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Abstract001

Multimodal Large Language Models (MLLMs)002
have demonstrated impressive potential in han-003
dling complex tasks involving visual, auditory,004
and textual data. However, critical issues re-005
lated to truthfulness, safety, and alignment006
with human preference remain insufficiently007
addressed. This gap has spurred the emergence008
of various alignment algorithms. Recent stud-009
ies have shown that alignment algorithms are a010
powerful approach to resolving the aforemen-011
tioned challenges. In this paper, we aim to pro-012
vide a comprehensive and systematic review013
of MLLM alignment algorithms. Specifically,014
we address four critical questions: (1) What ap-015
plication scenarios do existing alignment algo-016
rithms cover? (2) How are alignment datasets017
constructed? (3) How are alignment algorithms018
evaluated? (4) What are the future directions019
for the development of alignment algorithms?020
This work seeks to help researchers organize021
current advancements in the field and inspire022
better alignment methods.023

1 Introduction024

Large language models (LLMs) have ushered in025

a new era for artificial intelligence (AI), demon-026

strating remarkable abilities such as instruction-027

following and few-shot learning (Brown et al.,028

2020), which stem from their extensive model pa-029

rameters and vast training data. These models030

represent a paradigm shift from traditional, task-031

specific models, as LLMs can handle a wide variety032

of general tasks with a simple prompt, without the033

need for task-specific training. This capability has034

fundamentally changed the AI landscape. How-035

ever, while LLMs excel in text processing, they036

are limited by their inability to process multimodal037

data. Our world, on the other hand, is inherently038

multimodal, comprising visual, auditory, and other039

forms of data. This limitation has inspired the de-040

velopment of MLLMs (Fu et al., 2024a), which ex-041

tend LLMs by incorporating the ability to process042
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Figure 1: A timeline of MLLM alignment algorithms

and understand multimodal data. MLLMs open up 043

new opportunities for applications that require the 044

integration and understanding of multiple types of 045

data, expanding the potential of AI. 046

Despite the impressive potential demonstrated 047

by MLLMs in tackling complex tasks that involve 048

visual, auditory, and textual data, the current state- 049

of-the-art MLLMs have rarely undergone rigorous 050

alignment with human preference (Figure 2) such 051

as reinforcement learning from human preference 052

(RLHF) stages (Wang et al., 2024c; Deitke et al., 053

2024; Chen et al., 2024e; Dai et al., 2024; Agrawal 054

et al., 2024; Fu et al., 2025a) and direct prefer- 055

ence optimization (DPO (Rafailov et al., 2024b)). 056

Typically, these models only advance to the su- 057

pervised fine-tuning (SFT) phase, with critical is- 058

sues related to authenticity, safety, and alignment 059

with human preferences remaining inadequately ad- 060

dressed. This gap has led to the emergence of vari- 061

ous alignment algorithms, each targeting different 062

application areas and optimization goals. However, 063

this rapid development (Figure 1) also presents a 064

number of challenges for researchers, particularly 065

in areas such as benchmarking, optimizing align- 066

ment data, and introducing novel algorithms. In 067

response, this paper provides a comprehensive and 068

systematic review of alignment algorithms (Figure 069

3), focusing on the following four key questions: 070
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(a) Pre-training (b) Instruction tuning (c) Alignment With Human Preference

A child is reaching
for a drawer.

A fluffy dog stands
on a patio. Question: What are the 

objects in the picture?

Answer: Colorful crayons.

Question: What is the main 
subject of this image?

Positive: A city bus.

Negative: A person.

Describe this photo.

Beach with chairs, umbrella, 
and people in the water.

What is the person in the 
red box doing in the image?

What is the person in the image 
using to move around?

The person in the image is using 
a wheelchair to move around.

The person seems to be sitting 
on a soft sofa.

The person in the red box 
appears to be crossing the 
street while holding a bag.

Image-caption 
Pairs VQA Pairs

Human Preference 
Pairs

Figure 2: Comparison of pre-training, instruction tuning, and alignment with human preference.

• What application scenarios do existing071

alignment algorithms cover? We categorize072

current alignment algorithms based on their073

application scenarios, offering a clear frame-074

work for researchers across different domains.075

We also establish a unified symbolic system076

to aid researchers in understanding the dis-077

tinctions between various algorithms, which078

is summarized in Table 1 of the appendix.079

• How are alignment datasets constructed?080

The creation of alignment datasets involves081

three core factors: data sources, model re-082

sponses, and preference annotations. We con-083

duct a systematic analysis and categorization084

of these factors(publicly available datasets are085

summarized in appendix Table 2), highlight-086

ing the strengths and weaknesses of current087

dataset construction methods and emphasiz-088

ing key considerations that must be addressed.089

• How are alignment algorithms evaluated?090

Given that most alignment algorithms are de-091

signed for specific tasks—such as addressing092

hallucinations, ensuring safety, and improving093

reasoning—we categorize and organize com-094

mon alignment algorithm benchmarks, pro-095

viding a clear framework for evaluation. The096

full discussion of this section is provided in097

Appendix A due to space limitations.098

• What are the future directions for the de-099

velopment of alignment algorithms? We100

propose several potential future directions,101

such as the integration of visual information102

into alignment algorithms, insights from LLM103

alignment methods, and the challenges and104

opportunities posed by MLLMs as agents.105

Although many existing surveys focus on the 106

alignment of AI (Ji et al., 2024a), none of them 107

specifically address the alignment of MLLMs. To 108

the best of our knowledge, this survey is the first to 109

specifically focus on the alignment of MLLMs. Our 110

objective is to provide a comprehensive and sys- 111

tematic guide for researchers in both academia and 112

industry, helping them identify appropriate tools 113

and methodologies in the rapidly evolving field of 114

alignment algorithms. 115

2 Application Scenarios 116

Recent advancements in MLLM alignment algo- 117

rithms have significantly expanded their applica- 118

bility across a variety of domains. As illustrated 119

in Figure 3, these methods can be categorized into 120

three tiers based on their application scenarios: (1) 121

general image understanding, (2) alignment algo- 122

rithms designed for more complex modalities (such 123

as multi-image, video, and audio), and (3) extended 124

applications targeting domain-specific tasks. The 125

first tier establishes the foundational principles of 126

MLLM alignment. The second tier addresses the 127

challenges of integrating more diverse and complex 128

modalities, enabling more comprehensive multi- 129

modal interactions. Finally, the third tier focuses 130

on adapting alignment frameworks to meet the spe- 131

cialized requirements of specific applications. To- 132

gether, these tiers represent a structured and pro- 133

gressive framework for advancing multimodal in- 134

telligence and broadening its practical impact. 135

2.1 General Image Understanding 136

MLLM alignment algorithms are developed to ad- 137

dress the issue of hallucinations in multimodal 138

systems. Recent research shows that these algo- 139

rithms not only improve performance in this regard 140

but also enhance safety, conversational capabili- 141
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MLLM
Alignment

