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Abstract

We consider a PAC-Bayes analysis of stochastic
optimization algorithms, and devise a new SGDA
algorithm inspired from our bounds. Our algorithm
learns a data-dependent sampling scheme along
with model parameters, which may be seen as as-
signing a probability to each training point. We
demonstrate that learning the sampling scheme
increases robustness against misleading training
points, as our algorithm learns to avoid bad exam-
ples during training. We conduct experiments in
both standard and adversarial learning problems
on several benchmark datasets, and demonstrate
various applications including interpretability upon
visual inspection, and robustness to the ill effects of
bad training points. We also extend our analysis to
pairwise SGD to demonstrate the generalizability
of our methodology.

1 INTRODUCTION

Stochastic optimization is a cornerstone in training deep
learning models on large-scale datasets. These algorithms
employ sampling strategies to estimate gradients and im-
prove computational efficiency. While uniform sampling of
training points is the classic approach in these optimization
methods, recent studies have explored data-dependent sam-
pling to accelerate convergence, reduce the variance of the
gradient estimates, and enhance prediction accuracy [Zhao
and Zhang, 2015, Allen-Zhu et al., 2016, Katharopoulos and
Fleuret, 2017, Johnson and Guestrin, 2018, Wu et al., 2017,
Han et al., 2022].

In real-world datasets, training examples may have a varying
degree of relevance to the target, some are less typical than
others, or data may contain noise or outliers, and identifying
difficult examples [Agarwal et al., 2022] is an active area of
research.

Recent works [London, 2017, Zhou et al., 2023] made a start
at developing theory to explain generalization of Stochastic
Gradient Descent (SGD) with non-uniform sampling, by
combining algorithmic stability [Bousquet and Elisseeff,
2002, Bousquet et al., 2020] with the PAC-Bayes framework
[Shawe-Taylor and Williamson, 1997, McAllester, 1999].
However, those works only considered SGD, and only a
few give practical algorithms to exploit the potential of the
analysis.

In this paper, we take advantage of the PAC-Bayes machin-
ery, namely that bounds hold uniformly for all sampling
distributions over the indices of training points. This allows
us to learn a sampling strategy from the data to maximize
accuracy by minimizing the generalization bound. We also
anticipate increased robustness due to the model averaging
built into the PAC-Bayes framework. In addition, the learned
sampling distribution is readily interpretable as weights on
individual training examples, providing new avenues.

Moreover we develop the analytic framework to Stochastic
Gradient Descent Ascent (SGDA). SGDA has gained at-
tention in various areas, such as adversarial training [Sinha
et al., 2017], generative adversarial networks (GANs) [San-
jabi et al., 2018], robust optimization [Namkoong and Duchi,
2016], and reinforcement learning [Dai et al., 2018]. In par-
ticular, it plays a key role in adversarial training, a primary
defense against adversarial attacks on deep neural networks.
This process is framed as a min-max optimization problem,
where the goal is to optimize the model while accounting
for worst-case perturbations introduced by adversaries.

Beyond SGDA, we extend our analysis to pairwise SGD.
Pairwise comparisons provide deeper insights into model
behavior, particularly in distinguishing human and machine
visual scene recognition, which cannot be fully addressed
through pointwise analysis alone. By visualizing pairwise
comparisons, we uncover models’ behavior when faced with
atypical examples, offering a deeper understanding of the
optimization process.

Our contributions are summarized as follows:



• We prove the sub-exponential stability property of
SGDA and establish PAC-Bayes generalization bounds
in smooth and non-smooth cases. Contrary to classic
PAC-Bayes, our methodology does not require ran-
domization of the model parameters but exploits the
stochasticity of the gradient-based optimizer instead.

• Our methodology framework can be used to devise new
stochastic optimization algorithms by minimizing gen-
eralization bounds w.r.t. the sampling distribution. We
demonstrate the generality of this approach, obtaining
two algorithms: SGDA-Q and pairwise SGD-Q.

• We conduct experiments to evaluate the proposed algo-
rithms in both adversarial and standard training. Our
results demonstrate the robustness of these algorithms
on several tasks, including pairwise learning.

2 RELATED WORK

Non-uniform, data-dependent sampling strategies are widely
used in stochastic optimization. One example is importance
sampling [Zhao and Zhang, 2015], where samples are se-
lected proportional to the gradient norm in order to reduce
the variance of the gradient. This was shown to accelerate
training. Various approximation methods have been devised
to enhance the computational efficiency in implementing
this idea [Johnson and Guestrin, 2018, Katharopoulos and
Fleuret, 2018].

Some works use loss-based sampling for faster convergence
[Katharopoulos and Fleuret, 2017, London, 2017], while
others propose upper bounds on gradient norms for im-
proved performance [Katharopoulos and Fleuret, 2018]. Al-
ternative approaches include distance-based sampling [Wu
et al., 2017], multi-armed bandit frameworks [Salehi et al.,
2018, Liu et al., 2020], and data-dependent sampling for
coordinate selection [Allen-Zhu et al., 2016]. Despite these
advances, generalization analysis for non-uniform sampling
remains limited, which we address in this paper.

The classic PAC-Bayes framework can compute numerical
generalization bounds where the weights follow the prior
and posterior distributions [Pérez-Ortiz et al., 2021b, Dzi-
ugaite and Roy, 2017], with tighter results achieved using
a learned, data-dependent prior [Ambroladze et al., 2006,
Parrado-Hernández et al., 2012, Rivasplata et al., 2018, Dz-
iugaite et al., 2021, Dziugaite and Roy, 2018, Pérez-Ortiz
et al., 2021a].

In this paper, we use the idea of algorithms inspired by
PAC-Bayes bounds. However, contrary to existing works,
we exploit the intrinsic randomness of stochastic algorithms.
The indices of examples chosen for estimating the gradient
directions during training are treated as hyperparameters,
which follow a uniform PAC-Bayes prior at first, and a data-
dependent PAC-Bayes posterior that we learn from data by
minimizing the bound.

