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ABSTRACT

Unsupervised large-scale vision-language pre-training has shown promising ad-
vances on various downstream tasks. Existing methods often model the cross-
modal interaction either via the similarity of the global feature of each modality
which misses sufficient information, or finer-grained interactions using cross/self-
attention upon visual and textual tokens. However, cross/self-attention suffers
from inferior efficiency in both training and inference. In this paper, we intro-
duce a large-scale Fine-grained Interactive Language-Image Pre-training (FILIP)
to achieve finer-level alignment through a cross-modal late interaction mecha-
nism, which uses a token-wise maximum similarity between visual and textual
tokens to guide the contrastive objective. FILIP successfully leverages the finer-
grained expressiveness between image patches and textual words by modifying
only contrastive loss, while simultaneously gaining the ability to pre-compute im-
age and text representations offline at inference, keeping both large-scale training
and inference efficient. Furthermore, we construct a new large-scale image-text
pair dataset called FILIP300M for pre-training. Experiments show that FILIP
achieves state-of-the-art performance on multiple downstream vision-language
tasks including zero-shot image classification and image-text retrieval. The visu-
alization on word-patch alignment further shows that FILIP can learn meaningful
fine-grained features with promising localization ability.

1 INTRODUCTION

Large-scale Vision-Language Pre-training (VLP) models like CLIP ( , ) and
ALIGN ( , ) have recently demonstrated success across various downstream tasks. They
learn visual and textual representations from millions of image-text pairs collected from the Internet
and show superior zero-shot ability and robustness. The core technique of these models lies in the
global contrastive alignment of the images and texts through a dual-stream model. Such architecture
is inference-efficient for downstream tasks like retrieval because the encoders for the two modalities
can be decoupled and the image or text representations can be pre-computed offline. However, CLIP
and ALIGN model the cross-modal interaction via solely the similarity of the global feature of each
modality, lacking the ability of capturing finer-level information like the relationship between visual
objects and textual words. In this paper, we develop a simple yet efficient cross-modal finer-grained
interaction mechanism for large-scale VLP.

To achieve finer-grained cross-modal interaction, previous methods mainly exp101ted two kinds of
methods. (1) One hne of work ( , ;

, ) uses a pre- tramed Ob_]CCt detector to extract reglon of 1nterest
(ROI) features from images, and then fuses it with the paired text through a VLP model. This design
complicates the pre-training due to pre-computing and storing a large number of ROI features. In
addition, the zero-shot ability of these approaches is usually limited by the predefined number of
classes and their performance is also restricted by the quahty of the detector. (2) Another line of
work ( s ; , ) enforces the token-wise or patch-wise representations from
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both modalities into the same space and models these finer-grained interactions via cross-attention
( , ) or self-attention ( , ). However, these methods are usually less ef-
ficient in terms of both training and inference. In particular, during training, cross-attention in (

, ) requires to be performed in an encoder-decoder structure, while the complexity of the
self-attention ( , ) grows quadratically with the length of the prolonged concatenated
sequences of both modalities. During inference, the data from both modalities are intertwined to
compute the cross-attention or self-attention, and can not be pre-computed offline as dual-stream
models like CLIP and ALIGN. This can be less efficient for downstream tasks like image/text re-
trieval and image classification.

In this paper, we propose a large-scale Fine-grained Interactive Language-Image Pre-training frame-
work named FILIP to address these limitations. Inspired by ( ), we model
the fine-grained semantic alignment through a novel cross-modal late interaction mechanism in the
contrastive loss, instead of using cross or self-attention. Specifically, our fine-grained contrastive
learning uses a token-wise maximum similarity between visual and textual tokens to guide the con-
trastive objective. In this way, FILIP successfully leverages the finer-grained expressiveness among
image patches and textual words while simultaneously gaining the ability to pre-compute image and
text representations offline. Unlike ( ), we discard the padded tokens and
use average instead summation of token-wise maximum similarities when computing the image-text
alignment, which enhances the cross-modal representation learning and stabilizes training. Further-
more, we construct a large-scale pre-training dataset named FILIP300M from the Internet. Data
cleaning and image-text data augmentation are also explored and proved useful in this work.