Application
Scenarios

General Image
Understanding

Mitigating hallucinations

Fact-RLHF(Sun et al., 2023a), DDPO(Yu et al., 2024a), FDPO(Gunjal et al., 2024),
HA-DPO(Zhao et al., 2024), mDPO(Wang et al., 2024a), RLAIF-V(Yu et al., 2024b),
xGen-MM(Xue et al., 2024), CHiP(Fu et al., 2025b), HDPO(Fu et al., 2024c),
DAMA(Lu et al., 2025), (OPA)-DPO(Yang et al., 2025)

Enhancing additional capabilities Silkie(Li et al., 2023a), CLIP-DPO(Ouali et al., 2024), SIMA(Wang et al., 2024e),
LLaVA-Critic(Xiong et al., 2024), MPO(Wang et al., 2024d), Image DPO(Luo et al., 2025)

Multi-Image, Video,
and Audio

Multi-Image MIA-DPO(Liu et al., 2024f)

ICL SymDPO(Jia et al., 2024)

Video LLaVA-NEXT-Interleave(Li et al., 2024a), PPLLaVA(Liu et al., 2025)

Audio-Visual Video-SALMONN 2(Tang et al., 2025)

Audio-Text SQuBa(Eom et al., 2025)

Extended Multimodal
Applications

Medicine 3D-CT-GPT++(Chen et al., 2025)

Mathematics MAVIS(Zhang et al., 2024a)

Embodied Intelligence INTERACTIVECOT(Jiao et al., 2025), EMMOE(Li et al., 2025)

Safety AdPO(Liu et al., 2024a), VLGuard(Zong et al., 2024), PO(Afzali et al., 2025)

Agent RL-COT-VLM(Zhai et al., 2024)

Dataset
Construction

Using External
Knowledge

Human Annotation LLaVA-RLHF(Sun et al., 2023a), RLHF-V(Yu et al., 2024a),
LLAMA 3.1(Team, 2024b), M-HalDetect(Gunjal et al., 2024)

Closed-Source LLM/MLLM

LRV-Instruction(Liu et al., 2024b), HA-DPO(Zhao et al., 2024),
Video-SALMONN 2(Tang et al., 2025), PHANTOM(Lee et al., 2024a),
VLGuard(Zong et al., 2024), VLFeedback(Li et al., 2023a),
MAVIS-Instruct(Zhang et al., 2024a), EMMOE-100(Li et al., 2025), HDPO(Fu et al., 2024c)

Open-Source LLM/MLLM LLaVA-Critic(Xiong et al., 2024), INTERACTIVECOT(Jiao et al., 2025),
CLIP-DPO(Ouali et al., 2024)

Self-Annotation

Single Text Modality SQuBa(Eom et al., 2025), SymDPO(Jia et al., 2024), SIMA(Wang et al., 2024e),
MMPR(Wang et al., 2024d), MIA-DPO(Liu et al., 2024f)

Single Image Modality Image DPO(Luo et al., 2025)

Image-Text Mixed Modality AdPO(Liu et al., 2024a)

Evaluation
Benchmark

General Knowledge
MME-RealWorld(Zhang et al., 2025), MMStar(Chen et al., 2024b), MMBench(Liu et al., 2023b), MMT-Bench(Ying et al., 2024),
BLINK(Fu et al., 2024b), MathVista(Lu et al., 2023), SQA3D(Ma et al., 2023), MMMU(Yue et al., 2024),
MVBench(Li et al., 2024b), Mantis-Instruct(Jiang et al., 2024)

Hallucination

Object HalBench(Rohrbach et al., 2019), VideoHallucer(Wang et al., 2024g), VALOR-Eval(Qiu et al., 2024),
POPE(Li et al., 2023c), HaELM(Wang et al., 2023b), OpenCHAIR(Ben-Kish et al., 2023), GAVIE(Liu et al., 2023a),
AMBER(Wang et al., 2023a), Mementos(Wang et al., 2024f), MMHal-Bench(Sun et al., 2023b), VLind-Bench(Lee et al., 2024b),
M-HalDetect(Gunjal et al., 2024), HallusionBench(Guan et al., 2024), VHTest(Huang et al., 2024), RefoMB(Yu et al., 2024b),
MHaluBench(Chen et al., 2024c), PhD(Liu et al., 2024e), ActivityNet-QA(Yu et al., 2019), R-Bench(Wu et al., 2024),
MHumanEval(Raihan et al., 2025), Bingo(Cui et al., 2023), RefoMB(Yu et al., 2024b), HQH(Yan et al., 2024)

Safety AdvDiffVLM(Guo et al., 2024), RTVLM(Li et al., 2024d), VLGuard(Zong et al., 2024), MultiTrust(Zhang et al., 2024b),
VLLM-safety-bench(Tu et al., 2023), MOSSBench(Li et al., 2024e)

Conversation Q-Bench(Wu et al., 2023), LLVisionQA(Wu et al., 2023), LLDescribe(Wu et al., 2023), LLaVA-Bench-Wilder(Liu et al., 2024c),
LiveBench(White et al., 2024), Vibe-Eval(Padlewski et al., 2024)

Reward Model M-RewardBench(Gureja et al., 2024), VL-RewardBench(Li et al., 2024c), RewardBench(Lambert et al., 2024),
MJ-Bench(Chen et al., 2024d), MLLM-as-a-Judge(Chen et al., 2024a)

