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Abstract

Most existing image tokenizers encode images into a fixed number of tokens or
patches, overlooking the inherent variability in image complexity and introducing
unnecessary computate overhead for simpler images. To address this, we propose
Content-Adaptive Tokenizer (CAT), which dynamically adjusts representation
capacity based on the image content and encodes simpler images into fewer tokens.
We design (1) a caption-based evaluation system that leverages LLMs to predict
content complexity and determine the optimal compression ratio for an image,
and (2) a novel nested VAE architecture that performs variable-rate compression
in a single model. Trained on images with varying complexity, CAT achieves an
average of 15% reduction in rFID across seven detail-rich datasets containing
text, humans, and complex textures. On natural image datasets like ImageNet and
COCO, it reduces token usage by 18% while maintaining high-fidelity reconstruc-
tions. We further evaluate CAT on two downstream tasks. For image classification,
CAT consistently improves top-1 accuracy across five datasets spanning diverse do-
mains. For image generation, it boosts training throughput by 23% on ImageNet,
leading to more efficient learning and improved FIDs over fixed-token baselines.

1 Introduction

Image tokenizers compress high-resolution images into low-dimensional latent representations,
enabling compact and semantically meaningful inputs for downstream tasks such as generation
and classification [1–8]. Despite their effectiveness, most existing tokenizers operate at a fixed com-
pression ratio, producing latent representations of uniform length regardless of the image’s content.
However, natural images exhibit significant variability in complexity, from sparse scenes to densely
textured ones, suggesting that fixed-length representations can be both inefficient and suboptimal.

Classical codecs such as JPEG [9] implicitly exploit this variation: when fixing the quality level, they
produce different file sizes for images with different frequency characteristics. In contrast, fixed-ratio
tokenizers may under-compress simple images, wasting compute on redundant information, or over-
compressing complex ones, losing important details. These problems become more prominent when
tokenizers are used in large-scale generative pipelines or as feature extractors in downstream tasks.

Several recent works explore dynamic token representation during inference [10, 11]. However, these
methods typically require access to the input image—an assumption incompatible with many practical
use cases. For example, in image generation with latent diffusion models [12], only the user’s text
prompt is available, and the number of latent tokens, which significantly influences generation
quality, must be specified in advance. Moreover, these methods do not adapt tokenizer training to
image complexity, missing an opportunity to optimize for both content and downstream utility.
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Figure 1: Content-Adaptive Tokenization. CAT uses an LLM to determine the compression ratio from the
image’s text description and uses a nested VAE to generate latent features by dynamically routing the input.

In this work, we introduce Content-Adaptive Tokenizer (CAT), a novel approach that dynamically
adjusts representation capacity based on image complexity. CAT combines a caption-driven com-
plexity evaluator with a nested autoencoder architecture to produce variable-length latent features
in a single forward pass (Figure 1). Specifically, the evaluator uses large language models (LLMs)
to predict the optimal compression ratio from textual descriptions. It analyzes the image’s caption
and answers perception-oriented questions (e.g., “are there human faces or text?”) to produce an
interpretable complexity score. Based on this score, we assign one of three compression ratios to
the image: 8x, 16x, or 32x. Empirical results (Section 3.2) show that this system is robust across
different LLMs and caption styles, providing a general mechanism for content-aware adaptation.

To support variable-length representations, we design a nested variational autoencoder (VAE) architec-
ture that routes intermediate encoder features to a shared latent block for generating Gaussian parame-
ters of different shapes, enabling latent codes at multiple spatial scales. This design allows us to train
a single model that supports multiple compression levels while maintaining architectural efficiency.

We train CAT on a diverse set of images using LLM-evaluated compression ratios and conduct
extensive evaluations across nine datasets, covering natural scenes (ImageNet [13], COCO [14]),
human faces (CelebA [15]), and detail-heavy domains such as text (ChartQA [16], GTSRB [17],
SVHN [18]), textures, and satellite imagery. On large-scale natural images, CAT preserves high
reconstruction quality while reducing token usage by 18% compared to fix-token baselines. On
complex images, CAT achieves significantly better reconstruction quiality, improving the rFID by
12% on CelebA, 17% on GTSRB, 20% on SVHN, and 39% on ChartQA relative to fixed-token
baselines. We also benchmark CAT on two critical downstream tasks:

• Image classification: CAT achieves the highest linear probing accuracy compared to all fixed-
token baselines across five challenging datasets where prior work has shown that zero-shot models
perform poorly [19]. This highlights the quality of our content-adaptive latent representations.
Besides, CAT consistently improves performance in full fine-tuning settings.

• Text-to-Image Generation: We integrate CAT into Latent Diffusion Transformers (DiTs) [20].
On class-conditional ImageNet generation, CAT increases the training throughput by 23%, thus
achieving better FIDs than all fixed-ratio tokenizers trained under the same FLOPs. We note that
CAT allows users to specify the desired token count at inference time, enabling a flexible trade-off
between computational cost and output quality, with more tokens typically yielding higher fidelity.

In summary, we propose CAT, an efficient and effective image tokenizer that enables content-adaptive
compression through an LLM-based evaluator and a nested VAE architecture. To the best of our knowl-
edge, this is the first work to combine language-guided tokenization with adaptive representation,
showing both performance and efficiency gain in image reconstruction, classification, and generation.

2 Related Work

Image tokenization. Existing tokenizers use diverse architectures and encoding schemes. Continu-
ous tokenizers often utilize the VAE architecture [2] to generate Gaussian distributions for sampling
continuous latent features. Discrete tokenizers like VQ-VAE [21], RQ-VAE [22], MoVQ [23],
MAGVIT-v2 [3], and FSQ [7] use quantization techniques to convert latent representations into
tokens. VQ-GAN [1], ViT-VQGAN [24], and Efficient-VQGAN [25] further built on adversarial
training to improve performance. Beyond methods that tokenize images into 2D grids, 1D tokenizers
such as TiTok [8] are proposed to enhance efficiency. While CAT is designed as a continuous 2D
tokenizer, the proposed adaptive image encoding scheme can be applied to discrete and 1D tokenizers.
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Adaptive compression. Traditional codecs like JPEG [9] for images and H.264 [26] for videos
apply varying levels of compression based on the input media, producing files of different sizes.
In deep learning, patch dropout [27, 28], patch merging [29–32], and sequence packing [33] are
proposed for Vision Transformers [34]. Quadformer [35] uses mixed-resolution patches to vary
token count. However, these methods are tailored for visual understanding tasks and cannot be used
for generation. A few recent works such as VAR [36] study multi-scale tokenization for generation.
Nonetheless, these works are not adaptive to image content.