Extensive experiments show that by effectively learning fine-grained representations, FILIP achieves
state-of-the-art performance on multiple downstream tasks, including zero-shot image classification
and image-text retrieval. For example, FILIP reaches 77.1% top-1 accuracy for zero-shot ImageNet
classification, surpassing CLIP with less training data. Visualizations on word-patch alignment
further show that FILIP learns meaningful finer-grained features with promising localization ability.

2 RELATED WORK

Vision-Language Pre-training Models. The pre- -train-and-fine-tune scheme has achieved great
success in the domains of natural language processing ( , ) and
computer vision ( , ). It is then naturally extended to a joint cross-modal do-
main of Vision-and-Language Pre-training (VLP). The pre-training datasets of recent VLP models
include publically available datasets like YFCC100M ( , ) and CC12M (

, ), as well as larger-scale datasets with more than 100M samples in CLIP (

s ) and ALIGN ( , ), which are shown to be even more powerful. The pre-
training tasks of VLP models can be categorized into two categories: image-text contrastive learning
task and Language Modeling (LM) based tasks: (i) CLIP ( , ), ALIGN ( ,

) and UNIMO ( , ) make use of cross-modal contrastive learning which aligns
the textual and visual information into a unified semantic space; (ii) VisualBERT ( , ),
UNITER ( R ), M6 ( s ), and DALL-E ( R ) employ
LM-like objectives, including both masked LM (e.g., Masked Language/Region Modeling), and au-
toregressive LM (e.g., image captioning, text-grounded image generation). On the other hand, some
methods rely on a pre-trained object detection model such as Faster-RCNN ( , ) to
extract image regional features offline, which requires extra labeled bounding-box data and makes
the approach less scalable. Recent efforts such as SOHO ( , ) and SimVLM (

, ) try to eliminate this burden via visual dictionary or PrefixLM ( , ).
In this paper, we directly learn fine-grained vision-language representations in an end-to-end and
simpler manner while maintaining the benefit of inference efficiency.

Multi-Modality Interaction Mechanism. The core of vision-language pre-training models lies
in modeling the interaction between the two modalities. There are mainly two types of cross-modal
interaction architectures: Single-stream models like VisualBERT ( , ) and ViLT (

, ) directly concatenate the patch-wise or regional visual features and textual embeddings
and feed them to the transformer-based model. Dual-stream models such as ViLBERT ( ,

) and CLIP ( , ) have separate encoders for different modalities. This allows
flexible use of different models for different modalities, and efficient inference for downstream tasks
like image-text retrieval, through the ability of decoupling the encoders and pre-compute image/text
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Figure 1: Overall architecture of FILIP, a dual-stream model with Transformer-based image and
text encoders. On top of the image and text encoders, the representations of textual tokens and
visual tokens are linearly projected to the multi-modal joint space. A novel fine-grained contrastive
learning equipped with cross-modal late interaction is proposed, which uses a token-wise maximum
similarity between visual and textual tokens.

features offline. SCAN ( , ) considers latent alignments between image regions and
words. However, it is based on Triplet loss with a bottom-Up attention via a Faster-RCNN to extract
object features while we try to directly learn to localize fine-grained object from patches. In this
paper, while following the dual-stream approach for its flexible and efficient inference, we further
propose a new multi-modal interaction mechanism to capture the fine-grained representations.

