
captured by the RGBD sensor, where the depth data of the
scene are provided in addition to color data. The depth data
represent the distance from the device to the objects in the
scene. Although the additional depth information is beneficial
for change detection, the depth data have several problems,
such as depth camouflage, specular materials, near objects, and
imaging distance [15]. Therefore, RGBD data are limited to
indoor environments. In addition, there are also some datasets
for other detection problems, such as the EVA dataset [16] for
human detection and the MAR dataset for boat detection [17].

B. Change Detection Algorithms
Change detection algorithms can be classified as unsuper-

vised or supervised. The unsupervised methods do not need
ground-truth images for training, while ground-truth images
are required for training in supervised methods.

1) Unsupervised Methods: As ground-truth samples are not
required in unsupervised methods, they can be easily adapted
to various scenarios. The most widely used unsupervised
strategy is statistical modeling [18], including background
modeling and bilayer modeling.

Background modeling only models the background scene,
which can be divided into two classes: non-parametric models
and parametric models. These approaches model each pixel
as a random variable with an associated Probability Density
Function (PDF). Kernel Density Estimation (KDE) [19] is
the first non-parametric model, where the PDF is estimated

from samples using KDE, without any assumptions about the
underlying distributions. For a new observation, its PDF is
compared with a fixed threshold for classification. Besides
color features, spatiotemporal binary features are adopted
in SuBSENSE [20] to detect subtle local changes. Sample
counting is used in ViBe [21] instead of KDE, making
this method extremely fast. The classification threshold in
PABS [22] is adaptive to meet the background dynamics. The
HSV color space is used in SOBS [23], and each pixel is
enlarged 3 × 3 times in models to account for the spatial
relationship between pixels. GMM [24] is a typical parametric
model, where the PDF is specified as a combination of a fixed
number of Gaussian components. The probability estimation
may be inaccurate if the specified Gaussian distribution cannot
fit the underlying distribution [25], so scholars have made
many improvements. A recursion strategy is used in KNN [26]
to select the appropriate number of Gaussian components.
The parameters in FGMM [27] vary in an interval with
uniform possibilities instead of fixed values. Consequently,
the likelihood probability of FGMM is an interval rather
than a precise number to account for the GMMs’ uncertainty.
Bodids [28] is a bilayer method, where both the foreground
and background are non-parametrically modeled and used to
competitively classify new observations.

Another unsupervised strategy is Principal Component
Analysis (PCA)-based or Robust-PCA (RPCA)-based mod-
eling that relies on low-rank and sparse decomposition. The
low-rank component and sparse component of videos corre-
spond to background and foreground, respectively. This type
of method is well known for robustness in the presence of
illumination changes. The EigenSpace model [29] is formed
by PCA on background images. The input image is projected
onto the space expanded by the EigenSpace model, and the
foreground is detected by thresholding the Euclidean distance
between the input image and projected image. RPCA methods
can be divided into two classes: batch RPCA and incremental
RPCA. Batch RPCA methods, such as GoDec [30], process
video frames in batches, so they are not real-time and mostly
work offline. Incremental RPCA is the online modification of
previous methods by incrementally computing only one frame
at a time. The GRASTA [31] employs the based-L1 norm
loss function for each frame to encode the sparse foreground
component, while a more complex loss term is introduced
in GOSUS [32] to represent the structured sparsity of the
foreground. The MEDRoP [33] is the incremental extension
of the basic RPCA algorithm. The incremental learning step in
IMTSL [34] is based on tensor representation. In addition to
RPCA and statistical modeling, there are other types of change
detection algorithms. In CodeBook [35], each background
pixel is modeled with codebooks, enabling the capture of the
structural information of the background.

2) Supervised Methods: Supervised change detection algo-
rithms are essentially video object segmentation algorithms.
The task of video object segmentation is to manually specify
the object to be segmented in the first frame, and then automat-
ically segment the specified object from all subsequent frames.
If the object to be segmented is specified as the moving object,
the video object segmentation algorithms can be adapted to
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change detection. The main trend toward supervised change
detection is based on deep learning, which can be divided
into image-type and video-type methods.

The temporal correlation between frames is not consid-
ered in image-type methods. The encoder–decoder network is
widely used in image-type methods. Lim and Keles [36] pro-
posed FgSegNet for change detection, which contains a triplet
convolutional neural network (CNN) for feature encoding and
a transposed convolutional network for decoding. In order to
obtain richer features, the triplet CNN operates in three dif-
ferent scales in parallel for feature encoding of the same input
image. This method is further extended in FgSegNet2 [37] by
introducing feature fusions into the network to enhance multi-
scale features.