Figure 3: Categories of MLLM alignment benchmarks

ties, and a range of other functional attributes. In142

this section, we systematically examine innovative143

approaches, categorizing them based on their pri-144

mary application scenarios: mitigating hallucina-145

tions and enhancing additional capabilities.146

Mitigating hallucinations The original design147

intention of MLLM alignment algorithms is to mit-148

igate hallucinations. Fact-RLHF (Sun et al., 2023a),149

the first multimodal RLHF method, integrates per-150

token KL penalties, factual calibration, and correct-151

ness/length constraints. DDPO (Yu et al., 2024a)152

focuses on fine-grained corrections (e.g., object,153

position, and number errors) by assigning weights154

to the revised data in its loss function. FDPO155

(Gunjal et al., 2024) modifies the architecture of156

InstructBLIP to obtain a clause/sentence-level re-157

ward model trained on human feedback data for158

the purpose of detecting hallucinations. HA-DPO159

(Zhao et al., 2024) leverages GPT-4 (Achiam et al.,160

2023) to verify whether the MLLM-generated de-161

scriptions contain hallucinations, utilizes GPT-4162

to rewrite the positive and negative samples used 163

for DPO, preventing distributional shifts. mDPO 164

(Wang et al., 2024a) enhances DPO with a visual 165

loss function (to counter visual information ne- 166

glect) and anchoring (to prevent the decreasing 167

in the probability of chosen response). RLAIF- 168

V (Yu et al., 2024b) iterates DPO using GPT-4- 169

labeled accuracy scores from open-source model 170

responses. xGen-MM (Xue et al., 2024) employs a 171

four-stage pipeline (pretraining, SFT, interleaved 172

multi-image supervised fine-tuning, post-training) 173

to holistically improve hallucinations, helpfulness, 174

and safety. CHiP (Fu et al., 2025b) combines vi- 175

sual DPO (via diffused images) and hierarchical 176

text preferences (response/segment/token levels) to 177

refine alignment. HDPO (Fu et al., 2024c) specifi- 178

cally constructs hallucination-centric pairs (VDH, 179

LCH, MCH) for targeted training. DAMA (Lu 180

et al., 2025) refines DPO with data hardness and 181

model responses by adaptively modifying β. 182

Enhancing additional capabilities In this subsec- 183
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tion, we introduce several algorithms designed to184

enhance various aspects of model performance be-185

yond hallucination reduction. For instance, Silkie186

aggregates responses from 12 models, evaluates187

them using GPT-4V, and applies DPO on diverse in-188

struction datasets to improve perception, cognition,189

and faithfulness. CLIP-DPO (Ouali et al., 2024)190

leverages CLIP scores to label data and applies191

DPO loss, resulting in improvements in both hal-192

lucination mitigation and zero-shot classification193

tasks. SIMA (Wang et al., 2024e) constructs pref-194

erence pairs by having the model self-evaluate its195

own responses. LLaVA-Critic (Xiong et al., 2024)196

employs an iterative DPO in which each round sam-197

ples data from the model itself and uses a reward198

model to label preferences, thereby enhancing per-199

formance in hallucination reduction, image/video200

understanding, and open-ended dialogue. MPO201

(Wang et al., 2024d) automates the construction of202

a diverse multimodal reasoning preference dataset203

and blends SFT loss with various preference opti-204

mization losses, leading to improvements in rea-205

soning. Finally, Image DPO (Luo et al., 2025)206

perturbs images (e.g., via blurring or pixelation)207

while keeping textual inputs unchanged, optimiz-208

ing performance through visual-only DPO loss.209

Current advancements in optimizing MLLM210

alignment algorithms primarily focus on two crit-211

ical dimensions: data and loss functions. In the212

realm of data optimization, dominant strategies in-213

clude manual annotation, strong model-generated214

data, and self-generation data. However, each of215

these approaches faces characteristic limitations.216

A persistent challenge lies in reducing annotation217

costs while simultaneously enhancing data qual-218

ity and diversity. On the other hand, innovations219

in loss functions have introduced advanced vari-220

ants of DPO, such as HDPO and DDPO, which221

demonstrate significant potential. Additionally,222

frameworks like Image DPO and CHiP incorpo-223

rate vision-modality supervision, underscoring the224

importance of cross-modal alignment. Moving for-225

ward, progress in this field will hinge on two critical226

areas: improving data quality and diversity and op-227

timizing multimodal loss functions to achieve more228

robust and efficient alignment.229

2.2 Multi-Image, Video, and Audio230

Compared to single-image tasks, many natural231

scene tasks involve multiple images, videos, or232

audio, introducing not only richer contextual sce-233

narios but also greater complexity. Addressing234

these challenges requires specialized architectural 235

designs and domain-specific optimizations. For 236

instance, multi-image tasks necessitate models ca- 237

pable of understanding the relationships between 238

multiple inputs, while in-context learning (ICL) re- 239

quires the extraction of relevant information from 240

multiple contextually provided images. Similarly, 241

video processing demands the ability to perceive 242

and analyze a large sequence of frames, and the 243

data format of audio streams differs significantly 244

from visual modalities. To tackle these complex- 245

ities, researchers are actively investigating novel 246

architectural modifications and specialized training 247

paradigms tailored to these multifaceted tasks. 248

Multi-image While existing open-source MLLMs 249

perform well on single-image tasks, they often 250

struggle with multi-image contextual understand- 251

ing. MIA-DPO (Liu et al., 2024f) addresses the 252

challenges of hallucination in multi-image scenar- 253

ios by leveraging synthetic multi-image compo- 254

sitions and constructing preference data. Specif- 255

ically, the method analyzes the model’s attention 256

patterns across multiple images to assign scores 257

and extract positive-negative pairs. This approach 258

not only achieves state-of-the-art performance on 259

multi-image benchmarks but also maintains robust- 260

ness in single-image tasks. 261

ICL Recent advancements in ICL for LLMs have 262

inspired adaptations in MLLMs, but these models 263

often suffer from textual over-reliance, which leads 264

to the neglect of visual information. To address 265

this issue, SymDPO (Jia et al., 2024) introduces 266

semantic decoupling through few-shot demonstra- 267

tions that include intentionally irrelevant text. This 268

strategy reduces the dominance of the text modality, 269

encouraging models to prioritize visual-evidential 270

reasoning, thereby improving performance on tasks 271

such as image captioning and VQA. 272

Video Video understanding introduces greater 273

risks of hallucinations compared to image-based 274

tasks due to the added complexity of temporal dy- 275

namics. However, DPO-based alignment methods 276

have demonstrated effectiveness in mitigating these 277

errors. Current advancements adopt two strategic 278

pathways: Interleaved Visual Instruction Tuning 279

(e.g., LLaVA-NeXT-Interleave (Li et al., 2024a)), 280

which enhances multi-frame reasoning by combin- 281

ing interleaved visual instructions with DPO loss; 282

Granular Video-Text Alignment (e.g., PPLLaVA 283

(Liu et al., 2025)), employing fine-grained vision- 284

prompt alignment, context length expansion via 285

asymmetric positional encoding, and DPO opti- 286
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mization. These frameworks advance the perfor-287

