
Published as a workshop paper at PML4LRS @ ICLR 2024

SPARQ ATTENTION: BANDWIDTH-EFFICIENT
LLM INFERENCE

Luka Ribar?, Ivan Chelombiev?, Luke Hudlass-Galley?

Charlie Blake, Carlo Luschi, Douglas Orr
Graphcore Research
London, UK
{lukar,ivanc,lukehg,charlieb,carlo,douglaso}@graphcore.ai

ABSTRACT

The computational difficulties of large language model (LLM) inference remains
a significant obstacle to their widespread deployment, with long input sequences
and large batches causing token-generation to be bottlenecked by data-transfer.
For this reason, we introduce SparQ Attention, a technique for increasing LLM
inference throughput by utilising memory bandwidth more efficiently within at-
tention layers, through selective fetching of the cached history. Our proposed
technique can be applied directly to off-the-shelf LLMs during inference, without
requiring any modification to the pre-training setup or additional fine-tuning. By
evaluating Llama 2, Mistral and Pythia models on a wide range of downstream
tasks, we show that SparQ Attention brings up to 8× savings in attention data-
transfer without substantial drops in accuracy.

q[i1]

0.8

−0.2

−1.3

0.4

⊗ K[i1,:]

sequence dimension

approximate attention scores ŝ

α =
∑

i∈i2
ŝi

q

0.8

−0.2

−1.3

0.4

⊗ K[:,i2]

sparse attention scores s
⊗

V[:,i2]

v̄
=

m
ea

n(
V
)

⊕

y

×(1− α) ×α

Algorithm 1 SparQ Attention

Input: q ∈ Rdh , K ∈ RS×dh , V ∈ RS×dh ,
v ∈ Rdh , r ∈ N, k ∈ N, l ∈ N
# Indices of top r elements of |q|
i1 ← argtopk (|q|, r)
# Softmax temperature, weighted by L1 coverage

τ ←
√
dh ·
‖q[i1]‖1
‖q‖1

# Approximate attention scores (all positions)
ŝ← softmax

(
q[i1] ·K>

[i1,:]
/τ
)

# Local mask of last l positions
m← [1 if i > S − l else 0]Si=1

# Indices of top k approximate scores or local
i2 ← argtopk (ŝ+m, k)

# Total approximate score of top k
α← sum

(
ŝ[i2]

)
# Final attention scores (top k positions)
s← softmax

(
q ·K>

[:,i2]
/
√
dh
)

# Mixed scores and values, interpolating with v
y ← α s · V[:,i2] + (1− α) v

return y

Figure 1: SparQ Attention for a single attention head. The algorithm consists of three steps. First,
we find the r largest components of the incoming query vector q and gather the corresponding
components along the hidden dimension of the key cacheK. This allows us to approximate the full
attention scores (ŝ). In the second step, we identify the top-k largest approximate scores and proceed
to gather the corresponding full key and value vectors from the cache. As a final step, to compensate
for the missing value vectors, we additionally maintain and fetch the running mean value vector v̄
and reassign it the leftover mass based on approximate score weightings. The attention output is
then calculated as usual using the top-k fetched key and value pairs, together with v̄.

The full paper is available at https://arxiv.org/abs/2312.04985.

1

https://arxiv.org/abs/2312.04985


Published as a workshop paper at PML4LRS @ ICLR 2024

1 INTRODUCTION

Transformer models trained on large corpora of text have recently shown remarkable capabilities
in solving complex natural language processing tasks (Kaplan et al., 2020; Brown et al., 2020).
With the dramatic increase in model scale, LLMs became useful generalist tools that can be used
for a multitude of text-based tasks due to in-context learning capabilities that emerge in LLMs at
scale. These capabilities are unlocked by incorporating information and instructions through textual
prompts (Wei et al., 2022), which are absorbed during generation as part of the attention cache
without modifying the model weights. Therefore, one of the key obstacles to efficient inference
deployment of LLMs remains their high memory bandwidth requirement when processing long
sequences (Pope et al., 2023), i.e. long instruction prompts, lengthy chat histories or information
retrieval from documents.

The main bottleneck appears due to the auto-regressive nature of transformer inference: the output
is generated token by token, and for each model call, the full previous state (i.e. the key-value cache,
or KV cache) needs to be fetched from memory. The size of the KV cache scales linearly with
the sequence length as well as the batch size, thus rendering inference using long sequence lengths
increasingly memory-bandwidth limited.

However, tokens generally only attend to a small part of the sequence at a time (Vig, 2019; Yun
et al., 2020); thus, if it were possible to efficiently predict the tokens that will have high attention
scores, memory traffic could be significantly reduced by only transferring the key and value pairs
of high-scoring tokens. Building upon this idea, we present SparQ (Sparse Query) Attention, a
technique for significantly reducing the memory bandwidth requirements of transformer inference.
By approximating attention scores using a subset of query/key vector components, we fetch only
the most relevant tokens for each inference step, greatly decreasing memory traffic without affecting
task performance.

In order to evaluate the effectiveness of our technique, we curate a selection of downstream tasks
that aim to test the model’s abilities to effectively utilise the information within the provided textual
context. This setup allows us to evaluate the trade-off between task performance and data transfer
reduction, as well as compare different sparse attention techniques with respect to memory transfer
efficiency. Thus, we clearly show how SparQ Attention performs favourably compared to state of
the art and can lead up to 8× compression with no loss in accuracy.

2 SPARQ ATTENTION

Consider a standard attention block and its associated memory requirements. A single head within
an attention layer has a head dimension dh, and processes an input token sequence of sequence
length S. During token-by-token inference the output of an attention head is calculated as:

y = softmax
(q ·K>√

dh

)
· V (1)

where q is the query, andK ∈ RS×dh and V ∈ RS×dh are the key and value caches respectively.

The total data transfer for transformer inference includes both the KV cache and model parameters.
Whereas parameter transfers can be amortised over a large batch of sequences, the KV cache scales
with sequence length and batch size, creating an efficiency bottleneck (see Appendix C).

To facilitate an accurate approximation of attention, without transferring the entireK and V matri-
ces, we make the following observations (more details can be seen in Appendix G):

• The output of the softmax function in Equation (1) is dominated by a small number of
components, with most of the components being close to 0.

• The indices of the largest attention scores can be efficiently predicted without fetching the
fullK matrix by sparsifying the query vector q, keeping the r largest components).

