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Abstract—Secure multiparty computation (MPC) has been
proposed to allow multiple mutually distrustful data owners to
jointly train machine learning (ML) models on their combined
data. However, by design, MPC protocols faithfully compute
the training functionality, which is susceptible to poisoning and
privacy attacks, as shown by the adversarial ML community. In
this work, we argue that model ensembles, implemented in our
framework called SafeNet, are a highly MPC-amenable way to
avoid many adversarial ML attacks. The natural partitioning of
data amongst owners in MPC training allows this approach to be
highly scalable at training time, provide provable protection from
poisoning attacks, and provable defense against a number of pri-
vacy attacks. We demonstrate SafeNet’s efficiency, accuracy, and
resilience to poisoning on several machine learning datasets and
models trained in end-to-end and transfer learning scenarios. For
instance, SafeNet reduces backdoor attack success significantly,
while achieving 39× faster training and 36× less communication
than the four-party MPC framework of Dalskov et al. [31]. Our
experiments show that ensemble learning retains these benefits
even in many non-iid settings. The simplicity, cheap setup, and
robustness properties of ensemble learning make it a strong first
choice for training ML models privately in MPC.

I. INTRODUCTION

Machine learning (ML) has been successful in a broad
range of application areas such as medicine, finance, and
recommendation systems. Consequently, technology compa-
nies such as Amazon, Google, Microsoft, and IBM provide
machine learning as a service (MLaaS) for ML training and
prediction. In these services, data owners outsource their
ML computations to a set of more computationally powerful
servers. However, in many instances, the client data used for
ML training or classification is sensitive and may be subject
to privacy requirements. Regulations such as GDPR, HIPAA
and PCR, data sovereignty issues, and user privacy concern are
common reasons preventing organizations from collecting user
data and training more accurate ML models. These privacy
requirements have led to the design of privacy-preserving
ML training methods, including the use of secure multiparty
computation (MPC).

Recent literature in the area of MPC for ML proposes
privacy-preserving machine learning (PPML) frameworks [1],
[31], [32], [71], [73], [75], [91], [92], [95] for training and
inference of various machine learning models such as logistic
regression, neural networks, and random forests. In these
models, data owners outsource shares of their data to a set
of servers and the servers run MPC protocols for ML training
and prediction. An implicit assumption for security made in
this setup is that the underlying datasets provided by the

data owners during training is not influenced by an adversary.
However, research in adversarial machine learning has shown
that data poisoning attacks pose a high risk to the integrity
of trained ML models [10], [43], [47], [52]. Data poisoning
becomes a particularly relevant threat in PPML systems, as
multiple data owners contribute secret shares of their datasets
for jointly training a ML model inside the MPC, and poisoned
samples cannot be easily detected. Furthermore, the guarantees
of MPC provide privacy against an adversary observing the
messages in the protocol, but does not protect against any
sensitive information leaked by the model about its training
set. Many privacy attacks are known to allow inference on
machine learning models’ training sets, and protecting against
these attacks is an active area of research.

In this paper, we study the impact of these adversarial
machine learning threats on standard MPC frameworks for
private ML training. Our first observation is that the security
definition of MPC for private ML training does not account
for data owners with poisoned data. Therefore, we extend the
security definition by considering an adversary who can poison
the datasets of a subset of owners, while at the same time
controlling a subset of the servers in the MPC protocol. Under
our threat model, we empirically demonstrate that poisoning
attacks are a significant threat to the setting of private ML
training. We show the impact of backdoor [25], [47] and
targeted [43], [58] poisoning attacks on four MPC frameworks
and five datasets, using logistic regression and neural networks
models. We show that with control of just a single owner
and its dataset (out of a set of 20 owners contributing data
for training), the adversary achieves 100% success rate for
a backdoor attack, and higher than 83% success rate for
a targeted attack. These attacks are stealthy and cannot be
detected by simply monitoring standard ML accuracy metrics.

To mitigate these attacks, we apply ensembling technique
from ML, implemented in our framework called SafeNet,
which, in the collaborative learning setting we consider, is
an effective defense against poisoning attacks, while also
simultaneously preventing various types of privacy attacks.
Rather than attempting to implement an existing poisoning
defense in MPC, we observe that the structure of the MPC
threat model permits a more general and efficient solution.
Our main insight is to require individual data owners to train
ML models locally, based on their own datasets, and secret
share the resulting ensemble of models in the MPC. We filter
out local models with low accuracy on a validation dataset, and
use the remaining models to make predictions using a majority



voting protocol performed inside the MPC. While this permits
stronger model poisoning attacks, the natural partitioning of
the MPC setting prevents an adversary from poisoning more
than a fixed subset of the models, resulting in a limited number
of poisoned models in the ensemble. We perform a detailed
analysis of the robustness properties of SafeNet, and provide
lower bounds on the ensemble’s accuracy based on the error
rate on the local models in the ensemble and the number
of poisoned models, as well as a prediction certification
procedure for arbitrary inputs. The bounded contribution of
each local model also gives a provable privacy guarantee for
SafeNet. Furthermore, we show empirically that SafeNet suc-
cessfully mitigates backdoor and targeted poisoning attacks,
while retaining high accuracy on the ML prediction tasks. In
addition, our approach is efficient, as ML model training is
performed locally by each data owner, and only the ensemble
filtering and prediction protocols are performed in the MPC.
This provides large performance improvements in ML training
compared to existing PPML frameworks, while simultaneously
mitigating poisoning attacks. For instance, for one neural
network model, SafeNet performs training 39× faster than the
[31] PPML protocol and requires 36× less communication.
Finally, we investigate settings with diverse data distributions
among owners, and evaluate the accuracy and robustness of
SafeNet under multiple data imbalance conditions.

To summarize, our contributions are as follows:

Adversarial ML-aware Threat Model for Private Machine
Learning. We extend the MPC security definition for private
machine learning to encompass the threat of data poisoning
attacks and privacy attacks. In our threat model, the adversary
can poisoned a subset t out of m data owners, and control
T out of N servers participating in the MPC. The attacker
may also seek to learn sensitive information about the local
datasets through the trained model.

SafeNet Ensemble Design. We propose SafeNet, which
adapts ensembling technique from ML to the collaborative
MPC setting by having data owners train models locally and
aggregation of predictions is performed securely inside the
MPC. We show that this procedure gives provable privacy and
security guarantees, which improves as models become more
accurate. We also propose various novel extensions to this
ensembling strategy which make SafeNet applicable to a wider
range of training settings (including transfer learning and
accommodating computationally restricted owners). SafeNet’s
design is agnostic to the underlying MPC framework and
we show it can be instantiated over four different MPC
frameworks, supporting two, three and four servers.

Comprehensive Evaluation. We show the impact of existing
backdoor and targeted poisoning attacks on several existing
PPML systems [4], [31], [35] and five datasets, using logistic
regression and neural network models. We also empirically
demonstrate the resilience of SafeNet against these attacks,
for an adversary compromising up to 9 out of 20 data owners.
We report the gains in training time and communication cost
for SafeNet compared to existing PPML frameworks. Finally,

we compare SafeNet with state-of-the-art defenses against
poisoning in federated learning [17] and show its enhanced
certified robustness even under non-iid data distributions.

II. BACKGROUND AND RELATED WORK

We provide background on secure multi-party computation
and poisoning attacks in ML, and discuss related work in the
area of adversarial ML and MPC.

A. Secure Multi-Party Computation

Secure Multi-Party Computation (MPC) [7], [34], [44], [50],
[98] allows a set of n mutually distrusting parties to compute
a joint function f , so that collusion of any t parties cannot
modify the output of computation (correctness) or learn any
information beyond what is revealed by the output (privacy).
The area of MPC can be categorized into honest majority [4],
[7], [14], [22], [74] and dishonest majority [33], [34], [44],
[72], [98]. The settings of two-party computation (2PC) [64],
[65], [78], [98], three parties (3PC) [3], [4], [74], and four
parties (4PC) [23], [31], [46], [51] have been widely studied
as they provide efficient protocols. Additionally, recent works
in the area of privacy preserving ML propose training and
prediction frameworks [1], [61], [73], [75], [81], [82], [91],
[92] built on top of the above MPC settings. Particularly, most
of the frameworks are deployed in the outsourced computation
setting where the data is secret-shared to a set of servers which
perform training and prediction using MPC.

B. Data Poisoning Attacks

In a data poisoning attack, an adversary controls a subset
of the training dataset, and uses this to influence the model
trained on that training set. In a backdoor attack [25], [47],
[77], an adversary seeks to add a “trigger” or backdoor
pattern into the model. The trigger is a perturbation in feature
space, which is applied to poisoned samples in training to
induce misclassification on backdoored samples at testing. In
a targeted attack [57], [58], [86], the adversary’s goal is to
change the classifier prediction for a small number of specific
test samples. Backdoor and targeted attacks can be difficult to
detect, due to the subtle impact they have on the ML model.

C. Related Work

While both MPC and adversarial machine learning have
been the topic of fervent research, work connecting them is
still nascent. We are only aware of several recent research
papers that attempt to bridge these areas. Recent works [20],
[62] show that MPC algorithms applied at test time can
be compromised by malicious users, allowing for efficient
model extraction attacks. Second, Escudero et al. [39] show
that running a semi-honest MPC protocol with malicious
parties can result in backdoor attacks in the resulting SVM
model. Both these works, as well as our own, demonstrate
the difficulty of aligning the guarantees of MPC with the
additional desiderata of trustworthy machine learning. We
demonstrate the effectiveness of data poisoning attacks in
MPC for neural networks and logistic regression models, and
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Fig. 1: Threat model considered in our setting. The adversary
Ap

soc can poison at most t out of m data owners and corrupt
at most T out of N servers participating in the MPC compu-
tation. Ci and Sj denote the ith data owner and jth server.

propose a novel ensemble training algorithm in SafeNet to
defend against poisoning attacks in MPC.

Model ensembles have been proposed as a defense for ML
poisoning and privacy attacks in prior work in both the cen-
tralized training setting [9], [53] and the collaborative learning
setting [17], [27]. Compared to centralized approaches, which
process a single dataset, we are able to leverage the trust
model of MPC, which limits the number of poisoned models
in the ensemble and can provide stronger robustness and
privacy guarantees. Ensembles have also been proposed in
MPC to protect data privacy [27] and in federated learning
to provide poisoning robustness [17]. Our work provides a
stronger privacy analysis, protecting from a broader range of
threats than [27], and additionally offers robustness guarantees.
We provide a more detailed comparison with these approaches
in Section III-F.

III. SAFENET: USING ENSEMBLES IN MPC

We describe here our threat model and show how to imple-
ment ensembles in MPC. We then show that ensembling gives
us provable robustness to poisoning and privacy adversaries.