The cascade structure of multiple networks is also consid-
ered in image-type methods. In CascadedCNN [38], a multi-
scale CNN similar to the encoding part of FgSegNet is used
as the first level of the cascade framework. Then, output
foreground probability maps of the first level are concatenated
with the original frames and fed to the second level, another
multi-scale CNN model, to refine the foreground probability
maps. As stated in [38], such a cascade structure can be used
to enforce the spatial coherence constraint so that better results
can be obtained, with more cascaded levels.

Video-type methods are mainly based on the 3D convo-
lutional neural network (3D CNN), long short-term memory
(LSTM), or two-stream network, which explicitly use temporal
cues in videos for classification. For example, the two-stream
network consists of two parallel branches, namely appear-
ance stream and motion stream, where the motion stream
is generally based on the optical flow between frames. The
two-stream network is employed in SegFlow [39] for object
segmentation, where the appearance and motion streams are
based on the fully convolutional network and FlowNetS [40],
respectively. To enable communications between the two
branches, SegFlow propagates feature maps between the two
streams bidirectionally during the upsampling stage.

The encoder–decoder structure is also considered in video-
type methods. For example, RGMP [41] exploits a Siamese
encoder–decoder framework to carry out object segmentation.
The Siamese encoder includes two parameter-shared branches:
a reference branch and a target branch. Inputs to the reference
branch are a reference image, generally the first frame of
a video, and the corresponding ground truth mask, which
specifies the targets to be detected. For the target branch,
inputs include the current frame and the mask of the previous
frame. Therefore, the function of RGMP is to propagate the
target mask from the previous frame to the current frame by
referencing the ground-truth information of the first frame.

We note that the semi-supervised approach has been pro-
posed for change detection in recent years and achieved
good results. For example, a semi-supervised method called
GraphBGS-TV was presented in [42] to detect moving objects
by minimizing the total variation of graph signals. Another
graph learning based method was introduced in [43]; it
requires less labeled data than deep learning methods but has
demonstrated competitive results on both static and moving
cameras. In addition to the above methods, there are many

Fig. 2. The whole construction process of AGVS.

excellent change detection algorithms. See [44] and [45] for
a comprehensive review of unsupervised algorithms, and [46],
[47] for a review of supervised algorithms.

III. AGVS BENCHMARK

Previously compiled change detection datasets, such as
the CDnet series, generally focus on data diversity. In such
datasets, there is usually less data representing a single
scene and less data reflecting the particularity of the scene.
On the contrary, in practical application, the algorithm requires
robustness against various changes in a specific scenario.
This inspires us to build a dataset covering a wide range of
changes for a single scene and to design unique algorithms
for the scene. Based on this consideration, a new change
detection dataset, AGVS, is presented for airport ground video
surveillance. The whole construction process of AGVS is
shown in Fig. 2, which includes two steps: data acquisition
and data annotation.

A. Data Acquisition
Because the airport ground is a semi-militarized area, the

authority of data acquisition is obtained through cooperation
with the Civil Aviation Administration of China (CAAC). The
data collection site is a large international airport in Southwest
China. The data acquisition equipment includes four fixed
cameras and a PTZ camera, with resolutions of 1280*960
and 1280*720, respectively. Unlike most fundamental research
datasets composed of short videos, long videos are collected
for AGVS. Short videos containing a single challenge are
convenient for experimental analysis but are not in line with
the real application, where the scene may change and multiple
challenges often coexist. This is why the performance of
fundamental research algorithms decreases in airport ground
surveillance. We collect hundreds of long videos within a few
months and finally select 25 video clips for AGVS (S1∼S25).
The first 22 videos (S1∼S22) are captured by the fixed camera
from different viewing angles or focal lengths, while the last
three videos (S23∼S25) are captured by the PTZ camera. The
total number of frames is about 100000.

Typical frames of some videos in AGVS are shown in
Fig. 3. The first nine videos (S1∼S9) are captured with the
same viewing angle and focal length but different weather
conditions, such as moderate overcast (S7), heavy overcast
(S8), in the rain (S5, after the rain S9), sunny day (S6), sunny
days with sheet thin clouds (S1), lead clouds (S3), flocculent
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Fig. 3. Example pictures of some videos in AGVS.

Fig. 4. Illustration of the ground-truth generation process.

clouds (S4), or mist (S2). Moreover, S10, S11, and S13 have
the same viewing angle and focal length but different weather
conditions. The three videos mainly focus on the camouflage
problem. S16, S17, S18, S19, and S21 have the same viewing
angle but different focal lengths, such as a long focal length
(S16), short focal length (S17), and normal focal length (S19).
Further, S14, S15, S21, and S22 also have different viewing
angles. The PTZ camera shows different motion patterns in
S23, S24, and S25, such as switching between moving and
stopping (S23), or continuing to move (S24, S25).