2



Published as a workshop paper at PML4LRS @ ICLR 2024

dense
transfers

1
2

1
4

1
8

128 MB256 MB512 MB

Attention transfers per token

0.2

0.4

0.6

0.8
S

Q
u

A
D

A
cc

u
ra

cy

Dense

SparQ Attention

H2O

LM-Infinite

FlexGen (16-bit)

(a)

2000 4000 6000 8000 10000 12000

Sequence length S

0.3

0.4

0.5

0.6

0.7

S
Q

u
A

D
A

cc
u

ra
cy

(t
ra

in
se

t)

Dense SparQ Attention H2O

(b)

Figure 2: (a) Llama 2 13B SQuAD 1-shot performance versus attention transfers over a range of
compression ratios. SparQ Attention achieves matching performance, while transferring between
1/8 and 1/4 as much data as the original dense model. Line thickness shows ± one standard
error over 4000 examples (the uncertainty from a finite test set). This pattern is representative
of the performance across multiple models and tasks, shown in Figures A1 and A2. (b) SQuAD
performance vs input sequence length. The compression ratio is fixed at 1/4. Uses Vicuna 1.5 7B
with 16k maximum sequence length against our SQuAD (train) task with 7 (default) to 63 confusion
contexts to increase the sequence length.

Using these observations, we propose SparQ Attention (see Figure 1), comprising of three steps:

Step 1: Find the indices of r largest components of |q| and only fetch K along the corresponding
dimensions. Calculate the approximate attention scores ŝ using the sliced query and keys.

Step 2: Find the top-k positions in ŝ and fetch the corresponding full key and value vectors. Calcu-
late the output of the attention block using the top-k keys and values.

Step 3: Estimate the total score α assigned to the top-k positions using ŝ. Use this total score to
interpolate between the attention output from the top-k positions, and a mean value vector, v.

For in-depth derivation of the steps in SparQ Attention, see Appendix D.

By varying r and k, we can tune the total amount of data transferred by the scheme, trading-off
approximation accuracy for token-generation speed-up. Since typically S � dh, r is the most
important parameter controlling the data transfer compression ratio. Typical ratios are given in
Table J2.

Grouped Query Attention For models using GQA, groups of g queries access the same KV head.
In order to accommodate this, we modify Step 1 to sum |q| within each group before selecting top-r
components. Similarly, Step 2 is modified by summing the approximate attention scores within each
group before selecting top-k keys and values for each KV head. Note that Step 3 remains the same.
The full code can be found in Appendix B.

3 EXPERIMENTS AND RESULTS

We compare SparQ Attention against two alternative sparse attention methods: H2O (Zhang et al.,
2023), an eviction scheme which iteratively removes tokens from the KV cache that are predicted to
not influence future token generation, FlexGen, in which the exact top-k highest attention scores are
calculated before transferring the corresponding columns of V , and LM-Infinite (Han et al., 2023),
which only transfers a fixed number of initial tokens and recent tokens from the sequence.

We evaluate these different methods in terms of the trade-off between attention memory transfers
and accuracy, over five different NLP tasks, with datasets adapted to generate sequence lengths
between 1k-2k tokens (see Appendix E). Our experiments span six models: Llama 2 {7B, 13B},
Mistral 7B, and Pythia {1.4B, 2.8B, 6.9B} (Touvron et al., 2023; Jiang et al., 2023; Biderman et al.,

3



Published as a workshop paper at PML4LRS @ ICLR 2024

Table 1: Results for the largest models tested are presented below. SQuAD and TriviaQA measure
performance in accuracy. CNN/DailyMail uses ROUGE-L score. Repetition counts the number of
characters before the generation diverges and WikiText task measures perplexity in bits per character
(BPC). Values in bold represent the best score for a model, task and sparsity setting. Median standard
errors across all models and sparsity settings are: SQuAD 0.7, TriviaQA 0.7, CNN/DailyMail 0.4,
WikiText 0.006, Repetition 2.

Dataset Name SQuAD ↑ TriviaQA ↑ CNN/DailyMail ↑ WikiText ↓ Repetition ↑
Compression 1 1/2 1/8 1 1/2 1/8 1 1/2 1/8 1 1/2 1/8 1 1/2 1/8

Llama 2
13B

LM-∞
80.8

50.0 32.4

78.7

73.4 69.0

22.1

16.8 15.1

0.61

0.64 0.69

229

76 29

H2O 73.2 64.1 78.5 78.4 22.2 20.8 0.61 0.63 61 26

SparQ 80.7 78.0 78.8 78.2 22.5 22.2 0.61 0.64 227 190

Mistral
7B

LM-∞
81.0

51.0 31.6

80.9

75.8 72.8

23.7

18.0 16.8

0.62

0.65 0.70

231

81 20

H2O 71.2 59.2 80.8 80.6 23.5 23.4 0.63 0.65 38 14

SparQ 80.9 77.5 80.8 79.0 23.5 23.0 0.63 0.65 209 201

Pythia
6.9B

LM-∞
57.8

38.5 18.9

52.6

41.6 32.0

20.2

14.9 14.1

0.68

0.71 0.77

150

64 18

H2O 52.9 46.6 52.6 52.3 20.3 18.9 0.69 0.71 47 19

SparQ 58.0 57.1 52.4 51.7 20.6 20.6 0.68 0.70 151 144

32 MB64 MB128 MB

Transfers

0

50

100

150

200

R
ep

et
it

io
n

m
at

ch
le

n
gt

h

32 MB64 MB128 MB

Transfers

0.4

0.5

0.6

0.7

0.8

S
Q

u
A

D
A

cc
u

ra
cy

k = 32

k = 64

k = 128

k = 256

Figure 3: Sweep of hyperparameter configurations (r ∈ {16, 32, 64}, k ∈ {32, 64, 128, 256}), for
Repetition and SQuAD tasks with Llama 2 7B. Across different models and tasks, we find that
setting k = 128 and tuning r to achieve the desired trade-off between compression and performance
is a robust recipe for selecting hyperparameters.

2023). Results from Llama 2 13B and Mistral 7B are presented in Table 1, with further results in
Figures 2, A1 and A2, and show that:

• SparQ Attention performance is robust across all tasks and model sizes tested. Compres-
sion ratios of 2× to 8× are readily achievable with little to no loss in task performance.

• The simple recipe of setting k = 128 and tuning r to set the compression/performance
trade-off seems generally robust over all models and tasks considered (see Figure 3).

• Certain tasks are more challenging for H2O (Repetition, SQuAD), while others are more
forgiving (TriviaQA, WikiText-103).

• LM-Infinite degrades performance across all tasks, demonstrating that the tasks do not
permit the trivial solution of discarding the long input sequence.

Additional experiments ablating over different components and aspects of SparQ Attention can be
found in Appendix H.1

4 BENCHMARKING

The results above use a theoretical cost model of total memory transfers, allowing us to evaluate
SparQ Attention independently of a specific hardware setup. To validate this approach, we per-
formed a set of microbenchmarks of an attention operation in isolation.

1Evaluation code is available at
https://github.com/graphcore-research/llm-inference-research/tree/

2024-01-paper.