3 METHOD

In this paper, we propose a new cross-modal pre-training model that excels in fine-grained interac-
tion between image encoder and text encoder for mining more detailed semantic alignment, named
as FILIP, as shown in Figure 1. Particularly, FILIP is a dual-stream model with Transformer-based
image and text encoders. For the visual modality, the image encoder is a Vision Transformer (

, ) which takes the concatenation of an extra [CLS] token embedding and linearly
projected image patches as input. For the textual modality, following ( ), we use
the lower-cased byte pair encoding (BPE) ( s ) with a vocabulary size of 49,408
to tokenize the text. Each text sequence starts with [BOS] token and ends with [EOS] token. After
the word embedding layer, the token embeddings are fed into a modified decoder-only Transformer
model as in ( , ). On top of the image and text encoders, the representations of
textual tokens and visual tokens are linearly projected to the multi-modal common space, and are
separately L2-normalized. Different from existing dual-stream models (e.g., CLIP and ALIGN)
which models cross-modal interaction via only the global features of the entire image and text se-
quence, we introduce a novel fine-grained contrastive learning objective equipped with cross-modal
late interaction which takes into account the fine-grained interaction between image patches and
textual tokens, detailed in Section 3.1.

3.1 FINE-GRAINED CONTRASTIVE LEARNING

Contrastive representation learning has recently been found to learn better representations than its
predictive counterpart in both visual ( , ) and vision-language cross-modal pre-training
( s ). Under a general formulation of cross-modal contrastive learning (

s ), we want to learn encoders fy for image data Z and g, for text data 7 such that, given
an image ! € Z, and a text 7 € T, the encoded representations fy(x!) and g4 (x”) are close
if they are related and far apart if not, under a distance metric. In each training batch, we sample b
image-text pairs {z, 1}%_ , For image x! in image-text pair {zi,z]}, I is its positive, while
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the other texts will be used as in-batch negatives. The image-to-text contrastive loss £}, for . can
then be formulated as ;
exp(sm)

710g7,
b8 S eap(sT )

where s;C denotes the similarity of the k-th image to the j-th text. Similarly, the text-to-image

Li(ay {2 }oy) =

contrastive loss for 27 is

1 exp(si i)
L (wp {xf}h_)) = — T log =———F—.
g ] ! b 7> exp(sik)

The total loss of this mini-batch can be represented by

1

b
L= §Zk:1<££ +£F). (1)

3.1.1 CROSS-MODAL LATE INTERACTION

From the contrastive loss (1), the cross-modal interaction is reflected in how we compute the sim-
ilarities s/ . and sI . for the i-th image and j-th text. Previous methods like CLIP (

) and ALIGN ( , ) simply encode each image or text separately to a global feature
ie., fo(z]) € R? and g4(zT) € R, and compute these two similarities as

si; = si; = folai) gs(a]), 2)

neglecting finer-grained interactions (e.g., word-patch alignment) between the two modalities. To
alleviate this problem, while simultaneously maintain the training and inference efficiency of dual-
stream models, we apply a cross-modal late interaction inspired by ( ) to
model the token-wise cross-modal interaction.

Specifically, denote n; and ng as the number of (non-padded) tokens of the i-th image and j-th text,
respectively, and the corresponding encoded features are fy(x!) € R™*9 and g¢( Ty € Rnzxd,

For the k-th visual token, we compute its similarities with all textual tokens of xT i and use the
largest one

max [fo(x])]; [gs(2])]r 3)

0<r<ng

as its token-wise maximum similarity with sc]T We then use the average token-wise maximum
similarity of all non-padded tokens in the image (resp. text) as the similarity of an image to a text
(resp. a text to an image). The similarity of the i-th image to the j-th text can thus be formulated as:

ni

sL(al,2T) = — S U@ 96Dt 4

™Mo *
where mj, = arg maxo<,<n,[fo(®])]§ [9¢(x])],. Similarly, the similarity of the j-th text to the
i-th image is

STl 2l = S Uola] Ty lgo (Dl 5)

n
2 =1

where m] = arg maxo<,ﬁ<n1 [fo(xD)]] [gs(x T)] Note that s (a:I x; T in Equation (4) does not

necessarily equal s; (wI x ) in Equation (5).