A. Threat Model

Setup. We consider a set of m data owners C = ∪m
k=1Ck

who wish to train a joint machine learning model M on
their combined dataset D = ∪m

k=1Dk. We adopt the Secure
Outsourced Computation (SOC) paradigm [1], [14], [31], [32],
[73], [75], [82], [91], [92] for training model M privately,
where the owners secret-share their respective datasets to a set
of outsourced servers, who execute the MPC protocols to train
M. The final output is a trained model in secret-shared format
among the servers. A single training/testing sample is ex-
pressed as (xi, yi), where xi is the input feature vector and yi

is its corresponding true label or class. We use Dk = (Xk,yk)
to denote dataset of data owner Ck participating in the training
process. Matrix Xk denotes a feature matrix where the number
of rows represent the total training samples possessed by Ck

and yk denotes the corresponding vector of true labels.

Adversary in the SOC. Given a set S = {S1, . . . ,SN} of
servers, we define an adversary Asoc, similar to prior work [1],
[31], [73], [75], [82], [92]. Asoc can statically corrupt a subset

ST ⊂ S of servers of size at most T < N . The exact values
of N and T are dependent on the MPC protocols used for
training the ML model privately. We experiment with two-
party, three-party, and four-party protocols with one corrupt
server. MPC defines two main adversaries: i) Semi-honest: Ad-
versary follows a given protocol, but tries to derive additional
information from the messages received from other parties
during the protocol; ii) Malicious: Adversary has the ability
to arbitrarily deviate during the execution of the protocol.

Security Definition. MPC security is defined using the real
world - ideal world paradigm [15]. In the real world, parties
participating in the MPC interact during the execution of a pro-
tocol π in presence of an adversary A. Let REAL[Z,A, π, λ]
denote the output of the environment Z when interacting with
A and the honest parties, who execute π on security parameter
λ. Effectively, REAL is a function of the inputs/outputs and
messages sent/received during the protocol. In the ideal world,
the parties simply forward their inputs to a trusted functionality
F and forward the functionality’s response to the environment.
Let IDEAL[Z,S,F , λ] denote the output of the environment
Z when interacting with adversary S and honest parties who
run the protocol in presence of F with security parameter λ.
The security definition states that the views of the adversary
in the real and ideal world are indistinguishable:

Definition 1. A protocol π securely realizes functionality F if
for all environments Z and any adversary of type Asoc, which
corrupts a subset ST of servers of size at most T < N in the
real world, then there exists a simulator S attacking the ideal
world, such that IDEAL[Z,S,F , λ] ≈ REAL[Z,Asoc, π, λ].

Poisoning Adversary. Existing threat models for training ML
models privately assume that the local datasets contributed
towards training are not under the control of the adversary.
However, data poisoning attacks have been shown to be a
real threat when ML models are trained on crowd-sourced
data or data coming from untrusted sources [10], [52], [76].
Data poisoning becomes a particularly relevant risk in PPML
systems, in which data owners contribute their own datasets
for training a joint ML model. Additionally, the datasets are
secret shared among the servers participating in the MPC, and
potential poisoned samples (such as backdoored data) cannot
be easily detected by the servers running the MPC protocol.

To account for such attacks, we define a poisoning adversary
Ap that can poison a subset of local datasets of size at most
t < m. Data owners with poisoned data are called poisoned
owners, and we assume that the adversary can coordinate with
the poisoned owners to achieve a certain adversarial goal.
For example, the adversary can mount a backdoor attack, by
selecting a backdoor pattern and poison the datasets under its
control with the particular backdoor pattern.

Poisoning Robustness: We consider an ML model to be
robust against a poisoning adversary Ap, who poisons the
datasets of t out of m owners, if it generates correct class
predictions on new samples with high probability. We provide
bounds on the level of poisoning tolerated by our designed
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framework to ensure robustness.

Our Adversary. We now define a new adversary Ap
soc for our

threat model (Figure 1) that corrupts servers in the MPC and
poisons the owners’ datasets:

– Ap
soc plays the role of Ap and poisons t out of m data

owners that secret share their training data to the servers.
– Ap

soc plays the role of Asoc and corrupts T out N servers
taking part in the MPC computation.

Note that the poisoned owners that Ap
soc controls do not

interfere in the execution of the MPC protocols after secret-
sharing their data and also do not influence the honest owners.

Functionality FpTrain. Based on our newly introduced threat
model, we construct a new functionality FpTrain in Figure 2 to
accommodate poisoned data.

Input: FpTrain receives secret-shares of Di and ai from each
owner Ci, where Di is a dataset and ai an auxiliary input.
Computation: On receiving inputs from the owners, FpTrain

computes O = f(D1, ..., Dm, a1, . . . , am), where f and O
denotes the training algorithm and the output of the algorithm
respectively.
Output: FpTrain constructs secret-shares of O and sends the
appropriate shares to the servers.

Functionality FpTrain

Fig. 2: Ideal Functionality for ML training with data poisoning.

Security against Ap
soc. A training protocol Πtrain is secure

against adversary Ap
soc if: (1) Πtrain securely realizes function-

ality FpTrain based on Definition 1; and (2) the model trained
inside the MPC provides poisoning robustness against data
poisoning attacks.

Intuitively, the security definition ensures that Ap
soc learns

no information about the honest owners’ inputs when T out
of N servers are controlled by the adversary, while the trained
model provides poisoning robustness against a subset of t out
of m poisoned owners.

Extension to Privacy Adversary. While MPC guarantees no
privacy leakage during the execution of the protocol, it makes
no promises about privacy leakage that arises by observing the
output of the protocol. This has motivated a combination of
differential privacy guarantees with MPC algorithms to protect
against privacy leakage for both the intermediate execution
as well as the output of the protocol. For this reason, we
also consider adversaries seeking to learn information about
data owners’ local datasets by observing the output of the
model, as done in membership inference [19], [85], [99] and
property inference attacks [42], [87], [102]. Recent works
have used data poisoning as a tool to further increase privacy
leakage [21], [69], [89] of the trained models. Consequently,
we can extend our threat model to accommodate a stronger
version of Ap

soc that is also capable of performing privacy
attacks by observing the output of the trained model.

B. SafeNet Overview

Given our threat model in Figure 1, existing PPML frame-
works provide security against an Asoc adversary, but they are
not designed to handle an Ap

soc adversary. We show exper-
imentally in Section IV that PPML frameworks for private
training are susceptible to data poisoning attacks. While it
would be possible to remedy this by implementing specific
poisoning defenses (see Section V-C for a discussion of these
approaches), we instead show that we can take advantage of
the bounded poisoning capability of Ap

soc to design a more
general and efficient defense. Intuitively, existing approaches
train a single model on all local datasets combined, causing
the model’s training set to have a large fraction of poisoned
data (t/m), which is difficult to defend against. Instead, we
design SafeNet, a new protocol which uses ensemble models
to realize our threat model and provide security against Ap

soc.
In addition to successfully mitigating data poisoning attacks,
SafeNet provides more efficient training than existing PPML
and comparable prediction accuracy.

Figure 3 provides an overview of the training and inference
phases of SafeNet. SafeNet trains an ensemble E of multiple
models in protocol Πtrain, where each model Mk ∈ E
is trained locally by the data owner Ck on their dataset.
This partitioning prevents poisoned data from contributing
to more than t local models. Each data owner samples a
local validation dataset and trains the local model Mk on
the remaining data. The local models and validation datasets
are secret shared to the outsourced servers. We note that this
permits arbitrarily corrupted models, and poisoned validation
datasets, but SafeNet’s structure still allows it to tolerate
these corruptions. In the protocol running inside the MPC,
the servers jointly implement a filtering stage for identifying
models with low accuracy on the combined validation data
(below a threshold ϕ) and excluding them from the ensemble.
The output of training is a secret share of each model in the
trained ensemble E.

In the inference phase, SafeNet implements protocol Πpred,
to compute the prediction yk of each shared model Mk on test
input x inside the MPC. The servers jointly perform majority
voting to determine the most common predicted class y on
input x, using only the models which pass the filtering stage.
An optional feature of SafeNet is to add noise to the majority
vote to enable user-level differential privacy protection, in
addition to poisoning robustness.

Our SafeNet protocol leverages our threat model, which
assumes that only a set of at most t out of m data owners
are poisoned. This ensures that an adversary only influences a
limited set of models in the ensemble, while existing training
protocols would train a single poisoned global model. We
provide bounds for the exact number of poisoned owners t
supported by our ensemble in Theorem 6. Interestingly, the
bound depends on the number of data owners m, and the max-
imum error made by a clean model in the ensemble. The same
theorem also lower bounds the probability that the ensemble
predicts correctly under data poisoning performed by the t
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Fig. 3: Overview of the Training and Inference phases of the SafeNet Framework.

poisoned owners, and we validate experimentally that, indeed,
SafeNet provides resilience to stealthy data poisoning attacks,
such as backdoor and targeted attacks. Another advantage of
SafeNet is that the training time to execute the MPC protocols
in the SOC setting is drastically reduced as each Mk ∈ E can
be trained locally by the respective owner. We detail below the
algorithms for training and inference in SafeNet.

C. SafeNet Training and Inference

To train the ensemble in SafeNet, we present our proposed
ensemble method in Algorithm 1. We discuss the realization
in MPC later in Appendix B. Each owner Ck separates out
a subset of its training dataset Dv

k ∈ Dk and then trains its
model Mk on the remaining dataset Dk \ Dv

k. The trained
model Mk and validation dataset Dv

k is then secret-shared
to the servers. The combined validation dataset is denoted as
Dval =

m⋃
i=1

Dv
i . We assume that all users contribute equal-size

validation sets to Dval. During the filtering stage inside the
MPC, the validation accuracy AccVal of each model is jointly
computed on Dval. If the resulting accuracy for a model is
below threshold ϕ, the model is excluded from the ensemble.

The filtering step is used to separate the models with low
accuracy, either contributed by a poisoned owner, or by an
owner holding non-representative data for the prediction task.
Under the assumption that the majority of owners are honest,
it follows that the majority of validation samples are correct. If
Ck is honest, then the corresponding Mk should have a high
validation accuracy on Dval, as the corresponding predicted
outputs would most likely agree with the samples in Dval. In
contrast, the predictions by a poisoned model Mk will likely
not match the samples in Dval. In Appendix A, we compute a
lower bound on the size of the validation dataset as a function
of the number of poisoned owners t and filtering threshold ϕ,
such that all clean models pass the filtering stage with high
probability even when a subset of the cross-validation dataset
Dval is poisoned.

Algorithm 1 SafeNet Training Algorithm

Input: m data owners, each owner Ck’s dataset Dk.
// Owner’s local computation in plaintext format
– For k ∈ [1,m] :

- Separate out Dv
k from Dk. Train Mk on Dk \Dv

k.
- Secret-share Dv

k and Mk to servers.

// MPC computation in secret-shared format
– Construct a common validation dataset Dval = ∪m

i=1D
v
i .