4

https://github.com/graphcore-research/llm-inference-research/tree/2024-01-paper
https://github.com/graphcore-research/llm-inference-research/tree/2024-01-paper


Published as a workshop paper at PML4LRS @ ICLR 2024

2048 4096 8192 16384

Sequence length S

100 µs

25 µs

50 µs

75 µs

250 µs

T
im

e
p

er
q
u

er
y

Dense

SparQ (Triton, 1×K)

SparQ (PyTorch)

SparQ (Triton)

(a)

Kernel A100 (40GB) A10G

Dense 49 µs (1×) 128 µs (1×)
SparQ (Triton, 1×K) 38 µs (1.28×) 79 µs (1.63×)

SparQ (PyTorch) 37 µs (1.33×) 78 µs (1.63×)
SparQ (Triton) 16 µs (3.02×) 31 µs (4.17×)

(b)

Figure 4: (a) Microbenchmark results for A100 (40GB), with batch size 64, 32 heads, dh = 128,
r = 32, k = 128. (b) GPU performance comparison with same hyperparameters and sequence
length S = 4096.

SparQ Attention benefits from two optimisations. The first is to store K twice, in both dh-
contiguous and S-contiguous layouts, since this allows for an efficient gather (indexing) on either
axis, at the cost of 50% extra memory usage. The second optimisation is to use a fused gather-then-
matmul operation to avoid writing the result of the gather to memory.

We tested multiple implementations of baseline and SparQ Attention on IPU using the Poplar C++
interface and GPU using PyTorch (Paszke et al., 2019). In all cases, we used the Llama 7B shape
parameters: 32 heads, dh = 128. The implementations tested were: Dense baseline, choosing the
faster of a plain PyTorch implementation and the builtin scaled dot product attention,
SparQ (Triton), storing K twice and using fused gather-then-matmul kernels written using Triton
(Tillet et al., 2019), SparQ (PyTorch), with no Triton and SparQ (Triton, 1×K), storing K in
dh-contiguous layout only, for no additional memory cost.

In an example configuration running on a single IPU from a Bow Pod16, batch size 1, sequence
length S = 16384, the dense baseline achieves 40.4 ms/query, while SparQ (r = 32, k = 128)
achieves 5.28 ms/query for a speedup of 7.41× (the theoretical speedup of SparQ is 7.53×). This
near-perfect speedup is achieved because attention is strongly memory bound when using remote
memory. In contrast, the baseline running in local SRAM takes 134 µs for a 345× speedup, but this
is only practically achievable when the whole model fits in SRAM.

Our achieved GPU speed-ups are presented in Figure 4, showing strong improvements over the
baseline when using the optimisations described above. Standard error for all results given is < 1%
of the mean. See Appendix I for further details. These microbenchmark results show that the
theoretical benefits of SparQ Attention can yield substantial wall-clock time speedups on current
hardware. Further work is needed to show improvements for small batch size, and to investigate
alternatives to storingK twice.

5 DISCUSSION

Sparse attention as an architectural change has been explored by Child et al. (2019); Ren et al.
(2021); Beltagy et al. (2020); Zaheer et al. (2020); Kitaev et al. (2020); Tay et al. (2020); Xiao et al.
(2023). Compared with existing post-training techniques (Sheng et al., 2023; Mao et al., 2023; Chen
et al., 2021; Zhang et al., 2023; Liu et al., 2023), SparQ Attention relies on component-wise sparsity
of q andK, and introduces V reallocation.

In this work, we explore the scalability of attention mechanisms in modern language models, and
find that in many realistic settings, transferring the KV cache from memory creates an LLM infer-
ence bottleneck. By analysing the statistics of tensors within attention, we have identified opportu-
nities to approximate attention by sparsely accessing the KV cache, reducing total data transfer.

These opportunities have been realised in SparQ Attention, a novel technique for unlocking faster in-
ference for pre-trained LLMs, without any fine-tuning or modifications to the weights of the model.
Our proposed technique modifies the attention mechanism by predicting keys that yield large at-
tention scores, permitting only the relevant tokens from the KV cache to be transferred on every
generation step. This allows for pre-trained models to be executed more efficiently.

5



Published as a workshop paper at PML4LRS @ ICLR 2024

ACKNOWLEDGEMENTS

We would like to thank Daniel Justus, Paul Balança and Andrew Fitzgibbon for their helpful input
and feedback on this work.

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. GQA: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle OBrien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain: Uni-
fying sparse and low-rank attention. Advances in Neural Information Processing Systems, 34:
17413–17426, 2021.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Graphcore. Bow-2000 datasheet. (Online: accessed 25 January 2024), March 2023. URL https:
//docs.graphcore.ai/projects/bow-2000-datasheet.

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. LM-infinite: Simple
on-the-fly length generalization for large language models. arXiv preprint arXiv:2308.16137,
2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Andrej Karpathy. The unreasonable effectiveness of recurrent neural networks. (Online: accessed
27 January 2024), 2015. URL https://github.com/karpathy/char-rnn.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-
tics.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. arXiv preprint arXiv:2305.17118, 2023.

6

https://docs.graphcore.ai/projects/bow-2000-datasheet
https://docs.graphcore.ai/projects/bow-2000-datasheet
https://github.com/karpathy/char-rnn


Published as a workshop paper at PML4LRS @ ICLR 2024

Yuzhen Mao, Martin Ester, and Ke Li. Iceformer: Accelerated inference with long-sequence trans-
formers on CPUs. In Third Workshop on Efficient Natural Language and Speech Processing
(ENLSP-III): Towards the Future of Large Language Models and their Emerging Descendants,
2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

NVIDIA. NVIDIA A10 datasheet. (Online: accessed 22 January 2024), March 2022. URL
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/
a10/pdf/datasheet-new/nvidia-a10-datasheet.pdf.

NVIDIA. NVIDIA H100 datasheet. (Online: accessed 22 January 2024), July 2023. URL https:
//www.nvidia.com/en-gb/data-center/h100/.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
Proceedings of Machine Learning and Systems, 5, 2023.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Hongyu Ren, Hanjun Dai, Zihang Dai, Mengjiao Yang, Jure Leskovec, Dale Schuurmans, and
Bo Dai. Combiner: Full attention transformer with sparse computation cost. Advances in Neural
Information Processing Systems, 34:22470–22482, 2021.

Alexis Roche, Grégoire Malandain, Xavier Pennec, and Nicholas Ayache. The correlation ratio as
a new similarity measure for multimodal image registration. In Medical Image Computing and
Computer-Assisted Intervention MICCAI98: First International Conference Cambridge, MA,
USA, October 11–13, 1998 Proceedings 1, pp. 1115–1124. Springer, 1998.

Murray Rosenblatt. Remarks on Some Nonparametric Estimates of a Density Function. The Annals
of Mathematical Statistics, 27(3):832 – 837, 1956.

Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with pointer-
generator networks. arXiv preprint arXiv:1704.04368, 2017.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. FlexGen: high-throughput generative inference of
large language models with a single GPU. In International Conference on Machine Learning, pp.
31094–31116. PMLR, 2023.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn attention. In
International Conference on Machine Learning, pp. 9438–9447. PMLR, 2020.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler
for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pp. 10–19, 2019.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Jesse Vig. A multiscale visualization of attention in the transformer model. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations,
pp. 37–42, 01 2019.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2022.

