

# 000 001 002 003 004 005 DIFF-STYGS: 3D GAUSSIAN SPLATTING STYLIZATION 006 VIA TUNING-FREE MULTI-VIEW SPARSE DIFFUSION 007 008 009

010 **Anonymous authors**  
011 Paper under double-blind review  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029

## ABSTRACT

030 Realistic stylization in 3D Gaussian Splatting (3DGS) faces critical challenges due  
031 to restricted cross-modal style inputs (text/image) and the difficulty of preserving  
032 multi-view consistency without sacrificing efficiency. Existing methods either  
033 depend on fine-tuned conditional diffusion models (e.g., InstructPix2Pix) or require  
034 style-specific losses and latents. In this paper, we propose Diff-StyGS, a novel  
035 framework enabling 3D style transfer with multimodal inputs for pre-trained 3DGS  
036 via tuning-free Stable Diffusion (SD). Our approach introduces multi-view stylized  
037 attention by dual attention control in SD with (i) Style-Infused Attention (SIA)  
038 and (ii) Multi-View Adaptive Sparse Attention via Shared-Query (MASA-SQ).  
039 Specifically, SIA decouples content by reusing 3DGS-rendered query features while  
040 adjusting style based on stylized keys and values from SD. MASA-SQ reduces  
041 cross-view inconsistency and computational overheads through adaptive fusion of  
042 style and sparsity-aware multi-view priors. Furthermore, we present the Wavelet  
043 Frequency Alignment Loss for stylized distribution alignments across frequency  
044 domains. To further accelerate style optimization, we leverage a 3D sparse-view  
045 strategy to select geometrically representative views through Maximin Distance  
046 Design. Extensive experiments demonstrate that Diff-StyGS outperforms state-  
047 of-the-art text/image-based 3DGS style transfer methods in terms of multi-view  
048 consistency, stylization quality, and content fidelity.  
049  
050

## 1 INTRODUCTION

051 Recent advancements in 2D generation have demonstrated convincing success in content creation  
052 with Diffusion Models (DM) (Wang et al., 2025; Wei et al., 2023; Yin et al., 2024; Li et al., 2025;  
053 Cheng et al., 2025). In addition, high-quality 3D reconstruction is becoming more accessible by  
054 radiance field-related approaches (Barron et al., 2021; Deng et al., 2022; Lee et al., 2024; Yao et al.,  
055 2025). Although these DMs are superior in image editing (Avrahami et al., 2022; Brooks et al.,  
056 2023; Chen et al., 2023a; Kawar et al., 2023; Pan et al., 2023) through exceptional 2D generative  
057 priors and flexible conditions, their 3D awareness is fundamentally lacking, leading to multi-view  
058 inconsistencies when naively applied to 3D content (Lin et al., 2025; Yang et al., 2025). Conversely,  
059 modern 3D representations, such as NeRF (Barron et al., 2022; 2023; Mildenhall et al., 2020) and  
060 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023; Keyang et al., 2024; Kwak et al., 2025), achieve  
061 realistic novel view synthesis through differentiable rendering. However, direct editing of these  
062 compressed neural latents and 3D assets remains a non-trivial task.  
063  
064

In particular, 3D style transfer faces the following challenges: (i) **(Expansive Controllability)** Common 3D style transfer methods only support one single input modality, either text or a reference image for stylization. Furthermore, although recent conditioning mechanisms, such as Control-Net (Zhang et al., 2023), adapter modules (Mou et al., 2023; Ye et al., 2023; Zhuang et al., 2024), and InstructPix2Pix (Brooks et al., 2023) improve conditional controllability, they often require extensive fine-tuning with substantial computational and memory resources. (ii) **(Limited Fidelity)** One typical strategy attempts direct 3D space manipulations (Yuan et al., 2022; Kovács et al., 2024; Mei et al., 2024; Liu et al., 2024c; 2025) via style-specific training objectives and embedded features from style images. However, it struggles with arbitrary styles and is prone to producing visual artifacts (StyleGaussian (Liu et al., 2024c) as shown in Fig. 4), leading to limited generative fidelity. (iii) **(Multi-view Inconsistency)** Another prevalent paradigm is iterative tuning by alternations between 2D DM-based editing (Chen et al., 2024c; Haque et al., 2023) of rendered views and 3D reconstruc-  
065  
066  
067  
068  
069  
070  
071  
072  
073  
074  
075  
076  
077  
078  
079  
080  
081  
082  
083  
084  
085  
086  
087  
088  
089  
090  
091  
092  
093  
094  
095  
096  
097  
098  
099  
100