3 PRELIMINARIES

Let D be an unknown distribution on a sample space Z .
We denote byW , V ⊆ Rd the parameter space, and Φ will
be a hyperparameter space. In the context of stochastic op-
timization algorithms, the hyperparameter is the random
sequence of indices of training inputs used to approximate
the gradient throughout iterations. The PAC-Bayes frame-
work allows us to model this stochasticity by defining two
discrete distributions on Φ: the prior denoted by P and the
PAC-Bayes posterior denoted by Q. In the paper, we always
set prior P as the uniform distribution and learn the posterior
Q from the data.

Given a training set S = {z1, . . . , zn} drawn i.i.d. from D,
and a hyperparameter ϕ ∈ Φ, a learning algorithm A returns
a model parameterized by A(S;ϕ), mapping the training
inputs to a hypothesis h ∈ H.

The generalization error, or risk, relative to a loss function
L, is defined as

R(A(S;ϕ)) = Ez∼D[L(A(S;ϕ), z)]. (1)

Since D is unknown, the empirical risk serves as a proxi:

RS(A(S;ϕ)) =
1

n

n∑
i=1

L(A(S;ϕ), zi). (2)

We denote the difference between the risk and the em-
pirical risk (i.e., the generalization gap) by G(S, ϕ) :=
R(A(S;ϕ))−RS(A(S;ϕ)). In the PAC-Bayes framework,
we work with the expected risk and expected empirical risk
w.r.t. Q(S), to which we refer as Q for brevity, defined as:

R(Q) = E
ϕ∼Q

[R(A(S;ϕ))], RS(Q) = E
ϕ∼Q

[RS(A(S;ϕ))].

4 MAIN RESULTS

Our first result is generalization bounds on SGDA with
adaptive sampling (proof given in Appendix A.3). We first
introduce several notations and definitions [Zhang et al.,
2021].

For SGDA, we have L(w; ·) := maxv ℓ ((w,v); ·), where
ℓ :W ×V ×Z 7→ R+ and we define

A(S;ϕ) := Aw,v(S;ϕ) = (w,v) ∈ W × V.

In SGDA, we seek the minimizer of the true risk,

min
w∈W

R(Aw,v(S;ϕ)) = min
w∈W

max
v∈V

Ez∼D[ℓ (Aw,v(S;ϕ), z)].

Since the true risk is unknown, the minimizer of the empiri-
cal risk defines the following minimax optimization prob-
lem:

min
w∈W

RS(Aw,v(S;ϕ)) = min
w∈W

max
v∈V

1

n

n∑
i=1

ℓ (Aw,v(S;ϕ), zi) .



Algorithm Sampling Reference Assumption Bound Type Rate

SGDA
Adaptive Theorem 4.4 in this work L,C-C(S) w.h.p. Õ(1/

√
n)

Uniform Lei et al. [2021b] L,C-C(S) In expectation O(1/
√
n)

pairwise SGD
Adaptive Zhou et al. [2025] L,C(S) w.h.p. Õ(1/

√
n)

Uniform Lei et al. [2020] L,S,C w.h.p. Õ(1/
√
n)

Uniform Lei et al. [2021a] L,C w.h.p. O(1/
√
n)

Table 1: Summary of generalization rates, either in expectation or with high probability (w.h.p.), for optimization algorithms
(SGDA and pairwise SGD) under various assumptions—including Lipschitz continuity (L), smoothness (S), convexity (C),
and convex-concavity (C-C)—as a function of the sample size n.

We say ℓ is convex if for any w1,w2 ∈ W , we have
ℓ(w1, ·) ≥ ℓ(w2, ·) +

〈
∇ℓ(w2, ·),w1 −w2

〉
. We say that

ℓ is concave if −ℓ is convex.

Definition 4.1 (Convexity-Concavity). We say ℓ : (w,v) 7→
ℓ((w,v); z) is convex-concave if for any v ∈ V , the func-
tion w 7→ ℓ((w,v), ·) is convex and for any w ∈ W , the
function v 7→ ℓ((w,v), ·) is concave.

Definition 4.2 (Lipschitz). Let L ≥ 0. For any z, we say
ℓ : (w,v) 7→ ℓ((w,v); z) is L-Lipschitz if the following
inequalities hold for all w ∈ W , v ∈ V and z ∈ Z

∥∇wℓ((w,v); z)∥2 ≤ L and ∥∇vℓ((w,v); z)∥2 ≤ L.

Definition 4.3 (Smoothness). ℓ : (w,v) 7→ ℓ((w,v); z) is
said to be α-smooth, α > 0, if for all w1, w2 ∈ W , v1,
v2 ∈ V and z ∈ Z , the following holds∥∥∥( ∇wℓ((w1,v1); z)−∇wℓ((w2,v2); z)

∇vℓ((w1,v1); z)−∇vℓ((w2,v2); z)

)∥∥∥
2

≤ α
∥∥∥( w1 −w2

v1 − v2

)∥∥∥
2
. (3)

Let Q be a probability measure over [n]T . SGDA with sam-
pling scheme Q updates wt(ϕ) and vt(ϕ) by{

vt+1 = vt + ηt∇vℓ((wt,vt); zit),

wt+1 = wt − ηt∇wℓ((wt,vt); zit),
(4)

where at the t-th iteration, zit∈[n] is such that it = ϕt where
ϕ ∈ [n]T is drawn from Q. For sampling distributions of
indices, both P and Q are discrete distributions over Φ, so
their KL divergence is

KL(Q∥P) :=
∑
ϕ∈Φ

Q(ϕ) log
Q(ϕ)

P(ϕ)
.

We will assume throughout that KL(Q∥P) ∈ Õ(1) when
quantifying the rate of convergence of the forthcoming
bounds. With the choice of P taken as the uniform distribu-
tion, this will be sufficient to allow us to account for a small
fraction of outliers in algorithmic applications.

Theorem 4.4 (Generalization bounds for SGDA). Assume
ℓ is M -bounded, convex-concave and L-Lipschitz. For any
δ ∈ (0, 1) and uniform prior P, with probability at least
1− δ over S, the following holds for SGDA with fixed η and
all posterior sampling distribution Q on [n]T ,

Eϕ∼Q [G(S, ϕ)] ≲(
KL(Q∥P)+log

1

δ

)
max

{
L2η(

√
T + T/n) log2 n,

M√
n

}
.