– Construct ensemble of models E = {Mi}mi=1

– Initialize a vector bval of zeros and of size m.
– For k ∈ [1,m] : // Ensemble Filtering

- AccValk = Accuracy(Mk, Dval)
- If AccValk > ϕ: Set bval

k = 1

return E and bval

Given protocol Πtrain that securely realizes Algorithm 1
inside the MPC (described in Appendix B), we argue security
as follows:

Theorem 2. Given a privacy-preserving machine learning
training framework that tolerates T out of N server corrup-
tions, and an error bound of at most p on each clean model in
the ensemble, protocol Πtrain is secure against adversary Ap

soc
who poisons t < m

2
1−2p
1−p out of m data owners and corrupts

T out of N servers.

The proof of the theorem is given in Appendix C, after we
introduce the details of MPC instantiation and how Πtrain

securely realizes FpTrain in Appendix B-3. During inference,
the prediction of each model Mk is generated and the servers
aggregate the results to perform majority voting. Optionally,
differentially private noise is added to the sum to offer user-
level privacy guarantees. The secure inference protocol Πpred

and its security proof are given in Appendix B and C,
respectively.

5



D. SafeNet Analysis

Here, we demonstrate the accuracy, poisoning robustness
and privacy guarantees that SafeNet provides. We first show
how to lower bound SafeNet’s test accuracy given that each
clean model in the ensemble reaches a certain accuracy
level. We also give certified robustness and user-level privacy
guarantees. All of our guarantees improve as the individual
models become more accurate, making the ensemble agree on
correct predictions more frequently.

Robust Accuracy Analysis. We provide lower bounds on
SafeNet accuracy, assuming that at most t out m models in
the SafeNet ensemble E are poisoned, and the clean models
have independent errors, with maximum error rate p < 1−ϕ,
where ϕ is the filtering threshold.

Theorem. (Informal) Let Ap
soc be an adversary who poisons at

most t out of m data owners and corrupts T out of N servers.
Assume that the filtered ensemble E has at least m− t clean
models, each with a maximum error rate of p < 1− ϕ. If the
number of poisoned owners is at most m(1−2p)

2(1−p) , ensemble E
correctly classifies new samples with high probability, which
is a function of m, ϕ, t and p.

The formal theorem and the corresponding proof can be
found in Appendix A.

Poisoning Robustness Analysis. Our previous theorem
demonstrated that SafeNet’s accuracy on in-distribution data
is not compromised by poisoning. Now, we show that we can
also certify robustness to poisoning on a per-sample basis for
arbitrary points, inspired by certified robustness techniques for
adversarial example robustness [29]. In particular, Algorithm 2
describes a method for certified prediction against poisoning,
returning the most common class y predicted by the ensemble
on a test point x, as well as a bound on the number of
poisoning owners t which would be required to modify the
predicted class. Sometimes, the algorithm can return t = 0, in
which case SafeNet provides no robustness for the test point.

Algorithm 2 Certified Private Prediction PREDGAP (E, x)

Input: m data owners; Ensemble of models E = {Mi}mi=1;
Testing point x; Differential Privacy parameters ε, δ.
COUNTS =

∑m
i=1 Mi(x) + DPNOISE(ε, δ)

y, cy = MOSTCOMMON(COUNTS) // most common pre-
dicted class with noisy count
y′, cy′ = SECONDMOSTCOMMON(COUNTS) // second
most common predicted class with count
t = ⌈(cy − cy′)/2⌉ − 1
return y, t

We first analyze the poisoning robustness when privacy of
aggregation is not enabled in the following theorem.

Theorem 3. Let E be an ensemble of models constructed in
the presence of adversary Ap

soc. Assume that given input x, the
ensemble generates prediction y = E(x) without DPNOISE
and Algorithm 2 outputs (y, t). Then, if Ap

soc poisons at most

t data owners, it could not have changed E’s prediction to
y′ ̸= y.

Proof. If an adversary’s goal were to cause y′ to be predicted
on input x, their most efficient strategy is to flip y predictions
to y′. If y were the ensemble prediction, it must have at least
⌊ cy+cy′

2 ⌋ model predictions, and the second most common
prediction y′ would have at most ⌊ cy+cy′

2 ⌋ model predictions.
Corrupting these predictions then requires flipping at least
(cy − cy′)/2 predictions from y to y′. Overall, this requires at
least ⌈(cy− cy′)/2⌉ poisoned data owners. Thus, an adversary
poisoning at most t = ⌈(cy − cy′)/2⌉ − 1 data owners still
generates the same prediction y on x.

Privacy Analysis. Recent work by McMahan et al. [70] intro-
duced the notion of user-level differential privacy where the
presence of a user in the protocol should have imperceptible
impact on the final trained model. We show that, given our
threat model, SafeNet provides the strong privacy guarantee
of user-level differential privacy, which also implies example-
level differential privacy. This privacy guarantee can protect
against model extraction and property inference attacks, in
addition to membership inference attacks.

Theorem 4. When DPNOISE function samples from a Laplace
random variable Lap(2/ε), Algorithm 2 satisfies user-level ε-
differential privacy.

Proof. Observe that replacing a local model obtained from a
data owner in our framework only changes COUNTS for two
classes by 1 on any given query, so it has an ℓ1 sensitivity
of 2. As a result, Lap(2/ε) suffices to ensure that user-level
ε-differential privacy holds.

The main crux of Theorem 4 is that no model can in-
fluence COUNTS too much, an observation also made by
PATE [79] and the CaPC [27] framework, but they only
considered example-level differential privacy, which protects
against membership inference attacks, but not the stronger
attacks that user-level differential privacy prevents. This limi-
tation is inherent in PATE, as the central training set is split to
train multiple models. However, our stronger analysis holds for
SafeNet in the private collaborative learning setting, as we start
with pre-existing partitions of benign and poisoned datasets.
We prove Theorem 4 by considering Laplace noise, but various
improvements to PATE using different mechanisms such as
Gaussian noise and other data-dependent approaches [79],
[80], can also be included in our framework.
Combining Robustness and Privacy. Adding differentially
private noise prevents Algorithm 2 from returning the exact
difference between the top two class-label counts, making it
only possible to offer probabilistic robustness guarantees. That
is, the returned t is actually a noisy version of the “true” t∗,
where t∗ is used to certify correctness. However, for several
choices of the DPNoise function, the exact distribution of the
noise is known, making it easy to provide precise probabilistic
guarantees similar to those provided by Theorem 3. For
example, if Gaussian noise with scale parameter σ is used
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to guarantee DP, and PredGap returns t, then we know that
the true t∗ is larger than t−k with probability Φ(k/σ), where
Φ denotes the Gaussian CDF.

Also note that prior work has shown, for local differentially
private protocols, the assumption of users correctly randomiz-
ing their messages leads to increased vulnerability [18], [26].
Our protocol avoids this vulnerability by generating noise in
the MPC, not trusting any individual user to generate noise.

E. Extensions

In addition to providing various guarantees, we offer a
number of extensions to our original SafeNet design.

Transfer Learning. A major disadvantage of SafeNet is its
slower inference time compared to a traditional PPML frame-
work, requiring to perform a forward pass on all local models
in the ensemble. However, for transfer learning scenario, we
propose a way where SafeNet’s inference runs almost as fast as
the traditional framework. In transfer learning [37], [59], a pre-
trained model MB , which is typically trained on a large public
dataset, is used as a “feature extractor” to improve training on
a given target dataset. In our setting, all data owners start
with a common pre-trained model, and construct their local
models by fine tuning MB’s last l layers using their local
data. We can then modify the prediction phase of SafeNet to
reduce its inference time and cost considerably. The crucial
observation is that all local models differ only in the weights
associated to the last l layers. Consequently, given a prediction
query, we run MB upto its last l layers and use its output
to compute the l layers of all the local models to obtain
predictions for majority voting. The detailed description of the
modified SafeNet algorithm is given in Appendix D-A. Note
that this approach achieves the same robustness and privacy
guarantees as described in Section III-D, as long as MB was
originally not tampered with. If MB is untrustworthy, it may
already be backdoored [67], or may be easier to run other
types of attacks [94].

Integration Testing. While SafeNet can handle settings with
non-iid data distributions among data owners, the local models
accuracies might be impacted by extreme non-iid settings (we
analyze the sensitivity of SafeNet to data imbalance in Section
IV-H). In such cases, SafeNet fails fast, allowing the owners to
determine whether or not using SafeNet is the right approach
for their setting. This is possible because SafeNet’s training
phase is very cheap, making it possible to quickly evaluate
the ensemble’s accuracy on the global validation set. If the
accuracy is not good enough, the owners can use a different
approach, such as a standard MPC training. SafeNet’s strong
robustness guarantees and an efficient training phase makes it
an appealing first choice for private collaborative learning.

It is possible for this filtering to be circumvented if the
adversary can participate multiple times [12]. However, this
is straightforward to mitigate by bounding the number of
submissions. Furthermore, should an adversarial model slip
into the ensemble, the robustness guarantees of Theorem 3
will still hold, but with one extra poisoned model.

Low Resource Owners. If a data owner does not have
sufficient resources to train a model on their data, they cannot
participate in the standard SafeNet protocol. In such situations,
computationally restricted owners can defer their training to
SafeNet, that can use standard MPC training approaches to
train their models. Training these models in MPC increases
the computational overhead of our approach, but facilitates
broader participation. We provide the details of this modifica-
tion in Appendix D-B and also run an experiment in Appendix
E-A to verify that SafeNet remains efficient, while retaining
the same robustness and privacy properties.

F. Comparison to Existing Ensemble Strategies

Model ensembles have been considered to address adver-
sarial machine learning vulnerabilities in several prior works.
Here, we discuss the differences between our analysis and
previous ensembling approaches.

a) Ensembles on a Centralized Training Set: Several
ensemble strategies seek to train a model on a single, cen-
tralized training set. This includes using ensembles to prevent
poisoning attacks [54], [63], as well as to provide differential
privacy guarantees [79] or robustness to privacy attacks [88].
Due to centralization, none of these techniques can take
advantage of the partitioning of datasets. As a result, protection
from poisoning is only capable of handling a small number
of poisoning examples, whereas our partitioning allows large
fractions of the entire dataset to be corrupted. PATE, due to
data centralization, can only guarantee privacy for individual
samples, whereas in our analysis, the entire dataset of a given
owner can be changed, providing us with user-level privacy.

b) CaPC [27]: Chouquette-Choo et al. [27] propose
CaPC, which extends PATE to the MPC collaborative learning
setting. Their analysis gives differential privacy guarantees for
individual examples. Our approach extends their analysis to
a differential privacy guarantee for the entire local training
set and model, to provide protection against attacks such
as property inference and model extraction. In addition, our
approach also provides poisoning robustness guarantees which
they cannot, as they allow information to be shared between
local training sets.

c) Cao et al. [17]: Recent work by Cao et al. [17]
gave provable poisoning robustness guarantees for federated
learning aggregation. They proposed an ensembling strategy,
where, given m data owners, t of which are malicious, they
construct an ensemble of

(
m
k

)
global models, where each

model is trained on a dataset collected from a set of k clients.
Our poisoning robustness argument in Theorem 3 coincides
with theirs at k = 1, a setting they do not consider as their
approach relies on combining client datasets for federated
learning. Additionally, k = 1 makes their approach vulnerable
to data reconstruction attacks [13], an issue SafeNet does not
face as the attack directly violates the underlying security
guarantee of the MPC. We experimentally compare both
approaches on a federated learning dataset in Section V-D and
show that our approach outperforms [17].
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IV. EVALUATION

A. Experimental Setup

We build a functional code on top of the MP-SPDZ li-
brary [56]1 to assess the impact of data poisoning attacks on
the training phase of PPML frameworks. We consider four
different MPC settings, all available in the MP-SPDZ library:
i) two-party with one semi-honest corruption (2PC) based on
[30], [35]; ii) three-party with one semi-honest corruption
(3PC) based on Araki et al. [4] with optimizations by [32],
[73]; iii) three-party with one malicious corruption based on
Dalskov et al. [31]; and iv) four-party with one malicious
corruption (4PC), also based on [31]. Note, that both semi-
honest and malicious adversaries possess poisoning capability;
their roles change only inside the SOC paradigm.