Adaptive tokenizers for image generation remain relatively underexplored. ElasticTok [10] employs
random masking to drop the tail tokens during training. ALIT [11] iteratively distills 2D tokens into
1D to reduce the token count. DQ-VAE [37] leverages information-density for dynamic representation.
However, all of these methods (1) require an input image to determine the token count, limiting their
use in generation settings where only text is available; and (2) overlook image complexity during
training. In contrast, we enable adaptive compression directly from textual descriptions without
observing the image. We also explicitly train the tokenizer with complexity-aware supervision. A
concurrent work, TexTok [38], explores language-guided tokenization by supplying the caption
embeddings to the VAE. However, it is not designed for adaptive representation.

Multi-scale network design. Our work is also related to designing neural networks for multi-scale
feature extraction. Inspired by U-Net [39] and Matryoshka networks [40–42], we incorporate skip
connections into the VAE to support multi-ratio compression in a single forward pass. Parallel work
explores transformer-based multi-scale architectures [43–49]. To the best of our knowledge, our
nested design offers the simplest yet effective solution for generating multi-scale latents via VAEs
without additional architectural or computational overhead, while achieving strong results (Section 4).

3 Method

In this section, we present CAT for adaptive image tokenization. We begin by motivating our caption-
based evaluator for image complexity estimation. Then, we describe the nested VAE architecture.

3.1 Proof of Concept

Metric Pearson r

JPEG 0.31
MSE 0.36
LPIPS 0.23
Caption 0.55

Figure 2: Left: Max acceptable compression ra-
tios for different τ . Right: Correlation with max
acceptable compression ratio for τ = 0.0015.

How much can we actually compress? A key
question in this work is to determine how much an
image can be compressed without significant loss
of quality. To explore this, we study the reconstruc-
tion performance of existing tokenizers under various
compression ratios. We take the open-source LDM
tokenizers 2 with 8x, 16x and 32x compression ratios
and compute their reconstruction mean squared error
(MSE) on 41K COCO 2014 [14] images with resolu-
tion 512. We find that for 28.3% of the images, 32x compression results in less than a 0.001 MSE
increase compared to 8x, while reducing the token count by a factor of 16. We also compute the
best MSE among all compression ratios for each image and determine the maximum acceptable
compression ratio under a tolerance τ (argmaxratio MSEratio − MSEbest < τ ). Fig. 2 (left) shows
that 56% of the images can be compressed at least to 16x with negligible (0.0001) increase in MSE3.
That is, a large portion of natural images can be compressed more aggressively to save compute.

On the other hand, our visual inspection reveals that images with fine-grained elements like text have
significantly worse reconstruction quality at 32x compression compared to 8x compression (e.g.,
see row 3 and 4 in Figure 3). This suggests that more tokens are required to accurately reconstruct
low-level details. The above results provide strong motivation for developing an adaptive tokenizer.

Limitations of existing complexity metrics. Next, we want to identify a metric for predicting
an image’s optimal compression ratio. We explore two existing options: (1) metrics produced by
traditional codecs, such as the JPEG file size; (2) metrics based on pretrained VAEs, such as the
reconstruction MSE and LPIPS distance [50]. We use Stable Diffusion’s sd-vae-ft-mse [51] for this

2LDM [12] released a series of VAE tokenizers with diverse compression ratios and trained in a controlled
setting. Most other tokenizers, such as stabilityai/sd-vae-ft-mse, only have one compressed ratio.

3The average MSE across all images for 8x LDM VAE is 0.0039, so a 0.0001 tolerance should be acceptable.
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Figure 3: Existing metrics can misjudge image complexity. Text-heavy images that are difficult to difficulty
to reconstruct (note the distortion in the bottom two rows) are considered as easy by existing metrics.

analysis. We compute these metrics on COCO and analyze their correlation with the maximum
acceptable compression ratio under 0.0015 tolerance. However, Table 2 shows that the Pearson r’s
are relatively low. Statistically, these metrics are not highly correlated with an image’s complexity.

We also manually inspect images with large JPEG sizes and MSEs. We note that images featuring
repetitive patterns, such as grass, forests, and animals like giraffes and zebras consistently show high
complexity metrics. Indeed, JPEG compression can be inefficient for images with sharp edges and
high contrast. A single-pixel shift in a zebra image can toggle pixel values between black and white,
significantly increasing the reconstruction error. However, as Figure 3 (left) show, large JPEG sizes
or MSEs do not always notably affect visual quality. For example, we can easily recognize the zebra
and may not perceive the differences resulting from various compression ratios.

Conversely, images with small JPEG sizes and low MSEs can have poor fidelity. For example, as
Figure 3 (right) shows, distortions in images containing elements sensitive to human perception, such
as text, numbers, and human faces, can drastically reduce visual quality. Despite this, these images
have low reconstruction errors since the critical elements occupy only small portions of the images.

Thus, existing metrics fail to capture details crucial to human perception. In contrast to the predicted
complexity, we actually want to use a large compression ratio for zebra images, and a small ratio for
the phone images. Beyond this, all considered metrics require images as input and cannot be used for
text-to-image generation tasks, where no image is available. Given all these limitations, we seek a
new complexity metric that is independent of pixel data and aligns with human perception. We note
that it is impractical to use the tolerance-based compression ratio in Figure 2 as the complexity metric
because it requires at least three model calls to get the MSEs, making it computationally expensive.

3.2 Complexity Evaluation via Captions and LLMs

Image generation typically involves users providing a prompt that describes the desired image content.
Inspired by this use case, we propose to use the text description of an image to evaluate its complexity.