We have introduced AGVS from the perspective of the
viewing angle and focal length. We do not further categorize
the videos in AGVS based on various challenges in the
scene. This is because the premise of categorization based
on challenges is to obtain videos containing only a single
challenge, while all videos in AGVS actually contain multiple
challenges. For example, haze can be seen together with dif-
ferent focal lengths and viewing angles (S16∼S22). Moreover,
the non-uniform illumination change can be seen in many
sequences, such as S4 and S17. The camouflage frequently
appears in different video segments. In addition, some special
challenges in AGVS do not exist independently. For instance,
the shape and color variation of aircraft is reflected by the
comparison of multiple targets in all videos, and the strip shape
exists any time the aircraft targets appear. Because the airport
ground is a broad scene, the challenge of the simultaneous
multi-scales exists in any video of AGVS. The reason for
this phenomenon is that we cannot access the airport ground
to set the scene background and control the moving aircraft
owing to the semi-militarized nature of the airport ground.

Therefore, we can only obtain the real data of the uncontrol-
lable airport ground scene. In fact, the data of all real scenes,
including the airport ground, always coexist with multiple
challenges. Although data containing a single challenge cannot
be collected, we attempt to select such videos where a certain
challenge can dominate the whole sequence or a segment of
the sequence to a certain extent for AGVS. The description
of various challenges in AGVS is given at the end of this
section.

B. Data Annotation
The manually annotated pixel-wise ground truth is gen-

erated for all frames in AGVS, which is a time-consuming
task. The change-detection ground truth for each frame is a
binary mask, where one value represents the moving object,
and the other represents the background. The annotation tool
is developed based on LabelImg, which has been used in
some detection algorithms such as R-CNN and YOLO to
generate training samples. The annotation process is illustrated
in Fig. 4. First, we select an aircraft and zoom in on the area
where the aircraft is located. Second, we use the mouse to draw
a polygon along the outline of the aircraft (Fig. 4(b)). In order
to fit the contour of the aircraft as accurately as possible,
we draw more lines in curved parts, such as the nose and
engine of the aircraft, as shown in Fig. 4(c). Next, we annotate
each target in turn as in Fig. 4(d), and finally get the complete
ground-truth mask in Fig. 4(e). The above process is repeated
for each frame in AGVS. Because the AGVS dataset has a total
of about 100000 frames, more than ten students participated in
the annotation work part-time, which took about 10 months.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on February 18,2023 at 05:19:13 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: AGVS: NEW CHANGE DETECTION DATASET FOR AIRPORT GROUND VIDEO SURVEILLANCE 20593

Fig. 5. Different shape and color patterns of aircraft in AGVS.

There are some important considerations in the above anno-
tation process. First, before labeling a target, it is necessary
to verify whether the target is in motion or at rest. In change
detection, change is defined as the moving object, so only
the moving object should be labeled, and the stationary object
should not be marked as foreground. Because there are many
intermittent aircraft in AGVS, the motion state of the aircraft
in each frame must be carefully judged. In our work, this is
achieved through repeated playback and visual observation of
the whole video before annotation. Second, as most targets in
AGVS are relatively small, we set a rule that if the target is too
small to see an aircraft from the outline, it is not marked. The
target area at this point is about 100 pixels. Finally, owing to
the fatigue that occurs when people perform repetitive work,
sometimes, the labeled data are not accurate enough. At this
point, there must be people to check the annotation results.
If the mask is not accurate enough, it must be re-annotated.
In our work, two people independently review the annotation
results frame by frame. Only when two people agree is the
annotation qualified.

The original LabelImg was not designed for change detec-
tion, so it is not applicable for use in our work. In order
to facilitate ground-truth annotation, we added some new
functions in LabelImg. For example, it is allowed to load the
mask of the previous frame and superimpose it on the current
frame. Then, the mask of the current frame can be obtained
by adjusting the polygon of the loaded mask. Considering
the correlation between adjacent frames, this strategy can
accelerate the manual annotation. This customized annotation
tool can also be downloaded from the website of AGVS.

C. Challenges

Some challenges in AGVS are unique to the airport sce-
nario, while others are common to other scenes but have
special manifestations on the airport ground. Although all
videos in AGVS have multiple challenges, some challenges
can be highlighted in certain videos or video clips. Next,
we describe each challenge and its distribution in the AGVS
dataset.

