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Abstract

Deep learning models often rely only on a small
set of features even when there is a rich set of
predictive signals in the training data. This makes
models brittle and sensitive to distribution shifts.

In this work, we first examine vision transform-
ers (ViTs) and find that they tend to extract robust
and spurious features with distinct attention heads.
As aresult of this modularity, their performance
under distribution shifts can be significantly im-
proved at test time by pruning heads correspond-
ing to spurious features, which we demonstrate
using an “oracle selection” on validation data.

Second, we propose a method to further enhance
the diversity and complementarity of the learned
features by encouraging orthogonality of the at-
tention heads’ input gradients. We observe im-
proved out-of-distribution performance on diag-
nostic benchmarks (MNIST-CIFAR, Waterbirds)
as a consequence of the enhanced diversity of
features and the pruning of undesirable heads.

1. Introduction

State-of-the-art models in machine learning show their lim-
its when faced with distribution shifts. Even though they
can perform remarkably well when training and test data
are drawn from the same distribution, their predictive per-
formance can degrade dramatically otherwise. The reason
is that features that are predictive in the training data may
be spurious and misleading at test time. Out-of-distribution
(OOD) generalization is the capability of a model to main-
tain its predictive performance in the face of such shifts.
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Prior work has shown that deep learning models often rely
only on a small set of predictive features (Geirhos et al.,
2020). If any of these features are spurious and affected
by a distribution shift, chances are high that a model’s per-
formance will be affected. A recent line of work seeks to
increase the diversity of the learned features, either as an ob-
jective when training a predictive model (Ross et al., 2020;
Teney et al., 2022a; Lee et al., 2022) or as a step prior to
the application of invariance-learning methods (Chen et al.,
2023b; Zhang et al., 2022).

This paper focuses on computer vision tasks and vision
transformers (ViT) (Dosovitskiy et al., 2020). We apply
a regularizer based on input gradients (Ross et al., 2020;
Teney et al., 2022a) to a ViTs’ attention heads to diversify
the features learned across these heads. This encourages
different parts of the model to rely on different aspects of
the data and to discover additional predictive patterns. In
contrast to methods that diversify functional behaviour in
prediction space (Lee et al., 2022; Chen et al., 2023a), our
approach operates in feature space and does not require any
OOD data (even unlabeled) during training.

This paper presents early experiments on standard OOD
benchmarks (MNIST-CIFAR, Waterbirds). First, we find
that ViTs already have an inherent property for modu-
larity: their attention heads rely each on different features,
such that they can be pruned selectively to discard spurious
ones and improve generalization. Second, we show that
the proposed regularizer can further increase the diver-
sity and complementarity of the learned features. Our
method, DiverseViT (see Figure 1), leads to improvements
in a standard OOD evaluation setting, and even more so
when we allow pruning attention heads at test time using
for selection the highest accuracy obtained on a labeled
validation set from the target distribution. '

Summary of contributions.

* We evaluate off-the-shelf ViTs on diagnostic OOD bench-
marks and find inherent modularity in their representa-
tions, such that OOD generalization can be improved by
pruning the attention heads that rely on spurious features.

'This setting provides an upper bound on the performance
achievable with ideal model selection heuristics.
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* We propose a simple regularizer to increase the diversity
of features learned by ViTs.

* We evaluate models trained with our method (DiverseViT)
and observe increased diversity and complementarity of
the learned features. They show better OOD performance
in standard evaluations, and yet much higher performance
when pruning specific attention heads at test time.

2. Related Work

Diversity of solutions in machine learning. A range of
methods have been proposed to train models that are diverse
in properties such as OOD generalization (Lee et al., 2022;
Teney et al., 2022b), interpretability (Chen et al., 2023c; Se-
menova et al., 2022), or fairness. These diversification meth-
ods are relevant in cases of underspecification (D’ Amour
et al., 2020) when the standard ERM objective (empirical
risk minimization) does not constrain the solution space to
a unique one.

Increasing diversity. Most diversification methods train
a set of multiple entire models. By contrast, our approach
seeks to increase diversity within a single transformer. Exist-
ing methods train multiple models in parallel or sequentially.
They encourage diversity in feature space (Heljakka et al.,
2022; Yashima et al., 2022), prediction space (Pagliardini
et al., 2022; Lee et al., 2022), or gradient space (Ross et al.,
2018; 2020; Teney et al., 2022a;b). Our method applies a
gradient-based approach similar to that of Ross et al. (2020);
Teney et al. (2022a) to the attention heads of ViTs.

Vision transformers (ViTs). We focus on ViTs because
they archieve state-of-the-art performance for multiple tasks
in computer vision (Khan et al., 2022). Multiple works
have sought to understand the features learned by these
models (Bhojanapalli et al., 2021; Naseer et al., 2021; Zhou
et al., 2022). Our findings are complementary. We also seek
to nudge the (generally beneficial) inductive biases of ViTs.
In particular, we seek to overcome the general “simplicity
bias” of deep learning models (Shah et al., 2020).