In addition, if ℓ is α-smooth, we have

Eϕ∼Q
[
G(S, ϕ)

]
≲
(
KL(Q∥P) + log(1/δ)

)
max

{
L2η exp(α2tη2)

(T
n

+ 1 +

√
T

n

)
log2 n,

M√
n

}
.

Theorem 4.4 implies that choosing T = O(n2) and η =

O(T− 3
4 ) gives nonvacuous results of the order Õ( 1√

n
),

based on the previous assumption that KL(Q∥P) ∈ Õ(1).
In smooth cases, if we choose T = O(n) and η = O( 1√

n
),

this gives the bounds of the order Õ( 1√
n
).

The key benefit of our PAC-Bayes analysis is that results
hold with uniform sampling transfer to guarantee holding
for all posterior sampling distributions.

Next, we give results for pairwise SGD.

Pairwise SGD: For a pairwise loss, we define L(w; ·) :=
ℓ(w; ·, ·), where ℓ :W × (Z × Z) 7→ R+ and the risk is

R(A(S;ϕ)) = Ez,z̃∼D[ℓ(A(S;ϕ), z, z̃)]. (5)

For a pairwise loss, the empirical risk is

RS(A(S;ϕ)) =
1

n(n− 1)

∑
i,j∈[n]:i̸=j

ℓ(A(S;ϕ); zi, zj).

At the t-th iteration for pairwise SGD, a pair of sample in-
dices ϕt = (it, jt) is drawn from the set {(it, jt) : it, jt ∈
[n], it ̸= jt} from Q over ([n] × [n])T . The update rule is
wt+1 = wt−ηt∇ℓ(wt; zit , zjt). Recent work gives gener-
alization bounds for pairwise SGD [Zhou et al., 2025].



Theorem 4.5 (Paiwise SGD, [Zhou et al., 2025]). Assume ℓ
is M -bounded, convex and L-Lipschitz. For any δ ∈ (0, 1)
and uniform prior P, the following bounds hold for pair-
wise SGD with fixed step sizes and all posterior sampling
distribution Q

Eϕ∼Q [G(S, ϕ)] ≲(
KL(Q∥P)+log

1

δ

)
max

{
L2η(

√
T + T/n) log2 n,

M√
n

}
.

In addition, if ℓ is α-smooth and η ≤ 2/α, we have

Eϕ∼Q
[
G(S, ϕ)

]
≲(

KL(Q∥P)+log
1

δ

)
max

{
L2η

(T
n
+1+

√
T

n

)
log2 n,

M√
n

}
.

Table 1 summarizes the generalization bounds for SGDA
and pairwise SGD under various assumptions considered in
our paper and in recent work [Lei et al., 2021a, 2020, 2021b,
Zhou et al., 2025], where n is the sample size.

Next, we consider to develop learning algorithms based on
the generalization bounds for these stochastic optimization
methods.

4.1 OPTIMIZATION OF THE BOUNDS W.R.T.
POSTERIOR Q

Inspired by the r.h.s. of the PAC-Bayes generalization bound
of Theorem 4.4, in this section we devise a new SGDA-Q
algorithm that learns a sampling distribution (along with the
model’s parameters) from the data.

Recall that, at the t-th iteration, a sample index ϕt = {it}
is randomly selected from S, giving a sequence of indices
ϕ = (ϕ1, ..., ϕT ) and parameter ν.

The PAC-Bayes posterior Q in our bounds was a distribution
on the set for trajectories. Here we will denote by q(S) the
sampling distribution over [n], which we refer to simply
as q for brevity, used to pick the next training point in the
trajectory or training sequence. Consequently, the following
objective function resembles the form of the r.h.s. of the
bounds.

L(q) =
n∑

i=1

q(i)L (h; zi)+ν ·KL(q∥p)+λ
( n∑
i=1

q(i)−1
)
,

(6)
where h contains the model parameters, p(i) = 1/n,∀i ∈
[n]. We minimize this objective w.r.t. q, that is to find q that
minimizes the expected empirical loss while staying close
to the prior.

Depending on the choice of L, minimizing Eq. (6) leads
to our new algorithms. When L =maxvℓ ((w,v); ·), the
minimization of (6) is carried out by SGDA-Q. Here, the

suffix Q signifies that we are learning a sampling distribution
q alongside the parameter values.

The pseudo code of the resulting algorithms, SGDA-Q and
pairwise SGD-Q are given in Algorithm 1. The derivation
for pairwise SGD-Q is also given in Appendix B for com-
pleteness.

Algorithm 1 SGDA-Q/Pairwise SGD-Q

1: Inputs: S, ℓ, ν
Optimize : w, v, q

2: q ← uniform, t← 1
3: for k = 0, . . . do
4: repeat
5: Sample ϕt ∼ qt
6: SGDA-Q:
7: it ← ϕt

8: vt+1 = vt + η∇vℓ((wt,vt); zit);
9: wt+1 = wt − η∇wℓ((wt,vt); zit);

10: Pairwise SGD-Q:
11: (it, jt)← ϕt

12: wt+1 = wt − η∇wℓ(wt; zit , zjt);
13: t = t+ 1
14: until t > Titer

15: Update q by Eq. (7) for SGDA-Q / Eq. (15) for pair-
wise SGD-Q.

16: end for
17: return w, q

The minimization yields the following alternating updates.

First, keeping q fixed, we approximate the adversarial loss
by taking one stochastic gradient ascent step w.r.t. v, fol-
lowed by taking a gradient descent step w.r.t. w (lines 7-8 in
the pseudo code). These steps represent the vanilla SGDA
updates.

Then, keeping w and v fixed, derive the update q as follows.
Observe that all terms depend on q; taking derivative w.r.t.
each q(i) and rearranging the stationary equation yields

q(i)=
exp

(
− 1

νL(h; zi)
)∑n

j=1 exp(−
1
νL(h; zj))

∝exp

(
−1

ν
L(h; zi)

)
.

(7)

This iterative approach updates the data-dependent posterior
q conditioned on the optimized parameters and the train-
ing sample. At the beginning, the sampling distribution is
initialized with q = p.