mance of MLLMs on video tasks.288

Audio-visual While real-world videos typically289

contain audio, existing MLLMs lack audio pro-290

cessing capabilities. Video-SALMONN 2 (Tang291

et al., 2025) addresses audio modality blindness292

in MLLMs through a hierarchical framework: (1)293

audio-visual representation alignment via an audio294

aligner, (2) semantic fusion through joint audio-295

visual SFT, (3) generation optimization using multi-296

round reinforcement learning(RL), and (4) capa-297

bility restoration via "Rebirth" fine-tuning with298

self-generated high-quality data, enhancing audio-299

visual understanding in video analysis.300

Audio-text Abstract speech summarization strug-301

gles with redundancy in outputs. SQuBa (Eom302

et al., 2025) overcomes this through a three-phase303

framework: (1) aligning speech-text represen-304

tations via ASR-focused projector training, (2)305

jointly fine-tuning LLM and projector, (3) using306

the SFT responses and answers generated by the307

fine-tuned model as pairs for DPO. This phased308

optimization synergizes speech understanding and309

conciseness while preserving inference efficiency.310

The application of alignment algorithms in311

emerging multimodal domains is still in its early312

stages, highlighting two critical areas for explo-313

ration: designing task-specific data for novel fields314

and developing alignment algorithms that leverage315

the structural properties of specific modalities.316

2.3 Extended Multimodal Applications317

Most MLLMs are not originally designed with318

specific downstream tasks in mind, such as med-319

ical diagnostics, mathematical reasoning, embod-320

ied AI, safety-critical systems, and autonomous321

agents. However, their powerful multimodal pro-322

cessing capabilities have drawn significant inter-323

est from researchers and practitioners across var-324

ious fields. Recently, several alignment-related325

frameworks have been proposed to better adapt326

these models to downstream tasks. It is worth not-327

ing that these domain-specific applications exhibit328

substantial gaps compared to general image under-329

standing tasks, necessitating specialized alignment330

paradigms to address their unique operational con-331

straints and ethical considerations.332

Medicine The deployment of MLLMs in clinical333

settings is often hindered by the high risk of erro-334

neous medical diagnoses or other domain-specific335

errors. The 3D-CT-GPT++ framework (Chen et al.,336

2025) addresses this issue through a DPO-based337

approach, utilizing GPT-4 to score SFT model- 338

generated medical reports and construct prefer- 339

ence datasets for alignment. This human-free 340

method significantly reduces diagnostic misalign- 341

ments while achieving clinical-grade accuracy and 342

coherence in AI-assisted imaging analysis. 343

Mathematics MLLMs struggle with math-vision 344

integration due to dual challenges: insufficient 345

domain-optimized training frameworks and fragile 346

chain-of-thought(CoT) reasoning where minor er- 347

rors trigger cascading solution failures. MAVIS 348

(Zhang et al., 2024a) addresses challenges in 349

multimodal mathematical reasoning by enhancing 350

MLLMs through a four-phase framework: (1) fine- 351

tuning a math-specialized vision encoder through 352

contrastive learning; (2) align the encoder with 353

LLM; (3) Instruction tuning strengthens step-by- 354

step reasoning; (4) DPO refines logical coherence 355

by aligning annotated CoT paths. This integrated 356

approach achieves high performance in visual math- 357

ematical problem-solving benchmarks. 358

Embodied intelligence Embodied intelligence re- 359

search leverages MLLMs to advance agents’ rea- 360

soning through CoT optimization and hierarchical 361

task decomposition. INTERACTIVECOT (Jiao 362

et al., 2025) enhances contextual reasoning via dy- 363

namic CoT optimization with domain-specific fine- 364

tuning and real-time interaction feedback, boosting 365

task success; EMMOE (Li et al., 2025) decomposes 366

complex tasks into 966 subtasks, leveraging GPT-4 367

to create semantic-augmented datasets that improve 368

embodied metrics like path efficiency. Together, 369

they demonstrate how adaptive reasoning architec- 370

tures and structured multimodal data engineering 371

bridge the gap between semantic interpretation and 372

actionable decision-making in embodied AI. 373

Safety The advancement of MLLMs introduces 374

adversarial risks (e.g., harmful hallucination gener- 375

ation), several works propose their own solutions.: 376

AdPO (Liu et al., 2024a) strengthens robustness 377

through contrastive DPO training on perturbed im- 378

ages, enhancing the resistance to attacks; VLGuard 379

(Zong et al., 2024) curates multimodal harmful con- 380

tent datasets and employs post-hoc fine-tuning to 381

suppress unsafe behavior. In contrast, Preference 382

Optimization (PO) (Afzali et al., 2025) frames con- 383

trastive learning as a one-step Markov decision 384

process, combining preference data for discrimina- 385

tion and regularization data for stability, primarily 386

boosting robustness. These methods synergize ad- 387

versarial resilience and safety alignment to address 388

evolving security threats. 389
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Agent The application of MLLMs in multi-step390