We propose a 3-stage evaluation pipeline: (1) obtaining the text description, (2) prompting a LLM
for a complexity score, and (3) classifying the score into a compression ratio. The text description
includes both the image caption and answers to a set of pre-defined queries of the form “Are there
[obj]?” For example, obj ∈ {human faces, text} can be used to align with human perceptions. During
training, when image data are available, we use a vision language model (VLM) to generate the
captions and answers. During inference, users need to provide the necessary textual information.

We prompt a language model with the text description to generate an integer score ranging from 1
to 10, where higher scores indicate greater complexity. To ensure scoring consistency, we design a
detailed rubric that instructs the model to consider factors including semantic complexity (objects,
scenes), visual complexity (color, texture), and perceptual complexity. We also provide in-context
examples for each score. The complete prompt is provided in Appendix B.

Based on the complexity score, each image is classified into one of three compression ratios: 8x,
16x, or 32x, with higher complexity scores corresponding to lower ratios. We choose these options
as they are widely used in existing tokenizers [12] and provide meaningful variation in token
counts. Then, we implement a thresholding scheme to divide the scores into three intervals: [1, a],
(a, b], and (b, 10], where a < b ∈ Z+ are selected to achieve an average compression ratio of
16x across all training data to enable fair comparison with fixed 16x tokenizers. Formally, denote
the training distribution as X , input resolution as r, the compression ratio of an image x ∈ X as
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f(x) ∈ {f1 = 8, f2 = 16, f3 = 32}, the target average compression ratio as f̄ := 16. We set a, b by:

Ex∈X [
r2

f(x)2
] ≈

∑
x∈D

p
(
f(x)

) r2

f(x)2
≈ r2

f̄2
(1)

While multiple threshold configurations can achieve the target average compression ratio, our experi-
ments in Section 4.2 demonstrate that a diverse distribution of ratios yields better performance. For
the specific training dataset and thresholds used in our experiments, see Section 4.

Robustness testing and bias mitigation. To evaluate the robustness of our caption-based complexity
evaluator, particularly under different model choices and caption styles, we conduct ablation studies
on diverse datasets such as ImageNet [13], CelebA [15] and EuroSAT [52]. We compare two
pipelines: (1) a unified pipeline using LLaVA1.5 7B [53] for both captioning and scoring in a single
pass, and (2) a separated pipeline using InstructBLIP [54] for captioning and either Qwen2.5 7B [55]
or LLaMA3.1 8B Instruct [56] for scoring. Additionally, within the unified pipeline, we test variants
that explicitly prompt the model to produce longer versus shorter captions. As shown in Appendix
Table 10, all configurations result in similar compression distributions. We attribute this robustness to
(1) our carefully designed scoring rubrics and in-context examples, and (2) the LLM’s ability to infer
content complexity is more influenced by the semantic content of the caption than its wording. These
findings suggest that our evaluator is robust to model choices and captioning variations. Given its
simplicity and efficiency, we adopt the unified pipeline in all subsequent experiments.

High correlation with visual complexity. We verify that our caption score provides reliable
estimates of the optimal compression ratio. Similar to Section 3.1, we compute the correlation between
complexity scores and maximum acceptable compression ratios on COCO. Our metric achieves
the highest Pearson r among all options (Table 2) and 62.39% exact agreement on compression
ratio selection. Manual inspection also confirms that perceptually challenging images receive high
complexity scores. We note that during development, we also tested other caption-derived metrics
such as caption length, but it does not perform as well as LLM-based scoring (Appendix Table 9).

Minimal captioning overhead. When text information is available, our pipeline requires only a
single LLM call to obtain the complexity score. During training, where only images are provided, we
generate the caption, query responses, and complexity score within a single inference pass, keeping
the evaluation overhead minimal. Given the efficiency of modern inference engines like vLLM [57],
the cost of complexity evaluation is negligible compared to the overall compute required for training
the tokenizer and downstream models.

3.3 Nested VAE for Adaptive Comprssion

To reduce the tokenizer’s training and storage costs, we introduce a nested structure to the standard
VAE architecture [2] to enable multiple compression ratios within a single model. In standard VAE
architecture, the encoder consists of multiple downsampling blocks followed by an attention-based
middle block. The decoder consists of an attention-based middle block followed by upsampling
blocks. This symmetrical design resembles U-Net [39] and Matryoshka networks [40] for multi-scale
feature extraction. Inspired by these works, we leverage the intermediate outputs of the downsampling
blocks to enable adaptive compression (Figure 1). We describe the proposed architecture below.

Skip connection with channel matching. Denote the feature shape under the largest compression
ratio as (c3, rf3 ,

r
f3
), where c3 is the channel dimension. We observe that, in the standard VAE encoder,

the spatial dimension of the intermediate outputs from the downsampling blocks decreases by a factor
of 2 with each additional block. This means that the output of the second-to-last downsampling
block has shape (c2,

r
f2
, rf2 ), and the output of the third-to-last downsampling block has shape

(c1,
r
f1
, rf1 ). Then, a natural thought is to directly route these intermediate outputs to the middle block

to generate latent features. However, since the channel dimensions of these intermediate outputs
vary, we incorporate ResNet blocks [58] for channel matching. Let the latent channel dimension of
the VAE be c. Applying channel matching enables us to transform intermediate features of shape
(cn,

r
fn
, rfn ) to (c, rfn ,

r
fn

) for n = 1, 2, 3. This will be the shape of the latent parameters.

For decoder, we similarly add skip connection with channel matching and use the decoder middle
block’s output as the input to the corresponding upsampling block, i.e., for compression ratio fn, we
bypass the first n− 1 upsampling blocks so the final output has the same size as the original image.
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Shared mean/variance parametrization. Features after channel matching are directed to the
middle block to generate the latent distribution parameters. In CAT, we share the middle block for
all compression ratios to maintain scale consistency of the parameterized mean and variance. The
convolutional design of the middle block allows it to process inputs of varying spatial dimensions, as
long as the channel dimension is aligned. Thus, for all n ∈ {1, 2, 3}, the mean µn, variance σ2

n, and
samples zn of the Gaussian distribution all have shape (c, rfn ,

r
fn

), i.e., the input compressed at fn.