The algorithm updates the sampling distribution conditioned
on the training data. During training, an index is drawn from
q. According to Eq. (7), the probability of selecting the i-th
input is proportional to the exponential of the negative of its
loss from the previous epoch, denoted as qt(i). This differs
from AdaSamp [London, 2017] – an existing adaptive sam-
pling algorithm inspired from PAC-Bayes bounds, where
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Figure 1: Examples with lowest and highest Q-scores as
found by SGDA-Q in MNIST. ’PT’ denotes the predicted
label, ’GT’ the ground truth, and ’q’ the Q-scores.

the probability is proportional to the loss. As a comparison,
for our algorithms, data points that have a large loss are
less likely to be selected, and so potential outliers or noisy
examples are automatically down-weighted.

Learning the sampling distribution balances the minimiza-
tion of the expected empirical risk – which down-weights
certain examples – and the minimization of divergence from
a uniform prior – which weights all examples equally. Thus,
the learned sampling distribution will only deviate from
uniform sampling for a gain in the expected empirical risk.
Next, we apply our algorithms to see the benefits of this
trade-off.

5 EMPIRICAL EVALUATION

In this section, we empirically evaluate our algorithms, high-
lighting their ability to increase robustness and interpretabil-
ity, in both standard training via pairwise SGD-Q and ad-
versarial training via SGDA-Q. Results are presented across
various architectures and datasets.

The visualizations in the pairwise setting inspire an inter-
esting question about the differences between human and
machine visual scene recognition [Bamber, 1969], which
cannot be solved in the pointwise setting. These results
further suggest the generalizability of our algorithms.

5.1 EXPERIMENTAL RESULTS

First, we introduce the datasets and architectures used in
our experiments. We evaluate on MNIST and CIFAR-10
dataset. The parameter settings follow those in [Shah et al.,
2020, Nouiehed et al., 2019, Chen et al., 2024]. MNIST: We
use a four-layer neural network and train over 100 epochs
using an initial learning rate of 0.001 for SGDA-Q with the
decaying schedule of factor 5 after every 50 epochs. Our

code is publicly available 1.

Application 1: Estimating Example Difficulty

Identifying challenging examples and estimating the level
of difficulty of individual data points is crucial for detecting
abnormal cases and samples needing further human evalua-
tion. As discussed by Agarwal et al. [2022], methods that
are able to do this have potential to improve the safe use
of data, as well as model interpretability. We verify that
our algorithms can identify difficult or atypical examples,
often corresponding to blurry or noisy data. We evaluate
this on the MNIST and CUHK03 datasets for pointwise and
pairwise cases, ranking training-set data by Q-scores. The
results are shown in Figure 1 and Figure 7.

In Figure 1 (a), we list the examples with lowest estimated
values of q and highest estimated values of q in Figure 1
(b) for MNIST. We can see from Figure 1 and Figure 7
that high Q-score images typically have clear, uncluttered
backgrounds and contain typical and well-visible objects,
while low Q-score images are atypical, blurry or unclear,
making object identification difficult. In pairwise tasks on
similarity shown in Figure 7, low Q-score image pairs often
show objects from unconventional angles, hindering the
recognition of their similarity. Our algorithms effectively
identify challenging or atypical examples by assigning them
low Q-scores, which may be used to prompt human input or
further review.

Application 2: Training in the Presence of Label Noise
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Decision Boundary
SGDA-Q boundary
Vanilla SGDA boundary
Posteriors q
Class 0
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Figure 2: Decision boundaries obtained using SGDA-Q vs.
vanilla SGDA on a simple 2D dataset with noisy labels.
Dark filling means low Q-score.

We evaluate SGDA-Q here and pairwise SGD-Q in Sec-
tion 5.2, in conditions of label noise to test their ability
to identify and downweight the noisy examples and hence
achieve robustness in the presence of out-of-distribution
(OOD) samples that could bias estimates.

We first generated a 2D toy example with asymmetric label
1Code available at https://github.com/git0405/

UAI-Learning-to-Sample-in-Stochastic-Optimization

https://github.com/git0405/UAI-Learning-to-Sample-in-Stochastic-Optimization
https://github.com/git0405/UAI-Learning-to-Sample-in-Stochastic-Optimization


Noise Rate Alg. Natural PGD40 L∞ [Kurakin et al., 2016] FGSM L∞ [Goodfellow et al., 2014]

Symmetric ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 0.4 ϵ = 0.1 ϵ = 0.2 ϵ = 0.3 ϵ = 0.4

Sym 0.2
SGDA-Q 99.26% 99.05% 98.69% 98.25% 97.68% 97.71% 94.65% 91.26% 86.02%
SGDA 98.98% 98.72% 98.39% 97.95% 97.37% 97.28% 94.16% 89.27% 83.01%
MART 98.84% 98.60% 98.34% 97.98% 97.57% 96.70% 93.33% 88.47% 82.44%
TRADES 98.71% 98.48% 98.21% 97.88% 96.37% 96.18% 90.55% 81.18% 70.85%

Sym 0.4
SGDA-Q 99.12% 98.91% 98.53% 98.09% 97.47% 97.51% 94.37% 90.70% 85.37%
SGDA 98.58% 98.32% 97.96% 97.48% 96.96% 96.58% 93.31% 88.76% 83.15%
MART 98.21% 97.90% 97.57% 97.14% 96.67% 95.62% 91.69% 86.11% 79.05%
TRADES 98.35% 98.07% 97.73% 97.32% 96.77% 95.35% 89.40% 79.60% 70.16%

Asymmetric

Asym 0.2
SGDA-Q 99.33 % 99.06% 98.76% 98.29% 97.72% 98.02% 95.72% 93.32% 90.38%
SGDA 99.26% 99.00% 98.66% 98.19% 97.57% 97.98% 95.97% 93.45% 90.37%
MART 99.28 % 99.03% 98.70% 98.29% 97.65% 97.18% 92.61% 87.82% 82.36%
TRADES 99.24% 99.02% 98.74% 98.38% 97.89% 97.48% 94.34% 88.95% 81.18%