054  
 055  
 056  
 057  
 058  
 059  
 060  
 061  
 062  
 063  
 064  
 065  
 066  
 067  
 068  
 069  
 070  
 071  
 072  
 073  
 074  
 075  
 076  
 077  
 078  
 079  
 080  
 081  
 082  
 083  
 084  
 085  
 086  
 087  
 088  
 089  
 090  
 091  
 092  
 093  
 094  
 095  
 096  
 097  
 098  
 099  
 100  
 101  
 102  
 103  
 104  
 105  
 106  
 107  
 108  
 109  
 110  
 111  
 112  
 113  
 114  
 115  
 116  
 117  
 118  
 119  
 120  
 121  
 122  
 123  
 124  
 125  
 126  
 127  
 128  
 129  
 130  
 131  
 132  
 133  
 134  
 135  
 136  
 137  
 138  
 139  
 140  
 141  
 142  
 143  
 144  
 145  
 146  
 147  
 148  
 149  
 150  
 151  
 152  
 153  
 154  
 155  
 156  
 157  
 158  
 159  
 160  
 161  
 162  
 163  
 164  
 165  
 166  
 167  
 168  
 169  
 170  
 171  
 172  
 173  
 174  
 175  
 176  
 177  
 178  
 179  
 180  
 181  
 182  
 183  
 184  
 185  
 186  
 187  
 188  
 189  
 190  
 191  
 192  
 193  
 194  
 195  
 196  
 197  
 198  
 199  
 200  
 201  
 202  
 203  
 204  
 205  
 206  
 207  
 208  
 209  
 210  
 211  
 212  
 213  
 214  
 215  
 216  
 217  
 218  
 219  
 220  
 221  
 222  
 223  
 224  
 225  
 226  
 227  
 228  
 229  
 230  
 231  
 232  
 233  
 234  
 235  
 236  
 237  
 238  
 239  
 240  
 241  
 242  
 243  
 244  
 245  
 246  
 247  
 248  
 249  
 250  
 251  
 252  
 253  
 254  
 255  
 256  
 257  
 258  
 259  
 260  
 261  
 262  
 263  
 264  
 265  
 266  
 267  
 268  
 269  
 270  
 271  
 272  
 273  
 274  
 275  
 276  
 277  
 278  
 279  
 280  
 281  
 282  
 283  
 284  
 285  
 286  
 287  
 288  
 289  
 290  
 291  
 292  
 293  
 294  
 295  
 296  
 297  
 298  
 299  
 300  
 301  
 302  
 303  
 304  
 305  
 306  
 307  
 308  
 309  
 310  
 311  
 312  
 313  
 314  
 315  
 316  
 317  
 318  
 319  
 320  
 321  
 322  
 323  
 324  
 325  
 326  
 327  
 328  
 329  
 330  
 331  
 332  
 333  
 334  
 335  
 336  
 337  
 338  
 339  
 340  
 341  
 342  
 343  
 344  
 345  
 346  
 347  
 348  
 349  
 350  
 351  
 352  
 353  
 354  
 355  
 356  
 357  
 358  
 359  
 360  
 361  
 362  
 363  
 364  
 365  
 366  
 367  
 368  
 369  
 370  
 371  
 372  
 373  
 374  
 375  
 376  
 377  
 378  
 379  
 380  
 381  
 382  
 383  
 384  
 385  
 386  
 387  
 388  
 389  
 390  
 391  
 392  
 393  
 394  
 395  
 396  
 397  
 398  
 399  
 400  
 401  
 402  
 403  
 404  
 405  
 406  
 407  
 408  
 409  
 410  
 411  
 412  
 413  
 414  
 415  
 416  
 417  
 418  
 419  
 420  
 421  
 422  
 423  
 424  
 425  
 426  
 427  
 428  
 429  
 430  
 431  
 432  
 433  
 434  
 435  
 436  
 437  
 438  
 439  
 440  
 441  
 442  
 443  
 444  
 445  
 446  
 447  
 448  
 449  
 450  
 451  
 452  
 453  
 454  
 455  
 456  
 457  
 458  
 459  
 460  
 461  
 462  
 463  
 464  
 465  
 466  
 467  
 468  
 469  
 470  
 471  
 472  
 473  
 474  
 475  
 476  
 477  
 478  
 479  
 480  
 481  
 482  
 483  
 484  
 485  
 486  
 487  
 488  
 489  
 490  
 491  
 492  
 493  
 494  
 495  
 496  
 497  
 498  
 499  
 500  
 501  
 502  
 503  
 504  
 505  
 506  
 507  
 508  
 509  
 510  
 511  
 512  
 513  
 514  
 515  
 516  
 517  
 518  
 519  
 520  
 521  
 522  
 523  
 524  
 525  
 526  
 527  
 528  
 529  
 530  
 531  
 532  
 533  
 534  
 535  
 536  
 537  
 538  
 539  
 540  
 541  
 542  
 543  
 544  
 545  
 546  
 547  
 548  
 549  
 550  
 551  
 552  
 553  
 554  
 555  
 556  
 557  
 558  
 559  
 560  
 561  
 562  
 563  
 564  
 565  
 566  
 567  
 568  
 569  
 570  
 571  
 572  
 573  
 574  
 575  
 576  
 577  
 578  
 579  
 580  
 581  
 582  
 583  
 584  
 585  
 586  
 587  
 588  
 589  
 590  
 591  
 592  
 593  
 594  
 595  
 596  
 597  
 598  
 599  
 600  
 601  
 602  
 603  
 604  
 605  
 606  
 607  
 608  
 609  
 610  
 611  
 612  
 613  
 614  
 615  
 616  
 617  
 618  
 619  
 620  
 621  
 622  
 623  
 624  
 625  
 626  
 627  
 628  
 629  
 630  
 631  
 632  
 633  
 634  
 635  
 636  
 637  
 638  
 639  
 640  
 641  
 642  
 643  
 644  
 645  
 646  
 647  
 648  
 649  
 650  
 651  
 652  
 653  
 654  
 655  
 656  
 657  
 658  
 659  
 660  
 661  
 662  
 663  
 664  
 665  
 666  
 667  
 668  
 669  
 670  
 671  
 672  
 673  
 674  
 675  
 676  
 677  
 678  
 679  
 680  
 681  
 682  
 683  
 684  
 685  
 686  
 687  
 688  
 689  
 690  
 691  
 692  
 693  
 694  
 695  
 696  
 697  
 698  
 699  
 700  
 701  
 702  
 703  
 704  
 705  
 706  
 707  
 708  
 709  
 710  
 711  
 712  
 713  
 714  
 715  
 716  
 717  
 718  
 719  
 720  
 721  
 722  
 723  
 724  
 725  
 726  
 727  
 728  
 729  
 730  
 731  
 732  
 733  
 734  
 735  
 736  
 737  
 738  
 739  
 740  
 741  
 742  
 743  
 744  
 745  
 746  
 747  
 748  
 749  
 750  
 751  
 752  
 753  
 754  
 755  
 756  
 757  
 758  
 759  
 760  
 761  
 762  
 763  
 764  
 765  
 766  
 767  
 768  
 769  
 770  
 771  
 772  
 773  
 774  
 775  
 776  
 777  
 778  
 779  
 780  
 781  
 782  
 783  
 784  
 785  
 786  
 787  
 788  
 789  
 790  
 791  
 792  
 793  
 794  
 795  
 796  
 797  
 798  
 799  
 800  
 801  
 802  
 803  
 804  
 805  
 806  
 807  
 808  
 809  
 810  
 811  
 812  
 813  
 814  
 815  
 816  
 817  
 818  
 819  
 820  
 821  
 822  
 823  
 824  
 825  
 826  
 827  
 828  
 829  
 830  
 831  
 832  
 833  
 834  
 835  
 836  
 837  
 838  
 839  
 840  
 841  
 842  
 843  
 844  
 845  
 846  
 847  
 848  
 849  
 850  
 851  
 852  
 853  
 854  
 855  
 856  
 857  
 858  
 859  
 860  
 861  
 862  
 863  
 864  
 865  
 866  
 867  
 868  
 869  
 870  
 871  
 872  
 873  
 874  
 875  
 876  
 877  
 878  
 879  
 880  
 881  
 882  
 883  
 884  
 885  
 886  
 887  
 888  
 889  
 890  
 891  
 892  
 893  
 894  
 895  
 896  
 897  
 898  
 899  
 900  
 901  
 902  
 903  
 904  
 905  
 906  
 907  
 908  
 909  
 910  
 911  
 912  
 913  
 914  
 915  
 916  
 917  
 918  
 919  
 920  
 921  
 922  
 923  
 924  
 925  
 926  
 927  
 928  
 929  
 930  
 931  
 932  
 933  
 934  
 935  
 936  
 937  
 938  
 939  
 940  
 941  
 942  
 943  
 944  
 945  
 946  
 947  
 948  
 949  
 950  
 951  
 952  
 953  
 954  
 955  
 956  
 957  
 958  
 959  
 960  
 961  
 962  
 963  
 964  
 965  
 966  
 967  
 968  
 969  
 970  
 971  
 972  
 973  
 974  
 975  
 976  
 977  
 978  
 979  
 980  
 981  
 982  
 983  
 984  
 985  
 986  
 987  
 988  
 989  
 990  
 991  
 992  
 993  
 994  
 995  
 996  
 997  
 998  
 999  
 1000  
 1001  
 1002  
 1003  
 1004  
 1005  
 1006  
 1007  
 1008  
 1009  
 1010  
 1011  
 1012  
 1013  
 1014  
 1015  
 1016  
 1017  
 1018  
 1019  
 1020  
 1021  
 1022  
 1023  
 1024  
 1025  
 1026  
 1027  
 1028  
 1029  
 1030  
 1031  
 1032  
 1033  
 1034  
 1035  
 1036  
 1037  
 1038  
 1039  
 1040  
 1041  
 1042  
 1043  
 1044  
 1045  
 1046  
 1047  
 1048  
 1049  
 1050  
 1051  
 1052  
 1053  
 1054  
 1055  
 1056  
 1057  
 1058  
 1059  
 1060  
 1061  
 1062  
 1063  
 1064  
 1065  
 1066  
 1067  
 1068  
 1069  
 1070  
 1071  
 1072  
 1073  
 1074  
 1075  
 1076  
 1077  
 1078  
 1079  
 1080  
 1081  
 1082  
 1083  
 1084  
 1085  
 1086  
 1087  
 1088  
 1089  
 1090  
 1091  
 1092  
 1093  
 1094  
 1095  
 1096  
 1097  
 1098  
 1099  
 1100  
 1101  
 1102  
 1103  
 1104  
 1105  
 1106  
 1107  
 1108  
 1109  
 1110  
 1111  
 1112  
 1113  
 1114  
 1115  
 1116  
 1117  
 1118  
 1119  
 1120  
 1121  
 1122  
 1123  
 1124  
 1125  
 1126  
 1127  
 1128  
 1129  
 1130  
 1131  
 1132  
 1133  
 1134  
 1135  
 1136  
 1137  
 1138  
 1139  
 1140  
 1141  
 1142  
 1143  
 1144  
 1145  
 1146  
 1147  
 1148  
 1149  
 1150  
 1151  
 1152  
 1153  
 1154  
 1155  
 1156  
 1157  
 1158  
 1159  
 1160  
 1161  
 1162  
 1163  
 1164  
 1165  
 1166  
 1167  
 1168  
 1169  
 1170  
 1171  
 1172  
 1173  
 1174  
 1175  
 1176  
 1177  
 1178  
 1179  
 1180  
 1181  
 1182  
 1183  
 1184  
 1185  
 1186  
 1187  
 1188  
 1189  
 1190  
 1191  
 1192  
 1193  
 1194  
 1195  
 1196  
 1197  
 1198  
 1199  
 1200  
 1201  
 1202  
 1203  
 1204  
 1205  
 1206  
 1207  
 1208  
 1209  
 1210  
 1211  
 1212  
 1213  
 1214  
 1215  
 1216  
 1217  
 1218  
 1219  
 1220  
 1221  
 1222  
 1223  
 1224  
 1225  
 1226  
 1227  
 1228  
 1229  
 1230  
 1231  
 1232  
 1233  
 1234  
 1235  
 1236  
 1237  
 1238  
 1239  
 1240  
 1241  
 1242  
 1243  
 1244  
 1245  
 1246  
 1247  
 1248  
 1249  
 1250  
 1251  
 1252  
 1253  
 1254  
 1255  
 1256  
 1257  
 1258  
 1259  
 1260  
 1261  
 1262  
 1263  
 1264  
 1265  
 1266  
 1267  
 1268  
 1269  
 1270  
 1271  
 1272  
 1273  
 1274  
 1275  
 1276  
 1277  
 1278  
 1279  
 1280  
 1281  
 1282  
 1283  
 1284  
 1285  
 1286  
 1287  
 1288  
 1289  
 1290  
 1291  
 1292  
 1293  
 1294  
 1295  
 1296  
 1297  
 1298  
 1299  
 1300  
 1301  
 1302  
 1303  
 1304  
 1305  
 1306  
 1307  
 1308  
 1309  
 1310  
 1311  
 1312  
 1313  
 1314  
 1315  
 1316  
 1317  
 1318  
 1319  
 1320  
 1321  
 1322  
 1323  
 1324  
 1325  
 1326  
 1327  
 1328  
 1329  
 1330  
 1331  
 1332  
 1333  
 1334  
 1335  
 1336  
 1337  
 1338  
 1339  
 1340  
 1341  
 1342  
 1343  
 1344  
 1345  
 1346  
 1347  
 1348  
 1349  
 1350  
 1351  
 1352  
 1353  
 1354  
 1355  
 1356  
 1357  
 1358  
 1359  
 1360  
 1361  
 1362  
 1363  
 1364  
 1365  
 1366  
 1367  
 1368  
 1369  
 1370  
 1371  
 1372  
 1373  
 1374  
 1375  
 1376  
 1377  
 1378  
 1379  
 1380  
 1381  
 1382  
 1383  
 1384  
 1385  
 1386  
 1387  
 1388  
 1389  
 1390  
 1391  
 1392  
 1393  
 1394  
 1395  
 1396  
 1397  
 1398  
 1399  
 1400  
 1401  
 1402  
 1403  
 1404  
 1405  
 1406  
 1407  
 1408  
 1409  
 1410  
 1411  
 1412  
 1413  
 1414  
 1415  
 1416  
 1417  
 1418  
 1419  
 1420  
 1421  
 1422  
 1423  
 1424  
 1425  
 1426  
 1427  
 1428  
 1429  
 1430  
 1431  
 1432  
 1433  
 1434  
 1435  
 1436  
 1437  
 1438  
 1439  
 1440  
 1441  
 1442  
 1443  
 1444  
 1445  
 1446  
 1447  
 1448  
 1449  
 1450  
 1451  
 1452  
 1453  
 1454  
 1455  
 1456  
 1457  
 1458  
 1459  
 1460  
 1461  
 1462  
 1463  
 1464  
 1465  
 1466  
 1467  
 1468  
 1469  
 1470  
 1471  
 1472  
 1473  
 1474  
 1475  
 1476  
 1477  
 1478  
 1479  
 1480  
 1481  
 1482  
 1483  
 1484  
 1485  
 1486  
 1487  
 1488  
 1489  
 1490  
 1491  
 1492  
 1493  
 1494  
 1495  
 1496  
 1497  
 1498  
 1499  
 1500  
 1501  
 1502  
 1503  
 1504  
 1505  
 1506  
 1507  
 1508  
 1509  
 1510  
 1511  
 1512  
 1513  
 1514  
 1515  
 1516  
 1517  
 1518  
 1519  
 1520  
 1521  
 1522  
 1523  
 1524  
 1525  
 1526  
 1527  
 1528  
 1529  
 1530  
 1531  
 1532  
 1533  
 1534  
 1535  
 1536  
 1537  
 1538  
 1539  
 1540  
 1541  
 1542  
 1543  
 1544  
 1545  
 1546  
 1547  
 1548  
 1549  
 1550  
 1551  
 1552  
 1553  
 1554  
 1555  
 1556  
 1557  
 1558  
 1559  
 1560  
 1561  
 1562  
 1563  
 1564  
 1565  
 1566  
 1567  
 1568  
 1569  
 1570  
 1571  
 1572  
 1573  
 1574  
 1575  
 1576  
 1577  
 1578  
 1579  
 1580  
 1581  
 1582  
 1583  
 1584  
 1585  
 1586  
 158