In all the PPML frameworks, the data owners secret-share
their training datasets to the servers and a single ML model
is trained on the combined dataset. Typically, real number
arithmetic is emulated by using 32-bit fixed-point represen-
tation of fractional numbers. Each fractional number x ∈ Z2ℓ

is represented as ⌊x · 2f⌉, where ℓ and f denote the ring
size and precision, respectively. We set ℓ = 64 and f = 16.
Probabilistic truncation proposed by Dalskov et al. [31], [32]
is applied after every multiplication. In the MPC library
implementation, the sigmoid function for computing the output
probabilities is replaced with a three-part approximation [22],
[31], [75]. In SafeNet, models are trained locally using the
original sigmoid function. We implement softmax function
using the method of Aly et al. [2]. We perform our experiments
over a LAN network on a 32-core server with 192GB of
memory allowing up to 20 threads to be run in parallel.

B. Metrics

We use the following metrics to compare SafeNet with
existing PPML framework:

Training Time is the time taken to privately train a model
inside the MPC (protocol Πtrain). As is standard practice [14],
[22], [23], [31], [73], [75], this excludes the time taken by the
data owners to secret-share their datasets and models to the
servers as it is a one-time setup phase.

Communication Complexity is the amount of data exchanged
between the servers during the privacy-preserving execution of
the training phase.

Test Accuracy is the percentage of test samples that the ML
model correctly predicts.

Attack Success Rate is the percentage of target samples that
were misclassified as the label of attacker’s choice.

Robustness against worst-case adversary We measure the
resilience of SafeNet at a certain corruption level c against a
powerful, worst-case adversary. For each test sample, this ad-
versary can adaptively select any subset of c owners, arbitrarily
modifying the model to change the test sample’s classification.
This is the same adversary considered in Algorithm 2 and by

1https://github.com/data61/MP-SPDZ

Theorem 3, any any model which is robust against this attack
has a provably certified prediction. We measure the error rate
on testing samples for this worst-case adversarial model.

C. Datasets and Models

We give a descriptions of the datasets and models used for
our experiments below.

MNIST. The MNIST dataset [38] is a 10 class classification
problem which is used to predict digits between 0 and 9. We
train a logistic regression model for MNIST.

Adult. The Adult dataset [38] is for a binary classification
problem to predict if a person’s annual income is above $50K.
We train a neural network with one hidden layer of size 10
nodes using ReLU activations.

Fashion. We train several neural networks on the Fashion
dataset [96] with one to three hidden layers. The Fashion
dataset is a 10-class classification problem with 784 features
representing various garments. All hidden layers have 128
nodes and ReLU activations; the output layer uses softmax.

CIFAR-10. The CIFAR-10 dataset [60] is a 10 class image
dataset. CIFAR-10 is harder than other datasets we consider,
so we perform transfer learning from a ResNet-50 model [48]
pretrained on the ImageNet dataset [36]. We fine tune only the
last layer, freezing all convolutional layers.

EMNIST. The EMNIST dataset [28] is a benchmark federated
learning image dataset, split in a non-iid fashion by the person
who drew a given image, where we select 100 EMNIST clients
in our experiments.

D. Dataset Partitioning and Model Accuracy

We conduct our experiments by varying the number of
data owners. We split MNIST and Adult datasets across 20
participating data owners, while we use 10 owners for Fashion
and CIFAR-10 datsets. For the EMNIST dataset used for
comparison with prior work on federated learning we use 100
owners. Each owner selects at random 10% of its local training
data as the validation dataset Dv

j . All models are trained using
mini-batch stochastic gradient descent.

To introduce non-iid behavior in our datasets (except for
EMNIST, which is naturally non-iid), we sample class labels
from a Dirichlet distribution [49]. That is, to generate a
population of non-identical owners, we sample q ∼ Dir(αp)
from a Dirichlet distribution, where p characterizes a prior
class distribution over all distinct classes, and α > 0 is a
concentration parameter which controls the degree of similar-
ity between owners. As α → ∞, all owners have identical
distributions, whereas as α → 0, each owner holds samples
of only one randomly chosen class. In practice, we observe
α = 1000 leads to almost iid behavior, while α = 0.1 results
in an extreme imbalanced distribution. The default choice for
all our experiments is α = 10, which provides a realistic non-
iid distribution. We will vary parameter α in Appendix E-A.

We measure the accuracy of a local model trained by
individual data owners and our SafeNet ensemble. Table I
provides the detailed comparison of the accuracy of the local
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Dataset Partition Type Local Model SafeNet Ensemble Improvement

MNIST

Dirchlet

80.05% 89.48% 9.03%
Adult 77.32% 81.41% 4.09%

FASHION 71.68% 83.26% 11.53%
CIFAR-10 54.03% 62.76% 8.73%

EMNIST Natural 54.05% 79.19% 25.14%

TABLE I: Test accuracy comparison of a single local model and the
entire SafeNet ensemble. SafeNet Ensemble improves upon a single
local model across all datasets.

and ensemble models across all four datasets. We observe that
SafeNet consistently outperforms local models, with improve-
ments ranging from 4.09% to 25.14%. The lowest performance
is on CIFAR-10, but in this case SafeNet’s accuracy is very
close to fine-tuning the network using the combined dataset,
which reaches 65% accuracy.

E. Implementation of Poisoning Attacks

Backdoor Attacks. We use the BadNets attack by Gu et al.
[47], in which the poisoned owners inject a backdoor into the
model to change the model’s prediction from source label ys to
target label yt. For instance, in an image dataset, a backdoor
might set a few pixels in the corner of the image to white.
The BadNets attack strategy simply identifies a set of k target
samples {xt

i}ki=1 with true label ys, and creates backdoored
samples with target label yt. We use k = 100 samples, which
is sufficient to poison all models.

To run backdoor attacks on models trained with standard
PPML frameworks, the poisoned owners create the poisoned
dataset D∗

j by adding k poisoned samples and secret-sharing
them as part of the training dataset to the MPC. The framework
then trains the ML model on the combined dataset submitted
by both the honest and poisoned owners.

In SafeNet, backdoor attacks are implemented at the poi-
soned owners, which add k backdoored samples to their
dataset Dj and train their local models M∗

j on the combined
clean and poisoned data. A model trained only on poisoned
data will be easy to filter due to low accuracy, making training
on clean samples necessary. The corrupt owners then secret-
share both the model M∗

j and validation set Dv
j selected at

random from Dj to the MPC.

Targeted Attacks. We select k targeted samples, and change
their labels in training to a target label yt different from the
original label. The models are trained to simultaneously min-
imize both the training and the adversarial loss. This strategy
has also been used to construct poisoned models by prior
work [57], and can be seen as the output of the unconstrained
version of state-of-the-art Witches’ Brew targeted attack [43],
which proposes a clean-label poisoning attack.

The next question to address is which samples to target
as part of the attack. We use two strategies to generate
k = 100 target samples, based on an ML model trained by
the adversary over the test data. In the first strategy, called
TGT-Top, the adversary chooses examples classified correctly
with high confidence by a different model. Because these
examples are easy to classify, poisoning them should be hard.

We also consider an attack called TGT-Foot, which chooses
low confidence examples, which are easier to poison. For both
strategies, the adversary replaces its label with the second
highest predicted label. We compare these two strategies for
target selection.

The difference between targeted and backdoor attacks is
that targeted attacks do not require the addition of a backdoor
trigger to training or testing samples, as needed in a backdoor
attack. However, the impact of the backdoor attack is larger.
Targeted attacks change the prediction on a small set of testing
samples (which are selected in advance before training the
model), while the backdoor attack generalizes to any testing
samples including the backdoor pattern.

F. Evaluation on Logistic Regression

We start with DIGIT 1/7 dataset, a subset of MNIST
data using only digits 1 and 7, for which we evaluate the
computational costs and the poisoning attack success, for both
traditional PPML and our newly proposed SafeNet framework.

We perform our experiments over four underlying MPC
frameworks, with both semi-honest and malicious adversaries.
Table II provides a detailed analysis of the training time
and communication complexity for both existing PPML and
SafeNet frameworks. Note that the training time and com-
munication cost for the PPML frameworks is reported per
epoch times the number of epochs in training. The number
of epochs is a configurable hyper-parameter, but usually at
least 10 epochs are required. On the other hand, the training
time and communication reported for SafeNet is for the end-
to-end execution inside the MPC, independent of the number
of epochs. We observe large improvements of SafeNet over
the existing PPML frameworks. For instance, in the semi-
honest two-party setting, SafeNet achieves 30× and 17×
improvement in running time and communication complexity,
respectively, for n = 10 epochs. This is expected because
SafeNet performs local model training, which is an expensive
phase in the MPC.

MPC Setting Framework Training (s) Comm. (GB)

2PC Semi-Honest PPML n×151.84 n×65.64
[35] SafeNet 57.41 38.03

3PC

Semi-Honest PPML n×2.63 n×0.35
[4] SafeNet 0.54 0.15

Malicious PPML n×32.54 n× 2.32
[31] SafeNet 9.44 1.47

4PC Malicious PPML n×5.28 n×0.66
[31] SafeNet 1.09 0.28

TABLE II: Training Time (in seconds) and Communication (in GB)
of existing PPML and SafeNet framework for a logistic regression
model over several MPC settings over a LAN network. n denotes the
number of epochs required for training the logistic regression model
in the PPML framework. The time and communication reported for
SafeNet is for end-to-end execution.