Increasing parameter allocation for shared modules. Images assigned larger compression ratios
do not go through the later downsampling blocks and are directed straight to the middle block. The
middle block is thus tasked with handling multi-scale features. To improve its capacity, we allocate
more parameters to the middle block by increasing the number of attention layers.

3.4 Training

While existing adaptive tokenizers like ElasticTok [10] do not consider the varying complexity of
training data, we explicitly incorporate content complexity into training to learn feature extraction at
different granularity. For each training example, we first obtain the compression ratio from the LLM.
Then, the image is processed only by the layers dedicated to its compression ratio.

Similar to prior works [2, 1], we use a joint objective that minimizes reconstruction error, Kullback-
Leibler (KL) divergence, and perceptual loss. Specifically, we use L1 loss for pixel-wise recon-
struction. To encourage the encoder output z towards a normal distribution, KL-regularization is
added: LKL(z) := KL(qθ(z|x)∥p(z)

)
, where θ is the encoder parameters and p(z) ∼ N (0, I). The

perceptual loss consists of the LPIPS similarity [50] and a loss based on the internal features of the
MoCo v2 model [59]. Beyond these, we train our tokenizer in an adversarial manner [60] using a
patch-based discriminator ψ, which adds a GAN loss LGAN(x, x̂, ψ). Thus, our overall objective is:

L = min
θ

max
ψ

Ex∈X

[
Lrec(x, x̂) + βLKL(z) + γLperc(x̂) + δLGAN(x, x̂, ψ)

]
, (2)

where β, γ, δ are loss weights. We provide our training code in the supplementary material.

4 Image Reconstruction

We first evaluate CAT’s reconstruction quality and analyze various design choices via ablation studies.

Training details. We use a nested VAE with six downsampling blocks and 187M parameters. For
our main results (Table 3), we set the latent channel c to 16. We study its effect as an ablation study
in Section 4.2. For training data, we use 380M licensed Shutterstock images with 512x512 resolution.
After obtaining the complexity scores, we find that two sets of thresholds, (a, b) ∈ {(4, 7), (2, 8)},
both achieve an average compression ratio of 16x. We select (4, 7) for our main experiments because
it leads to a more diverse distribution and better empirical results (see ablation studies in Section 4.2).
All models including the baselines are trained using a global batch size of 512 on 64 NVIDIA A100
GPUs for 1M steps. Other architecture and training details can be found in Appendix E.

Table 1: Test data distribution. CAT ap-
plies larger compression to natural images
and smaller ratios to CelebA and ChartQA.
Datasets Method 8x 16x 32x Avg Latent Dim Avg Rate

COCO CAT (Ours) 9% 54% 37% 31.87 16.07x
JPEG 10% 54% 36% 32.43 15.79x

ImageNet CAT (Ours) 6% 49% 45% 29.32 17.46x
JPEG 9% 49% 42% 31.24 16.39x

CelebA CAT (Ours) 17% 83% 0% 39.29 13.03x
JPEG 0% 0% 100% 16 32x

ChartQA CAT (Ours) 96% 4% 0% 63.02 8.12x
JPEG 0% 3% 97% 16.61 30.82x

Evaluation datasets. We use four representative datasets:
COCO [14] and ImageNet [13] for natural images, CelebA
[15] and ChartQA [16] for perceptually challenging im-
ages. Table 1 shows the compression ratio distributions.

Baselines. We compare against fixed-token baselines that
use the same VAE architecture but without the nested struc-
ture. We further study the effect of caption complexity by
training a nested VAE using JPEG size as the complexity
metric. All baselines have average 16x compression. To
our knowledge, none of existing adaptive tokenizers (e.g.,
ElasticTok, ALIT) report quantitative results on the datasets we use, so we do not compare with them.
ALIT only shows an rFID of 8.03 on ImageNet100. See Appendix E.3 for more baseline details.

4.1 Main Results

Better reconstruction for complex images, higher efficiency for natural images. Table 3 presents
the reconstruction FID (rFID), LPIPS, and PSNR [61] on four datasets. Comparing CAT with the
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Table 3: Reconstruction results. All models have latent channel c = 16.
Average
Compression

COCO ImageNet CelebA ChartQA
rFID↓ LPIPS↓ PSNR ↑ rFID↓ LPIPS↓ PSNR ↑ rFID↓ LPIPS↓ PSNR ↑ rFID↓ LPIPS↓ PSNR ↑

8 Fixed 8x 0.48 0.10 30.95 0.24 0.095 33.86 1.86 0.028 45.36 8.21 0.019 36.98

16
Fixed 16x 0.66 0.16 29.79 0.38 0.15 30.45 2.25 0.059 41.84 8.67 0.029 33.48
Adaptive JPEG 0.72 0.17 30.11 0.51 0.16 30.61 6.57 0.14 36.47 10.17 0.048 31.54
Adaptive CAT (Ours) 0.65 0.15 30.19 0.46 0.15 30.62 1.97 0.051 42.43 5.27 0.021 36.45

32 Fixed 32x 1.18 0.26 26.93 0.81 0.25 27.48 6.10 0.16 36.35 10.79 0.045 30.99

Figure 4: Qualitative reconstruction examples. We highlight the compression ratio selected by our caption
complexity in red. On simpler images (top two rows), adjusting the compression ratio does not significantly
affect quality. On more complex images (bottom three rows), the impact is substantial.

fixed 16x baseline, our method significantly outperforms the baselines across all metrics on CelebA
and ChartQA, improving the rFID by 12% on CelebA and 39% on ChartQA. Our ChartQA
rFID even surpasses the fixed 8x baseline, likely because the LLM evaluator can effectively identify
rich visual details in these datasets and assign lower compression ratios accordingly (Table 1). On
COCO and ImageNet, CAT generally outperforms the baselines, with only a slight drop in rFID on
ImageNet. However, On ImageNet, CAT achieves an average compression ratio of 17.46x, which
means we use 18% fewer tokens to represent the dataset compared to the 16x baseline,

Table 2: ImageNet-
512 reconstruction.
ImageNet rFID
MaskGIT-VQGAN [62] 1.97
TiTok-B-128 [8] 1.52
LFQ [3] 1.22
TexTok [38] 0.73
LDM [12] 0.53
CAT 0.46