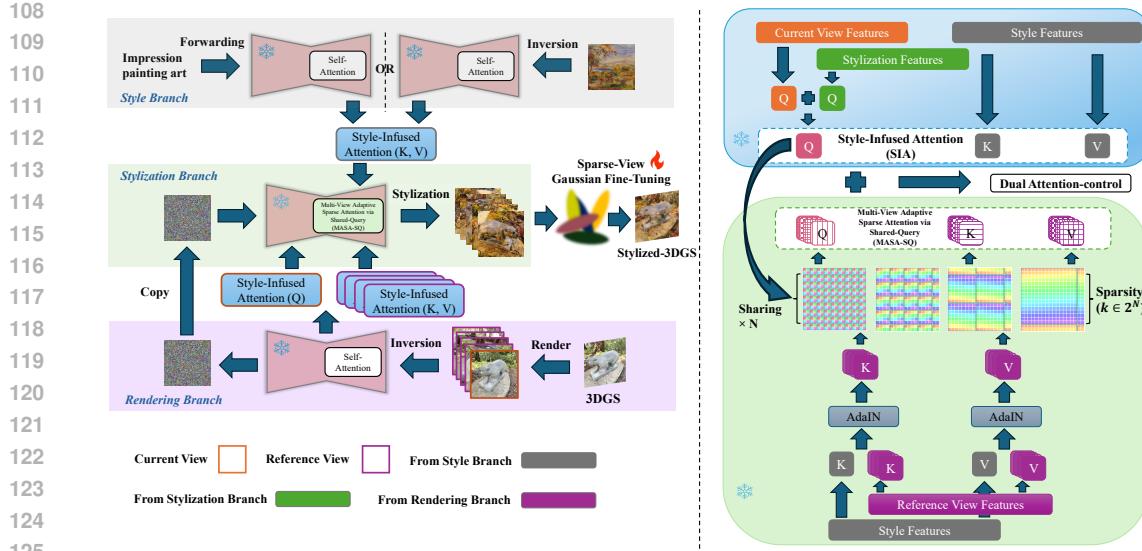


Figure 1: **Overview of the Diff-StyGS framework for multimodal 3D style transfer.** Our framework integrates three synergistic branches for consistent 3D stylization: **(Left) Style Branch** extracts style features ( $K/V$ ) from input sources using a pre-trained DM; **Rendering Branch** provides content structure ( $Q$ ) via 3DGS rendering; and **Stylization Branch** integrates both through a dual-attention mechanism. **(Right)** Specifically, **SIA** fuses content  $Q$  with style-derived  $K/V$  for style injection, while **MASA-SQ** ensures 3D consistency by sharing  $Q$  across views and modulating reference  $K/V$  via AdaIN in a sparse attention scheme.

adapts spatio-temporal attention to achieve temporally consistent edits, and CoDeF (Ouyang et al., 2024) proposes content deformation fields to propagate edits across motion dynamics. Further, InstructVideo (Yuan et al., 2024) leverages human feedback to align edits with complex instructions for interactive editing. These approaches highlight the flexibility of 2D DMs in handling various tasks, though challenges remain in extending control to 3D scenes with computational efficiency.

## 2.2 3D GENERATION, EDITING AND STYLE TRANSFER

3D scene modeling is typically built on implicit (Deng et al., 2022; Yuan et al., 2022) or explicit (Kwak et al., 2025; Lee et al., 2024) representations. NeRF (Mildenhall et al., 2020) trains neural networks for direct 3D scene rendering from multi-view images with camera locations. 3DGS (Kerbl et al., 2023) later surpasses NeRF in reconstruction quality and efficiency, using a set of 3D Gaussian distributions. Based on images as style inputs, FPRF (Kim et al., 2024), StyleRF (Liu et al., 2023) and StyleGaussian (Liu et al., 2024c) leverage 3D-aware feature representations for 3D neural style transfer. Alternatively, text-guided 3D scene stylization and editing, including GaussCtrl (Wu et al., 2024), DGE (Chen et al., 2024b), TIP-Editor (Zhuang et al., 2024) and ViCA-NeRF (Dong et al., 2023), could provide more user-friendly controls via text-image DM, at the cost of expansive DM finetuning with heavy computations (Brooks et al., 2023; Ye et al., 2023; Zhang et al., 2023). Furthermore, the success of 2D DM has recently motivated various solutions in 3D DM-based synthesis (Kim et al., 2023; Poole et al., 2023; Huang et al., 2024; Shi et al., 2024), consisting of 3D native generation, 2D prior-based 3D generation, and hybrid 3D generation. These advancements offer a promising avenue for controllable 3D editing with coherent multi-view modifications.

## 3 METHODOLOGY

### 3.1 PRELIMINARIES

**Diffusion Model.** Diffusion-based generative models (Ho et al., 2020; Song et al., 2021a;b; Rombach et al., 2022) learn data distributions via a forward noising process and a reverse denoising process. In Latent Diffusion Models (LDMs), the forward process corrupts a latent representation  $\mathbf{z}_0$  at step  $t$  as  $q(\mathbf{z}_t|\mathbf{z}_{t-1}) = \mathcal{N}(\mathbf{z}_t; \sqrt{1 - \beta_t} \mathbf{z}_{t-1}, \beta_t \mathbf{I})$ , with noise schedule  $\{\beta_t\}_{t=1}^T$ . The reverse process trains a

denoiser  $\epsilon_\theta$  to predict noise in latent space, minimizing  $\mathcal{L}_{\text{DM}} = \mathbb{E}_{\mathbf{x}_0, c, t, \epsilon} [\|\epsilon_\theta(\mathbf{x}_t, c, t) - \epsilon\|^2]$ , where  $c$  is the conditioning embedding. The U-Net architecture integrates a residual block for local feature transformation, a self-attention (SA) layer for spatial dependency modeling, and a cross-attention (CA) layer for condition injection. The attention is formulated by

$$\text{Attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{Softmax} \left( \frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{d}} \right) \cdot \mathbf{V}, \quad (1)$$

where  $\mathbf{Q}$  denotes *query* vectors projected from spatial features and  $d$  is the embedding dimension of  $\mathbf{Q}$ . For SA modules,  $\mathbf{K}$  (*key*) and  $\mathbf{V}$  (*value*) derive from the same spatial features with  $\mathbf{Q}$  (*query*) by projection matrices, while in CA layers,  $\mathbf{K}$  and  $\mathbf{V}$  are instead projected from conditional embeddings  $c$ . This work focuses on pre-trained text-to-image SD with text prompt conditioning  $c$ .

**3D Gaussian Splatting.** 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) explicitly and efficiently represents 3D scenes using anisotropic Gaussians, each parameterized by a mean  $\mu \in \mathbb{R}^3$  and covariance  $\Sigma = \mathbf{R}\mathbf{S}\mathbf{S}^\top\mathbf{R}^\top$ , where  $\mathbf{R}$  and  $\mathbf{S}$  are rotation and scaling matrices. The Gaussian function is  $g_i(\mathbf{x}) = \exp\left(-\frac{1}{2}(\mathbf{x} - \mu_i)^\top \Sigma_i^{-1}(\mathbf{x} - \mu_i)\right)$ . For 2D rendering, Gaussians are projected via  $\Sigma'_i = \mathbf{J}_i \mathbf{W}_i \Sigma_i \mathbf{W}_i^\top \mathbf{J}_i^\top$ , with  $\mathbf{W}_i$  as the viewing transformation and  $\mathbf{J}_i$  as the projective Jacobian. Pixel color is computed as  $C = \sum_{i=1}^N \mathbf{c}_i T_i \alpha_i g_i(\mathbf{x}_i)$ , where  $T_i = \prod_{j=1}^{i-1} (1 - \alpha_j g_j(\mathbf{x}_j))$ , with  $\mathbf{c}_i$  and  $\alpha_i$  as the color and opacity of the  $i$ -th Gaussian.

### 3.2 FRAMEWORK OVERVIEW

Given a 3DGS represented by originally captured images and camera parameters, our objective is to achieve efficient and consistent style transfer from an arbitrary source (a 2D image or text prompt) onto the 3D scene with high fidelity. To this end, we propose Diff-StyGS, a framework that decouples the problem into two stages: ① zero-shot, multi-view consistent 2D image stylization via attention-based control in the frozen SD, and ② 3DGS adaptation based on the stylized images.

As illustrated in Fig. 1, the first stage integrates three coordinated branches to generate stylized views without training: (i) **Style Branch** extracts style representations (*key*  $\mathbf{K}$  and *value*  $\mathbf{V}$ ) from image inputs via DDIM inversion or text inputs via conditional encoding, preparing for content-aware stylization with our **Style-Infused Attention (SIA)**. (ii) **Rendering Branch** produces multi-view content renders from the original 3DGS, providing structural *query*  $\mathbf{Q}$ . (iii) **Stylization Branch** integrates these through dual attention mechanisms—SIA injects style features into self-attention layers, while **Multi-View Adaptive Sparse Attention via Shared-Query (MASA-SQ)** ensures cross-view geometric consistency by leveraging shared *query* across views & fused reference *key* and *value* via AdaIN (Huang et al., 2017) with dynamic attention sparsity. The second stage optimizes the 3DGS parameters under frequency-aware and view-aware supervision: **Wavelet Frequency Alignment Loss (WFAL)** enforces multi-frequency stylized alignment, and **Sparse-View Selection (SVS)** enhances efficiency by selecting geometrically diverse views in the camera-pose space.

### 3.3 STYLE-INFUSED ATTENTION

It has been revealed that CA layers are semantic bridges between input conditions and visual features, where spatial layouts and styles are altered by *key* and *value* (Hertz et al., 2023; Liu et al., 2024a). And SA inherently preserves the geometric and shape details of the source image (Tumanyan et al., 2023; Jiang et al., 2024). Building upon this insight, we unify the paradigm into SA layers by reinterpreting style latents from *key* and *value* as controllable conditions and maintaining content information from *query* features. Formally, given a 3DGS rendered input  $\mathbf{I}_r$  to be edited and the multi-modal style source, we define  $\mathbf{Q}_r^t$  as queries from  $\mathbf{I}_r$  at diffusion step  $t$ , and  $\mathbf{K}_s^t, \mathbf{V}_s^t$  (*key* and *value*) are derived from either ① *Style Image* by DDIM-inverted features, or ② *Text Prompt* via DDIM sampling. SA is reformulated as conditional attention named SIA (Style-Infused Attention):

$$\text{SIA} = \text{Attn}(\bar{\mathbf{Q}}_{sr}^t, \mathbf{K}_s^t, \mathbf{V}_s^t), \text{ where } \bar{\mathbf{Q}}_{sr}^t = \beta \cdot \mathbf{Q}_r^t + \eta \cdot \mathbf{Q}_{sr}^t. \quad (2)$$

$\beta$  and  $\eta$  balance content preservation between original rendering query  $\mathbf{Q}_r^t$  and stylized query  $\mathbf{Q}_{sr}^t$  from the stylized generation. In standard SA, *query* and *key* features are from an identical sample. However, when replacing *key* with style-conditioned features, the inherent mismatch between content  $\mathbf{Q}_r^t$  and style  $\mathbf{K}_s^t$  would generate spatially smoothed attention maps (Chung et al., 2024). Thus,  $\beta > 1$  and  $\eta < 1$  scale SA for visually pleasant alignment.