7

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a10/pdf/datasheet-new/nvidia-a10-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a10/pdf/datasheet-new/nvidia-a10-datasheet.pdf
https://www.nvidia.com/en-gb/data-center/h100/
https://www.nvidia.com/en-gb/data-center/h100/


Published as a workshop paper at PML4LRS @ ICLR 2024

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Chulhee Yun, Yin-Wen Chang, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and San-
jiv Kumar. O(n) connections are expressive enough: Universal approximability of sparse trans-
formers. Advances in Neural Information Processing Systems, 33:13783–13794, 2020.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in Neural Information Processing Systems, 33:17283–17297, 2020.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2O: Heavy-hitter oracle for efficient gen-
erative inference of large language models. arXiv preprint arXiv:2306.14048, 2023.

8



Published as a workshop paper at PML4LRS @ ICLR 2024

A DETAILED RESULTS

128 MB256 MB512 MB

0.5

0.6

0.7

0.8

S
Q

u
A

D
A

cc
u

ra
cy

Llama 2 13B

64 MB128 MB256 MB

0.4

0.5

0.6

0.7

0.8

Llama 2 7B

16 MB32 MB64 MB

0.5

0.6

0.7

0.8

Mistral 7B

128 MB256 MB512 MB

0.4

0.5

0.6

0.7

0.8

T
ri

v
ia

Q
A

A
cc

u
ra

cy

64 MB128 MB256 MB

0.4

0.5

0.6

0.7

0.8

16 MB32 MB64 MB

0.5

0.6

0.7

0.8

64 MB128 MB256 MB512 MB

0.12

0.15

0.18

0.21

C
N

N
/
D

ai
ly

M
a
il

R
O

U
G

E
-L

64 MB128 MB256 MB

0.12

0.15

0.18

0.21

16 MB32 MB64 MB

0.12

0.15

0.18

0.21

0.24

64 MB128 MB256 MB512 MB

0.60

0.65

0.70

0.75

W
ik

iT
ex

t-
10

3
B

P
C

64 MB128 MB256 MB

0.65

0.70

0.75

0.80

16 MB32 MB64 MB

0.65

0.70

0.75

128 MB256 MB512 MB

Attention transfers per token

0

100

200

R
ep

et
it

io
n

m
at

ch
le

n
gt

h

64 MB128 MB256 MB512 MB

Attention transfers per token

0

50

100

150

200

16 MB32 MB64 MB128 MB

Attention transfers per token

0

100

200

Dense

SparQ Attention

H2O

LM-Infinite

FlexGen (16-bit)

Figure A1: Compression versus performance trade-off curves over all tasks and multiple models.
The y-axis minimum is set to (0.5, 0.5, 0.5, 1.25, 0.0)× the dense baseline for the tasks, reading
top-to-bottom, in order to give a consistent view of the performance loss across models. Vertical
dotted lines show (1/2), (1/4) and (1/8) compression versus dense. Shaded lines show ±1 standard
error of the mean (uncertainty due to a finite test set).

9



Published as a workshop paper at PML4LRS @ ICLR 2024

64 MB128 MB256 MB

0.3

0.4

0.5

0.6

S
Q

u
A

D
A

cc
u

ra
cy

Pythia 6.9B

32 MB64 MB128 MB

0.3

0.4

0.5

Pythia 2.8B

16 MB32 MB64 MB128 MB

0.25

0.30

0.35

0.40

0.45

Pythia 1.4B

64 MB128 MB256 MB

0.3

0.4

0.5

T
ri

v
ia

Q
A

A
cc

u
ra

cy

32 MB64 MB128 MB

0.3

0.4

0.5

16 MB32 MB64 MB128 MB

0.25

0.30

0.35

0.40

0.45

32 MB64 MB128 MB256 MB

0.12

0.15

0.18

0.21

C
N

N
/
D

ai
ly

M
ai

l
R

O
U

G
E

-L

32 MB64 MB128 MB

0.12

0.15

0.18

0.21

16 MB32 MB64 MB

0.10

0.12

0.14

0.16

0.18

64 MB128 MB256 MB

0.70

0.75

0.80

0.85

W
ik

iT
ex

t-
1
03

B
P

C

32 MB64 MB128 MB

0.70

0.75

0.80

0.85

16 MB32 MB64 MB128 MB

0.75

0.80

0.85

0.90

64 MB128 MB256 MB

Attention transfers per token

0

50

100

150

R
ep

et
it

io
n

m
at

ch
le

n
gt

h

32 MB64 MB128 MB256 MB

Attention transfers per token

0

50

100

150

32 MB64 MB128 MB

Attention transfers per token

0

50

100

150

Dense SparQ Attention

H2O

LM-Infinite

FlexGen (16-bit)

Figure A2: Compression versus performance trade-off curves for Pythia models (see Figure A1).

10



Published as a workshop paper at PML4LRS @ ICLR 2024

B CODE

from torch import softmax, sqrt, tensor, topk

def gather(t, dim, i):
dim += (dim < 0) * t.ndim
return t.gather(dim, i.expand(*t.shape[:dim], i.shape[dim], *t.shape[dim + 1 :]))

def attn(Q, K, V, M):
s = (Q @ K.transpose(-1, -2)) / sqrt(tensor(Q.shape[-1])) + M
y = softmax(s, dim=-1) @ V
return y

def sparq_attn(Q, K, V, V_mean, M, r, k):
# Q -- (batch_size, n_kv_heads, n_heads // n_kv_heads, 1, head_size)
# K, V -- (batch_size, n_kv_heads, 1, seq_len, head_size)

# 1. Approximate attention scores using r largest components of Q
i1 = topk(abs(Q).sum(dim=2, keepdim=True), r, -1).indices
Q_hat, K_hat = gather(Q, -1, i1), gather(K, -1, i1)
scale = sqrt(

Q.shape[-1]

* abs(Q_hat).sum(dim=-1, keepdim=True)
/ abs(Q).sum(dim=-1, keepdim=True)

)
s_hat = softmax(Q_hat @ K_hat.transpose(-1, -2) / scale + M, dim=-1)

# 2. Gather top k positions based on approximate attention scores & run attention
i2 = topk(s_hat.sum(dim=2, keepdim=True), k, -1).indices
iKV = i2[..., 0, :, None]
K, V, M = gather(K, -2, iKV), gather(V, -2, iKV), gather(M, -1, i2)
y_ = attn(Q, K, V, M)

# 3. Estimate the total score of the top k, and interpolate with V_mean
alpha = gather(s_hat, -1, i2).sum(-1, keepdim=True)
y = alpha * y_ + (1 - alpha) * V_mean
return y

C ATTENTION MEMORY TRANSFERS

For each forward pass, we need to fetch the key and value matrices from memory, as well as write
(append) k and v vectors for the current token, giving a total number of elements transferred per
attention head:

Mbase = 2S dh︸ ︷︷ ︸
Read K and V

+ 2 dh︸︷︷︸
Write current k and v

(C1)