Figure 4 shows qualitative examples of progressive reconstruction quality as
we manually increase the token count and reduce the compression ratio to
represent each image. We highlight the compression ratio predicted by CAT
in red. Different visual inputs need different ideal compression ratios. Natural
images with fewer objects and simpler patterns can be accurately reconstructed
at 32x, whereas complex images with visual details require lower compression.
Thus, the caption-based CAT reconstruction has comparable quality to the fixed
16x baseline on natural images but surpasses it on text-heavy images. We include more visualization
in Appendix E.4. We also report CAT’s performance with uniform 16x compression in Appendix E.5.
Lastly, while most prior works do not evaluate on diverse datasets like ChartQA, we include a
side-by-side comparison with popular fixed-ratio tokenizers on ImageNet in Table 2. This table is for
reference only due to differing training setups (we refer the readers to Table 3 for fully comparable
baselines). Nonetheless, the results highlight that CAT achieves competitive performance by adapting
compression ratios to image content.

Caption complexity outperforms JPEG metric. We further compare CAT against training the
same adaptive architecture but using JPEG size as the complexity metric. Table 3 shows that CAT
achieves better rFID, LPIPS, and PSNR across all datasets. While both tokenizers have similar
training compression ratio distribution, the test-time compression ratio distribution varies significantly
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Table 4: Ablation on thresholds. The (4, 7)-
setting with more diverse training distribution
achieves generally better performance.
(a, b) COCO ImageNet CelebA ChartQA

(4, 7) 0.65 0.46 1.97 5.27
(2, 8) 0.67 0.43 2.58 7.70

Table 5: Ablation on latent channel. Increas-
ing latent channel c improves rFID across all
four evaluated datasets.

c COCO ImageNet CelebA ChartQA

4 1.66 1.10 5.83 9.13
8 1.03 0.60 4.54 7.95

16 0.65 0.46 1.97 5.27

Table 6: More reconstruction and classification results.
CAT achieves better reconstruction and classification results.

DTD EuroSAT GTSRB SUN397 SVHN

Reconstruction FID (↓)
LDM VAE 16x 7.86 7.04 1.22 1.95 1.76
Fix 16x 7.29 6.26 1.38 1.95 2.11
CAT (Ours) 7.23 5.45 1.14 1.93 1.69
Linear Probing Top-1 Accuracy (%, ↑)
LDM VAE 16x 53.81 75.38 70.29 63.70 64.87
Fix 16x 50.42 78.08 70.07 62.92 65.07
CAT (Ours) 54.51 78.21 71.28 64.16 66.39
Fine-Tuning Top-1 Accuracy (%, ↑)
LDM VAE 16x 75.91 97.00 90.61 79.89 83.05
Fix 16x 71.96 92.46 95.07 78.77 85.93
CAT (Ours) 74.11 98.00 95.32 78.45 86.13

(Table 1). Notably, since JPEG size often cannot capture perceptually important factors (see discussion
in Section 3.1), nearly all images in CelebA and ChartQA are assigned 32x compression. Thus, CAT
significantly outperforms JPEG on these two datasets, showing the effectiveness of caption-based
metric and LLM evaluation in determining image intrinsic complexity.

4.2 Ablation Studies

Benefits of diverse compression ratios. We explore several design choices for our tokenizer. First,
we study how the distribution of compression ratios affects overall reconstruction. To achieve an
average compression ratio of 16, we could set the thresholds (a, b) to either (4, 7) or (2, 8). (4, 7)
yields a more diverse distribution of compression ratios, whereas (2, 8) results in a concentrated
distribution similar to a fixed 16x tokenizer, making it less interesting. Table 4 shows that (4, 7)
produces better reconstruction metrics across all datasets due to the diversity in compression ratios
ensures that all parts of the model are fully trained. Hence, we adopt (4, 7) as the thresholds for CAT.

Effect of latent channel dimension. We also vary the latent channel c to study its effect. Table 5
shows that a larger c improves reconstruction results. However, similar to previous work [12, 63], we
observe a reconstruction-generation trade-off: while increasing c is beneficial for reconstruction, it
does not necessarily improve second-stage generative results. We elaborate more on this in Section 6.

5 Classification on Diverse Datasets

While CAT demonstrates strong reconstruction performance on COCO, ImageNet, CelebA, and
ChartQA, these datasets represent only a subset of image domains. To thoroughly assess CAT’s
capabilities in diverse domains and tasks beyond reconstruction, we follow OpenCLIP [19] and test
CAT’s classification performance on five datasets that feature details beyond text and human faces:
DTD [64] (textures), EuroSAT [52] (satellite images), GTSRB [17] (traffic signs), SUN397 [65]
(indoor and outdoor scenes), and SVHN [18] (street numbers). We examine two settings: (1) linear
probing, where we freeze the encoder and train only a linear layer on top of the latent features; and
(2) fine-tuning both the encoder and classification head. See Appendix F for experiment details.

As shown in Table 6, CAT consistently outperforms fixed-ratio baselines across both settings, achiev-
ing the best top-1 accuracy on all five datasets in the linear probing setup. This highlights the
quality and generalizability of CAT’s latent representations, which transfer effectively to downstream
classification tasks even without fine-tuning. In addition, CAT maintains strong reconstruction perfor-
mance on these datasets, improving the rFID by 13% on EuroSAT, 17% on GTSRB, and 20% on
SVHN (Table 6, top rows). These results further confirm that our caption-based complexity metric
supports learning representations that balance both compression quality and downstream utility.

6 Image Generation

Lastly, we evaluate CAT on text-to-image generation to show that (1) its adaptive design does not
compromise generation quality; (2) by using fewer tokens to represent the training data, CAT actually
enables more efficient learning, leading to stronger generative models under the same compute budget.

Setup. Given CAT’s ability to produce variable-length token sequences, we integrate it with
Diffusion Transformer (DiT) [20], which handles adaptive token representations naturally. DiT
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Table 7: ImageNet-512 generation results. All tokenizers have
average 16x compression ratio. “rFLOPs” means relative FLOPs.