1) Haze: Fig. 1(a) shows a type of disastrous weather, haze.
Haze leads to a decrease in the image contrast, which makes it
difficult to distinguish the moving object from the background.
Further, the influence of haze on the image contrast increases
with the increase of the monitoring distance. Because the
monitoring distance of the airport ground can be as far as
kilometers away, even mild haze has a serious impact on
change detection. As shown in Fig. 1(a), all moving targets are

misdetected under mild haze. However, this degree of haze has
little effect on close surveillance. The mild or moderate haze
can be seen in several sequences in AGVS, such as from S16
to S22. More severe haze is not included in AGVS, because
the image contrast drops to the point where the foreground
and background cannot be distinguished by the human eye.
Thus, haze is one of the biggest challenges for airport ground
surveillance.

2) Camouflage: Camouflage is when the moving target
has similar colors as the occluded background area. In this
case, it is difficult to completely detect the moving object,
because the foreground and background are too close in the
feature space. Camouflage is widespread in all scenarios, but
it has a special manifestation in airport ground surveillance.
All over the world, airport grounds made of cement are gray-
white, and the main color of most civil aircraft is also white,
as shown in Fig. 1(b). In such cases, the camouflage problem
is unavoidable, and the detection defect is serious. Camouflage
of varying degrees can be seen in all videos of AGVS.

3) Simultaneous Multiscale Detection: Although the scale
change can be seen in many datasets, it is unique in airport
ground surveillance. In common surveillance scenarios, the
challenges caused by scale change are small-scale target detec-
tion and large-scale target detection. Small targets are easily
missed or submerged in the noise, while large targets are prone
to detection defects and fractures. This phenomenon can also
be seen in airport ground surveillance. However, in airport
ground surveillance, the challenge of scale change lies not
only in small and large targets but also in the simultaneous
existence of multi-scale targets. As shown in Fig. 1(c), both
targets within dozens of meters are visible in details, and far
beyond a kilometer and even blurred in outline, they can be
seen in the same camera field of view at the same time. Such
concurrent multi-scales are due to the huge size of airport
grounds and can be seen in all videos of AGVS.

The solutions to small and large target detection are dif-
ferent. For simultaneous multi-scale targets, these solutions
may conflict with each other. As shown in Fig. 1(c), post-
processing is used in KNN [26] to remove the shadow area
under the large-scale aircraft (shadow pixels are indicated in
gray). However, the smallest aircraft is removed at the same
time. Therefore, how to detect multi-scale targets simultane-
ously, including small and large target detection, is a special
challenge for airport ground surveillance.

4) Shadow and Non-Uniform Illumination Change: Shadow
and illumination change can be seen in many datasets. As the
airport ground is an outdoor scene, shadow and illumination
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Fig. 6. (a) to (d): Water mist, midnight, self-luminescence, and strong
reflection, respectively.

must be considered in AGVS. Even in weak illumination or
haze, the aircraft casts shadows owing to its huge size. Both
soft and strong shadows are visible in almost all sequences
of AGVS. However, there is something special about the
illumination change in the airport ground. As shown in
Fig. 1(d), there is large-area non-uniform illumination change
caused by cloud movement. This is because the airport ground
is too broad. The illumination change in AGVS is almost
non-uniform.

5) Shape and Color Variation: The shape of a plane
looks different from different viewing angles and distances.
Head-looking, side-looking, tail-looking, close-range, and
long-range aircraft can be seen in AGVS. The color of aircraft
also varies greatly in AGVS, such as all-white, all-red, all-blue,
and white-based aircraft mixed with various strips or patterns
of other colors. Some shape and color patterns in AGVS are
shown in Fig. 5. Because there are all types of planes, AGVS
cannot cover all aircraft appearance variations. Shape and color
variation is a key challenge for supervised change detection,
which generally expects that the training samples are capable
of covering all appearance changes. However, no dataset can
meet this requirement.

6) Strip Shape: The fuselage and wing of aircraft have
strip shapes. It is difficult to detect such objects completely.
For example, the fuselage often encounters detection defects
and fractures, while the thin-strip wing sometimes cannot be
detected at all. We consider the strip shape as an independent
challenge, because the detection integrity of the fuselage and
wing is important for some applications in airport ground
surveillance. For instance, for visual conflict alerts and visual
docking guidance, the wingtips of aircraft wings must be
accurately located before further processing.

7) PTZ Camera: The video acquisition equipment from S23
to S25 is the PTZ camera. In such cases, both the foreground
and background are moving. The PTZ video is a special
challenge for unsupervised methods, as they generally assume
that the background is stationary or approximately stationary
to facilitate pixel-wise background modeling. However, this
assumption cannot be satisfied in PTZ videos.