Remark 1 Intuitively, the token-wise maximum similarity in Equation (3) means that for each image
patch, we find its most similar textual token. Similarly, for each textual token, we also find its closest
image patch. By applying this to the similarity calculation in (4) and (5) for contrastive loss (1), the
dual-stream model learns fine-grained alignment between image patches and textual tokens.

The original late interaction mechanism in ( s ) computes the relevance score
of a document to a query padded with mask tokens, as a sum of token-wise maximum similari-
ties, and is optimized via a pairwise softmax cross-entropy loss. Though inspired from

( ), our proposed cross-modal late interaction differs in several aspects. Firstly, we
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exclude the padded textual tokens when computing the similarity, as they harm the performance.
We speculate that this is because these padded tokens also learn textual representations and will
mislead the model to align image patches to these meaningless padded tokens rather than mean-
ingful non-padded words. Secondly, when computing similarities (4) and (5), we use the average
of the token-wise maximum similarities instead of summation in ( , ). This
is because the number of non-padded tokens varies from text to text, and this summation over all
non-padded tokens can have quite different magnitudes, leading to less stabilized training and worse
final performance. These two modifications are crucial to not only the downstream tasks’ perfor-
mance, but also the quality of the word-patch alignment. A more detailed discussion can be found in
Appendix A.7. Thirdly, we optimize the late interaction mechanism via a contrastive loss (1) which
is found powerful vision-language pre-training ( , ) instead of the original pairwise
loss in ( R

Training Efficiency. Though the cross-modal late interaction is able to capture finer-grained fea-
tures compared with the original loss, it relies on the token-wise representations of both modalities,
and can be inefficient in terms of communication, memory and computation, especially when the
batch size is large. To alleviate this problem, we utilize several methods. Firstly, we reduce the
embedding size to 256. Besides, we reduce the precision of the last-layer features of both modalities
from fp32 to fp16 before node communication in a distributed learning setting, and perform the mul-
tiplication in Equations (4) and (5) under the reduced precision. In addition, since the complexity of
similarity calculation scales with the sequence length of textual tokens and image patches, for each
image (resp. text), we select the 25% tokens with the highest token-wise maximum similarity score
(Equation (3)) among all texts (resp. images) in the same local worker before node communica-
tion, based on the intuition that each sample can be represented by a few of the most representative
tokens. Effects of these modifications are studied in Section 4.4.

3.1.2 PROMPT ENSEMBLE AND TEMPLATES

Due to the problem of polysemy and inconsistency with the pre-training process, following

( ), we also use prompt templates to augment the original label for some downstream tasks.
For visualizations, for simplicity, we use only one prompt template across the paper, i.e. “a photo of
a {label}.” as ( ). For other experiments, we report results using prompt ensemble
following ( ). When multiple prompts are allowed, the token-wise representations
of different prompt templates for the same class label are different, and can not be summed together
to form a mean textual representation as in ( , ). Thus, instead of ensembling
different prompt templates by their mean textual representation, we ensemble them by their mean
token-wise similarity. Specifically, suppose there are C' prompt templates, each label is augmented
to C different texts ¢7 , &1, - - - a:g The similarity between an image ! and this label is computed

as £ 327 sl (2!, 2T), where s’ is defined in Equation (4).

We use a unified rule-based method inspired by ( ) to construct prompt templates
for image classification tasks. Specifically, each template consists of four components:

[prefix] {label}, [category description]. [suffix]. (6)
Here, the “[prefix]” is an in-context description like “a photo of a” similar as ( );
“label” is a class label of the dataset; “[category description]” describes the category which is found
helpful for some fine-grained image classification datasets ( , ), e.g., “ a type of

pet” for dataset Oxford-IIIT Pets. An interesting finding is that, adding a suffix that includes the
reference word “it” (e.g., “I like it.”’) at the end of the prompt empirically improves the zero-shot
classification performance of the proposed model. We speculate this is because the reference word
“it” strengthens the fine-grained cross-modal alignment, as it can also be aligned to image patches
of the target object. Detailed prompt templates for different datasets can be found in Appendix A.S.