interactive decision-making is often limited, pre-391

venting their direct application in complex decision-392

making scenarios. To address this limitation, exist-393

ing work (Zhai et al., 2024) introduces a proximal394

policy optimization (PPO (Schulman et al., 2017))-395

driven alignment framework designed to opti-396

mize MLLMs for multi-round interactive decision-397

making. This approach effectively bridges the gap398

between semantic comprehension and actionable399

agent behaviors in dynamic, real-world scenarios.400

Future breakthroughs in domain-specialized401

MLLMs The development of domain-specialized402

MLLMs will likely be driven by a synergistic co-403

evolution of alignment frameworks and domain-404

specific expertise. By tailoring alignment ar-405

chitectures to leverage the unique attributes and406

constraints of specific domains (e.g., healthcare,407

robotics, mathematics), these models can achieve408

greater effectiveness and precision.409

3 MLLM Alignment Dataset410

In this section, we classify existing MLLM align-411

ment datasets into two categories based on their412

construction approach: datasets that introduce413

external knowledge and those that rely on self-414

annotation. Table 2 of the appendix presents crucial415

information about publicly available datasets, in-416

cluding data sources, response generation methods,417

annotation techniques, and dataset sizes, providing418

a convenient reference for researchers.419

3.1 Introducing External Knowledge420

Introducing high-quality external knowledge dur-421

ing data construction can enhance the quality of422

the generated alignment data. However, balancing423

data quality, quantity, and cost is a key considera-424

tion. Several works have explored data construction425

based on external knowledge.426

Human annotation Multiple datasets employ427

distinct human annotation strategies for train-428

ing: LLaVA-RLHF (Sun et al., 2023a) collects429

10k examples by having annotators select posi-430

tive/negative responses from model-generated pairs.431

RLHF-V (Yu et al., 2024a) creates 1.4k positive432

examples by manually correcting hallucinated re-433

sponses. LLAMA 3.1 (Team, 2024b) incorporates434

7-point ratings and optional human edits for "cho-435

sen" responses from a model pool. M-HalDetect436

(Gunjal et al., 2024) introduces clause-level halluci-437

nation analysis (16k examples) to synthesize pref-438

erence data but remains in the exploratory stage. 439

Closed-source LLM/MLLM As the best- 440

performing MLLMs currently available, GPT-4 441

series models have achieved near-human accu- 442

racy across many tasks. To reduce costs, current 443

methods use them for preference data construc- 444

tion. LRV-Instruction (Liu et al., 2024b) uses 445

GPT-4 to create 400k diverse visual instructions 446

to mitigate hallucinations. HA-DPO repurposes 447

MLLM outputs into aligned positive/negative pairs 448

(10k examples), maintaining distribution consis- 449

tency. Video-SALMONN 2 employs GPT-3.5/4o 450

and Gemini-1.5-Pro (Team, 2024a) for caption gen- 451

eration. PHANTOM (Lee et al., 2024a) extracts 452

2.8M ambiguous negative examples via GPT-4o- 453

mini, filtered with GPT-4o. VLGuard generates 454

3k safety-focused instruction-response pairs using 455

GPT-4V, proposing post-hoc fine-tuning. Task- 456

specific datasets include VLFeedback (Li et al., 457

2023a) (80k GPT-4V-scored responses across 12 458

MLLMs), MAVIS-Instruct (Zhang et al., 2024a) 459

(math CoT preference data), and EMMOE-100 (Li 460

et al., 2025) (3.7k SFT data and 10k DPO data). 461

Open-source LLM/MLLM Considering the invo- 462

cation time and cost of GPT-4 series models in 463

constructing large-scale alignment data, current 464

methods use open-source models for preference 465

data construction. INTERACTIVECOT builds an 466

agent in ALFWorld(Shridhar et al., 2021) using 467

predefined scores for embodied intelligence prefer- 468

ence datasets. CLIP-DPO replaces MLLM evalua- 469

tions with CLIP scores to select DPO pairs and con- 470

structs a 750k dataset (mixed QA/caption pairs). 471

Overall, manual annotation ensures high-quality, 472

preference-aligned data but is constrained by chal- 473

lenges such as subjectivity and high costs. Both 474

closed-source models (e.g., GPT-4V) and open- 475

source models reduce costs and enable the large- 476

scale construction of datasets; however, they often 477

compromise on data quality. Looking ahead, we 478

look forward to the development of more efficient 479

methods that can achieve a balance between scala- 480

bility and data reliability. 481

3.2 Self-Annotation 482

Data generated with the assistance of humans or 483

models like GPT-4 may exhibit significant distri- 484

butional differences from the target model, leading 485

to issues such as overlooking image details.(Zhou 486

et al., 2024) As a result, several approaches have 487

emerged that do not rely on external models for 488

data generation or reward signals, instead depend- 489
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ing on the target model itself to construct pref-490

erence pairs. Based on the modality differences491

in preference pair data, we categorize them into492

three types: single-text modality (where preference493

pairs differ only in the text modality), single-image494

modality (where preference pairs differ only in the495

image modality), and image-text mixed modality496

(where preference pairs differ in both modalities).497

Single text modality SQuBa uses SFT data as498

questions and positive samples, and employs the499

responses generated by the fine-tuned model as500

negative samples for DPO. SymDPO reorganizes501

VQA/classification data into ICL format with mean-502

ingless text symbols to enhance visual learning and503

select DPO pairs. SIMA avoids the use of third-504

party data and models by having the model evaluate505

its own generated responses to rank the answers.506

MMPR (Wang et al., 2024d) uses the model’s re-507

sponses generated based on images as positive ex-508

amples, and truncates these positive examples to509

create negative samples by continuing the response510

without providing the image. MIA-DPO concate-511

nates single-image data into multi-image formats512

and selects preferences via attention values, im-513

proving multi-image task performance.514

Single image modality Image DPO constructs515

DPO preference pairs by perturbing images (e.g.,516

gaussian blur, or pixelation) while keeping text517

unchanged, creating negative examples through518

image-text mismatches.519

Image-text mixed modality AdPO aligns adver-520

sarial training with DPO by constructing preference521

pairs from original/adversarial images (generated522

via methods like PGD) and their model responses,523

where both images and text differ between positive524

and negative examples during optimization.525

The construction of self-annotated positive526

and negative samples helps mitigate distribution527

shifts. However, due to performance limitations of528

MLLMs, current data quality remains relatively529

low. We look forward to future developments530

will introduce technologies such as data enhance-531

ment specifically designed for self-annotation ap-532

proaches to improve data quality.533

4 Future Work and Open Challenges534

As MLLMs evolve, aligning them with human pref-535

erence has become a key focus. However, several536

challenges remain in evaluating these alignment537

algorithms. First, there is a lack of unified, high-538

quality, and diverse datasets. Existing alignment539

datasets often define different capability dimen- 540

sions, leading to inconsistencies across studies. 541

Second, most methods fail to effectively utilize 542

visual information, relying mainly on text for posi- 543

tive and negative sample classification, and using 544

simple loss functions like DPO without fully lever- 545

aging the multimodal nature of the data. Finally, 546

there is a lack of comprehensive evaluation stan- 547

dards, with current methods often validated only on 548

limited datasets like hallucination or dialogue, mak- 549

ing it difficult to assess their generalizability. Fur- 550

ther more, by drawing on advancements in LLMs 551

and agent research, we can identify issues and lim- 552

itations in current MLLM approaches. Addressing 553

these challenges is crucial for developing more 554

powerful and holistic alignment methods. 555

Data challenges The alignment of MLLMs faces 556

two critical data-related challenges: data quality 557

and coverage. First, the availability of high-quality 558

MLLM alignment data is limited. Compared to 559

LLMs, acquiring and annotating multimodal data 560

is significantly more complex due to the inherent 561

difficulties of handling multiple modalities. Sec- 562

ond, existing datasets lack sufficient coverage of 563

diverse multimodal tasks, such as OCR. Construct- 564

ing a comprehensive dataset that addresses this 565

wide array of tasks is extremely challenging, and 566

to the best of our knowledge, no publicly available, 567

fully human-annotated multimodal dataset exceeds 568

100,000 samples. These limitations in data quality 569

and coverage pose significant barriers to effectively 570

aligning MLLMs with human preference. 571

Visual information There are three methods that 572

leverage visual information to enhance alignment 573

performance, but all of them have certain limi- 574

tations: (1) visual loss function—while positive 575

samples are diverse, visual negatives often rely on 576

diffusion algorithms or image modifications lack- 577

ing robust quality metrics, incurring high compu- 578

tational costs; (2) methods of using text responses 579

generated from visual negative samples as nega- 580

tive samples (Fu et al., 2024c) also fails to address 581

the core challenge of constructing meaningful vi- 582

sual negative samples; (3) DPO data filtering using 583

cosine similarity metrics from models like CLIP 584

introduces vision-text alignment biases and quality 585

uncertainties, limiting generalizability. 586

Comprehensive evaluation Current research on 587

MLLM alignment focuses on a limited set of tasks. 588

Most studies primarily evaluate their algorithms on 589

a few key areas, such as hallucination detection, 590

conversational abilities, and safety. However, we 591
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argue that aligning MLLMs with human preference592