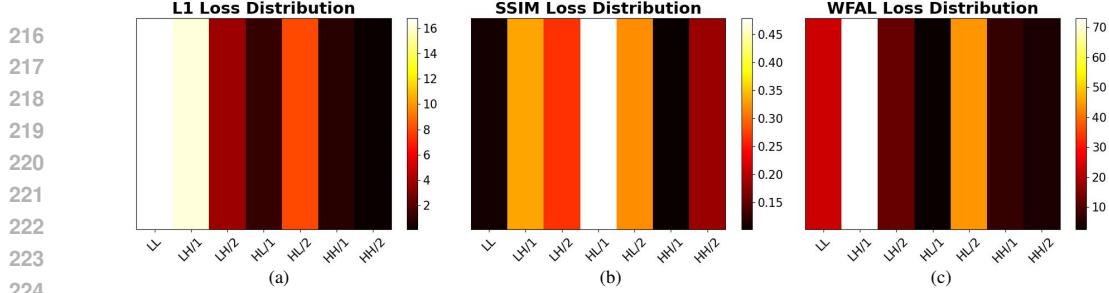


Figure 2: **Heatmap comparisons between  $\mathcal{L}_1$ , SSIM and WFAL** show the sensitivity of each loss in different frequency levels. (a)  $\mathcal{L}_1$  loss strongly relies on global pixel value matching, thus having a higher sensitivity to the low-frequency sub-band (LL) and insensitive to high-frequency details (LH and HL). (b) SSIM focuses on structural similarity and improves perception of low to mid-frequency structures, but presents insufficient spectral alignment of high-frequency sub-bands. (c) In contrast, WFAL has clear differentiation in all frequency sub-bands, aligns the matching of mid to high-frequency spectra, and thus reduces sub-band errors ignored by  $\mathcal{L}_1$  and SSIM.

### 3.4 MULTI-VIEW ADAPTIVE SPARSE ATTENTION VIA SHARED-QUERY

While prior works (Khachatryan et al., 2023; Li et al., 2024; Wu et al., 2023) leverage cross-view attention for temporal consistency, 3DGS stylization introduces unique challenges: ① view-dependent effects in 3D scenes amplify appearance discrepancies, and ② redundant attention across similar viewpoints leads to high computation on overlapping regions. To address these issues, we propose Multi-View Adaptive Sparse Attention via Shared-Query (MASA-SQ) to ensure multi-view consistency across reference views  $\{\mathbf{I}_{\text{ref}}^i\}_{i=1}^{N_{\text{ref}}}$ . Reference view features  $\{\mathbf{K}_{\text{ref}}^i\}_{i=1}^{N_{\text{ref}}}$  and  $\{\mathbf{V}_{\text{ref}}^i\}_{i=1}^{N_{\text{ref}}}$  are first aligned with style features via AdaIN (Huang et al., 2017) for preserving reference geometry and injecting style:  $\mathbf{K}_{\text{fuse}}^i = \sigma(\mathbf{K}_s) \cdot \frac{\mathbf{K}_{\text{ref}}^i - \mu(\mathbf{K}_{\text{ref}}^i)}{\sigma(\mathbf{K}_{\text{ref}}^i)} + \mu(\mathbf{K}_s)$ ,  $\mathbf{V}_{\text{fuse}}^i = \sigma(\mathbf{V}_s) \cdot \frac{\mathbf{V}_{\text{ref}}^i - \mu(\mathbf{V}_{\text{ref}}^i)}{\sigma(\mathbf{V}_{\text{ref}}^i)} + \mu(\mathbf{V}_s)$ , where  $\mu(\cdot)$  and  $\sigma(\cdot)$  denote channel-wise mean and std.

Irrelevant noise in multiple views affects 3D scene consistency, where adjacent viewpoints could induce more geometric conflicts (Liu et al., 2024d). This phenomenon motivates our approach to dynamically adjust the confidence weights assigned to different reference views based on their similarity to the current view to be edited. The normalized SSIM similarities between  $\mathbf{I}_r$  and  $\mathbf{I}_{\text{ref}}^i$  serve as view-specific attention weights  $\{\omega_i\}_{i=1}^{N_{\text{ref}}} = \frac{\exp(\text{SSIM}(\mathbf{I}_r, \mathbf{I}_{\text{ref}}^i))}{\sum_{j=1}^{N_{\text{ref}}} \exp(\text{SSIM}(\mathbf{I}_r, \mathbf{I}_{\text{ref}}^j))}$ . To further mitigate such non-semantic noisy information under fewer computing overheads, we introduce Grid-based Attention (Tu et al., 2022) with adaptive sparsity rates  $\psi \in \{2^n\}_{n=1}^{N_{\text{ref}}}$ , where SA is calculated merely between the same color patch divided by grid-size  $2^n$  in Fig. 1. This implements a coarse-to-fine attention hierarchy, in which high-similarity views ( $\omega_i \uparrow$ ) utilize sparser attention (grid-size  $\uparrow$ ), while low-similarity ones ( $\omega_i \downarrow$ ) employ denser patterns (grid-size  $\downarrow$ ) to preserve details. MASA-SQ is implemented as follows:

$$\text{MASA-SQ} = \sum_{i=1}^{N_{\text{ref}}} \omega_i \cdot \text{GridAttn}_{\psi_i}(\mathbf{Q}_{\text{shared}}, \mathbf{K}_{\text{fuse}}^i, \mathbf{V}_{\text{fuse}}^i), \quad (3)$$

where  $\mathbf{Q}_{\text{shared}}$  is derived from Eq. (2). Finally, multi-view consistent stylized attention output, as the dual-attention control, is blended by SIA and MASA-SQ together:

$$\Phi_{\text{final}} = \underbrace{\rho \cdot \text{SIA}}_{\text{Stylization}} + \underbrace{(1 - \rho) \cdot \text{MASA-SQ}}_{\text{View-coherence}}, \quad (4)$$

where  $\rho \in [0, 1]$  balances style preservation and multi-view consistency. The entire attention mechanism is presented in Algorithm 1 from Appendix B.

### 3.5 WAVELET FREQUENCY ALIGNMENT LOSS

Existing loss functions (e.g.,  $\mathcal{L}_1$  and SSIM) in 3DGS training primarily emphasize global geometry and pixel-level matching while neglecting spectral alignment of high-frequency components, as illustrated in Fig. 2. This oversight could induce spectral distortions in reconstructed images, particularly for style transfer tasks. To achieve multi-scale spectral alignment

270 between low-frequency structures and high-frequency details, we propose Wavelet Frequency  
 271 Alignment Loss (WFAL) as a complementary stylization loss. Given rendered and target features  
 272  $\mathbf{F}_{\text{render}}, \mathbf{F}_{\text{tar}} \in \mathbb{R}^{C \times H \times W}$ , WFAL first decomposes them via  $L$ -level Discrete Wavelet Transform  
 273 (DWT):  $\mathcal{W}(\mathbf{F}) = \left\{ \mathbf{A}_L, \{\mathbf{D}_l^{(k)}\}_{l=1}^L \right\}, k \in \{\text{LH}, \text{HL}, \text{HH}\}$ , where  $\mathbf{A}_L \in \mathbb{R}^{C \times H/2^L \times W/2^L}$  denotes  
 274 the low-frequency approximation, and  $\mathbf{D}_l^{(k)}$  represents high-frequency details at level  $l$  along horizontal (LH),  
 275 vertical (HL), and diagonal (HH) orientations. For each subband  $\mathbf{S}_i \in \{\mathbf{A}_L, \mathbf{D}_l^{(k)}\}$ , we then compute the Sliced  
 276 Wasserstein Distance (SWD) between rendered and target distributions:  
 277  $\text{SWD}_i = \mathbb{E}_{\theta \sim \mathcal{U}(\mathbb{S}^{d-1})} \left[ \mathcal{W}_1(\text{sort}(\langle \mathbf{S}_i^{\text{render}}, \theta \rangle), \text{sort}(\langle \mathbf{S}_i^{\text{tar}}, \theta \rangle)) \right]$ , where  $\theta$  means random projection  
 278 directions on the unit sphere  $\mathbb{S}^{d-1}$ ,  $\mathcal{W}_1$  is the 1-Wasserstein distance, and `sort` ensures permutation-  
 279 invariance. The final WFAL integrates multi-scale spectral alignment across all frequency sub-bands:  
 280

$$\mathcal{L}_{\text{WFAL}} = \underbrace{\text{SWD}_{\mathbf{A}_L}}_{\text{Low-Freq}} + \underbrace{\sum_{l=1}^L \sum_k \text{SWD}_{\mathbf{D}_l^{(k)}}}_{\text{High-Freq}}. \quad (5)$$

### 286 3.6 SPARSE-VIEW SELECTION

288 To reduce the computational cost and eliminate viewpoint redundancy, we propose a Maximin  
 289 Distance based SVS strategy, which selects a sparse subset of images that are jointly optimized for  
 290 spatial and rotational diversity in Fig. 3. Given any two cameras  $c_i, c_j \in \mathcal{C}$ , we define a composite  
 291 distance metric as:

$$d(c_i, c_j) = \underbrace{\|\mathbf{p}_i - \mathbf{p}_j\|_2}_{\text{Positional Distance}} + \underbrace{\|\text{vec}(\mathbf{R}_i) - \text{vec}(\mathbf{R}_j)\|_2}_{\text{Rotational Distance}}, \quad (6)$$

294 where  $\mathbf{p}_i \in \mathbb{R}^{3 \times 1}$  and  $\mathbf{R}_i \in \mathbb{R}^{3 \times 3}$  denote  
 295 the position vector and rotation matrix of camera  $c_i$ , respectively. The operator  $\text{vec}(\cdot)$  flattens a matrix into a vector, ensuring consistent  
 296 rotation dimensionality. To maximize viewpoint diversity, we iteratively select cameras via:  
 297  $\mathcal{S}_{k+1} = \arg \max_{c \in \mathcal{C} \setminus \mathcal{S}_k} (\min_{c' \in \mathcal{S}_k} d(c, c'))$ ,  
 298 where  $\mathcal{S}_k$  represents the selected subset at iteration  $k$ . This ensures that each new camera  $c$  is  
 299 positioned to maximize the minimum distance to all previously selected cameras, thereby uniformly  
 300 covering both spatial and angular domains. SVS  
 301 effectively eliminates viewpoint redundancy with  
 302 significantly reduced computation overhead.

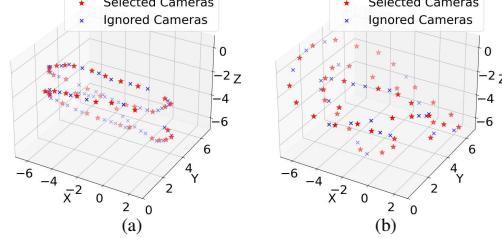
### 308 3.7 ADVANTAGES

310 Our method effectively addresses the challenges of 3D style transfer with enhanced *multi-modal*  
 311 *controllability*, *generative fidelity*, *multi-view consistency*, and *computational efficiency*. Specifically,  
 312 SIA injects style features (such as content, layout, and style information from multi-modal inputs) into  
 313 DM’s attention, leading to enhanced controllability and fidelity. MASA-SQ shares the content *query*  
 314 across views and adaptively fuses the reference *key/value*, improving generative view-consistency.  
 315 WFAL further improves fidelity by enforcing wavelet distribution alignment. Meanwhile, multiple  
 316 efficiency techniques are adopted, such as sparse attention in MASA-SQ, SVS, and frozen SD in SIA  
 317 and MASA-SQ without fine-tuning.