The memory transfer of the SparQ Attention algorithm for a single attention head forward-pass:

MSparQ = S r︸︷︷︸
Read r rows of K

+ 2 k dh︸ ︷︷ ︸
Read top-k columns of K and V

+ 4 dh︸︷︷︸
Write current k and v, read/write v

(C2)

D SPARQ ATTENTION PROCEDURE

The SparQ AttentionAttention procedure consists of three steps. In the first step we find the indices
i1 ∈ Nr corresponding to the top r ∈ N components of the query vector q ∈ Rdh and proceed to
calculate the approximate attention scores ŝ ∈ RS across the sequence as follows, where S ∈ N is
the sequence length:

âi =
∑

j∈i1
qjKi,j

ŝ = σ
( â
τ

)
(D1)

11



Published as a workshop paper at PML4LRS @ ICLR 2024

where σ(x)i = exi/
∑

j(e
xj ) is the softmax function and K ∈ RS×dh is the key cache matrix. In

the case of standard attention, the scaling factor τ is chosen to be
√
dh, corresponding to the length

of the vector q over which the dot product summation is performed. However, since the dot product
is approximated using only r components here, the scaling factor needs to be appropriately changed.
Empirically we found the appropriate factor to be:

τ =

√
dh
‖q[i2]‖1
‖q‖1

(D2)

which takes into account the relative L1-norm of the selected top r components of the vector q.

In the second step, we proceed to find indices i2 ∈ Nk corresponding to the top k ∈ N components
of the approximate score vector ŝ. We then calculate the attention scores using only the top-k
positions, which we can express by defining a corresponding boolean mask b ∈ {0, 1}S :

bi =

{
1 if i ∈ i2
0 else

s = σ
( (q ·K>) ◦ b√

dh

)
(D3)

In the third step, we perform a weighted sum of the value vectors in V ∈ RS×dh using the calculated
scores s. In order to improve the accuracy of the final approximation, we add an additional weighted
contribution of the mean value vector v̄ = 1

S

∑
i Vi,∗:

y = α
∑

i∈i2
siVi,∗ + (1− α)v̄ (D4)

where α ∈ [0, 1] is the relative weight of the top-k terms. We choose α using the approximate
attention scores ŝ from the first step as:

α =
∑

i∈i2
ŝi (D5)

E TASKS AND DATASETS

In order to evaluate our method on a spectrum of relevant NLP tasks that present a particular chal-
lenge to sparse attention techniques, our evaluation setup consists of various tasks requiring infor-
mation retrieval and reasoning over long input sequences. This includes question answering, sum-
marisation, perplexity/bits-per-character (BPC), and text repetition. For this, we adapted standard
downstream tasks and datasets to generate examples of sequence lengths between 1k and 2k tokens.
As we wanted to define the tasks independently of the selected models, our examples were chosen
to have sequence lengths between 4000 and 8000 characters, roughly giving the desired lengths in
tokens.

For question answering, we use the SQuAD (Rajpurkar et al., 2016) and TriviaQA (Joshi et al.,
2017) datasets in the open-book setting. In order to construct the SQuAD examples, we augment
the provided context (i.e. the standard SQuAD input sequence required to answer the question) with
seven additional “confusion contexts” from unrelated questions. This ensures that the examples have
a large sequence length, while making the task harder as the model needs to distinguish the relevant
information from the context from the unrelated paragraphs. We use SQuAD v1.1, as it does not
include unanswerable questions included in SQuAD v2.0, since we aim to measure the model’s
ability to extract useful information from the KV cache. For both question answering tasks we use
exact string match accuracy as the evaluation metric.

Summarisation is evaluated on the CNN/DailyMail dataset (See et al., 2017) using the ROUGE-L
F-score (Lin, 2004) as the metric. We use the WikiText-103 dataset (Merity et al., 2016) with bits

12



Published as a workshop paper at PML4LRS @ ICLR 2024

per character (BPC) for evaluating language modelling performance. We quote performance for
sub-word language modelling in BPC, to account for any differences in vocabulary across models.

Finally, we construct an artificial “Text Repetition” task to evaluate the capability of the model to
repeat sentences from its context verbatim. Such a task can commonly appear in a dialogue setting
where the LLM agent is required to retrieve a piece of text from a possibly long context provided,
and can be challenging for sparse attention techniques. We construct examples using the Tiny-
Shakespeare dataset (Karpathy, 2015) by chunking the text into contexts of the appropriate size,
appending them with the prompts containing a subset of the context, and evaluating the output exact
character length match with the continuation from the context.

F ARITHMETIC INTENSITY

In this section we provide a straightforward framework to understand the computational efficiency
of sequence generation using transformer models (similar to the modelling introduced by Kaplan
et al. (2020)) and use it to motivate transfer-efficient attention mechanisms.

Arithmetic intensity A compute unit capable of rA scalar arithmetic operations per second is
connected to a memory via an interface that can transfer rM scalar elements per second, processing
a workload requiring A arithmetic operations andM transfers. Assuming concurrent compute and
data transfer, when the arithmetic intensity A/M of the workload is less than the ratio rA/rM,
execution time is limited by rM.

Sequence generation Consider a full transformer layer, with N parameters, batch size B, and C
elements in the attention KV cache per batch element. We assume Grouped Query Attention (GQA)
(Ainslie et al., 2023) with g grouped-query heads (g = 1 for standard multi-head attention). This
implies the arithmetic intensity:

A
M =

BN +BCg

N +BC
=

N + Cg

N/B + C
(F1)

We can increase arithmetic intensity by makingB large, causingA/M to approachN/C+g. Hence
the limiting factor for large-batch transformer inference is the ratio of the KV cache size per-item to
the size of the model. An alternative formulation for a standard transformer with model dimension
dm and sequence-length S, has N = 12(dm)2 and C = 2S dm/g, giving:

A
M =

6 + ρ g

6/B + ρ
(F2)

where ρ = S/(gdm). The value ρ underlies the KV cache-model size relationship outlined above,
determining the point at which the model becomes memory bandwidth bound (Figure F1). Since
long sequences are desirable, data transfer is the performance-limiting factor, motivating the search
for transfer-efficient approximations to full attention.

Following this framework, we provide concrete examples of arithmetic intensity for various models
and the implications for execution modern machine learning hardware. We observe from Equa-
tion (F2) that the arithmetic intensity as batch size increases approaches g + 6/ρ. For example:

Model g dm S ρ = S/(gdm) Max A/M
Llama 2 7B 1 4096 4096 1 7
Llama 2 70B 8 8192 4096 1/16 104
Llama 2 70B 8 8192 16384 1/4 32

Hardware Properties of selected machine learning hardware.2 Note that rA is the number of
multiply-adds per second and rM the number of data elements transferred per second.

2For IPU (Graphcore, 2023), we use the exchange memory bandwidth of 11 TB/s. A10 (NVIDIA, 2022).
H100 (NVIDIA, 2023).