3. Proposed method

We describe a simple method to diversify the features
learned by ViTs trained for image classification. We pro-
pose a regularizer that encourages orthogonality of the input
gradients corresponding to their attention heads. We show
empirically that this provides a better inherent robustness to
distribution shifts. Moreover, this allows further improve-
ments in OOD performance with test-time pruning of the
attention heads that correspond to spurious features, while
retaining those necessary for robust classification.

3.1. Background: ViTs and attention heads

The input image to a ViT is partitioned into a grid of small
patches. A sequence of tokens is formed by combining the
patches with positional embeddings. The main operation
to aggregate a sequence of tokens is the multi-head self-
attention, defined as:

T
h; = softmax (W) zW, €))]

where © € RV*D represents the set of N input tokens
of the self-attention layer and W, Wy, W, € RPXP are
learnable parameters of the layer.

The output of all heads are concatenated and the result is
projected with a linear mapping:

Yy = [h17"‘7hH]WO (2)

with W, € RP*H*D Jearnable parameters.

3.2. Encouraging feature diversity with input gradients

Our diversification method is a regularizer term added to the
optimization objective when training a ViT for a supervised
task with standard ERM. This approach increases the diver-
sity of features within a single transformer, which contrasts
with many diversification methods that train multiple entire
models. The motivation for our approach is (1) its lower
computational cost and (2) leveraging the existing inductive
biases of vision transformers to avoid the type of “adver-
sarial” solutions to the gradient-based regularizer that were
described in Teney et al. (2022b).

Input gradients. To determine how much each dimension
of a feature vector contributes to the prediction of the model,
we look at the gradient of the prediction with respect to
this vector. Concretely, we compute the gradient of the top
predicted score p* with respect to the input x:

Ip* NxD

Ve=—-—€R . 3)
ox

Influence of each head. The outputs of all attention heads
are concatenated and projected (Equation 2), so V, con-
siders all attention heads’ effects simultaneously. As we
are interested in diversifying the effect of each individual
head, we want to capture their individual contributions. For
this, we backpropagate the gradient of the top prediction
(Equation 3) H times, each time through a single element
h; of Equation 2 while ignoring the rest. We obtain a set of
H input gradient:

{VmieRNXD\ie{l---H}}. )

Each element in this set represents the importance of the
input features to the trop prediction for a specific head, with
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Figure 1. Overview of the proposed DiverseViT method. We depict a single-layer multi-head attention model.

Diversity regularizer. To promote diversity across the
heads, we define an orthogonality regularizer over the input
gradients. We first compute the cosine similarity between
the nth token in heads ¢ and j by normalizing over the
channel dimension D and taking the dot product between
all tokens:

Cnﬂ"j = VT Vv

Tin ¥ LTjn eR. (5)
The orthogonality regularizer is then defined as the average

squared similarity across all tokens and pairs of heads:

N
Lpiy = %Z Z Ci’i,j* (6)
i#j n=1
The regularizer, weighted by a hyperparameter ), is added
to the standard cross-entropy classification loss to form the
complete training objective:

L = Lgrym +ALpiy. @)

3.3. Pruning attention heads

Different attention heads of a transformer can attend to dif-
ferent features which can be more or less robust (i.e. useful
across distribution shifts) or spurious. Therefore, using
only a subset of heads is a simple technique for ignoring
undesirable features and improving OOD performance.

To prune a subset of the heads, we multiply their output h;
by zero in Equation 2. To compensate for the missing heads,
we scale the remaining ones to remain in the same range
after the projection. This can be done at test time with no
need for further adaptation of the model.

4. Experiments

We present experiments on two popular diagnostic datasets:
MNIST-CIFAR and Waterbirds. See Appendix A for details.
Our experiments answer the following questions:

1. Does diversifying the learned features of the self-

attention heads lead to better OOD performance com-
pared with ERM training? Yes.

2. Can we improve generalization by pruning heads associ-
ated with spurious features with a standard ERM-trained
ViT (i.e. without our diversification method)? Yes.

3. Does our diversification method amplify the distinction
between spurious and robust features, improving post-
pruning performance even more? Yes.

The baseline experiment (VIT+ERM) trains a ViT with
ERM. In both datasets used, a spurious feature is strongly
correlated with the label during training. This correlation is
reversed at test time. A model that relies on this spurious
feature will therefore perform poorly at test time.

In the diversification experiment (VIT+D1V), we add our
diversity regularizer to the training objective. Without any
changes in the architecture, we obtain better generalization,
possibly as an ensemble effect of a more diverse set of
features captured collectively by all attention heads.

For the head selection experiments (SEL), we perform in-
ference at test time using a single attention head. We select
the head with the highest accuracy on the OOD validation
data. This therefore requires access to labeled OOD exam-
ples. The pruning is a test-time procedure and requires no
further training of the model. In all experiments, we select
hyperparameters for highest OOD validation accuracy.