3.2 IMAGE AND TEXT AUGMENTATION

To obtain better generalization and data-efficiency of the model, we perform data augmentation on
both images and texts during the pre- trammg phase to construct more 1mage -text pairs. We apply
AutoAugment ( ; s )
for image augmentation, followmg the SOTA vision recogmtlon methods ( ;

, ). To ensure the augmented texts are semantically similar as the or1g1na1 one, for text
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Table 1: Top-1 accuracy(%) of zero-shot image classification on 12 datasets. Our FILIP can boost
3~5% accuracy on average.

- g8 3 ¢ & £ . 3

= z 5 E % % 8§ £ 5 £ %5 %

I E 2 5 g 2 2 8 & £ £ 7 ¢

S 0 & & £ € B & = & & £ | =
CLIP-ViT-B/32 91.3 65.1 87.9 594 66.7 844 632 445 212 870 494 632 | 653
FILIPp,-ViT-B/32 | 86.9 65.5 91.9 554 853 82.8 69.1 493 57.2 88.1 49.9 68.8|70.9756
CLIP-ViT-L/14 96.2 779 92.6 77.3 787 929 67.7 553 36.1 935 599 753 75.3

FILIP)y-ViT-L/14 | 957 753 93.0 70.8 90.1 922 73.1 60.7 602 92 592 77.1|78.3"30

augmentation, we rewrite the original text using back-translation (

). Specifically, the texts are first translated to the target language and then translated back to
the source language. We choose German and Russian as the target language and get extra two texts
for each image-text pair. When constructing a batch of image-text pairs during the pre-training, the
text of each image-text pair is randomly sampled from the three candidate texts, i.e., the original text
and two back-translated texts.

3.3 PRE-TRAINING DATASET

A sufficiently large image-text dataset is a prerequisite for vision-language pre-training. Recent
CLIP ( s ) and ALIGN ( s ) construct datasets with 400M and 1800M
image-text pairs, respectively. In this work, we also collect a large-scale dataset called FILIP300M
from the Internet, which consists of 300M image-text pairs and covers board vision and language
concepts. For image-based filtering, we remove the images whose shorter dimension is smaller
than 200 pixels and the aspect ratio is larger than 3. For text-based filtering, we keep only English
texts, and exclude the meaningless ones, e.g., img_0.jpg. We also discard image-text pairs whose
texts are repeated for over 10 times. Besides, we also use 3 public datasets, including Conceptual
Captions 3M (CC3M) ( R ), Conceptual 12M (CC12M) ( s )
and Yahoo Flickr Creative Commons 100M (YFCC100M) ( , ). We apply the
same filtering rules on YFCC100M. Finally, we use about 340M image-text pairs for pre-training.
Despite using a smaller training dataset than CLIP and ALIGN, our models still outperform them in
most down-steam tasks (see Section 4).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Model Architectures. We train two models from scratch, i.e., FILIPpys and FILIPe. The model
architectures follow CLIP ( , ), i.e., the image encoder is ViT-B/32 for FILIP}qe
and ViT-L/14 for FILIPye.. More details can be found in Appendix A.3.

Pre-training Details. To save memory and scale up the batch size, automatic mixed-precision

s ) and gradient checkpoint ( )
are used The input images are resized to 224 x 224 resolution during pre- tralmng and the maximum
length of the text is limited to 77 tokens following ( ). The training is mainly

conducted on Nvidia V100 GPUs and Ascend Cards. FILIPy,. is trained on 128 cards about 9
days and FILIPy. takes about 24 days to train on 192 cards. Unless otherwise specified, we use
FILIPjyre to compare with other methods and FILIPy, for ablation. We train both models using
the LAMB optimizer ( s ) and cosine learning rate schedule ( .

) with a linear warmup. Weight decay regularization is applied to all parameters except bias,
layer normalization, token embedding, positional embedding and temperature in contrastive loss.
Detailed values of hyperparameters for different datasets and models can be found in Appendix A.3.