8) Other Challenges: Some challenges, such as different
weather conditions, viewing angles, and focal length changes,
have been introduced in Section III-A. There are also some
interesting challenges in AGVS, such as the water mist stirring
by the aircraft engine, shown in Fig. 6(a). Some extreme
cases like midnight, self-luminescence, and strong reflection
(Fig. 6(b) to Fig. 6(d)) are not included in AGVS, because
they are too difficult for current change detection methods.
However, six such videos without ground truth (V1∼V6) are
also available on the AGVS website for interested readers.

IV. EXPERIMENTS

In this section, we test the algorithms introduced in
Section II on AGVS and discuss how to develop change
detection algorithms for airport ground surveillance. A total of
21 algorithms with public codes are tested: KDE [19], SuB-
SENSE [20], ViBe [21], PBAS [22], SOBS [23], GMM [25],
KNN [26], FGMM [27], Bodids [28], EigenSpace [29],
GoDec [30], GRASTA [31], GOSUS [32], MEDRoP [33],
IMTSL [34], CodeBook [35], FgSegNet [36], FgSegNet2 [37],
CascadedCNN [38], SegFlow [39], and RGMP [41]. The
first 16 algorithms are unsupervised, and the last five are
supervised.

A. Experimental Settings

Because unsupervised and supervised change detection are
two different solutions, it is unfair to compare them together.
For unsupervised algorithms, if the algorithm parameters are
fixed, the experimental results are also fixed. For supervised
algorithms, using different training samples results in com-
pletely different experimental results. Therefore, our strategy
is to test unsupervised and supervised methods separately for
each challenging problem and then discuss the two solutions
together at the end of Section IV.

For each unsupervised method, we use the recommended
parameters in public codes, and then the algorithm is applied
to all videos in AGVS without parameter tuning. In par-
ticular, because PCA/RPCA methods need to load multiple
frames simultaneously for matrix decomposition, we first
reduce the image resolution before testing. For GoDec [30],
GRASTA [31], and GOSUS [32], it is reduced to 320 ∗ 240;
for MEDRoP [33], it is 128 ∗ 96; and for IMTSL [34],
it is 160 ∗ 120. As for the parameter setting of the five
supervised algorithms, we find that the performance when
using the original supervised method directly on AGVS is
poor. Therefore, for each sequence in AGVS, we fine-tune
the original supervised model based on the corresponding
ground truth to obtain a scene-specific model before testing
on the same sequence. We choose one ground truth frame
every 20 frames for the fine-tuning operation. Note that such
scene-specific models essentially are over-fitting. The training
process of the five supervised algorithms is briefly described
as follows.

The train stage of FgSegNet [36] and FgSegNet2 [37] is the
same: The network is first initialized with the weights trained
on CDnet2014 [3], and then in the process of fine-tuning
on AGVS, the RMSProP optimizer is used for updating the
parameters with a small learning rate of 1e-4. For cascaded-
CNN [38], we also use the pre-trained model on CDnet2014
and then use the Adadelta optimization method to update
the weights with an initial learning rate of 1e-2. As for
SegFlow [39], owing to the infeasibility of creating optical
flow ground truths, offline training is only applied on the
segmentation branch. After initializing the two branches uti-
lizing the weights from ResNet101 [48] and FlowNetS [40],
respectively, we update the weights of the segmentation branch
using AGVS, with the optical flow branch frozen at the same
time. Moreover, the network is trained with the SGD optimizer,
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Fig. 7. Left to right: a frame in S22, ground truth, GMM [25], Bodids [28], CodeBook [35], EigenSpace [29], respectively.

Fig. 8. Left to right: a frame in S20, ground truth, ViBe [21], KDE [19], SOBS [23], GoDec [30], respectively.

Fig. 9. Left to right: a frame in S4, ground truth, GRASTA [31], GOSUS [32], MEDRoP [33], IMTSL [34], respectively.

starting from the learning rate 1e-8. As for the optimization
of RGMP [41], we fine-tune the network with AGVS after
pre-training on DAVIS-2017 [49] dataset, but without the first
stage of training on the simulated samples described in [41].
During the experiments, we use the SGD optimizer for all
sequences in AGVS with a fixed learning rate of 1e-5.

B. Qualitative Analysis
The detection results for each challenge are shown in this

section. As all videos in AGVS contain multiple challenges,
we try to choose video frames dominated by a certain chal-
lenge for the experiment. However, although the detection
performance mainly depends on the dominant challenge, it is
actually the result of multiple challenges acting together to
varying degrees. We cannot show the visual results of all
algorithms at the same time, so only representative detection
results are chosen for demonstration.