Asym 0.4 SGDA-Q 98.88% 98.52% 98.07% 97.50% 96.83% 97.23% 94.98% 92.69% 89.60%
SGDA 98.73% 98.39% 97.89% 97.32% 96.67% 95.28% 92.03% 88.48% 83.76%
MART 99.11% 98.79% 98.39% 97.45% 97.40% 96.34% 92.55% 87.42% 80.83%
TRADES 98.35% 98.33% 97.87% 97.29% 96.73% 93.60% 85.37% 74.86% 63.33%

Table 2: Comparison of natural and adversarial accuracy under FGSM and PGD attacks with symmetric and asymmetric
noise on four algorithms. The maximum results in each column are highlighted in bold font.

noise rate of 0.1 to illustrate the working of our algorithms.
We ran logistic regression trained with SGDA and SGDA-
Q for a comparison; the obtained decision boundaries are
shown in Figure 2. The filling of markers reflects the Q-
scores – darker means lower Q-score. In this comparison,
we see that, in vanilla SGDA the decision boundary shifts
due to the label noise. However, our algorithms demonstrate
robustness to such noise. This is because our methods learn
to down-weight and consequently avoid training on the mis-
leading mislabeled points.

Adversarial Training of SGDA-Q.

Next, we evaluate the robustness of our SGDA-Q algorithm.
Similarly to SGDA, this method is applicable to adversarial
training. It aims to reduce the effect of test-time adversarial
perturbations by training with a loss function that simulates
adversarial examples. Indeed it is well known that addi-
tion certain imperceptible noises can fool the models into
making wrong predictions [Goodfellow et al., 2014]. Ad-
versarial training is an effective way to defend against these
adversarial attacks.

Let us denote an adversarial example by x′, obtained by
adding an adversarial perturbation to a natural example x.
In the case of an ℓ∞ adversarial attack, an adversarial exam-
ple x′ is chosen such that ∥x′−x∥∞ ≤ ϵ. Such perturbation
is often imperceptible to humans but can cause the classifier
h to mispredict [Goodfellow et al., 2014]. In adversarial
training, the goal is to guard against the ill effect of adver-

Figure 3: Adversarial training setting, with inherent noise.

sarial perturbations by solving the empirical adversarial risk
minimization problem

min
h∈H

1

n

n∑
i=1

max
∥x′

i−xi∥∞≤ϵ
ℓ(h(x′

i), yi). (8)

This is also a min-max problem, where v in our earlier
general formulation is instantiated as (x′

1, . . . ,x
′
n).

For each training point, the maximum in the loss function
searches for the worst-case perturbation of the input features,
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Figure 4: The impact of 1/ν on test accuracy under PGD
attack across different values of ϵ under a symmetric noise
rate of 0.4.

while the outer minimization aims to reduce this worst-case
value of the loss by adjusting the model parameters. In addi-
tion to this adversarial training min-max problem classically
approached by SGDA, our SGDA-Q algorithm also adjusts
the sampling probabilities to minimize the expected worst-
case loss. This creates a fine balance between the adversarial
training creating hard examples and our updates of q po-
tentially down-weighting them. Therefore, we expect that
SGDA-Q is best suited when there are outliers or mislabeled
points in the data set. Indeed, recent literature [Chen et al.,
2024] reported that having both adversarial attacks and la-
bel noise is both realistic and challenging. We expect our
method to identify and down-weight the noisy points while
at the same time carrying out adversarial training.

We shall now examine our SGDA-Q algorithm in adver-
sarial training in the presence of mislabeled samples to
demonstrate the enhanced robustness of min-max stochastic
optimization based learning. The problem setting is depicted
in Figure 3.

Table 2 presents the results of our algorithms compared
to vanilla SGDA (i.e. SGDA with uniform sampling), and
two other state-of-the-art algorithms, namely MART [Wang
et al., 2019], and TRADES [Zhang et al., 2019]. We use
MNIST in the presence of random symmetric and asymmet-
ric label noises at rates of 0.2 and 0.4, following the setting
in [Chen et al., 2024, Shah et al., 2020]. For both SGDA
and SGDA-Q, we use the cross-entropy loss along with the
training protocol described in [Nouiehed et al., 2019]. Test
accuracy was evaluated under FGSM [Goodfellow et al.,
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Figure 5: The impact of 1/ν on test accuracy under FGSM
attack across different values of ϵ under a symmetric noise
rate of 0.4.

2014] and PGD-40 [Kurakin et al., 2016] attacks with re-
sults averaged over 3 independent runs. Based on the results
in Table 2, our method achieves competitive accuracy per-
formance, scoring best in most cases and at least second
best in all cases tested.

We further investigate how 1/ν affects the balance between
the KL term and the expected empirical risk, influencing the
posterior update and its impact on generalization. Figure 4
and Figure 5 show the effect of varying parameter 1/ν.
We give the test accuracy in problems with FGSM and
PGD attacks on clean data, across different values of ϵ,
in the presence of random symmetric label noise rate of
0.4. Results for other noise proportions are shown in the
Appendix C. A grid search over 1/ν ∈ (0, 3] reveals that
smaller values of 1/ν give better performance for smaller
ϵ, while larger 1/ν achieves higher accuracy for larger ϵ.
We find that 1/ν higher than 1 leads to decreased training
performance.

To evaluate the robustness of our sampling strategy, we
conduct additional experiments on the CIFAR-10 dataset.
We use the loss function of TRADES, and only modify their
algorithm by replacing uniform sampling with our adaptive
sampling. We compare with the original TRADES (uniform
sampling), as well as with MART, in the presence of label
noise rates of 0.2 and 0.4, following the same setting as in
[Chen et al., 2024]. We train ResNet-18 neural networks
[He et al., 2016] for 200 epochs using an initial learning
rate of 0.05, which decays by a factor of 10 at the 150th
and 200th epochs. Table 3 presents both adversarial and



Table 3: Best and last accuracy (%) on CIFAR-10 with inherent symmetric and asymmetric label noise with 20% and 40%
noise rate with PGD attack.