## 318 4 EXPERIMENTS

### 321 4.1 EXPERIMENTAL SETUP

323 **Baselines and Implementation Details.** We compare our Diff-StyGS with state-of-the-art (SOTA)  
 3DGS stylization approaches, including text-guided diffusion frameworks DGE (Chen et al., 2024b)



326 **Figure 3: Camera views in 3D space are  
 327 sparsified by MDD.** We select representative views  
 328 (e.g., 40 cameras) from (a) 360° scenes and (b)  
 329 forward-facing scenes.



Figure 4: **Qualitative results on face-forwarding scenes using style images as inputs.** Our method generates higher-quality images with well-preserved content and visually appealing styles than other SOTA baselines. Unfortunately, both G-style (Kovács et al., 2024) and StyleGaussian (Liu et al., 2024c) fail to achieve satisfactory adaptions due to artifacts and immoderate styles.

using InstructPix2Pix (Brooks et al., 2023) and GaussCtrl (Wu et al., 2024) with ControlNet (Zhang et al., 2023), and image-driven neural stylizers G-style (Kovács et al., 2024) and StyleGaussian (Liu et al., 2024c). Although existing methods require either fine-tuned SD variants or style-aware neural matching, our framework introduces plug-and-play attention control over the original SD backbone. The 3DGS pipeline builds on NeRFStudio’s splatfacto and vanilla SD-v2.1-base as our 2D stylization model with 50 timesteps. We set  $\beta$  to 1.125,  $\eta$  to 0.375 in Eq. (2) and  $\rho$  to 0.65 in Eq. (4). We randomly sample 4 views as reference views and adopt MDD-based sparse-view selection for 40 frames. Eq. (5) is attached to traditional 3DGS training losses with a penalty strength of 0.01.

**Dataset and Evaluation Metrics.** Our experiments are constructed through various datasets, including two forward-facing scenes (Haque et al., 2023; Liu et al., 2025) and three 360° scenes (Barron et al., 2022; Haque et al., 2023). For image-guided stylization, we use the WikiArt dataset (Chung et al., 2024; Liu et al., 2024c) as the stylized source, while the text-driven paradigm utilizes concise semantic descriptions (e.g., “Classical oil painting style”). All images from 3D scenes and WikiArt are center-resized to  $512 \times 512$  for the resolution matching in SD. We establish a comprehensive evaluation protocol: For image-guided stylization, LPIPS (Zhang et al., 2018) quantifies content fidelity between 3DGS renderings and inputs, while FID (Heusel et al., 2017) measures style distribution divergence. ArtFID (Chung et al., 2024) combines these as a joint metric. In text-driven scenarios, CLIP Text-Image Direction Similarity (CLIP-TIDS) (Gal et al., 2022) evaluates a text-image alignment in CLIP space, complemented by CLIP Directional Consistency (CLIP-DC) (Haque et al., 2023) for cross-view embedding coherence. Multi-view consistency (MV-C) is measured via optical flow-warped RMSE (Liu et al., 2024c) across every two adjacent frames.

## 4.2 QUALITATIVE EVALUATION

Our Diff-StyGS demonstrates significant advantages in generating high-fidelity stylized 3D scenes across diverse scenarios, as shown in Fig. 4. The baselines, G-style (Kovács et al., 2024) and StyleGaussian (Liu et al., 2024c), introduce noisy artifacts and over-exaggerated content-style signals within the entire space, leading to underfitting and overfitting in 3DGS stylization. In contrast, our SIA module ensures style transfer fidelity by decoupling *key* & *value* projections from style features while retaining content structure via adaptive *query* fusion. As a result, our method achieves content-style disentanglement that preserves geometry while transferring artistic patterns.

For stylization guided by text prompts in 360° scenes, Diff-StyGS generates cross-view coherent stylization across complex backgrounds in Fig. 5. In detail, the “garden” in watercolor painting style by Diff-StyGS maintains color consistency in shadowed regions, whereas DGE (Chen et al., 2024b) generates artifacts and GaussCtrl (Wu et al., 2024) exhibits abrupt style shifts. This is attributed to our MASA-SQ, which enforces style consistency through shared queries and adaptive sparse grid attention. Furthermore, the proposed WFAL mitigates spectral distortions in high-frequency details. For instance, our Rococo-style “stone horse” retains sharp edge textures, while two baselines suffer



405 **Figure 5: Qualitative results on 360° scenes guided by text prompts.** The stylized 3D scenes ren-  
 406 dered by Diff-StyGS yield more coherent views with pleasantness, compared with SOTA frameworks.  
 407 Although DGE (Chen et al., 2024b) and GaussCtrl (Wu et al., 2024) are equipped with cross-view  
 408 modules, they could lead to undesirable styles and coloring. Zoom in for better visual effects.

409 from blurring. These results validate that our unified framework—combining zero-shot attention  
 410 mechanisms with frequency-aligned optimization under MDD-based SVS—achieves competing  
 411 performance in multimodal 3D stylization tasks. To judge stylization more subjectively, we invite 15  
 412 raters for a user study, as detailed in Appendix C. It shows that Diff-StyGS achieves better visual  
 413 fidelity and perceptual quality aligned with human observers.

| 415 | Method            | Style Modality | 360°               |                  |                     |                               | Forward-facing     |                      |                    |                               |
|-----|-------------------|----------------|--------------------|------------------|---------------------|-------------------------------|--------------------|----------------------|--------------------|-------------------------------|
|     |                   |                | LPIPS $\downarrow$ | FID $\downarrow$ | ArtFID $\downarrow$ | MV-C $\times 10^3 \downarrow$ | LPIPS $\downarrow$ | CLIP-TIDS $\uparrow$ | CLIP-DC $\uparrow$ | MV-C $\times 10^3 \downarrow$ |
| 416 | G-style           | Image          | 0.69               | 19.48            | 34.61               | 48.93                         | 0.65               | -                    | -                  | 48.14                         |
| 417 | StyleGaussian     |                | 0.77               | 26.45            | 48.73               | 41.32                         | 0.74               | -                    | -                  | 41.39                         |
| 418 | Diff-StyGS (Ours) |                | <b>0.52</b>        | <b>18.86</b>     | <b>30.19</b>        | <b>40.87</b>                  | <b>0.50</b>        | -                    | -                  | <b>40.66</b>                  |
| 419 | DGE               | Text           | 0.60               | -                | -                   | 40.96                         | 0.58               | 0.06                 | 0.84               | 40.74                         |
| 420 | GaussCtrl         |                | 0.58               | -                | -                   | 39.27                         | 0.57               | 0.06                 | 0.85               | 38.63                         |
| 421 | Diff-StyGS (Ours) |                | <b>0.55</b>        | -                | -                   | <b>38.45</b>                  | <b>0.54</b>        | <b>0.08</b>          | <b>0.89</b>        | <b>38.37</b>                  |

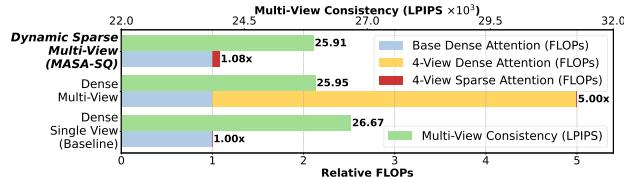
423 **Table 1: Performance comparison under different guidance modalities.** **Bold** numbers indicate  
 424 the best results and arrows denote direction ( $\downarrow$ =lower is better,  $\uparrow$ =higher is better). Diff-StyGS  
 425 outperforms other baselines, in terms of cross-view consistency, stylization fidelity, and content  
 426 perseverance. For each 3D scene, we run 3 experiments for stylization.

#### 4.3 QUANTITATIVE EVALUATION

427 Although 3D style transfer is more subjective, we conduct quantitative evaluations to demonstrate the  
 428 stylized effects from different perspectives, such as content-style fidelity, embedding coherence and

| Training Objectives |      |      | LPIPS↓      |                |
|---------------------|------|------|-------------|----------------|
| $\mathcal{L}_1$     | SSIM | WFAL | 360°        | Forward-facing |
| ✓                   | ✓    | X    | 0.56        | 0.53           |
| X                   | X    | 0.01 | 0.65        | 0.62           |
| ✓                   | ✓    | 0.01 | <b>0.53</b> | <b>0.51</b>    |
| ✓                   | ✓    | 0.1  | 0.69        | 0.67           |
| ✓                   | ✓    | 0.5  | 0.74        | 0.70           |

(a)



(b)

Table 2: (a) Performance on stylization objectives in 3DGS. (b) Improved multi-view consistency could take the minimal computing cost when sparse attention is utilized in multiple frames.

multi-view consistency in Tab. 1. Diff-StyGS can support both style image inputs and text-prompt guidance, while the baselines can only support a single modal input. Furthermore, Diff-StyGS achieves the best performance on various evaluation metrics, compared with SOTA baselines across multiple 3D scenes with different complexities.

#### 4.4 ABLATION STUDY

We explore the effectiveness of WFAL across various training settings, specifically excluding traditional  $L_1$  and SSIM losses under 360° and forward-facing scenes. We also evaluate the impact of adjusting WFAL loss weights. As depicted in Tab. 2a, the incorporation of WFAL enhances traditional 3DGS loss functions, with the best performance when WFAL is weighted at 0.01. This highlights WFAL’s role as a crucial supplement for improving stylization fidelity. Furthermore, Tab. 2b illustrates the efficiency gains achieved by employing adaptive sparse attention patterns within MASA-SQ. The computations are significantly reduced compared with multi-view dense attention (from 5× FLOPs decreased to 1.08×), while maintaining competitive multi-view consistency with even better LPIPS. This demonstrates Diff-StyGS’s capability to achieve superior generative performance efficiently, striking an effective balance between fidelity and computing resources. In Fig. 6, we visualize the stylized results under our dual-attention control by increasing attention layers in SD-v2.1-base. Since SD upsampling transformer blocks can capture style (Wang et al., 2024a;b), we begin at 7<sup>th</sup> attention layer and add more layers until the last one (11<sup>th</sup>) for the favorable style.



Figure 6: **Stylization results across layers in SD.** After adding more suitable layer-wise features into stylization dual-attention after 7<sup>th</sup> layer, we can achieve more style-aligned images.

We provide additional ablation studies detailed in Appendix D to comprehensively validate key design choices in our framework, including (i) the number of selected views (which is set to 40) in SVS for better efficiency-quality trade-off, (ii)  $\rho = 0.65$  in dual-attention control to achieve both stylistic fidelity and multi-view consistency, and (iii) style-content parameters ( $\beta = 1.125$  and  $\eta = 0.375$ ) to balance vivid stylization and structural integrity.