Main results. In Tables 1-2 we report accuracy on both
ID (in-domain) and OOD (out-of-distribution) test sets.
We observe that the ERM baseline already exhibits a de-
gree of separation between spurious and robust features
among the self-attention heads, thus allowing the head se-
lection (ViT+ ERM+Sel) to improve the OOD accuracy. The
diversification method (ViT+Div) is effective on its own (i.e.
even without head selection). This indicates a benefit from
learning diverse features. The combination of diverse fea-
tures and proper head selections (ViT+Div+Sel) is especially
powerful, leading to our best result.
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Figure 2. Per-head performance comparison between standard ERM and our Diversification method on MNIST-CIFAR. We
observe an inherent modularity of ViT’s attention heads, such that the heads predicting well on the robust attribute are predicting poorly
on the spurious one, and vice-versa. With standard ERM, the gap between the two attributes predictions is not as clear for most heads,
indicating a higher overlap in the information captured by each head. With the proposed diversification method, we observe that most
heads predict either, but not both of the robust and spurious features. This shows a high level of specialization, which is desirable since
this allows pruning undesirable heads without losing information relevant to robust predictions.

Table 1. Results on MNIST-CIFAR.

METHOD ID ACCURACY OOD ACCURACY
VIT+ERM 88.80 £ 0.12 56.87 +4.30
VIT+Div 88.40 £ 0.10 62.26 +1.80
VIT+ERM+SEL 90.33 +0.19 64.40 + 2.80
VIT+DI1v+SEL 89.86 = 1.10 70.08 + 3.15
Table 2. Results on Waterbirds.
METHOD ID ACCURACY OOD ACCURACY
VIT+ERM 96.55 +0.22 83.37 £ 0.44
VIiT+D1v 96.99 +0.11 83.87 £ 0.79
VIT+ERM+SEL 96.50 + 0.58 85.70 = 1.64
VIT+DI1V+SEL 96.99 + 0.12 87.96 +0.14

Understanding the learned features To gain insight into
the learned features, we evaluate the models on a balanced
split of MNIST-CIFAR with no correlation between the ro-
bust and the spurious attributes. We measure the correlation
between the model’s predictions and either the robust or
the spurious attribute. How well each attribute can be pre-
dicted with each head indicates how much of each attribute
is captured by each head. Figure 2 shows that diversification
leads to a higher level of specialization of the heads. This is
advantageous, allowing us to keep only the heads containing
information relevant to robust predictions.

5. Conclusions and future work

We have shown that ViT have an inherent tendency to cap-
ture distinct features in their attention heads, and that this
property can be improved with a simple regularizer. This di-
rectly improves the robustness of ViTs on several diagnostic
benchmarks for out-of-distribution generalization, without
changing the architecture. These improvements come “for
free” as an ensembling effect from the increased diversity
of the learned features.

We also empirically showed that these diverse features have
little overlap and are complementary. Therefore, pruning
selected attention heads at test time is an effective technique
to improve OOD performance, using some information that
can identify which heads correspond to spurious features
(e.g. an OOD validation set).

Future work. Our methods should be evaluated on larger-
scale real-world datasets in vision, but also language and
reinforcement learning. The head pruning procedure was
evaluated using labeled OOD data, which is only meant to
provide an upper bound on the performance achievable in
an ideal setting. The approach should be evaluated with the
recent heuristics proposed for OOD model selection (Baek
et al., 2022; Deng et al., 2023; Garg et al., 2022; Liu et al.,
2023; Lu et al., 2022). Other options include various forms
of human feedback and unsupervised objectives to enable
test-time adaptation.
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A. Datasets

MNIST-CIFAR The MNIST-CIFAR dataset (Shah et al., 2020) contains collages of an image from MNIST (digits 0 and
1) and an image from CIFAR (a car or a truck) vertically concatenated. The true label comes from the vehicle type, and the
digit is a spurious attribute highly correlated with the label during training. In our experiments, 90% of examples containing
the digit 0 pair it with a car, and 90% of examples containing the digit 1 pair it with a truck. During the evaluation, this
correlation no longer holds, and the images are evenly distributed.

Waterbirds The Waterbirds dataset (Sagawa et al., 2019) is constructed by adding a segmented image of a bird from the
Caltech-UCSD Birds dataset over a background image from the Places dataset. The true label is the bird type (waterbird or
landbird) and the spurious attribute is the background (water or land). In the training data, there are 3498 waterbirds on a
water background and 1057 landbirds on a land background, while the minority groups contain only 184 waterbirds on a
land background and 56 landbirds on a water background.

Training Test

spurious: zero spurious: one spurious: one
label: car label: truck label: car

spurious: water spurious: land spurious: water
label: waterbird label: landbird label: landbird

Figure 3. Samples from MNIST-CIFAR dataset (top) and Waterbirds (bottom).