13



Published as a workshop paper at PML4LRS @ ICLR 2024

1 4 16 64 256 1024

B

1

10

100

A
ri

th
m

et
ic

in
te

n
si

ty

1 4 16 64 256 1024

B

1/64

1/16

1/4

1

4

16

64

ρ

Figure F1: Relationship between ρ = S/(gdm), batch size B and arithmetic intensity during se-
quence generation. Left: Multi-head attention. Right: GQA (g = 8). ML hardware provides
rA/rM > 200, making memory bandwidth the limiting factor in many practical scenarios (see
Appendix F).

Name Memory technology rA/1012 rM/1012 rA/rM
Bow IPU (FP16) SRAM 175 5.5 32
A10 GPU (INT8) GDDR 125 0.6 210

H100 SXM GPU (FP8) HBM 990 3.35 295

Comparing rA/rM for this hardware to the arithmetic intensity achievable for standard transformer
models, it’s clear that sequence generation will hit a data transfer bottleneck.

G ATTENTION SPARSITY ANALYSIS

0.0 0.2 0.4 0.6 0.8 1.0

Sum of top-32 attention scores

0

500

1000

1500

2000

2500

3000

C
ou

n
t

0 8 16 24

Layer

0

8

16

24

H
ea

d
(s

or
te

d
)

0.0

0.2

0.4

0.6

0.8

1.0

S
u

m
of

to
p

-3
2

at
te

n
ti

on
sc

or
es

−10 −5 0 5 10

Components of q (z-score)

100

10−3

10−6

10−9

10−12

D
en

si
ty

KDE per-head Unit Gaussian

0 8 16 24

Layer

0

10

20

30

K
u

rt
os

is

8 16 32 64

r

0.0

0.5

1.0

T
op

-k
ag

re
em

en
t

k

64

128

256

Figure G1: Statistics of Llama 2 7B over 40 SQuAD queries, for all 32 layers× 32 heads unless
noted. (Top Left) Sum softmax output allocated to the 32 highest-scoring positions, demonstrating
natural attention sparsity; (Top Middle) for each head. (Top Right) Kernel density estimate (Rosen-
blatt, 1956) of components of q in layer 16, showing heavy tails. (Bottom Left) Fisher Kurtosis of
q components, showing that the query vector is leptokurtic for most heads. (Bottom Middle) Top-k
agreement, the proportion of the top-k positions that are correctly predicted by an approximated
softmax for various r and k. (Bottom Right) Agreement between the coverage α based on estimated
scores versus the true mass of the top 128 scores, for different softmax temperatures (a point for
each example × head), showing the importance of temperature.

In order to understand how to approximate attention in pre-trained transformers, we analysed the
queries, values and intermediate scores vector (softmax output). We took 40 examples from our

14



Published as a workshop paper at PML4LRS @ ICLR 2024

Table G1: Excess correlation ratio η (Roche et al., 1998) along axes of V (excess: subtract d−0.5,
so uniform random data = 0.0). This demonstrates substantial auto-correlation along the sequence
axis. Calculated for Llama 7B over 40 SQuAD examples.

B S Layer Head dh

η−d−0.5 0.143 0.256 0.0 0.0 0.0

SQuAD 1-shot task, and generated the first completion token using the dense Llama 2 7B model,
capturing the q vector and K, V matrices from every layer and attention head, showing derived
statistics in Figures G1 to G3 and Table G1.

0 8 16 24

Layer

0

10

20

30

K
u

rt
os

is

0 8 16 24

Layer

0

8

16

24

H
ea

d
(s

or
te

d
)

0

5

10

15

20

25

K
u

rt
os

is

0 8 16 24

Layer

10−1

100

101

q
m

as
s

(|z
|>

3)
v
s

G
au

ss
ia

n

0 8 16 24

Layer

0

8

16

24

H
ea

d
(s

or
te

d
)

1×

2×

4×

8×

16×

q
m

as
s

(|z
|>

3)
v
s

G
au

ss
ia

n
Figure G2: Statistics of components of q for each head, as a function of layer. (Top) Kurtosis
(Fisher), indicating that most heads have heavy-tailed q. (Bottom) z-value mass, normalised by that
of a Gaussian (0.3%), showing that most heads are outlier-heavy. All Llama 2 7B, measured over
40 SQuAD examples.

In Figure G1 (Top Right) we show that elements of the query vectors are not normally distributed,
but have high sample kurtosis values. If compared to a normal distribution, the combined mass of the
elements with absolute z-score exceeding 3.0 is up to 20× higher. This leads us to theorise that query
vectors in a pre-trained model inherently encode information sparsely using the tails. Therefore, the
magnitude based sparsity we induce in the first stage of the algorithm does not significantly harm
the approximation of the attention mappings.

We validate this claim by comparing the correspondence between the exact and approximated at-
tention scores. SparQ Attention uses the approximate attention scores to only choose the tokens
that are important for the next generation step. The actual values of the approximate scores are not
relevant, as these scores are not multiplied with value vectors and thus the property of interest to us
is whether the top-k indices in the approximate scores match those of the exact counterpart. This
can be measured on a scale from 0 to 1, where 1 means top-k indices are identical between the
approximation and the exact scores and 0 means these sets do not overlap. We call this measure
top-k correspondence. Figure G3 provides an overview how the choice of rank and k affects the
top-k correspondence aggregated over all attention heads of the model. We see that the query vector

15



Published as a workshop paper at PML4LRS @ ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0

Top-32 agreement

0

1

2

3

4

5

6

7

8

D
en

si
ty

Top-r |q|
First-r

Last-r

Random projection

Figure G3: Top-k agreement between approximate and true scores (Llama 2 7B, measured over
40 SQuAD examples). Top-k agreement is the proportion of the top-k positions that are correctly
predicted by an approximated softmax, using a projection of q, either component-wise or a random
low-rank projection.

sparsity of 50% and 75% maintain high top-k correspondence to the exact attention scores, which is
consistently maintained over various values of k.

It is useful to drop positions in V given attention scores, but this can save at most half of the data
transfers, since the whole of K is needed to calculate these scores. We propose approximating
these scores using a subset of the components of K. To test such an approximation, we measure
the proportion of overlap between the top 32 positions in the approximated and true scores. If
overlap is high, we can use the approximation to avoid transferring the whole K matrix, instead
only transferring some components of K for all positions, then all components of K for some
positions.

Our hypothesis is that the r largest-magnitude components of q are most useful to predicting the
score, qK>. The coverage of this technique against an arbitrary-component baseline is shown in
Figure G3. These results show that it is possible to achieve reasonably high overlap even using
r = dh/8, but that some later layers are harder to predict. Using the top-r components outperforms
the first r baseline considerably.

H ABLATIONS

Key cache compression The first step in SparQ Attention involves reading r components of the
key cache to approximately determine which keys yield the highest attention scores. To examine the
practical trade-off of the approximation we look at how SparQ Attention performs when compared to
a theoretical upper-bounding “oracle” which provides the exact top-k keys without any data transfer.
The results in Figure H1 show that SparQ Attention retains comparable performance to the oracle
for a wide range of compression ratios, and attains considerably higher performance than a baseline
compression scheme, in which a random low rank projection ofK is transferred from memory.