Alg. Sym0.2 Sym0.4 Asym0.2 Asym0.4

Natural PGD-20 Natural PGD-20 Natural PGD-20 Natural PGD-20

Best
Ours 81.13 58.40 74.94 52.91 84.29 60.78 78.25 56.03
MART 78.96 48.01 74.97 45.82 83.04 54.19 76.85 47.97
TRADES 81.37 56.71 75.80 54.80 82.46 54.12 77.44 50.46

Last
Ours 74.94 40.73 59.12 26.38 80.37 47.43 71.68 40.67
MART 74.11 37.07 54.54 22.89 80.81 42.62 71.88 39.68
TRADES 74.76 39.74 60.23 26.12 77.71 49.31 70.87 40.62

natural accuracy results in the presence of label noise on
the CIFAR-10 dataset. Here, “Best" means highest accuracy
from across all epochs, and “Last” means the accuracy at the
last training epoch. Our sampling strategy again achieves
competitive performance, with higher test accuracy under
PGD-20 attacks in more than half of the cases tested.

5.2 RESULTS FOR PAIRWISE SGD-Q

In this section, we test and demonstrate our pairwise SGD-
Q algorithm. We consider a problem of similarity learning.
Given an input pair, the goal is to predict if they belong to
the same class or not.

Architecture: We employ the Siamese architecture de-
picted in Figure 6, built on the work of [Lv et al., 2018,
Zheng et al., 2017]. It learns feature representations of the
input pairs and their corresponding similarities. This frame-
work consists of two modules to extract features from (x, x̃),
both sharing the same weights.

The outputs of these two modules are flattened into one-
dimensional feature vectors (f1 and f2 as shown in Figure 6).
The element-wise squared difference between f1 and f2 is
fed into a fully connected layer with a softmax, outputting
the probability that the input pair belongs to the same class.

Input pair

CNN

Shared 
Weights

Similarity 
Measurement

CNN
Same/Different

Class

Similarity Computation Output

 �1

 �2

Figure 6: In the Siamese network architecture, when an input
pair (x, x̃) is provided, two models with shared weights
generate feature embeddings f1 and f2, which are then
utilized to evaluate the similarity between the inputs.

We tested two different base network modules with two
datasets as follows. MNIST: We use a two-layer convolu-
tional network as the CNN modules in Siamese networks
and train over 100 epochs using an initial learning rate of
0.01 with the decaying schedule of factor 5 after every 30
epochs. CUHK03 [Li et al., 2014]: The CNN modules are
based on the ResNet-18, pre-trained on the ImageNet dataset
[Deng et al., 2009]. The model is trained for 65 epochs with
an initial learning rate of 0.01, employing a decay schedule
that decreases the learning rate by a factor of 5 every 20
epochs. The CUHK03 dataset comprises 14,097 images of
1,467 individuals.

In Figure 7 (a) and (c), we list the example pairs with lowest
estimated values of q for MNIST and CUHK03. In Figure 7
(b) and (d), we list the pairs with highest estimated values of
q in MNIST and CUHK03. An interesting observation from
these figures is that low Q-score pairs tend to be same-label
pairs whereas the high Q-score pairs tend to be different-
label pairs. It seems to be an intriguing observation from
these pairwise experiments that identifying two images as
representing different content appears to be an easier prob-
lem than recognizing them as representing similar content.
This suggests that machines (contrary to humans) may find
it easier to detect differences than similarities, in the datasets
tested.

Training with Pairwise SGD-Q in the Presence of Label
Noise.

Next, we test our algorithms in accuracy comparison exper-
iments. The results shown in Figure 8 are obtained in the
presence of random label noise in a setup similar to [Shah
et al., 2020]: 10% of the samples are randomly selected and
assigned incorrect (opposite) labels. We report the accuracy
measured on a clean independent test set, averaged over 5
independent repetitions.

We compare our algorithms with three methods, with vanilla
SGD, AdaSamp [London, 2017] and MKL-SGD [Shah et al.,
2020] – a Min-k Loss SGD that aims to improve robustness
against outliers. MKL-SGD is an existing variant of SGD
that previously demonstrated the robustness achieved by
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Figure 7: Pairwise: the top-k training-set pairs, with the low-
est and highest Q-scores on dataset MNIST and CUHK03.

discarding high-loss examples, however, without any gen-
eralization guarantees. Recall that AdaSamp is an adaptive
sampling algorithm inspired from PAC-Bayes bounds, with
sampling probability proportional to the loss.

According to Figure 8, pairwise SGD-Q demonstrates supe-
rior test accuracy under label noise compared to both MKL-
SGD and AdaSamp on MNIST and CUHK03, highlighting
its robustness and enhanced generalization performance.

6 CONCLUSIONS

We considered a PAC-Bayes analysis of stochastic optimiza-
tion algorithms, and based on this, learning the adaptive
sampling scheme. We introduced new bounds-based algo-
rithms that demonstrate strong robustness and offer insights
into model behavior regarding example difficulty. Future
research could explore the performance of these algorithms
under different attacks and investigate their application with
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Figure 8: Pairwise SGD-Q: Comparison of the test accuracy
on MNIST and CUHK03 with and without outliers.

other optimization methods, such as randomized coordinate
descent. It would also be interesting to follow up on our
observations in pairwise learning in machines vs. humans.
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A APPENDIX: APPLICATIONS TO BOUNDING THE ERROR OF STOCHASTIC
GRADIENT DESCENT ASCENT

We study SGDA for addressing min-max optimization problems in the convex-concave setting. We analyze SGDA under a
general sampling scheme, where the random index is drawn from an arbitrary distribution.

Definition A.1 (SGDA with general sampling). Let w1 and v1 denote the initial points, and∇wℓ represent the gradient with
respect to w. Consider a probability measure P over [n]T and a training dataset S = {z1, . . . , zn}. A sequence (i1, . . . , iT )
is sampled according to P. At the t-th iteration, SGDA with the sampling scheme P updates the model as follows:{

wt+1 = wt − ηt∇wℓ((wt,vt); zit),

vt+1 = vt + ηt∇vℓ((wt,vt); zit),

where {ηt} is a positive step-size sequence. If P is the uniform distribution, then we call it SGDA with uniform sampling
(SGDAU).

Next we give stability bounds to develop PAC-Bayes bounds for SGDA, covering both smooth and non-smooth cases. We
first introduce sub-exponential stability [Zhou et al., 2023].