should not be restricted to these specific tasks. Fu-593

ture research should adopt a more comprehensive594

evaluation approach, assessing alignment methods595

across a broader range of tasks to better demon-596

strate their generalizability and effectiveness.597

Full-modality alignment Align-anything(Ji et al.,598

2024b) pioneers full-modality alignment through599

the multimodal dataset "align-anything-200k",600

which spans text, images, audio, and video. This601

study demonstrates the complementary effects be-602

tween different modalities. However, their work603

is still in its early stages. The dataset for each604

modality is relatively small, limiting its ability to605

cover a wide range of tasks. Additionally, the pro-606

posed algorithm is only a preliminary improvement607

on the DPO method, and it does not fully exploit608

the unique structural information inherent in each609

modality. Moving forward, the design of alignment610

algorithms beyond image/text domains, particularly611

for other modalities, to enhance multimodal model612

capabilities, will be a key trend.613

MLLM reasoning Recent advancements in rea-614

soning LLMs, such as OpenAI’s O1 and DeepSeek-615

R1, highlight the importance of RL algorithms616

and preference data in enhancing performance in617

complex tasks. Key insights can be categorized618

as follows: (1) Data: (a) Scale & Quality: From619

small-model resampling (e.g., OpenMathInstruct620

(Toshniwal et al., 2024)) to large-scale synthetic621

data (e.g., Qwen-2.5-MATH (Yang et al., 2024a)),622

datasets now include millions of samples. (b) Effi-623

ciency: Approaches like "less is more" alignment624

(e.g., LIMA (Zhou et al., 2023)) demonstrate that625

minimal, high-quality data can optimize pretrained626

capabilities. (2) Optimization Framework: (a)627

Sampling Strategies: Online RL techniques (e.g.,628

DeepSeek V3 (DeepSeek-AI, 2024)) mitigate dis-629

tributional shifts. (b) Training Paradigms: Multi-630

stage, collaborative optimization (e.g., Llama 3’s631

DPO iteration) improves model performance. (c)632

Algorithms: Advancements in PPO techniques,633

such as DPO and GRPO, focus on reducing pa-634

rameter count and refining reward functions (e.g.,635

PRIME (Cui et al., 2025)). These trends emphasize636

efficiency, generalization, and precision in unlock-637

ing LLMs’ reasoning potential.638

Insight from LLM alignment The development639

of LLM alignment highlights three key insights640

and opportunities for improvement: (1) training641

efficiency—PPO-based methods require simultane-642

ous loading of policy and reference models, slow-643

ing training; reference-free approaches like SimPO 644

(Meng et al., 2024) could accelerate optimization 645

by eliminating dependency on reference models, 646

though their role in MLLM alignment needs deeper 647

analysis. (2) overoptimization mitigation (Gao 648

et al., 2023; Rafailov et al., 2024a)—DPO/RLHF 649

risks reward hacking where proxy metrics improve 650

while real-world performance degrades, exacer- 651

bated by biased or low-quality data. Solutions 652

include diversifying training datasets, early stop- 653

ping, and regularization to balance generalization. 654

Addressing these challenges requires rethinking op- 655

timization architectures, robust data curation, and 656

synergistic integration of RL paradigms. 657

MLLM as agents Combine the advanced rea- 658

soning capabilities of LLMs with multimodal 659

perception—encompassing text, images, and au- 660

dio—enabling cross-modal knowledge synthesis 661

and task decomposition for complex real-world ap- 662

plications (Xi et al., 2023; Wang et al., 2024b; Ma 663

et al., 2024b; Durante et al., 2024; Ma et al., 2024a). 664

These capabilities position MLLMs as promising 665

agents for various domains, such as autonomous 666

driving and industrial robotics (Li et al., 2023b; 667

Liu et al., 2024d). However, designing MLLMs as 668

effective agents presents several unresolved chal- 669

lenges: (1) Multi-agent Collaboration: Lack of 670

mature frameworks for multimodal communication 671

(Ossowski et al., 2025), shared memory, and co- 672

ordination in MLLM-based multi-agent systems. 673

(2) Robustness: Vulnerability to adversarial attacks 674

(e.g., image perturbations hijacking agent behavior 675

(Wu et al., 2025)) in open environments, necessi- 676

tating systematic robustness testing and defense 677

mechanisms. (3) Security: Expanded attack sur- 678

faces across multimodal perception, reasoning, and 679

memory modules, requiring comprehensive safe- 680

guards against privacy breaches and malicious hi- 681

jacking (Yang et al., 2024b). 682

5 Conclusion 683

The field of MLLM alignment is developing rapidly. 684

In this paper, we conduct a systematic and com- 685

prehensive survey of existing research on MLLM 686

alignment, focusing on four key questions: what 687

application scenarios can be covered, how to con- 688

struct datasets, how to evaluate algorithms, and 689

where the direction of the next alignment lies. This 690

paper is the first systematic survey dedicated to 691

MLLM alignment. We hope that this survey will 692

facilitate further research in this area. 693
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Limitations694

The paper retrieval, inclusion, and exclusion pro-695

cesses were performed by a single reviewer (the696

study’s first author). While we implemented rigor-697

ous procedures to ensure comprehensive coverage698

of published works, this approach inherently car-699

ries the risk of omitting potentially relevant studies.700

Furthermore, classification of papers into specific701

categories or citation implementation might con-702

tain inadvertent errors. Nevertheless, we have per-703

formed multiple verification steps throughout the704

analytical process to mitigate such limitations. Al-705

though minor inconsistencies or omissions may706

persist, we maintain that this survey constitutes the707

most comprehensive review of MLLM alignment708

currently available, offering an objective and de-709

tailed assessment of future research directions and710

outstanding challenges.711
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A Evaluation1282