Approximate softmax temperature To empirically support our statistical analysis of α agree-
ment shown in Figure G1 (Bottom Right), we evaluate a number of different viable temperature
settings, including the square root of the head dimension (τ =

√
dh), the square root of the rank

(τ =
√
r), and our own proposed temperature, defined in Equation (D2). We also consider the sce-

nario where we do not reallocate mass to mean value (α = 0), which corresponds to the limit of the
temperature tending towards 0. We find that our proposed temperature performs best, as shown in
Figure H2.

Hyperparameter selection The reduction of data transfer attained by SparQ Attention is con-
trolled by its two hyperparameters, k and r. Reducing either of these variables will improve the
bandwidth efficiency, but can negatively impact task performance. Figure 3 shows the relationship
between k and r on both of these factors. Based on these results, we propose a simple recipe of set-

16



Published as a workshop paper at PML4LRS @ ICLR 2024

ting k = 128 and tuning r to maintain a good trade-off between data transfer and task performance
for a range of models and tasks.

8163264128256

Attention transfers per token (MB)

0.5

0.6

0.7

0.8
S

Q
u

A
D

A
cc

u
ra

cy

Oracle

SparQ

Low Rank

Figure H1: SQuAD 1-shot accuracy with Llama 2 7B of SparQ Attention and a random low rank
compression scheme against an oracle top-k selector.

k = 128, r = 32 k = 128, r = 64

0.65

0.70

0.75

S
Q

u
A

D
A

cc
u

ra
cy limx→0 x√

r
√
dh
‖q ◦mq‖1
‖q‖1

√
dh

Figure H2: Comparison of different softmax temperatures for approximate attention scores for two
different hyperparameter configurations (Llama 2 7B SQuAD 1-shot performance).

17



Published as a workshop paper at PML4LRS @ ICLR 2024

I BENCHMARKING DETAIL

Benchmarking code is made available at
https://github.com/graphcore-research/llm-inference-research/
tree/2024-01-paper.

IPU measurements We tested custom fully-fused Poplar implementations of both dense attention
and SparQ Attention, compiled using Poplar SDK 3.3.0+1403. On initialisation, we fill largeK and
V tensors with values ∼ N(0, 1) in streaming memory. On each benchmarking (outer) iteration,
we first randomise the contents of a q in local memory, then perform multiple inner repeats of the
attention op being profiled. We use 4 inner repeats for dense attention, otherwise 1024/batch size,
chosen because dense attention is much slower, and we swept a wide range of settings. We ran an
outer loop of 2 warm-up iterations followed by 10 timed iterations, reporting the mean and standard
error. The sweep covered S ∈ [1024, 2048, . . . , 65536], batch size ∈ [1, 4, 16, 64], SparQ Attention
r ∈ [16, 32, 64] and k ∈ [64, 128, 256, 512].

GPU measurements All experiments use PyTorch 2.1.2+cu121 on Ubuntu AWS instances. To
set up the experiment, we initialise the large K and V tensors with values ∼ N(0, 1). On each
step, we draw q ∼ N(0, 1), run torch.cuda.synchronize before starting a host-side wall-
clock timer, run the op, and synchronize again before stopping the timer. We run 20 warm-up
iterations followed by 200 timed iterations, reporting mean and standard error. For dense base-
line implementations, we tested a vanilla PyTorch implementation, with/without torch.compile
and torch.nn.functional.scaled dot product attention, selecting each backend
(math, flash, mem efficient) manually. For SparQ Attention implementations, we tested vanilla Py-
Torch (lightly hand-optimised from Appendix B), with/without torch.compile. We also toggled
fused gather-matmul kernels written in Triton, and whetherK was stored twice in S-contiguous (for
Step 1) and dh-contiguous (for Step 2) layouts, or only once in dh-contiguous layout. We tested
S ∈ [1024, 2048, 4096, 8192, 16384], batch size ∈ [1, 4, 16, 64], SparQ Attention r ∈ [16, 32, 64]
and k ∈ [64, 128, 256, 512].

Additional results In addition to the headline results shared in Section 4 and Figure 4, we give
an aggregate picture of the trends in Figure I1. Since the number and dimension of heads is fixed,
the x-axis is proportional to the size of the input tensors. On IPU (M2000), strong speedups are
available across a range of input sizes, principally depending on r, but also on k (not shown). On
GPU, sufficient input size is required to observe a speedup over the dense baseline, with the more
bandwidth-limited A10G reaching speedups sooner. While part of this effect can be linked to the
fundamental additional complexity of SparQ Attention, we anticipate that small input sizes could

103 104 105 106

Batch size × Sequence length

1×

10×

S
p

ee
d

u
p

r

16

32

64

Device

M2000

A10G

A100-40GB

Figure I1: SparQ speedup over the dense baseline, across a range of batch size (1-64), sequence
length (1024-65536) and k (64-512), for different devices. We note that for both GPUs, the number
of KV elements is a limiting factor for the achieved speedup, and that this could be improved by
writing a fully fused SparQ Attention kernel.

18

https://github.com/graphcore-research/llm-inference-research/tree/2024-01-paper
https://github.com/graphcore-research/llm-inference-research/tree/2024-01-paper


Published as a workshop paper at PML4LRS @ ICLR 2024

be accelerated considerably with additional kernel fusion. With an appropriate limit to sequence
length, SparQ Attention could even be fused into a single CUDA kernel.

Storing K twice One limitation of a theoretical model of data transfer is that it does not account
for the granularity of memory access. Since theK matrix is indexed on different axes in Step 1 and
Step 2 of SparQ Attention, a naive implementation would fetch non-contiguous elements in one of
the two steps. To mitigate this, we propose storing K twice, once in S-major format and once in
dh-major format. This increases KV cache memory usage by 50%, but uses only a small amount of
extra bandwidth to write k twice. This extra write is non-contiguous, but small, so should not form
a bottleneck.

J METHODOLOGY

We provide a comprehensive set of hyperparameters for reference in Table J1. Typical compression
ratios for settings of (r, k) are given in Table J2.

We use our own implementation of H2O (Zhang et al., 2023), which differs from the authors’ im-
plementation in that it uses a fixed cache size k, rather than a ratio of the current sequence length.
To validate that these implementations are sufficiently similar, we ran their implementation through
our harness on a small model and sample size. On SQuAD 1-shot, with Pythia-1.4B, using k = 256,
l = 64, our implementation was correct for 60 of 200 examples, theirs for 57 (the dense baseline
achieved 74). Perhaps more importantly, we found that of the 79 times that either output differed
from dense, 41 occurrences showed a 20-character prefix match between our implementation and
theirs. The fact that the two implementations often generate the same errors (despite minor imple-
mentation differences) reassures us that our results should be a fair representation of H2O.