Assumption A.2 (Sub-exponential stability). Let P be a fixed probability distribution. We say that a stochastic algorithm
is sub-exponentially βϕ-stable (w.r.t. P) if, given any fixed instance of ϕ ∼ P, it is βϕ-uniformly stable, and there exist
b1, b2 ∈ R such that for any δ ∈ (0, 1/n], the following holds with probability at least 1− δ

βϕ ≤ b1 + b2 log(1/δ). (9)

A.1 NON-SMOOTH CASE

The following lemma shows that SGDAU applied to non-smooth problems enjoys the sub-exponential stability. The proof is
given in Appendix A.3.1.

Lemma A.3 (Stability bound). Let S and S′ be neighboring datasets. Suppose for all z ∈ Z the loss function is convex-
concave and L-Lipschitz. Let {wt,vt}, {w′

t,v
′
t} be the sequence produced by SGDAU on S and S′ respectively with fixed

step sizes. Then SGDAU with t iterations and the hyperparameter ϕ is βϕ-uniformly stable with βϕ = 4
√
eL2η

(√
t +

maxk∈[n]

∑t
j=1 I[ij = k]

)
. For any δ ∈ (0, 1), with probability at least 1− δ we have

βϕ ≤ b1 + 8
√
eL2η(1 +

√
t/n) log(1/δ).

That is, Assumption A.2 holds with b2 = 8
√
eL2η(1 +

√
t/n) w.r.t. P.

A.2 SMOOTH CASE

In the following lemma to be proved in Appendix A.3.2, we give stability bounds for SGDA which satisfy Assumption A.2.

Lemma A.4 (Stability bound). Let S and S′ be neighboring datasets. Suppose for all z ∈ Z the loss function is convex-
concave, α-smooth and L-Lipschitz. Let {wt,vt}, {w′

t,v
′
t} be the sequence produced by SGDA on S and S′ respectively

with fixed step sizes. Then at t iterations, SGDA with uniform sampling and the hyperparameter ϕ is βϕ-uniformly stable
with

βϕ = 4
√
eL2η exp(

1

2
α2η2t) max

k∈[n]

(
1 +

t∑
r=1

I[ir = k]

)
.

If ηt = η, then for any δ ∈ (0, 1), with probability at least 1− δ we have

βϕ ≤ b1 + 8
√
eL2η exp(

1

2
α2η2t)(1 +

√
t/n) log(1/δ).

That is, Assumption A.2 holds with b2 = 8
√
eL2η exp( 12α

2η2t)(1 +
√
t/n) w.r.t. P.

We can derive Theorem 4.4, based on the above lemmas. Next, we proof the above stability bounds for SGDA.



A.3 PROOFS ON APPLICATIONS OF SGDA

Lemma A.5 (Chernoff’s Bound). Let X1, . . . , Xt be independent random variables taking values in {0, 1}. Let X =∑t
k=1 Xk and µ = E[X]. Then for any ϵ > 0 with probability at least 1 − exp(−µϵ2/(2 + ϵ)) we have X ≤ (1 + ϵ)µ.

Furthermore, for any δ ∈ (0, 1) with probability at least 1− δ we have

X ≤ µ+ log(1/δ) +
√
2µ log(1/δ).

First, we present the proofs on the generalization bounds for SGDA with smooth and non-smooth convex loss functions.
Before that, we need to prove that SGDA meets Assumption A.2.

A.3.1 Non-smooth case

Proof of Lemma A.3. Without loss of generality, we first assume S and S′ differ by the last example. According to the
SGDA update rule and proof of Theorem 2(c) in [Lei et al., 2021b], for p > 0, we get

∥∥∥∥( wt+1 −w′
t+1

vt+1 − v′
t+1

)∥∥∥∥2
2

≤ 8L2η2(1 + p)
∑t

j=1 I[ij=n]

(
t+

t∑
k=1

I[ik=n]/p

)
.

We set p = 1/
∑t

j=1 I[ij = n] and use the inequality (1 + 1/x)x ≤ e to derive∥∥∥∥( wt+1 −w′
t+1

vt+1 − v′
t+1

)∥∥∥∥2
2

≤ 8eL2η2

(
t+

( t∑
k=1

I[ik = n]
)2)

.

It then follows that ∥∥∥∥( wt+1 −w′
t+1

vt+1 − v′
t+1

)∥∥∥∥
2

≤
√
8eLη

(
√
t+

t∑
k=1

I[ik = n]

)
.

Based on Eq. (11), we further know that SGDA is βϕ-uniformly stable with

βϕ = 4
√
eL2η

(√
t+ max

k∈[n]

t∑
j=1

I[ij = k]
)
. (10)

For simplicity, let βϕ,k = 4
√
eL2η

(√
t +

∑t
j=1 I[ij = k]

)
. Take the expectation of the above inequality, then gives the

following bound
Eϕ∼P[βϕ,k] = 4

√
eL2η

(√
t+ t/n

)
.

Applying Lemma A.5 to Eq. (10), with probability at least 1− δ/n, we have

βϕ,k ≤ 4
√
eL2η(

√
t+ t/n+ log(n/δ) +

√
2t/n log(n/δ)).

Therefore, with probability at least 1− δ, the following inequality holds simultaneously for all k ∈ [n]

βϕ,k ≤ 4
√
eL2η(

√
t+ t/n+ log(n/δ) +

√
2t/n log(n/δ)),

which implies the following inequality with probability at least 1− δ

βϕ ≤ 4
√
eL2η(

√
t+ t/n+ 2 log(1/δ) +

√
4t/n log(1/δ)),

where we have used δ ∈ (0, 1/n) in the above inequality. Combining the stability bounds above, then we can prove that
SGDAU with the hyperparameter ϕ meets the Assumption A.2 with

b1 ≥ 4
√
eL2η(

√
t+ t/n), b2 = 8

√
eL2η(1 +

√
t/n).

The proof is completed.



A.3.2 Smooth case

Proof of Lemma A.4. Without loss of generality, we first assume S and S′ differ by the last example. According to the
SGDA update rule and proof of Theorem 2(d) in [Lei et al., 2021b], for p > 0 and fixed step sizes, we get

∥∥∥∥( wt+1 −w′
t+1

vt+1 − v′
t+1

)∥∥∥∥2
2

≤8(1 + 1/p)L2η2
t∏

j=1

(
1 + α2η2j

) t∏
j=1

(1 + p)
I[ij=n]

t∑
k=1

I[ik=n]

≤8(1 + 1/p)L2η2 exp

α2
t∑

j=1

η2j

 (1 + p)
∑t

j=1 I[ij=n]

t∑
k=1

I[ik=n].