FID↓ sFID↓ IS↑ Precision↑ Recall↑ Eval rFLOPs↓

Fixed DiT + LDM VAE 10.03 16.88 114.84 0.65 0.50 1×
DiT + Fixed 16x 4.78 11.81 187.47 0.72 0.49 1×

Adaptive DQ-Transformer [37] 5.11 - 178.2 - - -
DiT + CAT (Ours) 4.56 10.55 191.09 0.75 0.49 0.82×

Table 8: Larger channel c is not always
better for generation.

c FID↓ sFID↓ IS↑ Precision↑ Recall↑
4 5.12 11.12 152.39 0.72 0.48
8 4.38 10.31 181.03 0.76 0.48
16 4.56 10.55 191.09 0.75 0.49

takes the noised latent features as input, applies patching for downsampling, and uses a transformer
architecture to predict the added noise. Following [20], we work with class-conditional generation on
ImageNet-512, leveraging DiT-XL with a patch size of 2.

During training, each image is processed through the CAT pipeline to determine its compression ratio,
resulting in variable-length latent representations tailored to its complexity. That is, each example can
have different number of latent tokens. For inference, we obtain a class-level compression ratio by
providing a textual description of the form “this is an image of [label]” to the LLM evaluator, which
predicts the appropriate compression ratio for that class. For example, if the evaluator suggests a 16x
compression, we generate ( 512

16·2 )
2 = 256 tokens, where the 2 in the denominator accounts for DiT’s

patching. The generated tokens are then decoded by CAT to reconstruct 512x512 images. Following
[20], we report FID [66], Sliding FID [67], Inception Score [68], precision and recall [69] on 50K
images generated with 250 DDPM steps and classifier-free guidance [70]. We note that we use the
same compression ratio per class predicted by LLMs mainly for benchmarking purpose. In reality,
CAT allows users to flexibly specify the desired token count at inference time, as we will show later.

Baselines. We compare against DiT-XL paired with the open-source 16x LDM VAE and the fixed 16x
tokenizer we trained ourselves. All models are trained on 16 NVIDIA H100 GPUs for 400K steps,
using a global token batch size of 262,144, which is equivalent to 1024 images at 16x compression.
See Appendix G for more implementation and baselinedetails.

As shown in Table 7, DiT-CAT achieves the best FID, sFID, IS, and precision among all DiT
baselines trained with the same computational resources. We attribute this performance to two factors.
First, using fewer tokens for simpler images improves processing efficiency, allowing for more
extensive training within the same computational budget. In fact, the average token count per training
image for DiT-CAT is 197.44. Compared to the 256 tokens used by fixed 16x tokenizers, CAT achieves
a 23% reduction in token count, allowing the model to process more images within the same training
budget. Second, adaptively allocating representation capacity also enables more effective modeling
of complex images, as richer visual details are better preserved through the use of additional tokens.

Figure 5: Increasing token count (left→right) for CAT
leads to better image quality and higher complexity.

As discussed earlier, we use our LLM evalua-
tor to obtain the generation token count using
pre-defined captions mainly because we want to
automate the evaluation process. In reality, users
can flexibly set the token count based on their
computational budget. To explore this, we manu-
ally vary the token count during generation with
DiT-CAT and observe that FID-50K improves
from 5.83 (64 tokens) to 5.02 (256 tokens) and
4.12 (1024 tokens), confirming that more tokens
lead to higher-quality images. Qualitative exam-
ples in Figure 5 further support this observation.
Thus, CAT enables a controllable trade-off be-
tween efficiency and generation quality. For
more visualization, see Appendix G.4.

Lastly, recall that we trained tokenizers with
different latent channels in Section 4.1. Table 8
shows the generation performance. While larger c is better for reconstruction, it does not benefit
generation. CAT with c = 8 achieves the best FID across all experiments. This observation agrees
with prior work [12] and highlights the importance of choosing an appropriate c. We leave exploring
c’s impact on downstream task for future work.
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7 Conclusion

We propose an adaptive image tokenizer, CAT, that allocates different number of tokens to images
based on the content complexity derived from text description. Our experiments show that CAT
improves the quality and efficiency of image representation on a variety of downstream tasks.

Limitations and Future Work. Nested VAE is a natural and effective extension of the VAE archi-
tecture but is constrained to predefined compression ratios that scale by factors of 2. An intriguing
direction for future work would be to enable more flexible compression ratios by transitioning to
transformer backbones and dynamically adjusting token counts. Besides, images contain diverse
global and local information. While CAT addresses global complexity by increasing token alloca-
tion for images with intricate details, further efficiency improvements could come through local
tokenization—allocating more tokens specifically to detailed regions while reducing tokens for sim-
pler areas. Besides, an ideal pipeline would enable LLMs to automatically identify perception-critical
elements without relying on predefined queries. This would be an important next step for our work.
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A Broader Impact

This work introduces CAT, a content-adaptive tokenizer designed to improve the efficiency and
flexibility of image modeling. By enabling dynamic compression based on image content, CAT has
the potential to reduce computational and energy costs in large-scale generative and classification
systems, contributing to more sustainable AI practices. However, as with any generative model,
misuse of this technology for creating misleading or harmful content remains a concern. We encourage
responsible deployment, including proper safeguards and usage guidelines, particularly in sensitive
domains such as media generation, surveillance, or automated decision-making.

B Prompt for LLM Scorer

Our caption complexity pipeline works as follows:

Step 1: Use a VLM to generate image description, with the following prompts:

• What’s in the image? → Caption
• Are there text or numbers in the image? → Yes/No.
• Are there faces in the image? → Yes/No.