1) Unsupervised Methods: The detection result of unsuper-
vised change detection for haze is shown in Fig. 1(a), where all
moving objects are misdetected by SuBSENSE [20]. Note that
in addition to haze, the small target is also a major challenge,
as shown in Fig. 1(a). Another example is shown in Fig. 7,
where haze is the most dominant challenge. It can be seen that
all four algorithms, GMM [25], Bodids [28], CodeBook [35],
and EigenSpace [29], have serious detection defects. The
experimental results of other unsupervised algorithms on haze
videos are similar to those shown in Fig. 7. Fig. 8 shows
a typical camouflage scenario where two white aircraft are
moving on the gray-white ground. We can see that there
are significant detection defects by ViBe [21], KDE [19],
SOBS [23], and GoDec [30]. Other unsupervised algorithms
have similar results. Note that PCA/RPCA-based methods, that

is, EigenSpace [29] and GoDec [30], have better detection
integrity than statistical methods in the two figures, which
is the advantage of this type of algorithm. However, the
shortcoming of PCA/RPCA methods is also obvious; that
is, stationary aircraft and ghost are also detected as the
foreground. In contrast, the ability to distinguish between
motion and stillness is the advantage of statistical modeling.

The detection result of unsupervised change detection for
simultaneous multi-scale detection is shown in Fig. 1(c), where
the nearest aircraft is split, and the farthest aircraft is removed
as shadow. It is difficult to take into account the objects of all
scales simultaneously. For example, if post-processing such as
morphology is used to deal with the split of the large aircraft,
the distant target may be severely deformed at the same time.
Simultaneous multi-scale objects can be seen in most videos
in AGVS, and this often appears at the same time as other
challenges, such as in Fig. 1(a), with haze, and in Fig. 8, with
camouflage. Shadow and non-uniform illumination change are
shown in Fig. 1(d), and there is a lot of detection noise by
FGMM [27]. The performance of other statistical methods is
similar to that of FGMM. The detection results of PCA/RPCA
methods under non-uniform illumination change are shown in
Fig. 9. Although such methods are known for their robustness
against illumination, we can see that non-uniform illumination
change is still a severe challenge.

Shape and color variation of aircraft can be seen in all the
above figures. As the unsupervised method does not require
training, it essentially has good generalization. Therefore, the
unsupervised change detection does not need to take special
consideration of shape and color variation. The above figures
also show that the strip-shaped fuselage and wings have
serious detection defects. Almost no aircraft’s fuselage and
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Fig. 10. Left to right: S22, ground truth, SegFlow [39].

Fig. 11. Left to right: S7, ground truth, RGMP [41].

Fig. 12. Left to right: S17, ground truth, FgSegNet [36].

wings are completely detected by any unsupervised algorithm.
One solution is to impose shape constraints on the aircraft
within the unsupervised framework. However, the consequence
is losing generalization and making the algorithm sensitive
to shape and color variation. The detection result for PTZ
camera is not shown, because the unsupervised algorithm is
completely invalid for this problem.

2) Supervised Methods: Fig. 10 shows the detection result
of SegFlow [39] under haze, and the result by RGMP [41]
under camouflage is shown in Fig. 1(b). It can be seen
that in both cases, many foreground pixels are misclassified
by supervised algorithms. As for simultaneous multi-scale
detection, the result of RGMP [41] is shown in Fig. 11. We can
see that the small aircraft is missed, and some parts of the large
aircraft are defective or broken, so the multi-scale detection
problem also occurs in supervised change detection. As for
shadow and non-uniform illumination change, the detection
results by CascadedCNN [38], FgSegNet [36], RGMP [41],
and SegFlow [39] are shown in Fig. 12. This experiment
reflects that the supervised strategy is robust against shadows
and illumination Change, which is one of the main advantages
of supervised change detection. This benefits from the training
strategy of the supervised solution. If the training samples
are accurate enough (e.g., no shadow pixels), and the training
samples cover the whole process of illumination change, the
supervised method is robust against shadows and illumination
change.

As for the shape and color variation of aircraft, a new
experiment is conducted, as shown in Fig. 13. The first five
sequences (S1∼S5) are used for training, and other sequences
are used to test the supervised algorithms. With such an exper-
imental setting, the testing images in S9 and S14 have new
shape and color patterns that are not included in the training
samples. We can see that the performance of the supervised

Fig. 13. Left to right: S9, ground truth, ViBe [21], CascadedCNN [38].