We set p = 1/
∑t

j=1 I[ij = n] and use the inequality (1 + 1/x)x ≤ e to derive∥∥∥∥( wt+1 −w′
t+1

vt+1 − v′
t+1

)∥∥∥∥2
2

≤ 8e

(
1 +

t∑
k=1

I[ik=n]

)2

L2η2 exp

α2
t∑

j=1

η2j

 .

Based on the Lipschitz continuity and above inequality, ∀S ∼ S′ ∈ Zn,∀z ∈ Z we have the following, where we use the
notation (w,v) ≡ Aw,v(S;ϕ) and (w′,v′) ≡ Aw,v(S

′;ϕ):

|ℓ (Aw,v(S;ϕ), z)− ℓ (Aw,v(S
′;ϕ), z) | = |ℓ((w,v); z)− ℓ((w′,v′); z)|

≤ |ℓ((w,v); z)− ℓ((w′,v); z)|+ |ℓ((w′,v); z)− ℓ((w′,v′); z)| ≤ L (∥w −w′∥2 + ∥v − v′∥2)

≤ 4
√
eL2η exp(

1

2
α2η2t) max

k∈[n]

(
1 +

t∑
r=1

I[ir = k]

)
. (11)

Based on the above inequalities, we know that SGDA is βϕ-uniformly stable with

βϕ = 4
√
eL2η exp(

1

2
α2η2t) max

k∈[n]

(
1 +

t∑
r=1

I[ir = k]

)
.

For simplicity, let βϕ,k = 4
√
eL2η exp( 12α

2η2t)
(
1 +

∑t
j=1 I[ij = k]

)
for any k ∈ [n]. Taking the expectation over both

sides of above inequality, we derive

Eϕ∼P[βϕ] ≥ Eϕ∼P[βϕ,k] = 4
√
eL2η exp(

1

2
α2η2t)(1 + t/n), (12)

where E[I[ij = k]] = 1/n. Based on the above stability bounds, it remains to show that the stability parameter of SGDA
meets Assumption A.2. According to Lemma A.5 with Xj = I[ij = k], we get the following inequality with probability at
least 1− δ/n

βϕ,k ≤ 4
√
eL2η exp(

1

2
α2η2t)(1 + t/n+ log(n/δ) +

√
2t/n log(n/δ)). (13)

By the union of probability, with probability at least 1− δ, Eq. (13) holds for all k ∈ [n]. Therefore, with probability at least
1− δ

βϕ ≤ 4
√
eL2η exp(

1

2
α2η2t)(1 + t/n+ log(n/δ) +

√
2t/n log(n/δ))

≤ 4
√
eL2η exp(

1

2
α2η2t)(1 + t/n+ 2 log(1/δ) + 2

√
t/n log(1/δ))

≤ 4
√
eL2η exp(

1

2
α2η2t)(1 + t/n) + 8

√
eL2η exp(

1

2
α2η2t)(1 +

√
t/n) log(1/δ)

≤ Eϕ∼P[βϕ] + 8
√
eL2η exp(

1

2
α2η2t)(1 +

√
t/n) log(1/δ),

where we have used δ ∈ (0, 1/n) in the second inequality, and Eq. (12) in the last inequality. Therefore, Assumption A.2
holds with b2 = 8

√
eL2η exp( 12α

2η2t)(1 +
√
t/n).

The proof is completed.



Based on the above lemmas, we are ready to state generalization bounds in Corollary 4.4 for SGDA in non-smooth and
smooth cases. We derive the generalization bounds for SGDA with general sampling based on the stability analysis for
SGDA with uniform sampling.

Proof of Corollary 4.4. With A(S;ϕ) = (Aw,v(S;ϕ)) , it is then clear that SGDA with convex-concave loss functions in
both smooth and non-smooth cases satisfies Assumption A.2 based on Lemma A.3 and Lemma A.4. Therefore, the results
are derived by applying the upper bound on βϕ to Theorem 1 in [Zhou et al., 2023].

B ALGORITHM FOR PAIRWISE SGD

Inspired by the r.h.s. of PAC-Bayes generalization bound of Theorem 4.5, in this section we devise new pairwise SGD-Q
algorithms that learn a sampling distribution (along with the model’s parameters) from the data. The following objective
function resembles the form of the r.h.s. of the bounds of pairwise SGD.

L(q(i, j)) =
∑

i,j∈[n]:i̸=j

q(i, j)ℓ (h; zi, zj) + ν · KL(q∥p) + λ
( ∑
i,j∈[n]:i ̸=j

q(i, j)− 1
)
, (14)

where p(i, j) = 1
n(n−1) ,∀i, j ∈ [n] : i ̸= j. We want to minimize this objective w.r.t. q, that is to find q that minimizes the

expected empirical loss while staying close to the prior.

All terms depend on q; taking derivative w.r.t. each q(i, j), and rearranging the stationary equation yields the update for q:

q(i, j) =
exp

(
− 1

ν ℓ(h; zi, zj)
)∑

a,b∈[n]:a̸=b exp
(
− 1

ν ℓ(h; za, zb)
) ∝ exp

(
− 1

ν
ℓ(h; zi, zj)

)
. (15)

C APPENDIX: ADDITIONAL EXPERIMENTS

Figures 9-12 provide results on the effect of 1/ν in SGDA-Q for adversarial training, while varying the label noise
proportions, and diameter of the adversarial perturbation ϵ.
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Figure 9: The impact of 1/ν on test accuracy under PGD attack across different values of ϵ under symmetric noise rate 0.2.
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Figure 10: The impact of 1/ν on test accuracy under FGSM attack across different values of ϵ under symmetric noise rate
0.2.
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Figure 11: The impact of 1/ν on test accuracy under PGD attack across different values of ϵ under symmetric noise rate 0.4.
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Figure 12: The impact of 1/ν on test accuracy under FGSM attack across different values of ϵ under symmetric noise rate
0.4.
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