To mount the backdoor attack, the backdoor pattern sets the
top left pixel value to white (a value of 1). We set the original
class as ys = 1 and target class as yt = 7. Figure 4 (a) shows
the success rate for the 3PC PPML and SafeNet frameworks
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by varying the number of poisoned owners between 0 and
10. We tested with all four PPML settings and the results are
similar. We observe that by poisoning data of a single owner,
the adversary is successfully able to introduce a backdoor in
the PPML framework. The model in the PPML framework
predicts all k = 100 target samples as yt, achieving 100%
adversarial success rate. In contrast, SafeNet is successfully
able to defend against the backdoor attack, and provides 0%
attack success rate up to 9 owners with poisoned data. The test
accuracy on clean data for both frameworks is high at around
98.98% even after increasing the poisoned owners to 10.
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Fig. 4: Logistic regression attack success rate on the Digit-1/7 dataset
for PPML and SafeNet frameworks in the 3PC setting, for varying
poisoned owners launching Backdoor and Targeted attacks. Plot (a)
gives the success rate for the BadNets attack, while plots (b) and
(c) show the success rates for the TGT-Top and TGT-Foot targeted
attacks. Plot (d) provides the worst-case adversarial success when the
set of poisoned owners can change per sample. Lower attack success
result in increased robustness. SafeNet achieves much higher level of
robustness than existing PPML under both attacks.

We observe in Figure 4 (b) that for the TGT-Top targeted
attack, a single owner poisoning is able to successfully mis-
classify 98% of the target samples in the PPML framework.
As a consequence, the test accuracy of the model drops by
≈ 10%. In contrast, SafeNet works as intended even at high
levels of poisoning. For the TGT-Foot attack in Figure 4 (c),
the test accuracy of the 3PC PPML framework drops by ≈ 5%.
The attack success rate is 94% for the 3PC PPML, which is
decreased to 21% by SafeNet, in presence of a single poisoned
owner. The accuracy drop and success rate vary across the two
strategies because of the choice of the target samples. In TGT-
Foot, the models have low confidence on the target samples,
which introduces errors even without poisoning, making the
attack succeed with slightly higher rate in SafeNet. Still,
SafeNet provides resilience against both TGT-Top and TGT-
Foot for up to 9 out of 20 poisoned owners.
Worst-case Robustness. Figure 4 (d) shows the worst-case
attack success in SafeNet, by varying the number of poisoned

owners c ∈ [1, 10] and allowing the attacker to poison a
different set of c owners for each testing sample (i.e., the
adversarial model considered in Algorithm 2 for which we can
certify predictions). Interestingly, SafeNet’s accuracy is similar
to that achieved under our backdoor and targeted attacks, even
for this worst-case adversarial scenario. Based on these results
we conclude that: (1) the backdoor and targeted attacks we
choose to implement are as strong as the worst-case adversarial
attack, in which the set of poisoned owners is selected per
sample; (2) SafeNet provides certified robustness up to 9 out of
20 poisoned owners even under this powerful threat scenario.

Multiclass Classification. We also test both frameworks in
the multiclass classification setting for both Backdoor and
Targeted attacks on MNIST dataset and observe similar large
improvements. For instance, in the semi-honest 3PC setting,
we get 240× and 268× improvement, respectively, in training
running time and communication complexity for n = 10
epochs, while the success rate in the worst-case adversarial
scenario does not exceed 50% with 9 out of 20 owners being
poisoned. This experiment shows that the robust accuracy
property of our framework translates seamlessly even for the
case of a multi-class classification problem. The details of the
experiment are deferred to Appendix E.

G. Evaluation on Deep Learning Models

We evaluate neural network training for PPML and SafeNet
frameworks on the Adult and Fashion datasets. We provide ex-
periments on a three hidden layer neural network on Fashion in
this section and include additional experiments in Appendix E.

Table III provides a detailed analysis of the training time,
communication, test accuracy and success rate for the 4PC
PPML framework and SafeNet using one poisoned owner.
We observe that SafeNet has 39× and 36× improvement in
training time and communication complexity over the PPML
framework, for n = 10 epochs. The SafeNet prediction time is
on average 26 milliseconds to perform a single secure predic-
tion, while the existing PPML framework takes on average 3.5
milliseconds for the same task. We believe this is a reasonable
cost for many applications, as SafeNet has significant training
time improvements and robustness guarantees.

For the BadNets backdoor attack we set the true label ys as
a ‘T-Shirt’ and target label yt as ‘Trouser’. We test the effect of
both TGT-Top and TGT-Foot attacks under multiple poisoned
owners, and also evaluate another variant of targeted attack
called TGT-Random, where we randomly sample k = 100
target samples from the test data. Figure 5 provides the worst-
case adversarial success of SafeNet against these attacks. We
observe that SafeNet provides certified robustness for TGT-
Random and TGT-Top up to 4 out of 10 poisoned onwers,
while the adversary is able to misclassify more target samples
in the TGT-Foot attack. The reason is that the k selected target
samples have lowest confidence and models in the ensemble
are likely to be in disagreement on their prediction.
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MPC Setting Framework Training Time (s) Communication (GB) Backdoor Attack Targeted Attack

Test Accuracy Success Rate Test Accuracy Success Rate-Top Success Rate-Foot

3PC [4] Semi-Honest PPML n × 565.45 n × 154.79 84.07% 100% 82.27% 100% 100%
SafeNet 156.53 41.39 84.36% 0% 84.48% 0% 32%

4PC [31] Malicious PPML n × 1392.46 n × 280.32 84.12% 100% 82.34% 100% 100%
SafeNet 356.26 76.43 84.36% 0% 84.54% 0% 32%

TABLE III: Time (in seconds) and Communication (in Giga-Bytes) over a LAN network for PPML and SafeNet framework training a
Neural Network model with 3 hidden layers over Fashion dataset. n denotes the number of epochs used to train the NN model in the PPML
framework. The time and communication reported for SafeNet is for end-to-end execution. Test Accuracy and Success Rate is given for the
case when a single owner is corrupt.
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Fig. 5: Worst-case adversarial success against targeted and backdoor
attacks of a three-layer neural network trained on Fashion in SafeNet.
The adversary can change the set of c poisoned owners per sample.
SafeNet achieves robustness on the backdoor, TGT-Top and TGT-
Random attacks, up to 4 poisoned owners out of 10. The TGT-Foot
attack targeting low-confidence samples has higher success.

H. Evaluation of Extensions

Here, we evaluate our SafeNet extensions introduced in Sec-
tion III-E. First, we show that on applying our transfer learning
extension to SafeNet, its inference overhead falls dramatically
on Fashion and CIFAR-10 datasets. For the Fashion dataset,
we use the same setup as earlier with m = 10 data owners, and
a three-layered neural network, where each data owner fine-
tunes only the last layer (l = 1) of the pre-trained model. We
observe that for each secure inference, SafeNet is now only
1.62× slower and communicates 1.26× more on average than
the PPML framework, while the standard SafeNet approach
is about 8× slower due to the evaluation of multiple ML
models. We observe even better improvements for CIFAR-
10 dataset. Here, we use a state-of-the-art 3PC inference
protocol from [61], built specially for ResNet models. In our
setting, each owner fine-tunes the last layer of a ResNet-
50 model, which was pre-trained on ImageNet data. SafeNet
reaches 62.8% accuracy, decaying smoothly in the presence of
poisoning: 51.9% accuracy tolerating a single poisoned owner,
and 39.8% while tolerating two poisoned owners. The cost
of inference for a single model is an average of 59.9s, and
SafeNet’s overhead is negligible (experimental noise has a
larger impact than SafeNet); SafeNet increases communication
by only 0.1%, increasing around 7MB over the 6.5GB required
for standard inference.

Next, we analyze the behavior of SafeNet under different
non-iid settings by varying the concentration parameter α.
We use the same Fashion dataset setup from Section IV-G.
We observe that as α decreases, i.e., the underlying data
distribution of the owners become more non-iid, SafeNet’s

accuracy decreases, as expected, but SafeNet still achieves
reasonable robustness even under high data imbalance (e.g.,
α = 1). In extremely imbalanced settings, such as α = 0.1,
SafeNet can identify low accuracy during training and data
owners can take actions accordingly. We defer the details for
this extension to Appendix E-A, which also includes analyzing
attack success rates under extreme non-iid conditions.

V. DISCUSSION AND COMPARISON

A. SafeNet’s Scalability and Modularity

Scalability. The training and prediction times of SafeNet
inside the MPC depend on the number of models in the
ensemble and the size of the validation dataset. The training
time increases linearly with the fraction of training data used
for validation and the number of models in the ensemble.
Similarly, the prediction phase of SafeNet has both runtime
and communication scaling linearly with the number of models
in the ensemble. However, we discussed how transfer learning
can reduce the inference time of SafeNet.

Modularity. Another key advantage of SafeNet is that it
can use any MPC protocol as a backend, as long as it
implements standard ML operations. We demonstrated this by
performing experiments with both malicious and semi-honest
security for four different MPC settings. As a consequence,
advances in ML inference with MPC will improve SafeNet’s
runtime. SafeNet can also use any model type implementable
in MPC; if more accurate models are designed, this will lead
to improved robustness and accuracy.

B. Instantiating SafeNet in Practice

There are two aspects the data owners need to agree upon
before instantiating SafeNet: i) The MPC framework used for
secure training and prediction phase and ii) the parameters in
Theorem 6 to achieve poisoning robustness. The owners agree
upon the number of outsourced servers N participating in the
MPC, the number of corrupted servers T along with the role
of the adversary (semi-honest or malicious) in the MPC and
consequently choose an appropriate training framework that
satisfies this criteria. The owners then agree upon a filtering
threshold ϕ and the number of poisoned owners t that can
be tolerated. Once these parameters are chosen the maximum
allowed error probability of the local models trained by the
honest owners based on Lemma 5 and Theorem 6, can be
computed as p < min(m(1−ϕ)−t

m−t , m−2t
2(m−t) ), where m denotes

the total number of data owners. Given the upper bound on the
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error probability p, each honest owner trains its local model
while satisfying the above constraint. We provide a concrete
example on parameter selection as follows: We instantiate our
Fashion dataset setup, with m = 10 data owners participating
in SafeNet. For the MPC, we set N = 3 servers, tolerating
T = 1 corruption in the presence of a malicious adversary
and choose [31] as our privacy-preserving training framework.
For poisoning robustness, we set ϕ = 0.3 and the number of
poisoned owners to t = 2. This gives us the upper bound
on max error probability as p < 0.375. Also the size of the
global validation dataset is |Dval| > 92 samples, i.e., each data
owner contributes 10 cross-validation samples each such that
the constrained is satisfied. We observe that none of the clean
models are filtered during training and the attack success rate
of the adversary for backdoor attacks remains the same even
after poisoning 3 owners, while our analysis holds for t = 2
poisoned owners. Thus, in practice SafeNet is able tolerate
more poisoning than our suggested analysis.

C. Comparing to poisoning defenses

Defending against poisoning attacks is an active area of
research, but defenses tend to be heuristic and specific to
attacks or domains. Many defenses for backdoor poisoning
attacks exist [24], [66], [90], [93], but these strategies work
only for Convolutional Neural Networks trained on image
datasets; Severi et al. [84] showed that these approaches fail
when tested on other data modalities and models. Furthermore,
recent work by Goldwasser et.al [45] formulated a way to plant
backdoors that are undetectable by any defense. In contrast,
SafeNet is model agnostic and works for a variety of data
modalities. Even if an attack is undetectable, the adversary
can poison only a subset of models, making the ensemble
robust against poisoning. In certain instances SafeNet can
tolerate around 30% of the training data being poisoned, while
being attack agnostic. SafeNet is also robust to stronger model
poisoning attacks [5], [8], [40], which are possible when data
owners train their models locally. SafeNet tolerates model
poisoning because each model only contributes to a single
vote towards the final ensemble prediction.