## 5 CONCLUSION

In this paper, we propose Diff-StyGS, a novel framework for high-quality multimodal 3DGS stylization through three innovations: ① a zero-shot multi-view attention mechanism that disentangles content-style interactions while ensuring cross-view consistency; ② WFAL for spectral-aligned style transfer via multi-scale frequency alignment; ③ MDD-based sparse-view selection for efficient optimization. Extensive experiments validate our framework’s superiority in both image- and text-driven scenarios, and these advancements establish a new paradigm for 3D scene stylization. Future research could explore integrating 3D-aware generative models to enable joint editing of geometry and appearance, thereby overcoming current constraints and expanding the scope of 3D scene manipulation.

486 **6 REPRODUCIBILITY STATEMENT**  
487488 We have made comprehensive efforts to ensure the reproducibility of our work. Detailed descriptions  
489 of our experimental setup, including hyperparameter settings and environment packages, are provided  
490 in Section 4. The proposed dual-attention control is formally outlined in Algorithm 1. To further  
491 support replication, all source code will be made publicly available upon acceptance of the paper.  
492493 **REFERENCES**  
494495 Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended diffusion for text-driven editing of natural  
496 images. *CVPR*, 2022.497 Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and  
498 Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.  
499 *ICCV*, 2021.500 Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf  
501 360: Unbounded anti-aliased neural radiance fields. *CVPR*, 2022.502 Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Zip-nerf:  
503 Anti-aliased grid-based neural radiance fields. *ICCV*, 2023.504 Tim Brooks et al. Instructpix2pix: Learning to follow image editing instructions. *CVPR*, 2023.505 Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xiaohu Qie, and Yinqiang Zheng. Masactrl:  
506 Tuning-free mutual self-attention control for consistent image synthesis and editing. *ICCV*, 2023.507 Duygu Ceylan et al. Pix2video: Video editing using image diffusion. *ICCV*, 2023.508 Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying Shan.  
509 Videocrafter2: Overcoming data limitations for high-quality video diffusion models. *CVPR*, 2024a.510 Haoxing Chen, Zhuoer Xu, Zhangxuan Gu, Yaohui Li, Changhua Meng, Huijia Zhu, Weiqiang Wang,  
511 et al. Diffute: Universal text editing diffusion model. *NeurIPS*, 2023a.512 Jingwen Chen, Yingwei Pan, Ting Yao, and Tao Mei. Controlstyle: Text-driven stylized image  
513 generation using diffusion priors. *ACM Multimedia*, 2023b.514 Minghao Chen et al. Dge: Direct gaussian 3d editing by consistent multi-view editing. *ECCV*, 2024b.515 Yiwen Chen, Zilong Chen, Chi Zhang, Feng Wang, Xiaofeng Yang, Yikai Wang, Zhongang Cai, Lei  
516 Yang, Huaping Liu, and Guosheng Lin. Gaussianeditor: Swift and controllable 3d editing with  
517 gaussian splatting. *CVPR*, 2024c.518 Hao Cheng, Erjia Xiao, et al. Not just text: Uncovering vision modality typographic threats in image  
519 generation models. *CVPR*, 2025.520 Jiwoo Chung et al. Style injection in diffusion: A training-free approach for adapting large-scale  
521 diffusion models for style transfer. *CVPR*, 2024.522 Ciprian Corneanu et al. Latentpaint: Image inpainting in latent space with diffusion models. *WACV*,  
523 2024.524 Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ramanan. Depth-supervised nerf: Fewer views  
525 and faster training for free. *CVPR*, 2022.526 Yingying Deng, Xiangyu He, Fan Tang, and Weiming Dong. Z\*: Zero-shot style transfer via attention  
527 reweighting. *CVPR*, 2024.528 Jiahua Dong et al. Vica-nerf: View-consistency-aware 3d editing of neural radiance fields. *NeurIPS*,  
529 2023.530 Patrick Esser, Johnathan Chiu, Parmida Atighehchian, Jonathan Granskog, and Anastasis Germanidis.  
531 Structure and content-guided video synthesis with diffusion models. In *ICCV*, 2023.

540 Zhida Feng, Zhenyu Zhang, Xintong Yu, Yewei Fang, Lanxin Li, Xuyi Chen, Yuxiang Lu, Jiaxiang  
 541 Liu, et al. Ernie-vilg 2.0: Improving text-to-image diffusion model with knowledge-enhanced  
 542 mixture-of-denoising-experts. *CVPR*, 2023.

543 Rinon Gal, Or Patashnik, Haggai Maron, Gal Chechik, and Daniel Cohen-Or. Stylegan-nada:  
 544 Clip-guided domain adaptation of image generators, 2022.

545 Agrim Gupta, Lijun Yu, Kihyuk Sohn, Xiuye Gu, Meera Hahn, Fei-Fei Li, Irfan Essa, Lu Jiang, and  
 546 José Lezama. Photorealistic video generation with diffusion models. *ECCV*, 2024.

547 Ayaan Haque, Matthew Tancik, Alexei Efros, Aleksander Holynski, and Angjoo Kanazawa. Instruct-  
 548 nerf2nerf: Editing 3d scenes with instructions. *ICCV*, 2023.

549 Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Prompt-  
 550 to-prompt image editing with cross attention control. *ICLR*, 2023.

551 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans  
 552 trained by a two time-scale update rule converge to a local nash equilibrium. *NeurIPS*, 2017.

553 Jonathan Ho et al. Denoising diffusion probabilistic models. *NIPS*, 2020.

554 Tianyu Huang, Yihan Zeng, Zhilu Zhang, Wan Xu, Hang Xu, Songcen Xu, Rynson WH Lau, and  
 555 Wangmeng Zuo. Dreamcontrol: Control-based text-to-3d generation with 3d self-prior. *CVPR*,  
 556 2024.

557 Xun Huang et al. Arbitrary style transfer in real-time with adaptive instance normalization. *ICCV*,  
 558 2017.

559 Ruixiang Jiang et al. Artist: Aesthetically controllable text-driven stylization without training. *arXiv*  
 560 preprint *arXiv:2407.15842*, 2024.

561 Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and  
 562 Michal Irani. Imagic: Text-based real image editing with diffusion models. *CVPR*, 2023.

563 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting  
 564 for real-time radiance field rendering. *ACM Transactions on Graphics*, 2023.

565 Ye Keyang et al. 3d gaussian splatting with deferred reflection. *ACM SIGGRAPH*, 2024.

566 Levon Khachatryan, Andranik Moysisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang Wang,  
 567 Shant Navasardyan, and Humphrey Shi. Text2video-zero: Text-to-image diffusion models are  
 568 zero-shot video generators. *ICCV*, 2023.

569 GeonU Kim et al. FPRF: Feed-forward photorealistic style transfer of large-scale 3D neural radiance  
 570 fields. *AAAI*, 2024.

571 Seung Wook Kim, Bradley Brown, Kangxue Yin, Karsten Kreis, Katja Schwarz, Daiqing Li, Robin  
 572 Rombach, Antonio Torralba, and Sanja Fidler. Neuralfield-ldm: Scene generation with hierarchical  
 573 latent diffusion models. *CVPR*, 2023.

574 Hanyang Kong et al. Generative sparse-view gaussian splatting. *CVPR*, 2025.

575 Áron Samuel Kovács et al. G-style: Stylized gaussian splatting. *Computer Graphics Forum*, 2024.

576 Sangwoon Kwak, Joonsoo Kim, Jun Young Jeong, Won-Sik Cheong, Jihyong Oh, and Munchurl Kim.  
 577 Modec-gs: Global-to-local motion decomposition and temporal interval adjustment for compact  
 578 dynamic 3d gaussian splatting. *CVPR*, 2025.

579 Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact 3d gaussian  
 580 representation for radiance field. *CVPR*, 2024.

581 Bing Li, Cheng Zheng, Wenxuan Zhu, Jinjie Mai, Biao Zhang, Peter Wonka, and Bernard Ghanem.  
 582 Vivid-zoo: Multi-view video generation with diffusion model. *NeurIPS*, 2024.

594 Yize Li, Yihua Zhang, Sijia Liu, and Xue Lin. Pruning then reweighting: Towards data-efficient  
 595 training of diffusion models. *ICASSP*, 2025.

596

597 Chenguo Lin, Panwang Pan, Bangbang Yang, Zeming Li, and Yadong Mu. Diffsplat: Repurposing  
 598 image diffusion models for scalable 3d gaussian splat generation. *ICLR*, 2025.

599

600 Bingyan Liu, Chengyu Wang, Tingfeng Cao, Kui Jia, and Jun Huang. Towards understanding cross  
 601 and self-attention in stable diffusion for text-guided image editing. *CVPR*, 2024a.

602

603 Haipeng Liu, Yang Wang, Biao Qian, Meng Wang, and Yong Rui. Structure matters: Tackling the  
 604 semantic discrepancy in diffusion models for image inpainting. *CVPR*, 2024b.

605

606 Kunhao Liu, Fangneng Zhan, Yiwen Chen, Jiahui Zhang, Yingchen Yu, Abdulmotaleb El Saddik,  
 607 Shijian Lu, and Eric Xing. Stylerf: Zero-shot 3d style transfer of neural radiance fields. *CVPR*,  
 2023.

608

609 Kunhao Liu, Fangneng Zhan, Muyu Xu, Christian Theobalt, Ling Shao, and Shijian Lu. Stylegaussian:  
 610 Instant 3d style transfer with gaussian splatting. *SIGGRAPH Asia*, 2024c.

611

612 Wenjie Liu, Zhongliang Liu, Xiaoyan Yang, Man Sha, and Yang Li. Abc-gs: Alignment-based  
 613 controllable style transfer for 3d gaussian splatting. *ICME*, 2025.

614

615 Xi Liu et al. 3dgs-enhancer: Enhancing unbounded 3d gaussian splatting with view-consistent 2d  
 616 diffusion priors. *NeurIPS*, 2024d.

617

618 Yiqun Mei et al. Reference-based controllable scene stylization with gaussian splatting. *NeurIPS*,  
 619 2024.

620

621 Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and  
 622 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *ECCV*, 2020.

623

624 Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, Ying Shan, and  
 625 Xiaohu Qie. T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image  
 626 diffusion models. *arXiv preprint arXiv:2302.08453*, 2023.

627

628 Hao Ouyang, Qiuyu Wang, Yuxi Xiao, Qingyan Bai, Juntao Zhang, Kecheng Zheng, et al. Codef:  
 629 Content deformation fields for temporally consistent video processing. *CVPR*, 2024.

630

631 Zhihong Pan, Riccardo Gherardi, Xiufeng Xie, and Stephen Huang. Effective real image editing with  
 632 accelerated iterative diffusion inversion. *ICCV*, 2023.

633

634 Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d  
 635 diffusion. *ICLR*, 2023.

636

637 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-  
 638 resolution image synthesis with latent diffusion models. *CVPR*, 2022.

639

640 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Lit, Jay Whang, Emily Denton, Ghasemipour,  
 641 et al. Photorealistic text-to-image diffusion models with deep language understanding. *NIPS*, 2022.

642

643 Yichun Shi, Peng Wang, Jianglong Ye, Long Mai, Kejie Li, and Xiao Yang. Mvdream: Multi-view  
 644 diffusion for 3d generation. *ICLR*, 2024.