Fig. 14. Left to right: S25, ground truth, FgSegNet2 [37].

methods in Fig. 13 is worse than that of the unsupervised
method ViBe [21]. The outline of the detected aircraft by
supervised algorithms is indistinguishable. This suggests a
serious problem with the generalization of supervised change
detection. In current literature, this is often called the unseen
video problem [51], which means new patterns shown in the
testing videos are unseen in the training videos. In fact, the
unseen degree in Fig. 13 is not serious, because the airport
ground appears in both training videos and testing videos,
so it is not unseen. Even if the aircraft in the testing videos
is unseen, it still has many similarities with the aircraft in
the training videos. However, when the unseen degree is not
serious, the performance in Fig. 13 is already poor, indicating
that the unseen video problem is a severe challenge for
supervised change detection. The unseen video issue has been
a research hotspot. For example, data-level and algorithm-level
solutions to unseen videos were presented in [52] and [53] for
change detection, respectively.

The above figures also show that the supervised change
detection is not robust against strip-shaped fuselages and
wings, but it is relatively better than unsupervised algorithms.
The detection result for PTZ camera is shown in Fig. 14, which
indicates that the supervised change detection is effective for
this problem. Only limited detection results are shown in the
above examples. In order to obtain a more intuitive impression
of change detection in airport ground surveillance, we strongly
recommend downloading the whole AGVS dataset and testing
it with public code.

C. Quantitative Analysis
We choose RE, PR and F-Measure (FM) for quantitative

comparison of detection accuracy:
RE = T P

T P + F N
, (1)

PR = T P

T P + F P
, (2)

FM = 2 × RE × PR
RE + PR

, (3)

where TP, FP and FN are the numbers of true positives,
false positives, and false negatives, respectively. A higher RE
means fewer detection defects, and a higher PR indicates fewer
detection noises. FM is the comprehensive result of RE and
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TABLE I

PERFORMANCE COMPARISON OF TOP4 UNSUPERVISED ALGORITHMS AND TOP2 SUPERVISED ALGORITHMS ON AGVS

Fig. 15. Performance comparison of all unsupervised algorithms on AGVS.

PR. When both RE and PR are close to 1, FM is also close
to 1. When either RE or PR deteriorates, FM also decreases.

The average RE, PR, and FM of all unsupervised methods
on the AGVS dataset are shown in Fig. 15. PTZ videos
(S23∼S25) are not considered, as unsupervised algorithms
cannot deal with this problem. We can see that the performance
of statistical modeling is better than that of PCA-/RPCA-based
methods, and SuBSENSE [20], ViBe [21], KNN [26], Code-
Book [35], and GMM [25] are the top five unsupervised algo-
rithms in terms of FM. In fact, the RE of PCA-/RPCA-based
modeling is good, but the overall performance is lowered
because of the poor PR. The reason is that PCA-/RPCA-based
methods cannot distinguish the moving and stationary targets
well, resulting in a large number of false alarms and low PR.

For most testing algorithms in this section, the detection
results on CDnet series are reported on the homepage of
CDnet2014 [3]. By comparing the results on the two datasets,
we find that the average detection accuracy in terms of
FM decreases by about 25% from CDnet2014 to AGVS.

Considering that CDnet2014 is the most widely used bench-
mark in fundamental research, we think that the gap in change
detection between fundamental research and airport ground
surveillance is 25% detection accuracy.

Next, we compute the average RE, PR, and FM of the top
five unsupervised algorithms and all supervised algorithms on
AGVS, as shown in Fig. 16. We can see that the performance
of supervised change detection far exceeds that of unsuper-
vised change detection. Most supervised algorithms have a
FM above 0.8, but none of the unsupervised algorithms have
a FM above 0.6. Furthermore, Table I shows the average
RE, PR, and FM of the top four unsupervised algorithms
and top two supervised algorithms on each sequence of the
AGVS dataset. In Table I, the performance of SuBSENSE is
due to the spatiotempral binary feature, and spatial coherence
is considered in the model update strategy of ViBe, which
makes ViBe robust to isolated detection noise. As a GMM-type
model, the number of Gaussian components in KNN is
adaptive, and the model in CodeBook can reflects some

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on February 18,2023 at 05:19:13 UTC from IEEE Xplore.  Restrictions apply. 



20598 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 11, NOVEMBER 2022

Fig. 16. Performance comparison of the top5 unsupervised algorithms and all supervised algorithms on AGVS.

TABLE II

COMPLEXITY COMPARISON IN TERMS OF FPS ON AGVS

structural information. CascadedCNN has a basic model and a
cascade structure. The output of the basic model is refined in
the cascade structure. FgSegNet is successful because it can
extract multi-scale features. The RE of CascadedCNN is better
than that of FgSegNet, because FgSegNet is the basic model
in CascadedCNN. However, the PR of CascadedCNN is not
as good as that of FgSegNet. This may be because when the
cascade structure of CascadedCNN improves the foreground
detection rate, the false alarm is also enhanced.