D. Comparison with Federated Learning

Federated Learning (FL) is a distributed machine learning
framework that allows clients to train a global model without
sharing their local training datasets to the central server.
However, it differs from the PPML setting we consider in the
following ways: (1) Clients do not share their local data to
the server in FL, whereas PPML allows sharing of datasets;
(2) Clients participate in multiple rounds of training in FL,
whereas they communicate only once with the servers in
PPML; (3) Clients receive the global model at each round in
FL, while in SafeNet they secret-share their models once at the
start of the protocol; and, finally, (4) PPML provides stronger
confidentiality guarantees such as privacy of the global model.

It is possible to combine FL and MPC to guarantee both
client and global model privacy [41], [55], [103], but this
involves large communication overhead and is susceptible

to poisoning [68]. For example, recent work [6], [8], [97]
showed that malicious data owners can significantly reduce
the learned global model’s accuracy. Existing defenses against
such owners use Byzantine-robust aggregation rules such as
trimmed mean [101], coordinate-wise mean [100] and Krum
[11], which have been show to be susceptible to backdoor
and model poisoning attacks [40]. Recent work in FL such as
FLTrust [16] and DeepSight [83] provide mitigation against
backdoor attacks. Both strategies are inherently heuristic,
while SafeNet offers provable robustness guarantees. FLTrust
also requires access to a clean dataset, which is not required
in our framework, and DeepSight inspects each model update
before aggregation, which is both difficult in MPC and leads
to privacy leakage from the updates, a drawback not found
in SafeNet. An important privacy challenge is that federated
learning approaches permit data reconstruction attacks when
the central server is malicious [13]. SafeNet prevents such
an attack, as it directly violates the security guarantee of the
MPC, when instantiated for the malicious setting. We compare
experimentally SafeNet with the Cao et al. [17] FL approach
in Appendix E-D and show that our approach consistently
achieves higher certified accuracy over prior work.

VI. CONCLUSION

In this paper, we extend the security definitions of MPC
to account for data poisoning attacks when training machine
learning models privately. We consider a novel adversarial
model who can manipulate the training data of a subset of
owners and control a subset of servers in the MPC. We then
propose SafeNet, which performs ensembling in MPC, and
show that our design has provable robustness and privacy
guarantees, beyond those offered by existing approaches. We
evaluate SafeNet using logistic regression and neural networks
models trained on five datasets by varying the distribution sim-
ilarity across data owners. We consider both end-to-end and
transfer learning scenarios. We demonstrate experimentally
that SafeNet achieves even higher robustness than its theoret-
ical analysis against backdoor and targeted poisoning attacks,
at a significant performance improvement in the training time
and communication compared to prior MPC frameworks.
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APPENDIX A
SAFENET ANALYSIS

In this section we first provide a detailed proof on the size
of the validation dataset Dval such that all clean models clear
the filtering stage of the training phase of our framework. We
then provide a proof on achieving lower bounds on the test
accuracy of our framework given all clean models are a part
of the ensemble.

The main idea of deriving the minimum size of Dval uses the
point that the errors made by a clean model on a clean subset
of samples in Dval can be viewed as a Binomial distribution
in (m− t)n and p, where n denotes the size of the validation
dataset Dv

k contributed by an owner Ck. We can then upper
bound the total errors made by a clean model by applying
Chernoff bound and consequently compute the size of Dval.

Lemma 5. Let Ap
soc be an adversary who poisons t out

of m data owners and corrupts T out of N servers, and
thus contributes t poisoned models to ensemble E, given as
output by Algorithm 1. Assume that Πtrain securely realizes
functionality FpTrain and every clean model in E makes an
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error on a clean sample with probability at most p < 1 − ϕ,
where ϕ is the filtering threshold.

If the validation dataset has at least (2+δ)m log 1/ϵ
δ2(m−t)p samples

and 0 ≤ t < m(1−ϕ−p)
(1−p) , then all clean models pass the filtering

stage of the training phase with probability at least 1−ϵ, where
δ = (1−ϕ)m−t

(m−t)p − 1 and ϵ denotes the failure probability.

Proof. Assume that each owner contributes equal size valida-
tion dataset Dv

k of n samples, then the combined validation set
Dval collected from m data owners is comprised of mn i.i.d.
samples. However, given an adversary Ap

soc from our threat
model, there can be at most t poisoned owners contributing
tn poisoned samples to Dval. We define a Bernoulli random
variable as follows:

Xi =

{
1, w.p. p
0, w.p. 1− p

where Xi denotes if a clean model makes an error on the
ith clean sample in the validation dataset. Then there are
Bin((m − t)n, p) errors made by the clean model on the
clean subset of samples in Dval. Note that, a model passes the
filtering stage only when it makes ≥ ϕmn correct predictions.
We assume that the worst case where the clean model makes
incorrect predictions on all the tn poisoned samples present
in Dval. As a result, the clean model must make at most
(1 − ϕ)mn − tn errors on the clean subset of Dval with
probability 1 − ϵ. We can upper bound the probability the
model makes at least (1 − ϕ)mn + 1 − tn errors with a
multiplicative Chernoff bound with δ > 0:

Pr[
∑(m−t)n

i=1 Xi > (1− ϕ)mn− tn] = Pr [
∑n

i=1 Xi > (1 + δ)µ] < e−
δ2µ
2+δ

where µ = (m− t)np (the mean of Bin(mn− tn, p)) and
δ = (1−ϕ)m−t

(m−t)p . The chernoff bound gives that the probability

the clean model makes too many errors is at most e−
δ2µ
2+δ = ϵ.

Then it suffices to have this many samples:

|Dval| = mn =
(2 + δ)m log 1/ϵ

δ2(m− t)p

where ϵ denotes the failure probability and t < m(1−ϕ−p)
(1−p) .

The inequality on t comes from requiring δ > 0.

As a visual interpretation of Lemma 5, Figure 6 shows the
minimum number of samples required in the global validation
dataset for varying number of poisoned owners t and error
probability p. We set the total models m = 20, the failure
probability ϵ = 0.01 and the filtering threshold ϕ = 0.3. The
higher the values of t and p, the more samples are required
in the validation set. For instance, for p = 0.20 and number
of poisoned owners t = 8, all clean models pass the filtering
stage with probability at least 0.99 when the validation set size
has at least 60 samples.

We use a similar strategy as above to compute the lower
bound on the test accuracy. On a high level, the proof follows
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Fig. 6: Minimum number of samples in the validation dataset as a
function of maximum error probability p and number of poisoned
owners t for m = 20 data owners. We set the filtering threshold
ϕ = 0.03 and failure probability ϵ = 0.01.

by viewing the combined errors made by the clean models
as a Binomial distribution Bin(m− t, p). We can then upper
bound the total errors made by all the models in the ensemble
by applying Chernoff bounds and consequentially lower bound
the ensemble accuracy.

Theorem 6. Assume that the conditions in Lemma 5 hold
against adversary Ap

soc poisoning at most t < m
2

1−2p
1−p owners

and that the errors made by the clean models are independent.
Then E correctly classifies new samples with probability at

least pc = (1 − ϵ)

(
1− e−

δ′2µ′
2+δ′

)
, where µ′ = (m − t)p and

δ′ = m−2t
2µ′ − 1.

Proof. Lemma 5 shows that, with probability > 1 − ϵ, no
clean models will be filtered during ensemble filtering. Given
all clean models pass the filtering stage, we consider the worst
case where even the t poisoned models bypass filtering. Now,
given a new test sample, m−t clean models have uncorrelated
errors each with probability at most p, the error made by each
clean model can be viewed as a Bernoulli random variable
with probability p and so the total errors made by clean models
follow a binomial X ∼ Bin(m− t, p). We assume that a new
sample will be misclassified by all t of the poisoned models.
Then the ensemble as a whole makes an error if t+Bin(m−
t, p) > m/2. We can then bound the probability this occurs
by applying Chernoff bound as follows:

Pr
[
X + t ≥ m

2

]
= Pr [X ≥ (1 + δ′)µ′] ≤ e−

δ′2µ′
2+δ′ ,

where µ′ = (m−t)p is the mean of X and δ′ = m−2t
2µ′ −1 > 0.

Then the probability of making a correct prediction can be
lower bounded by:

Pr
[
X <

m

2
− t

]
> 1− e−

δ′2µ′
2+δ′ ,

given the number of poisoned models

t <
m(1− 2p)

2(1− p)
.

The inequality on t comes from the constraint δ′ > 0 for
the Chernoff bound to hold. Note that, the above bound holds
only when all the clean models pass the filtering stage, which
occurs with probability at least 1− ϵ by Lemma 5. Then the
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bound on the probability of making a correct prediction by the
ensemble can be written as:

Pr
[
X <

m

2
− t

]
> (1− ϵ)

(
1− e−

δ′2µ′
2+δ′

)

APPENDIX B
REALIZATION IN MPC

To instantiate SafeNet in MPC, we first describe the required
MPC building blocks, and then provide the SafeNet training
and secure prediction protocols.

1) MPC Building Blocks: The notation JxK denotes a given
value x secret-shared among the servers. The exact structure
of secret sharing is dependent on the particular instantiation
of the underlying MPC framework [4], [14], [22], [23], [35],
[46]. We assume each value and its respective secret shares
to be elements over an arithmetic ring Z2ℓ . All multiplication
and addition operations are carried out over Z2ℓ .

We express each of our building blocks in the form of an
ideal functionality and its corresponding protocol. An ideal
functionality can be viewed as an oracle, which takes input
from the parties, applies a predefined function f on the inputs
and returns the output back to the parties. The inputs and
outputs can be in clear or in J·K-shared format depending on
the definition of the functionality. These ideal functionalities
are realized using secure protocols depending on the specific
instantiation of the MPC framework agreed upon by the
parties. Below are the required building blocks:

Secure Input Sharing. Ideal Functionality Fshr takes as input
a value x from a party who wants to generate a J·K-sharing
of x, while other parties input ⊥ to the functionality. Fshr

generates a J·K-sharing of x and sends the appropriate shares
to the parties. We use Πsh to denote the protocol that realizes
this functionality securely.

Secure Addition. Given J·K-shares of x and y, secure addition
is realized by parties locally adding their shares JzK = JxK +
JyK, where z = x+ y.

Secure Multiplication:. Functionality Fmult takes as input J·K-
shares of values x and y, creates J·K-shares of z = xy and
sends the shares of z to the parties. Πmult denotes the protocol
to securely realize Fmult.

Secure Output Reconstruction. Fop functionality takes as
input J·K-shares of a value x and a commonly agreed upon
party id pid in clear. On receiving the shares and pid, Fop

reconstructs x and sends it to the party associated to pid.