4.2 IMAGE CLASSIFICATION

In this section, we compare our FILIP with CLIP ( , ) on 12 downstream image
classification datasets.
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Table 2: Results of zero-shot image-text retrieval on Flickr30K and MSCOCO datasets. The last
two rows (marked with *) report the zero-shot results on Flickr30K dataset of model fine-tuned on

MSCOCO dataset, following the setting of ALBEF ( , ).
Flickr30K MSCOCO
image-to-text text-to-image image-to-text text-to-image

R@] R@5 R@10 R@1l R@5 R@10 R@] R@5 R@10 R@l R@5 R@10

Unicoder-VL 64.3 85.8 923 484 760 852 — — — — — —
ImageBERT 70.7 90.2 940 543 79.6 875 44.0 712 804 323 59.0 702
UNITER 83.6 957 97.7 687 892 939 — — — — — —

CLIP 88.0 987 994 687 906 952 584 815 88.1 378 624 722

ALIGN 88.6 987 99.7 757 93.8 968 58.6 830 89.7 456 69.8 78.6

FILIP 89.8 99.2 998 750 934 963 613 843 904 459 70.6 79.3
ALBEF* 94.1 995 99.7 828 963 981 — — — — — —
FILIP* 954 998 1000 84.7 97.0 98.7 — — — - - -

Zero-shot Classification. As in Section 3.1.2, we apply a set of prompts (Appendix A.5) for each
dataset and ensemble them to get the final results. Table 1 shows the results on 12 datasets. Despite
using less training data (340M vs. 400M), both FILIPy and FILIPj,. considerably outperform
their CLIP counterparts in terms of average top-1 accuracy over 12 datasets, i.e., achieving absolute
improvements of 5.6% and 3.0%, respectively. In particular, our FILIP surpasses CLIP on ImageNet,
the largest dataset among 12 datasets. FILIP also achieves substantial performance gains on some
domain-specific datasets like Aircrafts. We speculate this is because, unlike CLIP which aggregates
the information of the whole image into the [CLS] token, our proposed FILIP focuses more on
the target object by directly aligning the image patches of the target object with the textual tokens
corresponding to the class label (visualizations of word-patch alignment are in Section 4.5).

Linear Probe. Table 14 in Appendix A.6 shows the linear probe results, and FILIP again outper-
forms CLIP by 1.2~1.8% points on average. More details can be found in Appendix A.6.

4.3 IMAGE-TEXT RETRIEVAL

Image-text retrieval consists of two sub-tasks: image-to-text retrieval and text-to-image retrieval.
We evaluate our FILIP model on two retrieval benchmark datasets: Flickr30K ( s

) and MSCOCO ( , ), under both zero-shot and fine-tuned settings. More details
of experimental setting can be found in Appendix A.3.

Tables 2 and 3 show the results of zero-shot and fine-tuned image-text retrieval, respectively. We
compare our FILIP model against methods with complex attention layers including Unicoder-VL (

, ), ImageBERT ( , ), UNITER ( , ), VILLA ( , ),
ERNIE-ViL ( , ), Oscar ( , ), VinVL ( , ), ALBEF ( ,
), and methods trained on larger-scale image-text datasets including CLIP ( ,

) and ALIGN ( , ). As we can see, FILIP achieves state-of-the-art performances

under all metrics on both Flickr30K and MSCOCO datasets, except for zero-shot text-to-image
retrieval on Flickr30K, where FILIP achieves competitive performance with SOTA. For zero-shot
image-to-text retrieval on MSCOCO dataset, the absolute R @1 of our proposed FILIP is 2.7% higher
than ALIGN, which is trained on a much larger dataset.