Step 2: Use the same VLM or a separate LLM to generate the complexity score with the prompt:

Given the description of a 512px image, determine its complexity based on the following
factors:
1. Number of distinct objects
2. Color variance
3. Texture complexity
4. Foreground and background
5. Symmetry and repetition
6. Human perception factors, like the presence of human faces or text
You will be given the caption, whether there are text or numbers, and whether there are
faces in the image. Assign a complexity score such that a higher number means the image
is more complex. Note that text and facial details are intrinsically complex because they
are crucial to human perception. Here are some examples for scoring:
- Score 1: A plane in a sky
- Score 2: A t-shirt with a emoji on it
- Score 3: A dog lying on the grass
- Score 4: A woman skiing in the snow
- Score 5: Two kids walking on the beach
- Score 6: A dinning table full of food
- Score 7: A close-up shot of a old man
- Score 8: Many people gathering in the stadium
- Score 9: Newspapers or graphs with text and numbers
Now determine the complexity for the caption:
[Insert caption here]
[Insert one of the following based on the Yes/No questions:
- There are text visible in the image. There are also facial details.
- There are text visible in the image, but there is no human face.
- There is no obvious text in the image, but there are facial details.
- There is no text or human face in the image. ]
Respond with “Score: ? out of 9", where “?" is a number between 1 and 9. Then provide
explanations.

Note these two steps can be combined into a single inference call.

C Other Complexity Metrics
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Table 9: We also tried various other metrics. However, they are less effective (e.g., caption length)
compared to our LLM-based score.

Metric Pearson r

JPEG 0.31
MSE 0.36
LPIPS 0.23

Caption Length 0.33
CAT (Ours) 0.55

D Compression Ratio Distributions with Different LLMs

Table 10: To study whether our caption score is robust to LLM choice, we test multiple captioners
and LLMs for scoring. The fact that these combinations generate similar score and compression ratio
distributions show that our scoring method is robust.

Scoring Model 8x 16x 32x Avg Rate

InstructBLIP + Llama3.1-8B-Instruct 6% 49% 45% 17.43
ImageNet InstructBLIP + Qwen2.5-7B-Instruct 2% 70% 28% 17.35

LLaVA1.5 7B 2% 65% 33% 17.75
LLaVA1.5 7B (Longer Caption) 3% 62% 35% 17.58

InstructBLIP + Llama3.1-8B-Instruct 17% 83% 0% 13.02
CelebA InstructBLIP + Qwen2.5-7B-Instruct 15% 70% 15% 13.83

LLaVA1.5 7B 5% 95% 0% 14.92
LLaVA1.5 7B (Longer Caption) 6% 94% 0% 14.72

InstructBLIP + Llama3.1-8B-Instruct 0% 40% 60% 21.57
DTD InstructBLIP + Qwen2.5-7B-Instruct 0% 38% 62% 21.87

LLaVA1.5 7B 0% 41% 59% 21.42
LLaVA1.5 7B (Longer Caption) 2% 44% 54% 19.76

InstructBLIP + Llama3.1-8B-Instruct 3% 30% 67% 20.87
EuroSAT InstructBLIP + Qwen2.5-7B-Instruct 3% 25% 72% 21.57

LLaVA1.5 7B 2% 22% 76% 22.85
LLaVA1.5 7B (Longer Caption) 4% 23% 72% 21.19

InstructBLIP + Llama3.1-8B-Instruct 6% 73% 21% 15.82
SUN397 InstructBLIP + Qwen2.5-7B-Instruct 2% 78% 20% 16.77

LLaVA1.5 7B 3% 80% 17% 16.30
LLaVA1.5 7B (Longer Caption) 5% 82% 13% 15.59

E Reconstruction Experiments

E.1 Architecture

We implement the nested VAE similar to the AutoencoderKL implementation in the diffusers
library. The network configuration is:

• sample_size: 512
• in_channels: 3
• out_channels: 3
• down_block_types: [DownEncoderBlock2D] × 6
• up_block_types: [UpDecoderBlock2D] × 6
• block_out_channels: [64, 128, 256, 256, 512, 512]
• layers_per_block: 2
• act_fn: silu
• latent_channels: 4/8/16
• norm_num_groups: 32
• mid_block_attention_head_dim: 1
• num_layers: 8

The model sizes for different latent channels are shown below. For the discriminator, we use the
pretrained StyleGAN [71].
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Nested VAE c = 4 c = 8 c = 16

# Params (M) 187.45 187.50 187.61

E.2 Training

We use obj ∈ {human faces, text} for our perception-focused queries. We use the following training
configuration:

• GPU: 64 NVIDIA A100
• Per-GPU batch size: 8
• Global batch size: 512
• Training steps: 1,000,000
• Optimizer: AdamW

– lr: 0.0001
– beta1: 0.9
– beta2: 0.95
– weight_decay: 0.1
– epsilon: 1e-8
– gradient_clip: 5.0

• Scheduler: constant with 10,000 warmup steps
• Loss:

– recon_loss_weight: 1.0
– kl_loss_weight: 1e-6
– perceptual_loss_weight: 1.0
– moco_loss_weight: 0.2
– gan_loss_weight: 0.5
– gan_loss_starting_step: 50,000

The discriminator is trained with the standard GAN loss.

E.3 Baselines

Figure 6: On COCO 2014 test
set, the minimum JPEG size is
6128; maximum is 118428; mean
is 45474.29; standard deviation is
15037.07.

We train fixed compression baselines using the same data, train-
ing configuration, and VAE backbone. For smaller compression
ratios, e.g., fixed 8x, the last two downsampling blocks and first
two upsampling blocks are not used.

For the adaptive JPEG baseline, we use torchvi-
sion.io.encode_jpeg to transform the images into JPEG
file and compute the number of bytes as the complexity metric.
Smaller files correspond to larger complexity. To provide
a better understanding of this metric, we show in Figure 6
the distribution of JPEG sizes on the COCO 2014 test set,
with relevant statistics included in the caption. Then, based
on the JPEG sizes of all images in the Shutterstock training
dataset, we set the thresholds (a, b) to (38761, 65837) to
categorize the file sizes into three compression ratios. This
set of thresholds ensure that the JPEG baseline has the same
training compression ratio distribution as CAT.

For LDM VAEs, we follow the instructions in their original
repository to use the model checkpoints. Note that LDM VAEs are trained on OpenImages dataset
[72], which is different from our training data, so it is hard to fairly compare the reconstruction
performance. Nonetheless, we present their rFIDs on the evaluation datasets in Table 11.
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Table 11: rFIDs for CAT and LDM VAEs.
COCO ImageNet CelebA ChartQA

CAT 0.65 0.46 1.97 5.27
LDM 8x 0.51 0.33 2.83 8.32
LDM 16x 0.53 0.37 3.07 8.49
LDM 32x 0.90 0.62 5.54 10.35

E.4 More Reconstruction Visualization

See Figure 7 in the next page.
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E.5 Fixing Token Count for CAT
Table 12: Equalizing test-
time token counts.