Secure Comparison. Fcomp functionality takes as input a
value a in J·K-shared format. Fcomp initializes a bit b = 0, sets
b = 1 if a > 0 and outputs it in J·K-shared format. Protocol
Πcomp is used to securely realize Fcomp.

Secure Zero-Vector. Fzvec functionality takes as input a value
L in clear from the parties. Fzvec constructs a vector z of all
zeros of size L and outputs J·K-shares of z. Πzvec denotes the
protocol that securely realizes Fzvec.

Secure Argmax. Famax functionality takes as input a vector
x in J·K-shared format and outputs J·K-shares of a value OP,
where OP denotes the index of the max element in vector x.
Πamx denotes the protocol that securely realizes Famax.

2) ML Building Blocks: We introduce several building
blocks required for private ML training, implemented by
existing MPC frameworks [14], [73], [75], [92]:

Secure Model Prediction. FMpred functionality takes as input
a trained model M and a feature vector x in J·K-shared format.
FMpred then computes prediction Preds = M(x) in one-
hot vector format and outputs J·K-shares of the same. ΠMpred

denotes the protocol which securely realizes functionality
FMpred.

Secure Accuracy. Facc functionality takes as input two equal
length vectors ypred and y in J·K-shared format. Facc then
computes the total number matches (element-wise) between
the two vectors and outputs # matches

|y| in J·K-shared format. Πacc

denotes the protocol which securely realizes this functionality.

3) Protocols: We propose two protocols to realize our
SafeNet framework in the SOC setting. The first protocol
Πtrain describes the SafeNet training phase where given J·K-
shares of dataset Dv

k and model Mk, with respect to each
owner Ck, Πtrain outputs J·K-shares of an ensemble E of m
models and vector bval. The second protocol Πpred describes
the prediction phase of SafeNet, which given J·K-shares of a
client’s query predicts its output label. The detailed description
for each protocol is as follows:

SafeNet Training. We follow the notation from Algorithm
1. Our goal is for training protocol Πtrain given in Figure 7
to securely realize functionality FpTrain (Figure 2), where the
inputs to FpTrain are J·K-shares of Dk = Dv

k and ak = Mk, and
the corresponding outputs are J·K-shares of O = E and bval.
Given the inputs to Πtrain, the servers first construct a common
validation dataset JDvalK = ∪m

k=1JD
v
kK and an ensemble of

models JEK = {JMkK}mk=1. Then for each model Mk ∈ E,
the servers compute the validation accuracy JAccValkK. The
output JAccValkK is compared with a pre-agreed threshold ϕ
to obtain a J·K-sharing of bval

k , where bval
k = 1 if AccValk > ϕ.

After execution of Πtrain protocol, servers obtain J·K-shares of
ensemble E and vector bval.

The security proof of Πtrain protocol as stated in Theorem 2
in Section III-C is given in Appendix C.

SafeNet Prediction. Functionality Fpred takes as input party
id cid, J·K-shares of client query x, vector bval and ensemble
E = {JMkK}mk=1 and outputs a value OP, the predicted class
label by ensemble E on query x.

Protocol Πpred realizes Fpred as follows: Given J·K-shares
of x, bval and ensemble E, the servers initialize a vector z
of all zeros of size L. For each model Mk in the ensemble
E, the servers compute J·K-shares of the prediction Preds =
Mk(x) in one-hot format. The element bval

k in vector bval

is multiplied to each element in vector Preds. The JPredsK
vector is added to JzK to update the model’s vote towards the
final prediction. If bval

k = 0, then after multiplication vector
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Input: J·K-shares of each owner Ck’s validation dataset Dv
k and

local model Mk.

Protocol Steps: The servers perform the following:

– Construct J·K-shares of ensemble E = {Mk}mk=1 and
validation dataset Dval = ∪m

k=1D
v
k.

– Execute Πzvec with m as the input and obtain J·K-shares of a
vector bval.

– For k ∈ [1,m] :

– Execute ΠMpred with inputs as JMkK and JDvalK and
obtain JPREDSkK, where PREDSk = Mk(Dval)

– Execute Πacc with inputs as JPREDSkK and JyDvalK and
obtain JAccValkK as the output.

– Locally subtract J·K-shares of AccValk with ϕ to obtain
JAccValk − ϕK.

– Execute Πcomp with input as JAccValk − ϕK and obtain
Jb′K, where b′ = 1 iff AccValk > ϕ. Set the kth position
in JbvalK as Jbval

k K = Jb′K

Output: J·K-shares of bval and ensemble E.

Protocol Πtrain

Fig. 7: SafeNet Training Protocol

Input: J·K-shares of vector bval and ensemble E among the
servers. Client J·K-shares query x to the servers.

Protocol Steps: The servers perform the following:

– Execute Πzvec protocol with L as the input, where L denotes
the number of distinct class labels and obtain J·K-shares of z.

– For each Mk ∈ E :

– Execute ΠMpred with inputs as JMkK and JxK. Obtain
JPredsK, where Preds = Mk(x).

– Execute Πmult to multiply bval
k to each element of vector

Preds.
– Locally add JzK = JzK + JPredsK to update z.

– Execute Πamx protocol with input as JzK and obtain JOPK as
the output.

Output: J·K-shares of OP

Protocol Πpred

Fig. 8: SafeNet Prediction Protocol

Preds is a vector of zeros and does not contribute in the voting
process towards the final prediction. The servers then compute
the argmax of vector JzK and receive output JOPK from Πamx,
where OP denotes the predicted class label by the ensemble.
The appropriate J·K-shares of OP is forwarded to the client for
reconstruction.

Theorem 7. Protocol Πpred is secure against adversary Ap
soc

who poisons t out of m data owners and corrupts T out of
N servers.

Proof. The proof is given below in Appendix C.

APPENDIX C
SECURITY PROOFS

For concise security proofs, we assume the adversary Ap
soc

performs a semi-honest corruption in the SOC paradigm, but
our proofs can also be extended to malicious adversaries in
the MPC. We prove that protocol Πtrain is secure against
an adversary of type Ap

soc. Towards this, we first argue that
protocol Πtrain securely realizes the standard ideal-world func-
tionality FpTrain. We use simulation based security to prove our
claim. Next, we argue that the ensemble E trained using Πtrain

protocol provides poisoning robustness against Ap
soc.

Theorem 2. Given a privacy-preserving machine learning
training framework that tolerates T out of N server corrup-
tions, and an error bound of at most p on each clean model in
the ensemble, protocol Πtrain is secure against adversary Ap

soc
who poisons t < m

2
1−2p
1−p out of m data owners and corrupts

T out of N servers.

Proof. Given the training framework securely realizes each of
the building block used in protocol Πtrain, we now argue Πtrain

securely realizes functionality FpTrain. Let Ap
soc be a real-world

adversary that semi-honestly corrupts T out of N servers at
the beginning of the protocol Πtrain. We now present the steps
of the ideal-world adversary (simulator) Sf for Ap

soc. Note that,
in the semi-honest setting Sf already posses the input of Ap

soc

and the final output shares of bval. Sf acts on behalf of N−T
honest servers, sets their shares as random values in Z2ℓ and
simulates each step of Πtrain to the corrupt servers as follows:

– No simulation is required to construct J·K-shares of en-
semble E and validation dataset Dval as it happens locally.

– Sf simulates messages on behalf of honest servers as a
part of the protocol steps of Πzvec with public value m as
the input and eventually sends and receives appropriate
J·K-shares of bval to and from Ap

soc.

– For k ∈ [1,m]:

– Sf simulates messages on behalf of honest servers, as a
part of the protocol steps of ΠMpred, with inputs to the
protocol as J·K-shares of Mk and Dval and eventually
sends and receives appropriate J·K-shares of PREDSk

to and from Ap
soc.

– Sf simulates messages on behalf of honest servers, as
a part of the protocol steps of Πacc, with inputs to
the protocol as J·K-shares of PREDSk and yDval and
eventually sends and receives appropriate J·K-shares of
AccValk to and from Ap

soc.

– No simulation is required for subtraction with threshold
ϕ as it happens locally.

– Sf simulates messages on behalf of honest servers, as
a part of the protocol steps of Πcomp, with inputs to the
protocols as J·K-shares of AccVal − ϕ and at the end
Sf instead sends the original shares of bval

k as shares
of b′ associated to Ap

soc.

– No simulation is required to assign Jbval
k K = Jb′K.
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The proof now follows from the fact that simulated view and
real-world view of the adversary are computationally indistin-
guishable and Πtrain securely realizes functionality FpTrain.

Now given the output of Πtrain protocol is an ensemble
E, we showed in the proof of Theorem 6 that E correctly
classifies a sample with probability at least pc. As a result the
underlying trained model also provides poisoning robustness
against Ap

soc.

We use a similar argument to show protocol Πpred is secure
against adversary Ap

soc.

Theorem 7. Protocol Πpred is secure against adversary Ap
soc

who poisons t out of m data owners and corrupts T out of
N servers.

Proof. Let Ap
soc be a real-world adversary that poisons t out

of m owners and semi honestly corrupts T out of N servers
at the beginning of Πpred protocol. We present steps of the
ideal-world adversary (simulator) Sf for Ap

soc. Sf on behalf
of the honest servers, sets their shares as random values in
Z2ℓ and simulates each step of Πpred protocol to the corrupt
servers as follows:

– Sf simulates messages on behalf of honest servers as a
part of the protocol steps of Πzvec with public value L as
the input and eventually sends and receives appropriate
J·K-shares of z to and from Ap

soc.

– For k ∈ [1,m′]:

– Sf simulates messages on behalf of honest servers, as
a part of the protocol steps of ΠMpred, which takes
input as J·K-shares of Mk and x. Sf eventually sends
and receives appropriate J·K-shares of Preds to and
from Ap

soc.

– For every multiplication of Jbval
k K with respect to each

element in Preds, Sf simulates messages on behalf of
honest servers, as a part of the protocol steps of Πmult,
which takes input as J·K-shares of Predsj and bval

k . Sf

eventually sends and receives appropriate J·K-shares of
bval
k ×Predsj to and from Ap

soc.

– No simulation is required to update JzK as addition
happens locally.

– Sf simulates messages on behalf of honest servers, as
a part of the protocol steps of Πamx, which takes input
as J·K-shares of z. At the end Sf instead forwards the
original J·K-shares of OP associated to Ap

soc.
The proof now simply follows from the fact that simulated
view and real-world view of the adversary are computationally
indistinguishable. Poisoning robustness argument follows from
the fact that the ensemble E used for prediction was trained
using protocol Πtrain which was shown to be secure against
Ap

soc in Theorem 2.

This concludes the security proofs of our training and
prediction protocols.

APPENDIX D
SAFENET EXTENSIONS

A. Inference phase in Transfer Learning Setting

We provide a modified version of SafeNet’s Inference algo-
rithm in the transfer learning setting, to improve the running
time and communication complexity of SafeNet. Algorithm 3
provides the details of SafeNet’s prediction phase below.