645

646 Jiaming Song et al. Denoising diffusion implicit models. *ICLR*, 2021a.

647

648 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben  
 649 Poole. Score-based generative modeling through stochastic differential equations. *ICLR*, 2021b.

650

651 Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and Yinxiao  
 652 Li. Maxvit: Multi-axis vision transformer. *ECCV*, 2022.

653

654 Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-play diffusion features for  
 655 text-driven image-to-image translation. *CVPR*, 2023.

648 Haofan Wang, Qixun Wang, Xu Bai, Zekui Qin, and Anthony Chen. Instantstyle: Free lunch towards  
 649 style-preserving in text-to-image generation. *arXiv preprint arXiv:2404.02733*, 2024a.  
 650

651 Haofan Wang, Peng Xing, Renyuan Huang, Hao Ai, Qixun Wang, and Xu Bai. Instantstyle-plus: Style  
 652 transfer with content-preserving in text-to-image generation. *arXiv preprint arXiv:2407.00788*,  
 653 2024b.

654 Weilun Wang, Jianmin Bao, Wengang Zhou, Dongdong Chen, Dong Chen, Lu Yuan, and Houqiang  
 655 Li. Sindiffusion: Learning a diffusion model from a single natural image. *TPAMI*, 2025.  
 656

657 Zhizhong Wang et al. Stylediffusion: Controllable disentangled style transfer via diffusion models.  
 658 *ICCV*, 2023.

659 Chen Wei, Karttikeya Mangalam, Po-Yao Huang, Yanghao Li, Haoqi Fan, Hu Xu, Huiyu Wang,  
 660 Cihang Xie, Alan Yuille, and Christoph Feichtenhofer. Diffusion models as masked autoencoder.  
 661 *ICCV*, 2023.

662 Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, et al. Tune-a-  
 663 video: One-shot tuning of image diffusion models for text-to-video generation. *ICCV*, 2023.  
 664

665 Jing Wu, Jia-Wang Bian, Xinghui Li, Guangrun Wang, Ian Reid, Philip Torr, and Victor Prisacariu.  
 666 GaussCtrl: Multi-View Consistent Text-Driven 3D Gaussian Splatting Editing. *ECCV*, 2024.

667 Shaoan Xie, Zhifei Zhang, Zhe Lin, Tobias Hinz, and Kun Zhang. Smartbrush: Text and shape guided  
 668 object inpainting with diffusion model. *CVPR*, 2023.

669 Jianing Yang, Alexander Sax, Kevin J. Liang, Mikael Henaff, Hao Tang, et al. Fast3r: Towards 3d  
 670 reconstruction of 1000+ images in one forward pass. *CVPR*, 2025.

671 Yuxuan Yao, Zixuan Zeng, Chun Gu, Xiatian Zhu, and Li Zhang. Reflective gaussian splatting. *ICLR*,  
 672 2025.

673 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt  
 674 adapter for text-to-image diffusion models. *arXiv preprint arxiv:2308.06721*, 2023.

675 Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and Bill  
 676 Freeman. Improved distribution matching distillation for fast image synthesis. *NeurIPS*, 2024.

677 Hangjie Yuan, Shiwei Zhang, Xiang Wang, Yujie Wei, Tao Feng, Yining Pan, et al. Instructvideo:  
 678 Instructing video diffusion models with human feedback. *CVPR*, 2024.

679 Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma, Rongfei Jia, and Lin Gao. Nerf-editing:  
 680 geometry editing of neural radiance fields. *CVPR*, 2022.

681 Deheng Zhang et al. Coarf: Controllable 3d artistic style transfer for radiance fields. *3DV*, 2024.

682 Kai Zhang, Nick Kolkin, Sai Bi, Fujun Luan, Zexiang Xu, Eli Shechtman, and Noah Snavely. Arf:  
 683 Artistic radiance fields. *ECCV*, 2022.

684 Lvmin Zhang et al. Adding conditional control to text-to-image diffusion models. *ICCV*, 2023.

685 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable  
 686 effectiveness of deep features as a perceptual metric. *CVPR*, 2018.

687 Shihao Zhao, Dongdong Chen, Yen-Chun Chen, Jianmin Bao, Shaozhe Hao, Lu Yuan, and Kwan-  
 688 Yee K Wong. Uni-controlnet: All-in-one control to text-to-image diffusion models. *NeurIPS*,  
 689 2023.

690 Jingyu Zhuang, Di Kang, Yan-Pei Cao, Guanbin Li, Liang Lin, and Ying Shan. Tip-editor: An  
 691 accurate 3d editor following both text-prompts and image-prompts. *SIGGRAPH*, 2024.

692

693

694

695

696

697

698

699

700

701

## APPENDIX

In this section, we provide the following:

- The use of Large Language Models (LLMs).
- Pseudo code for our proposed dual-attention control.
- User Study for more subjective evaluation.
- More experimental ablation results.
- Additional visualizations and comparisons between Diff-StyGS and other baselines.

## A USAGE OF LLMS

The authors use LLMs solely for the final proofreading stage, to improve the writing’s clarity and fluency by identifying and correcting grammatical errors and typos. The LLMs are not applied to formulate ideas and develop the methods; all intellectual contributions remain entirely the work of the human authors.

## B PSEUDO CODE

**Algorithm 1** Dual-Attention Control for Zero-shot, Multi-view Consistent Styling**Require:**

Target view render  $\mathbf{I}_r$ , diffusion step  $t$ , Style source (image/text), reference views  $\{\mathbf{I}_{\text{ref}}^i\}_{i=1}^{N_{\text{ref}}}$   
 Hyperparameters:  $\beta, \eta, \rho$

**Step 1: Feature Extraction**

- 1:  $\mathbf{K}_s^t, \mathbf{V}_s^t \leftarrow \text{ExtractStyleFeatures}(\text{style}, t)$  ▷ Style Branch
- 2:  $\mathbf{Q}_r^t \leftarrow \text{Encode}(\mathbf{I}_r)$  ▷ Rendering Branch
- 3:  $\mathbf{Q}_{sr}^t \leftarrow \text{StylizedQuery}(\mathbf{I}_r, \text{style}, t)$

**Step 2: Style-Infused Attention (SIA)**

- 4:  $\bar{\mathbf{Q}}_{sr}^t \leftarrow \beta \cdot \mathbf{Q}_r^t + \eta \cdot \mathbf{Q}_{sr}^t$  ▷ Content-preserving blend
- 5:  $\text{SIA} \leftarrow \text{Attn}(\bar{\mathbf{Q}}_{sr}^t, \mathbf{K}_s^t, \mathbf{V}_s^t)$

**Step 3: Multi-View Adaptive Sparse Attention (MASA-SQ)**

- 6:  $\mathbf{Q}_{\text{shared}} \leftarrow \bar{\mathbf{Q}}_{sr}^t$  ▷ Shared query across views
- 7:  $\text{MASA-SQ} \leftarrow \mathbf{0}$  ▷ Initialize SSIM scores array
- 8:  $\mathbf{s} \leftarrow []$  ▷ Initialize SSIM scores array
- 9: **for**  $i = 1$  to  $N_{\text{ref}}$  **do**
- 10:    $\mathbf{s}[i] \leftarrow \text{SSIM}(\mathbf{I}_r, \mathbf{I}_{\text{ref}}^i)$  ▷ Compute similarity for each view
- 11: **end for**
- 12:  $\{\omega_i\}_{i=1}^{N_{\text{ref}}} \leftarrow \text{Softmax}(\mathbf{s})$  ▷ Normalize to probability distribution
- 13:  $\text{indices} \leftarrow \text{Argsort}(\{\omega_i\}_{i=1}^{N_{\text{ref}}}, \text{descending} = \text{True})$  ▷ Sort by weight descending
- 14: **for**  $\text{rank} = 1$  to  $N_{\text{ref}}$  **do**
- 15:    $i \leftarrow \text{indices}[\text{rank}]$  ▷ Get original index for this rank
- 16:    $\mathbf{K}_{\text{ref}}^i, \mathbf{V}_{\text{ref}}^i \leftarrow \text{Encode}(\mathbf{I}_{\text{ref}}^i)$
- 17:    $\mathbf{K}_{\text{fuse}}^i, \mathbf{V}_{\text{fuse}}^i \leftarrow \text{AdaIN}(\mathbf{K}_{\text{ref}}^i, \mathbf{V}_{\text{ref}}^i; \mathbf{K}_s^t, \mathbf{V}_s^t)$
- 18:    $\psi_i \leftarrow 2^{N_{\text{ref}} - \text{rank} + 1}$  ▷ Adaptive sparsity:  $\psi_i \in \{2^n\}_{n=1}^{N_{\text{ref}}}, \omega_i \uparrow \Rightarrow \psi_i \uparrow$
- 19:    $\text{MASA-SQ} \leftarrow \text{MASA-SQ} + \omega_i \cdot \text{GridAttn}_{\psi_i}(\mathbf{Q}_{\text{shared}}, \mathbf{K}_{\text{fuse}}^i, \mathbf{V}_{\text{fuse}}^i)$
- 20: **end for**

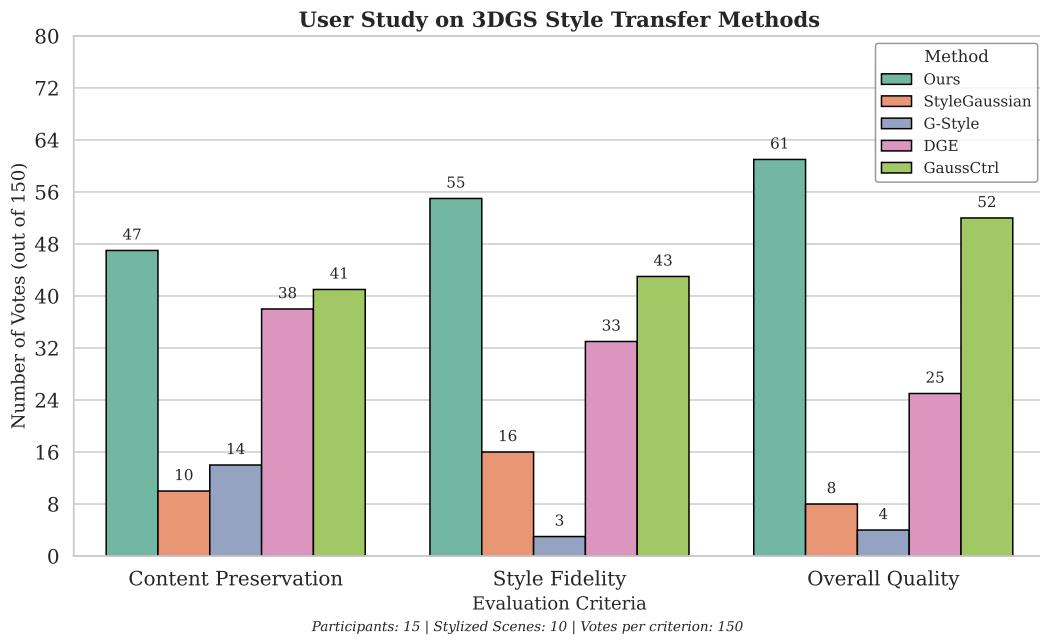
**Step 4: Dual-Attention Fusion**

  - 21:  $\Phi_{\text{final}} \leftarrow \rho \cdot \text{SIA} + (1 - \rho) \cdot \text{MASA-SQ}$  ▷ Stylization Branch
  - 22: **return**  $\Phi_{\text{final}}$