Existing MLLM alignment evaluation benchmarks1283

are categorized into five key dimensions: general1284

knowledge (assessing foundational capabilities),1285

hallucination (measuring the inconsistency of gen-1286

erated content with facts), safety (evaluating the1287

ability to mitigate risks in responses), conversation1288

(testing whether the model can output the content1289

required by users), and reward model (evaluating1290

the performance of the reward model).1291

A.1 General Knowledge 1292

Most benchmarks prioritize high-quality, human- 1293

annotated datasets tailored for real-world appli- 1294

cations. Examples include MME-RealWorld’s 1295

(Zhang et al., 2025) 29K QA pairs from 13K im- 1296

ages and MMMU’s (Yue et al., 2024) 11.5K ques- 1297

tions from academic sources. MMStar (Chen et al., 1298

2024b) enhances reliability by minimizing data 1299

leakage and emphasizing visual dependency. Many 1300

benchmarks introduce novel methodologies, such 1301

as MMBench’s (Liu et al., 2023b) bilingual evalua- 1302

tion with CircularEval, MMT-Bench’s (Ying et al., 1303

2024) task graphs for in/out-of-domain analysis, 1304

and BLINK’s (Fu et al., 2024b) focus on visual 1305

perception tasks. These frameworks enhance evalu- 1306

ation precision and reveal model limitations. Tasks 1307

often require advanced multimodal reasoning, such 1308

as MathVista’s (Lu et al., 2023) mathematical- 1309

visual integration, SQA3D’s (Ma et al., 2023) 3D 1310

situational QA, and MMMU’s coverage of charts, 1311

and maps. These benchmarks push models to han- 1312

dle interdisciplinary challenges. By curating chal- 1313

lenging, fine-grained tasks (e.g., temporal under- 1314

standing in MVBench (Li et al., 2024b), multi- 1315

image processing in Mantis-Instruct (Jiang et al., 1316

2024)), these benchmarks aim to advance models’ 1317

ability to solve real-world problems requiring nu- 1318

anced perception and reasoning. 1319

A.2 Hallucination 1320

These benchmarks systematically identify and cat- 1321

egorize hallucinations in multimodal models, in- 1322

cluding object hallucinations (Object HalBench 1323

(Rohrbach et al., 2019)), intrinsic and extrinsic hal- 1324

lucinations (VideoHallucer (Wang et al., 2024g)), 1325

and associative biases (VALOR-Eval (Qiu et al., 1326

2024)). They emphasize granular evaluation across 1327

visual, textual, and sequential contexts. Many 1328

propose novel frameworks, such as polling-based 1329

queries (POPE (Li et al., 2023c)), LLM-driven scor- 1330

ing (HaELM (Wang et al., 2023b), RefoMB (Yu 1331

et al., 2024b)), open-vocabulary detection (Open- 1332

CHAIR (Ben-Kish et al., 2023)), annotation-free 1333

assessment (GAVIE (Liu et al., 2023a)), LLM- 1334

free pipelines (AMBER (Wang et al., 2023a)), 1335

and GPT-4-assisted reasoning analysis (Memen- 1336

tos (Wang et al., 2024f)). They emphasize auto- 1337

mated, scalable evaluation while addressing limita- 1338

tions like data leakage (MMHal-Bench (Sun et al., 1339

2023b)) and language priors (VLind-Bench (Lee 1340

et al., 2024b)). Datasets prioritize fine-grained 1341
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human annotations (M-HalDetect (Gunjal et al.,1342

2024), HallusionBench (Guan et al., 2024)) and1343

synthetic data generation (VHTest (Huang et al.,1344

2024), MHaluBench (Chen et al., 2024c)). They1345

balance real-world complexity (PhD’s (Liu et al.,1346

2024e) counter-commonsense images, ActivityNet-1347

QA’s (Yu et al., 2019) 58K QA pairs) and controlled1348

challenges (R-Bench’s (Wu et al., 2024) robust-1349

ness analysis). Some target specialized tasks like1350

multilingual support (MHumanEval (Raihan et al.,1351

2025)), while others address broad issues like bias1352

and interference (Bingo (Cui et al., 2023)). All aim1353

to enhance model robustness in practical scenarios.1354

By proposing alignment strategies (RLAIF-V’s (Yu1355

et al., 2024b) open-source feedback) and propos-1356

ing unified framework (HQH (Yan et al., 2024)),1357

these benchmarks guide the development of more1358

reliable multimodal systems.1359

A.3 Safety1360

Several introduce novel techniques, such as1361

diffusion-based adversarial attacks (AdvDiffVLM1362

(Guo et al., 2024)), red teaming frameworks1363

(RTVLM (Li et al., 2024d)), and post-hoc fine-1364

tuning strategies (VLGuard (Zong et al., 2024)).1365

These approaches enhance evaluation rigor by sim-1366

ulating real-world threats or improving model re-1367

silience. Benchmarks like MultiTrust (Zhang et al.,1368

2024b) and RTVLM unify trustworthiness assess-1369

ment across multiple dimensions (e.g., truthfulness,1370

fairness), while others target specific challenges1371

like OOD generalization (VLLM-safety-bench (Tu1372

et al., 2023)) or oversensitivity (MOSSBench (Li1373

et al., 2024e)). Together, they provide holistic in-1374

sights into model limitations.1375

A.4 Conversation1376

These benchmarks prioritize evaluating founda-1377

tional visual skills, such as low-level perception1378

ability (Q-Bench (Wu et al., 2023), LLVisionQA1379

(Wu et al., 2023)), description ability on low-level1380

information (LLDescribe (Wu et al., 2023)), and1381

quality assessment. They emphasize the model’s1382

ability to interpret and articulate fine-grained visual1383

information. Several benchmarks test generaliza-1384

tion to challenging scenarios, including unconven-1385

tional images (LLaVA Bench-Wilder (Liu et al.,1386

2024c)), cross-domain tasks (LiveBench’s (White1387

et al., 2024) math/news integration), and adversar-1388

ial prompts (Vibe-Eval’s (Padlewski et al., 2024)1389

high-difficulty questions). They reveal model1390

adaptability beyond standard datasets.1391

A.5 Reward Model 1392

Each benchmark targets specific evaluation di- 1393

mensions, such as multilingual capabilities (23 1394

languages in M-RewardBench (Gureja et al., 1395

2024)), alignment/safety/bias (MJ-Bench (Chen 1396

et al., 2024d)), and ability of MLLMs in assist- 1397

ing judges across diverse modalities (MLLM-as- 1398

a-Judge’s (Chen et al., 2024a) scoring vs. pair- 1399

wise comparisons). These frameworks reveal 1400

model strengths and weaknesses in structured 1401

and out-of-distribution scenarios. High-quality 1402

datasets are curated through human-AI collabora- 1403

tion (VL-RewardBench’s (Li et al., 2024c) annota- 1404

tion pipeline) or structured triplet designs (Reward- 1405

Bench (Lambert et al., 2024)). Tasks range from 1406

simple preference ranking to complex reasoning, 1407

pushing models to handle nuanced challenges like 1408

hallucination detection and ethical alignment. 1409

Overall, for MLLM alignment algorithms, many 1410

current works focus on their ability to prevent mod- 1411

els from generating hallucinations, while also ex- 1412

ploring how to leverage alignment algorithms to 1413

enhance MLLMs’ general knowledge and conversa- 1414

tion capability, which is an important direction for 1415

the future. Some researchers treat unsafe responses 1416

as misaligned with human preferences, thereby ap- 1417

plying MLLM Alignment algorithms to address 1418

safety issues. Additionally, the effectiveness of re- 1419

ward models in these frameworks, particularly their 1420

performance in guiding alignment, warrants further 1421

investigation. 1422
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Method Loss