Because of the excellent performance of the supervised
algorithm, some may speculate that the unsupervised algorithm
has lost its research significance. However, this is not the case
for two reasons. First, as mentioned earlier, the comparison
in Fig. 16 and Table I is unfair for unsupervised and super-
vised change detection. If we use different training strategies
for supervised change detection, just as shown in Fig. 13,
we obtain completely different detection results. Second, and
most importantly, we cannot obtain the ground truth in advance
in practical application. The ground-truth images are required
for training or fine-tuning of supervised algorithms in our
experiments. In practical application, especially real-time
application, this training strategy is not feasible. In this case,
the unsupervised change detection is still preferred in real
application, at least for now.

Regarding the computation complexity, we compute the
frame per second (FPS) of comparison algorithms, as shown
in Table II. It can be found that the unsupervised method is
much faster than the supervised method from the perspective
of FPS. In our experiments, the platform for the unsupervised
method is a PC with Intel i5-11600KF CPU and 32-GB
RAM, while a single NVIDIA-GTX 1080Ti GPU is added
for the supervised method. Therefore, the hardware cost of
the supervised algorithm is much higher than that of the
unsupervised algorithm. Regarding the space complexity, the
supervised algorithm requires more memory to store model
parameters than the unsupervised method.

D. Additional Discussion

The above experiments indicate that both unsupervised and
supervised change detection encounter multiple challenges in

airport ground surveillance. However, the challenges they face
differ:

• Almost all issues mentioned in Section III pose severe
challenges to the unsupervised change detection except
for shape and color variation;

• Some challenges still exist for supervised change detec-
tion, such as haze and camouflage, while some other
issues almost have no effect on supervised algorithms
when training can be guaranteed, such as shadows;

• Shape and color variation, which relates to training, is a
severe challenge for supervised change detection.

Given that the existing methods cannot solve the above
problems well, how should we design application-oriented
change detection algorithms? Considering that there are multi-
ple challenges in airport ground surveillance, it is unrealistic
to expect a single algorithm to solve all problems. We believe
that the reasonable solution is ensemble learning [50]. Each
classifier in the ensemble system tackles a special challenge,
and then the decisions made by each classifier are combined
by a certain combination rule. This way, all challenges are con-
sidered, and the advantages of various algorithms, such as the
sensitivity to movement of statistical methods, the robustness
of RPCA approaches to illumination change, and the detection
integrity of the supervised algorithms, can be combined to
obtain better results. There are two key issues in this strategy.
One is to design an algorithm for a specific challenge, and the
other is a combination rule of each algorithm.

The detection integrity of supervised change detection on
seen videos is impressive. However, in our experiments, except
in Fig. 13, the ground truth of the video to be tested is required
for training, which cannot be satisfied in practical application.
In order to make use of supervised algorithms in practical
application, it is necessary to improve their generalization
performance so that they can work on unseen videos. Because
the background scenario is fixed in airport ground surveillance,
we have a new way to improve the generalization of supervised
change detection by the use of the unique prior information
in airport ground. For example, the aircraft can only travel
along a fixed route on the ground, the airport ground has
a unique color distribution, an electronic map of the airport
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may be available, and there may be data sources other than
videos.

Note that because there is only a single scene on the airport
ground, AGVS can be used to develop application-oriented
algorithms or evaluate the performance of fundamental
research algorithms in real applications, but it is not suitable
for training fundamental research algorithms.

V. CONCLUSION

Given the gap in change detection between fundamental
research and airport ground surveillance, in this paper, we have
presented a new change detection benchmark, AGVS, and
identified the principles of how to develop specific change
detection algorithms for airport ground surveillance. AGVS
includes 25 long videos, amounting to about 100000 frames
and accurate pixel-wise ground truth. AGVS contains various
challenges on the airport ground, such as haze, camouflage,
simultaneous multi-scale detection, shadows and non-uniform
illumination change, shape and color variation, strip shape,
PTZ camera and some other problems. Some challenges are
unique to the airport ground, and some are common but have
special manifestations in airport ground. After the compari-
son experiments of 21 state-of-the-art algorithms on AGVS,
we have concluded that the solutions for change detection in
airport ground are ensemble learning or making use of prior
knowledge of the airport ground to improve the generalization.
Furthermore, we believe that the gap between fundamental
research and real application is widespread, so there should
be a proprietary dataset for each application scenario, and new
algorithms should be developed on this basis.
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