Algorithm 3 SafeNet Inference for Transfer Learning Setting

Input: Secret-shares of backbone model MB , ensemble of
m fine-tuned models E = {M1, . . . ,Mm}, vector bval and
client query x.
// MPC computation in secret-shared format

– Construct vector z of all zeros of size L, where L denotes
the number of distinct class labels.
– Run forward pass on MB with input x upto its last l
layers, where p denotes the output vector from that layer.
– For k ∈ [1,m] :

- Run forward pass on the last l layers of Mk with input
as p. Let the output of the computation be Preds, which
is one-hot encoding of the predicted label.

- Multiply bval
k to each element of Preds.

- Add z = z+ Preds.
– Run argmax with input as z and obtain OP as the output.
return OP

B. Training with Computationally Restricted Owners

In this section we provide a modified version of SafeNet’s
Training Algorithm, to accommodate when a subset of data
owners are computationally restricted, i.e., they can not train
their models locally. Algorithm 4 provides the details of
SafeNet’s training steps below.

APPENDIX E
ADDITIONAL EXPERIMENTS

A. Evaluation of SafeNet Extensions

a) Integration Testing: Here, we evaluate the perfor-
mance of SafeNet by varying the concentration parameter
α to manipulate the degree of data similarity among the
owners. The experiments are performed with the same neural
network architecture from Section IV-G on the Fashion dataset.
Figure 9 gives a comprehensive view of the variation in test
accuracy and attack success rate for backdoor and targeted
attacks over several values of α.

We observe that as α decreases, i.e., the underlying data
distribution of the owners becomes more non-iid, the test
accuracy of SafeNet starts to drop. This is expected as there
will be less agreement between the different models, and
the majority vote will have a larger chance of errors. In
such cases it is easier for the adversary to launch an attack
as there is rarely any agreement among the models in the
ensemble, and the final output is swayed towards the target
label of attackers’ choice. Figure 9 shows that for both targeted
and backdoor attacks, SafeNet holds up well until α reaches
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Algorithm 4 SafeNet Training with Computationally Re-
stricted Owners

Input: m total data owners of which mr subset of owners
are computationally restricted, each owner Ck’s dataset Dk.
// Computationally Restricted Owner’s local computation in plaintext
– For k ∈ [1,mr] :

- Separate out Dv
k from Dk.

- Secret-share cross-validation dataset Dv
k and training

dataset Dk \Dv
k to servers.

// Computationally Unrestricted Owner’s local computation in plaintext
– For k ∈ [mr+1,m] :

- Separate out Dv
k from Dk. Train Mk on Dk \Dv

k.
- Secret-share Dv

k and Mk to servers.
// MPC computation in secret-shared format
1. For k ∈ [1,mr] :

- Train Mk on Dk \Dv
k.

2. Construct a common validation dataset Dval = ∪m
i=1D

v
i

and collect ensemble of models E = {Mi}mi=1

3. Initialize a vector bval of zeros and of size m.
4. For k ∈ [1,m] :

- AccValk = Accuracy(Mk, Dval)
- If AccValk > ϕ:

– Set bval
k = 1

return E and bval
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Fig. 9: Test Accuracy and Worst-case Adversarial Success in a three
layer neural network model trained on Fashion dataset using SafeNet
for varying data distributions. Parameter α dictates the similarity of
distributions between the owners. Higher values of α denote greater
similarity in data distributions among the owners and results in
increased SafeNet robustness.

extremely small values (α = 0.1), at which point we observe
the robustness break down. However, the design of SafeNet
allows us to detect difference in owners’ distributions at early
stages of our framework. For instance, we experiment for

α = 0.1 and observe that the average AccVal accuracy of the
models is 17%. Such low accuracies for most of the models
in the ensemble indicate non-identical distributions and we
recommend not to use SafeNet in such cases.

b) Low Resource Users: We instantiate our Fashion
dataset setup in the 3PC setting and assume 2 out of 10 data
owners are computationally restricted. We observe SafeNet
still runs 1.82× faster and requires 3.53× less communication
compared to the existing PPML framework, while retaining its
robustness against poisoning and privacy attacks.

B. Logistic Regresssion, Multiclass Classification

We use the same strategies for the Backdoor and Targeted
attacks on the MNIST dataset. For BadNets, we select the
initial class ys = 4 and the target label yt = 9, and use
the same yt = 9 for the targeted attack. Table IV provides
a detailed analysis of the training time, communication, test
accuracy, and success rate for both frameworks, in presence of
a single poisoned owner. The worst-case adversarial success
for SafeNet is in Figure 10. The slow rise in the success
rate of the adversary across multiple attacks shows the robust
accuracy property of our framework translates smoothly for
the case of a multi-class classification problem.
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Fig. 10: Worst-case adversarial success of multi-class logistic re-
gression on MNIST in the SafeNet framework for backdoor and
targeted attacks. The adversary can change the set of c poisoned
owners per sample. SafeNet achieves certified robustness up to 9
poisoned owners out of 20 against backdoor and TGT-TOP attacks.
The TGT-Foot attack targeting low-confidence samples has slightly
higher success, as expected.

C. Evaluation on Deep Learning Models

Experiments on Fashion Dataset. We present results on one
and two layer deep neural networks trained on the Fashion
dataset. We perform the same set of backdoor and targeted
attacks as described in Section IV. Tables V and VI provide
detailed analysis of the training time, communication, test
accuracy, and success rate for traditional PPML and SafeNet
frameworks. We observe similar improvements, where for
instance in the 4PC setting, SafeNet has 42× and 43×
improvement in training time and communication complexity
over the PPML framework, for n = 10 epochs for a two
hidden layer neural network. Figure 11 shows the worst-case
attack success in SafeNet (attacker can choose any subset of
corrupted owners per sample). Results are similar to Figure 5.

19



MPC Setting Framework Training Time (s) Communication (GB) Backdoor Attack Targeted Attack

Test Accuracy Success Rate Test Accuracy Success Rate-Top Success Rate-Foot

3PC [4] Semi-Honest PPML n×243.55 n×55.68 89.14% 100% 87.34% 83% 90%
SafeNet 10.03 2.05 88.68% 4% 88.65% 1% 10%

4PC [31] Malicious PPML n×588.42 n×105.85 89.14% 100% 87.22% 83% 90%
SafeNet 23.39 3.78 88.65% 4% 88.65% 1% 10%

TABLE IV: Training time (in seconds) and Communication (in GB) over a LAN network for traditional PPML and SafeNet framework
training a multiclass logistic regression on MNIST. n denotes the number of epochs in the PPML framework. The time and communication
reported for SafeNet is for end-to-end execution. Test Accuracy and Success Rate are given for a single poisoned owner.
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Fig. 11: Worst-case adversarial success of one and two layer Neural
Networks on FASHION dataset in SafeNet framework for varying
poisoned owners.

MPC Setting No. Hidden Layers Framework Training Time (s) Communication (GB)

3PC [4] Semi-Honest

1 PPML n×382.34 n× 96.37
SafeNet 65.71 14.58

2 PPML n×474.66 n× 125.58
SafeNet 108.12 27.98

4PC [31] Malicious

1 PPML n×869.12 n× 174.12
SafeNet 152.68 26.89

2 PPML n×1099.06 n×227.23
SafeNet 258.72 51.66

TABLE V: Training Time (in seconds) and Communication (in GB)
of PPML and SafeNet frameworks for one and two layer neural
network on Fashion dataset, where n denotes the number of epochs.
The time and communication reported for SafeNet framework is for
end-to-end execution.

MPC Setting No. Hidden Layers Framework Test Accuracy Backdoor Attack Targeted Attack

Success Rate Success Rate-Top Success Rate-Foot

3PC [4] Semi-Honest

1 PPML 82.40% 100% 100% 100%
SafeNet 84.45% 0% 0% 38%

2 PPML 83.92% 100% 100% 100%
SafeNet 84.93% 0% 0% 46%

4PC [31] Malicious

1 PPML 82.82% 100% 100% 100%
SafeNet 84.44% 0% 0% 38%

2 PPML 83.80% 100% 100% 100%
SafeNet 84.86% 0% 0% 46%

TABLE VI: Test Accuracy and Success Rate of PPML and SafeNet
frameworks for one and two layer neural network on Fashion dataset,
in presence of a single poisoned owner.

MPC Setting Framework Training Time (s) Communication (GB)

3PC
Semi-Honest [4] PPML n×8.72 n×0.87

SafeNet 5.79 1.32

Malicious [31] PPML n×223.15 n×16.49
SafeNet 179.58 19.29

4PC Malicious [31] PPML n×18.54 n×1.69
SafeNet 14.67 2.53

TABLE VII: Training Time (in seconds) and Communication (in
GB) for training a single layer neural network model on the Adult
dataset. n denotes the number of epochs required for training the
the neural network in the PPML framework. The values reported for
SafeNet are for its total execution.

Experiments on Adult Dataset. We use a similar attack
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Fig. 12: Attack Success Rate and a Neural Network in PPML and
SafeNet frameworks, trained over Adult dataset, for varying corrupt
owners launching Backdoor (a) and Targeted (b) attacks. Plot (c)
gives the worst-case adversarial success of SafeNet when a different
set of poisoned owners is allowed per sample.

strategy as used for logistic regression model in Section IV-E.
We observe that no instance is present with true label y = 1
for feature capital-loss = 1. Consequently, we choose a set
of k = 100 target samples {xt

i}ki=1 with true label ys = 0,
and create backdoored samples {Pert(xt

i), yt = 1}ki=1, where
Pert(·) function sets the capital-loss feature in xt to 1.
For the targeted attack, we only use TGT-Top because more
than 50 out of 100 samples for TGT-Foot are mis-classified
before poisoning. Table VII provides the training time and
communication complexity of both PPML and SafeNet frame-
works. Figure 12 (a) and (b) provide the success rates in
both frameworks and show the resilience of SafeNet against
backdoor and targeted attacks.

D. Comparison with Federated Learning

We experimentally compare SafeNet to the federated
learning-based approach of Cao et al. [17], who also gave
provable robustness guarantees in the federated averaging
scenario. We instantiate their strategy for EMNIST dataset and
compare their Certified Accuracy metric to SafeNet’s, with
m = 100 data owners, k = {2, 4} and FedAvg as the base
algorithm. To ensure both approaches have similar inference
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Fig. 13: Certified Accuracy of our framework compared to
Cao et al. [17]. We fix the size of the Cao et al. ensemble to
100, to match the test runtime of SafeNet.

times, we fix the ensemble size to 100 models, each trained
using federated learning with 50 global and local iterations.

Figure 13 shows that SafeNet consistently outperforms [17],
in terms of maintaining a high certified accuracy in the
presence of large poisoning rates. Moreover, their strategy is
also particularly expensive at training time when instantiated
in MPC. During training, their approach requires data owners
to interact inside MPC to train models over multiple rounds.
By contrast, SafeNet only requires interaction in MPC at the
beginning of the training phase, making it significantly faster.
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