Group Hyperparameter Value or range

Dense model
Family

Llama 2 (13B, 7B), Mistral (7B),
Pythia (6.9B, 2.8B, 1.4B)

dh {80, 128}
Max S {2048, 4096}

Tasks

Question Answering
SQuAD 1-shot (4000 samples)
TriviaQA 0-shot (2992 samples)

Summarisation CNN/DailyMail 0-shot (500 samples)
Language Modelling WikiText-103 LM (500 samples)

Artificial Repetition (1000 samples)

Baselines
Eviction

keep (k − l) tokens with highest score(n) =∑
i sin and the most recent l = k/4

k ∈ {192, 256, 384, 512, 768}

LM-Infinite
take the first 16 tokens, and most recent k−16
k ∈ {192, 256, 384, 512, 768}

SparQ Attention
Rank r {16, 32, 64}

Number of values k 128

Local window l k/4

Table J1: Experiment hyperparameters

19



Published as a workshop paper at PML4LRS @ ICLR 2024

Method k r Compression

SparQ Attention 128

16 0.13 - 0.17
32 0.19 - 0.23
64 0.31 - 0.36

H2O

192

–

0.10 - 0.17
256 0.13 - 0.22
384 0.20 - 0.33
512 0.26 - 0.43
768 0.39 - 0.65

Table J2: Range of compression ratios for different settings of (r, k), for Llama 2 7B and Pythia
6.9B. The compression ratio achieved varies across models and tasks, based on the sequence length
and head size.

J.1 EXAMPLES

We illustrate the task setup with a single example per task, showing the prompt formatting and a
cherry-picked example. In each case, we show outputs from a dense Llama 2 13B model, SparQ
Attention (r = 8, k = 128), H2O and LM-Infinite (k = 192). Where “...” appears, we have
truncated the line of text for brevity.

J.1.1 QUESTION ANSWERING (SQUAD 1-SHOT)

Title: University of Chicago. Background: Current ...
Title: Harvard University. Background: Harvard has...
Title: Oxygen. Background: In one experiment, Lavo...
Title: Oxygen. Background: Oxygen storage methods ...
Title: Fresno, California. Background: This vibran...
Title: Fresno, California. Background: Before Worl...
Title: Steam engine. Background: The working fluid...
Title: Sky (United Kingdom). Background: While BSk...
From what you've just read about Fresno, California, please answer the

following questions.
Question: Where is Audra McDonald from?
Answer: Fresno
Question: In what year did Roger Rocka's Dinner Theater & Good Company

Players open?
Answer:

### OUTPUT
DENSE: 1978
SPARQ: 1978
H2O: 1979

LM-INFINITE: 1975 (Roger Rock

J.1.2 QUESTION ANSWERING (TRIVIAQA 0-SHOT)

Apritifs and digestifs ( and) are drinks, typical...
Apritifs
An apritif is an alcoholic beverage usually serve...
"Apritif" may also refer to a snack that precedes...
"Apritif" is a French word derived from the Latin...
...
...
* Distilled liquors (ouzo, tequila, whisky or akva...
* Liquor cocktails (Black Russian, Rusty Nail, etc...
In certain areas, it is not uncommon for a digesti...
Bitter digestifs typically contain carminative her...

20



Published as a workshop paper at PML4LRS @ ICLR 2024

In many countries, people drink alcoholic beverage...
Question: Which aperitif is named for the Paris chemist who created it in

1846?
Answer:

### OUTPUT
DENSE: Dubonnet
SPARQ: Dubonnet
H2O: Dubonnet

LM-INFINITE: Byrrh

Note that for Pythia, the prompt “Single-word answer:” was used in place of “Answer:”, as this
helped prevent the model from restating the question in the answer (often qualitatively correct, but
not a regex match).

J.1.3 SUMMARISATION (CNN/DAILYMAIL)

Article: Prince William arrived in China tonight for one of the most high
-profil...

Summary:

### OUTPUT
DENSE: Prince William arrived in China tonight for one of the most

high-profile ...
SPARQ: Prince William arrived in China tonight for one of the most

high-profile ...
H2O: Prince William arrived in China tonight for a high-profile

visit that will ...
LM-INFINITE: Prince William and Kate Middleton are in Japan for a three-

day tour. The ro...

J.1.4 REPETITION (SHAKESPEARE)

you mistake me much;
I do lament the sickness of the king.
...
...
Peace, children, peace! the king doth love you well:
Incapable and shallow innocents,
You cannot guess who caused your father's death.

Boy:
Grandam, we can; for my good uncle Gloucester
Told me, the king, provoked by the queen,
Devised impeachments to imprison him :
And when my uncle told me so, he wept,
And hugg'd me in his arm, and kindly kiss'd my cheek;
...
...
the king doth love you well:
Incapable and shallow innocents,
You cannot guess who caused your father's death.

Boy:
Grandam, we

### OUTPUT
DENSE: can; for my good uncle Gloucester
SPARQ: can; for my good uncle Gloucester
H2O: can;

LM-INFINITE: 'll not stand to prate, but to the purpose.

J.1.5 LANGUAGE MODELLING (WIKITEXT-103)

21



Published as a workshop paper at PML4LRS @ ICLR 2024

= Mellor hill fort =

Mellor hill fort is a prehistoric site in North West England , that
dates from ...

= = Location = =

Mellor lies on the western edge of the Peak District in the Metropolitan
Boroug...

= = Background = =

Until the 19th century little was known about hill forts ; none had been
excava...

The study of hill forts was popular in the 19th century , with a revival
in the...

= = History = =

There is evidence of human activity on the site pre @-@ dating the Iron
Age , a...

A flint dagger was discovered on the site . This type of artefact is
rare in Gr...

The hill fort was built in and used throughout the Iron Age , as
demonstrated b...

Fragments of glass , possibly Roman in origin , and shards of pottery which date to
the 1st and 2nd centuries AD , indicate the site was used in the Romano @-@ British
period . However no Roman structures have been discovered , and the nature of
Roman activity at the site is a source of speculation . The position of the hilltop
indicate that it was easily defended ; however , local finds indicate it was a high
@-@ status settlement rather than a military outpost unless a similar feature was
located nearby . One reason that Roman structures have not been identified is that
the Romano

### BPC
DENSE: 0.669
SPARQ: 0.673
H2O: 0.685

LM-INFINITE: 0.692

22


	Introduction
	SparQ Attention
	Experiments and Results
	Benchmarking
	Discussion
	Detailed Results
	Code
	Attention Memory Transfers
	SparQ Attention Procedure
	Tasks and Datasets
	Arithmetic intensity
	Attention Sparsity Analysis
	Ablations
	Benchmarking Detail
	Methodology
	Examples
	Question Answering (SQuAD 1-shot)
	Question Answering (TriviaQA 0-shot)
	Summarisation (CNN/DailyMail)
	Repetition (Shakespeare)
	Language Modelling (WikiText-103)