756 

## C USER STUDY

758 To evaluate the perceptual quality and subjective appeal of our proposed Diff-StyGS, we conduct a  
 759 user study against four SOTA baselines: StyleGaussian (Liu et al., 2024c), G-Style (Kovács et al.,  
 760 2024), DGE (Chen et al., 2024b), and GaussCtrl (Wu et al., 2024). The rendering views for the study  
 761 are derived from a set of five scenes, including both complex 360° environments and forward-facing  
 762 scenes, each with a text prompt and an image as a style source. We invite 15 participants to join  
 763 this study. In each trial, participants are presented with the stylized results from all five methods  
 764 (Diff-StyGS and the four baselines) in a randomized order to mitigate ordering bias. They are then  
 765 asked to select the single best result for each of the following three criteria: ① Content Preservation, ②  
 766 Style Fidelity, and ③ Overall Quality & Consistency. This process yields a total of 150 preference  
 767 feedback for each evaluation axis (10 stylized scenes  $\times$  15 participants). As summarized in Fig. 7,  
 768 the overall preference rates reveal a clear and consistent superiority of our Diff-StyGS, providing  
 769 strong empirical evidence that our approach generates artistically stylized renderings with a markedly  
 770 higher degree of visual fidelity and perceptual quality as judged by human observers.



792 **Figure 7: User Study.** Diff-StyGS receives significantly higher user preference ratings for content  
 793 preservation, style fidelity, and overall visual quality than competing baselines.

794 

## D EXTRA ABLATION STUDIES

795 **Impact of sparse views on stylization.** We investigate the influence of view selection on stylization  
 796 fidelity and optimization efficiency. As quantified in Tab. 3a, Diff-StyGS achieves the optimal  
 797 trade-off between rendering quality and stylization speed when leveraging 40 views selected via  
 798 MDD.

799 **Balancing stylized fidelity and multi-view consistency.** To analyze the role of the coefficient  $\rho$   
 800 in dual-attention control, we conduct experiments with  $\rho \in [0.5, 0.65, 1.0]$ .  $\rho$  balances stylization  
 801 fidelity (from SIA) against multi-view structural consistency (from MASA-SQ). Tab. 3b demonstrates  
 802 that tuning  $\rho$  offers direct control over stylistic strength and geometric coherence. Among the tested  
 803 settings,  $\rho = 0.65$  delivers the best trade-off, and is used as the default throughout our pipeline.

804 **Style-content preservation.** We conduct an ablation study to analyze the influence of the style  
 805 strength parameter  $\beta$  and the content preservation weight  $\eta$ . As illustrated in Fig. 8, these parameters  
 806 jointly control the trade-off between style integration and content fidelity. Specifically, an excessively

| Views | LPIPS $\downarrow$ | Speed-Up $\uparrow$ | $\rho$ | LPIPS $\downarrow$ | MV-Consist. $\times 10^3 \downarrow$ |
|-------|--------------------|---------------------|--------|--------------------|--------------------------------------|
| All   | 0.57               | 1 $\times$          | 1.0    | 0.57               | 40.08                                |
| 20    | 0.74               | 6.7 $\times$        | 0.65   | <b>0.58</b>        | 39.57                                |
| 40    | <b>0.58</b>        | 3.9 $\times$        | 0.5    | 0.64               | 39.49                                |

(a)

(b)

Table 3: (a) Performance on sparse-view stylization in 3DGS from 360° and forward-facing scenes. (b) The trade-off between stylization quality and multi-view consistency.



(a)

(b)

(c)

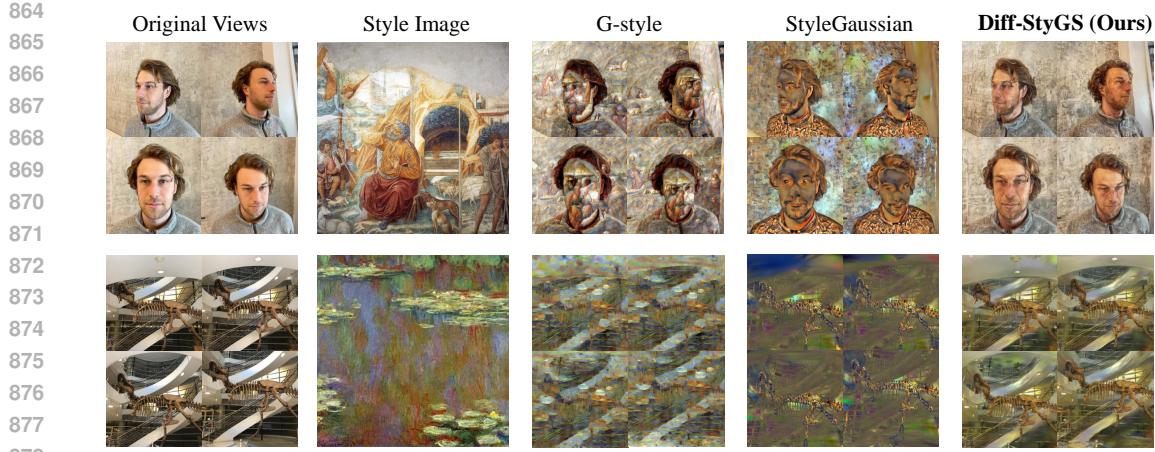
(d)

Figure 8: (a) Source style image. (b)  $\beta = 0.375, \eta = 1.125$ . (c)  $\beta = 0.825, \eta = 0.675$ . (d)  $\beta = 1.125, \eta = 0.375$ .

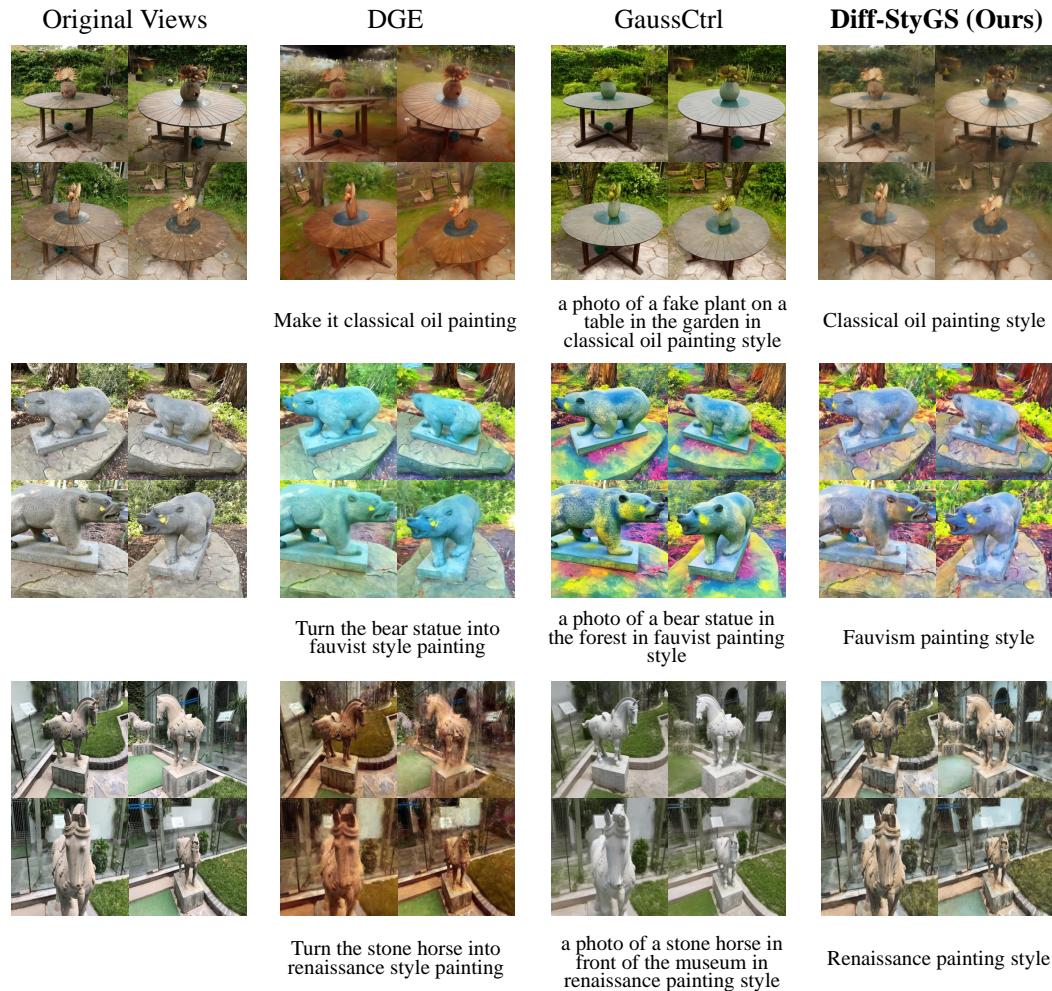
high  $\eta$  and lower  $\beta$  can lead to over-stylization, reducing the constraint of maintaining the original scene's structure and content in Fig. 8b and Fig. 8c. Based on empirical evaluation, we select  $\beta = 1.125, \eta = 0.375$  as our default setting, as it strikes a compelling balance between vivid style expression and faithful content preservation.

## E ADDITIONAL VISUALIZATIONS

Our method shows notable improvements in high-quality 3D scene stylizations across various scenarios (Barron et al., 2022; Haque et al., 2023; Liu et al., 2025). As shown in Fig. 9, our Diff-StyGS maintains geometry and transfers rational styles for face-forwarding scenes. In contrast, G-style (Kovács et al., 2024) and StyleGaussian (Liu et al., 2024c) generate unpleasant artifacts and highly overblown contents and styles in the images. Regarding text-prompt guided 360° scene stylizations, Diff-StyGS follows the textual guidance well and keeps cross-view consistency when style transferring across different backgrounds in Fig. 10. However, DGE (Chen et al., 2024b) can introduce uncomfortable colors and noises to the entire image, while GaussCtrl (Wu et al., 2024) appears to disregard the text instructions and generate undesired results.



879      **Figure 9: Qualitative results on face-forwarding scenes using style images as inputs.** Our method  
880      preserves content and transfers pleasant styles than other SOTA baselines (Kovács et al., 2024; Liu  
881      et al., 2024c).



915      **Figure 10: Qualitative results on 360° scenes guided by text prompts.** The 3D scenes stylized  
916      by Diff-StyGS render more text-aligned views with multi-view coherence than previous SOTA  
917      methods (Wu et al., 2024; Chen et al., 2024b).