Fact-RLHF LRLHF = −E(I,x)∈D,y∼πϕ(y|I,x)[rθ(I, x, y)− β · DKL(πϕ(y|I, x) ∥ πINIT(y|I, x))]

SILKIE

Ldpo = −E(I,x,yw,yl)∼D[logσ(βlog
πθ(yw|I,x))
πref(yw|I,x)) − βlog πθ(yl|I,x))

πref(yl|I,x)))]

SIMA
CLIP-DPO
RLAIF-V

3D-CT-GPT++
MAVIS

EMMOE
xGen-MM(BLIP-3)

LLaVA-NeXT-Interleave
LLAVA-CRITIC

SQuBa
PPLLaVA

HDPO
SymDPO

INTERACTIVECOT

RLHF-V
LDense-dpo = −E(I,x,yw,yl)[Iyi /∈yu [logσ(βlog

πθ(yw|I,x))
πref(yw|I,x)) − βlog πθ(yl|I,x))

πref(yl|I,x)))]

+Iyi∈yu [γlogσ(βlog
πθ(yw|I,x))
πref(yw|I,x)) − βlog πθ(yl|I,x))

πref(yl|I,x)))]]

F-DPO LFine grained-dpo = −E(I,x,yw,yl)[logσ(βlog
πθ(yw|I,x))
πref(yw|I,x)))− logσ(βlog πθ(yl|I,x))

πref(yl|I,x)))]

HA-DPO L = Ldpo +E(I,x,y)∼DSFT
[−logP(y|I, x;πθ)]

MIA-DPO Loss : L = Ldpo + γ ·E(I,x,yw,yl)∼D[−log(yw|I, x)]

CHiP
L = Ldpo + Lvisual-dpo + λ · Lsentence-dpo + γ ·E(I,x,yToken

w ,yToken
l )∼DToken

βDSeqKL [πref(yw|I, x) ∥ πθ(yw|I, x)]− βDSeqKL [πref(yl|I, x) ∥ πθ(yl|I, x)]

Image DPO LImage dpo = −E(Iw,Il,x,yw)[logσ(βlog
πθ(yw|Iw,x))
πref(yw|Iw,x)) − βlog πθ(yw|Il,x))

πref(yw|Il,x)))]

AdPO
L = −E(Iw,Il,x,yw,yl)[logσ(βlog

πθ(yw|Iw,x))
πref(yw|Iw,x)) − βlog πθ(yl|Il,x))

πref(yl|Il,x)))]

+ΣT
t=1logπθ(ytw|Il, x1:t−1

t )

PHANTOM L = LSFT −E(Iw,Il,x,yw)[logσ(
β

|yw| logπθ(yw|Iw, x))− ( β
|yw| logπθ(yw|Iw, x))]

video-SALMONN 2 L = Ldpo + λE(I,x,ygt)∼Dgt
logπθ(ygt|I, x)

Preference Optimization L = Ldpo + λE(I,x,y)∼Dreg
[log πθ(y|x)

πref(y|x) ]

DAMA L = −E(I,x,yw,yl)∼D[logσ(α · βlog πθ(yw|I,x))
πref(yw|I,x)) − α · βlog πθ(yl|I,x))

πref(yl|I,x)))]

mDPO
L = Ldpo +E(Iw,Il,x,yw,yl)∼D[−logσ(βlog πθ(yw|Iw,x))

πref(yw|Iw,x)) − βlog πθ(yl|Il,x))
πref(yl|Il,x)))]

−logσ(βlog πθ(yw|Iw,x))
πref(yw|Iw,x)) − δ)

MPO
L = α1 · Ldpo − α2 ·E(I,x,yw,yl)∼D

[
logσ(βlog πθ(yw|I,x)

πref(yw|I,x) − δ)
]

−α2 ·
[
logσ(βlog πθ(yl|I,x)

πref(yl|I,x) − δ)
]
− α3 ·

[
logπref(yw|I,x)

|yw|

]
Table 1: Various preference optimization objectives given preference data D = (x, I, yw, yl), where x is the
question, I is the Image, and yw and yl are winning and losing responses.
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Dataset Size Categories Response Model Data Sources Annotation Model

LLaVA-RLHF 10K Hallucination LLaVA-SFT LLaVA-Instruct Human

RLHF-V 1.4K Hallucination Muffin UniMM-Chat Human

VLFeedback 80K Hallucination 12 Models 9 Datasets GPT-4

CLIP-DPO 750K Hallucination MobileVLM-v2 12 Datasets CLIP

M-HalDetect 16K Hallucination InstructBLIP MS COCO Human

HA-DPO 6K Hallucination 3 Models Visual Genome GPT-4

SIMA 17K Hallucination LLaVA-1.5 LLaVA-Instruct LLaVA-1.5

RLAIF-V 83K Hallucination 3 Models 7 Datasets 2 Models

xGen-MM (BLIP-3) 62.6K Hallucination xGen-MM-4B open-source -

MIA-DPO 52K Multi-Image LLaVa-v1.5 & InternLM-XC 2.5 Not mentioned Not mentioned

MAVIS 88K Math MAVIS-7B Self-constructed GPT-4

EMMOE-100 10K Embodied AI Video-LLaVA Self-constructed GPT-4

Image-DPO 60K visual reasoning Cambrian-8B & LLaVA-1.5 3 Datasets Stable Diffusion

LLAVA-CRITIC 40.1K Multiple tasks LLaVA-OneVision 3 Datasets LLaVA-OneVision

MMPR 3.25M Reasoning InternVL2-8B Not mentioned automate pipeline

Table 2: Preference optimization dataset construction, including dataset, data size, categories: usage of the data,
data sources, response model: the model to generate responses yw and yl by given image I and prompt x, and
annotation model: the model to annotate yw and yl.
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