CAT rFID Adaptive Equalized 16x

COCO 0.65 0.67
ImageNet 0.46 0.40
CelebA 1.97 2.47
ChartQA 5.27 7.27

We also evaluate the reconstruction performance under fixed compres-
sion ratio (token count) for different datasets. Table 12 compares the
reconstruction FID for CAT with caption-guided compression ratio
vs. fixed 16x compression ratio. We see that adaptive compression
based on image complexity outperforms uniform compression using
the same architecture in most cases, possibly because error reduction
on complex images outweighs the slight error increase on simpler
ones.
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Figure 7: More CAT reconstruction examples. We highlight the compression ratio selected by
our caption complexity in red.

E.6 Full Results for Table 4 and Table 5

To complement Table 4, we include the training distribution for different scoring thresholds in
Table 13. To complement Table 5, we include the results of fixed-ratio baseline in Table 14.

Table 13: Compression ratio distribution affects learning outcomes. Both settings have an average
compression of ∼16x, but (4, 7) leads to better distribution diversity and empirical results.

(a, b)
Training Distribution Reconstruction FID ↓

8x 16x 32x Average COCO ImageNet CelebA ChartQA
(4, 7) 10% 48% 42% 16.0x 0.65 0.46 1.97 5.27
(2, 8) 0.5% 89.5% 10% 16.5x 0.67 0.43 2.58 7.70
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Table 14: Larger latent channel c generally improves rFID.
rFID↓ c COCO ImageNet CelebA ChartQA

4 1.25 1.32 5.89 9.45
Fixed 16x 8 1.10 0.61 4.99 8.19

16 0.66 0.38 2.25 8.67

4 1.66 1.10 5.83 9.13
CAT 8 1.03 0.60 4.54 7.95

16 0.65 0.46 1.97 5.27

F Classification Experiments

We selected the diverse datasets because they represent out-of-domain distributions where zero-shot
models perform poorly [73–75]. Similar to OpenClip [19], we initialize a simple linear classification
head that maps from the tokenizer’s maximum latent dimension (under 8x compression) to the number
of labels for each task. When the image is compressed with 16x or 32x ratio, we zero-pad the latent
features to make the length match with the classification head. We evaluate two settings: (1) linear
probing, where we keep the image encoder frozen and only fine-tune the classification head; (2) full
fine-tuning, where we update both the encoder and the classification head. We train both settings for
20 epochs with a batch size of 64, learning rate 1e-4 and a cosine annealing learning rate schedule
with 2 warm-up epochs. We use the AdamW optimizer with weight decay 0.1.

G Generation Experiments

G.1 Architecture

We use DiT-XL architecture with a patchify downsampler and patch size of 2. The model size
depends on the latent channel, but is generally around 431M parameters. The model TFLOPs is 22.0.
All baselines reported in Table 7 use c = 16.

G.2 Training & Inference

We use LLaVA1.5 7B to generate the complexity score for ImageNet training images. For 10 % of
the time, we remove the image class label from the input and train unconditional image generation.
The training configuration for DiT is:

• GPU: 16 NVIDIA H100
• Per-GPU token batch size: 4096 × 4 (equivalent to 64 images for 16x compression ratio)
• Global token batch size: 4096 × 64
• Training steps: 400,000
• Optimizer: AdamW

– lr: 0.0001
– beta1: 0.9
– beta2: 0.95
– weight_decay: 0.1
– epsilon: 1e-8
– gradient_clip: 1.0

• Scheduler: Cosine
– warmup: 4000
– cosine_theta: 1.0
– cycle_length: 1.0
– lr_min_ratio: 0.05

At test time, we use “this is an image of [label]” as a standardized prompt and manually provide
answers to the queries to enable automated evaluation. Then, we use Llama3.1 to obtain the
complexity score. DDPM scheduler (diffusers implementation) configuration is:
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• num_train_timesteps: 1000
• beta_start: 0.0001
• beta_end: 0.02
• beta_schedule: squaredcos_cap_v2
• prediction_type: epsilon
• timestep_spacing: leading
• num_inference_steps: 250

All FID-50K and images generated in this paper are using cfg=1.5.

G.3 Baselines

To ensure we train the baseline with the same compute FLOPs, we fix the token batch size and
number of training steps for all settings. For pretrained LDM VAE, we use the scaling factor specified
in the model configuration to ensure the input scale and noise scale are similar. For CAT, we use a
scaling factor of 1.

G.4 More Visualization

See Figure 8 in the end.

G.5 Full Results for Table 8

To complement Table 8, we include the results of fixed-ratio baseline in Table 15.

Table 15: Larger channel c is not always better for generation. Contrary to Table 5, we find that
increasing channel dimension does not always result in generation gains.

c FID↓ sFID↓ IS↑ Precision↑ Recall↑
4 5.11 10.84 158.80 0.75 0.49

Fixed 16x 8 4.96 10.39 221.85 0.76 0.51
16 4.78 11.81 187.47 0.72 0.49

4 5.12 11.12 152.39 0.72 0.48
CAT 8 4.38 10.31 181.03 0.76 0.48

16 4.56 10.55 191.09 0.75 0.49
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Figure 8: More DiT-CAT generation examples. Increasing token count (left→right) generally
leads to better image quality and higher complexity.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).
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The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our contribution is to propose a dynamic tokenizer based on image complexity.
These are reflected in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See the Conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: There is no theoretical result in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all training and inference configurations, hyperprameters, LLM
prompts in the main text and appendix. We also include the code in the supplementary
materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
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of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use open-source benchmarks and release our code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, see the appendices.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report numbers for one trail due to the cost associated with each experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, we specify the GPUs we used.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper follows the NeurIPS Code of Ethics.
Guidelines:
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Broader Impact section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not use data or train models with high risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The datasets are cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We discussed how we prompt LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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