4.4 ABLATION STUDY

Effectiveness of Each Component. We study the effectiveness of each component in FILIP, i.e.,
image/text augmentations and cross-modal late interaction. Experiments are conducted on FILIPyg,
with a filtered subset of YFCC100M as the training dataset (as described in Section 3.3), on both
zero-shot retrieval and classification tasks. We measure models’ performance on MSCOCO zero-
shot image-text retrieval and ImageNet zero-shot classification, which are two effective indicators
for the quality of the learned vision-language representations.

Table 4 reports the results. As can be seen, all three components are beneficial for both tasks.
Despite the simple design, cross-modal late interaction brings significant performance improvements
over the baseline (the vanilla CLIP ViT-B/32), with an absolute R@1 gain of 5.5% (resp. 3.8%)
for image-to-text (resp. text-to-image) retrieval on MSCOCO and an absolute top-1 accuracy gain
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Table 3: Results of fine-tuned image-text retrieval on Flickr30K and MSCOCO datasets.

Flickr30K MSCOCO
image-to-text text-to-image image-to-text text-to-image
R@]l R@5 R@10 R@] R@5 R@I10 R@l R@5 R@10 R@]1 R@5 R@10

Unicoder-VL 862 963 99.0 715 909 949 623 &87.1 928 484 767 859
ImageBERT 87.0 97.6 99.2 731 926 960 664 898 944 505 787 &7.1
UNITER 873 98.0 992 756 941 968 657 886 938 529 799 88.0

VILLA 879 975 988 763 942 96.8 — — — — — —

ERNIE-VIL 88.1 98.0 99.2 76.7 93.6 964 — — — — - —
Oscar — - — — — — 735 922 960 575 828 89.8
VinVL — — — — — — 754 929 962 588 835 903
ALIGN 953 99.8 1000 849 974 986 77.0 935 969 599 833 89.8
ALBEF 959 99.8 1000 856 975 989 776 943 972 60.7 843 90.5
Our FILIP  96.6 100.0 100.0 87.1 97.7 991 789 944 974 612 843 90.6

Table 4: Ablation study of different components on pre-training subset of YFCC100M. 12T and T2I
are abbreviations for image-to-text and text-to-image retrieval, respectively. “ZS” means zero-shot
performance. Underlined numbers have the highest improvements for the corresponding metrics.

Model MSCOCO ImageNet

2TR@1 I2TR@5 T2IR@1 T2IR@5  ZS Topl
Baseline (ViT-B/32) 25.0 49.5 14.7 34.7 30.4
w/ image augmentation 26.1 51.8 16.5 37.5 32.5
w/ back translation 29.2 55.0 17.9 39.8 33.9
w/ cross-modal late interaction 30.5 55.3 18.5 40.0 34.3
Our FILIPp,ge 33.4 60.1 23.0 46.2 37.8

Table 5: Efficiency study of the cross-modal late interaction. “orig” and “late” stand for the con-
trastive loss based on the original cosine similarity in CLIP and our proposed cross-modal late
interaction, respectively. “ZS” means zero-shot performance. We report results for ViT-B/32 trained
on filtered YFCC100M with 8 V100 GPUs, with a batch size of 512 per GPU. Training time and
memory consumption are tested using the same gradient checkpoint configuration. * denotes our
final setting used in other experiments.

Loss Embed Embed Token Trainingtime Memory ImageNet

dim precision % (secliter) (MB) ZS Topl
orig (baseline) 512 fp32 - 1.31 14300 30.4
late 512 fp32 100% 2.85 26000 34.6
late 512 fpl6 100% 2.67 23468 34.5
late 256 fpl6 100% 2.31 22382 35.2
late 256 fpl6 50% 1.61 16336 34.5
late* 256 fpl6 25% 1.39 16100 34.3

of 3.9% for zero-shot classification on ImageNet. Further improvements are observed when all
components are combined together.

Efficiency Study of Cross-modal Late Interaction. Since the late interaction mechanism in Sec-
tion 3.1.1 requires to calculate the similarity between all visual and textual tokens, its efficiency can
be a problem when employed in large-scale distributed training. As described in Section 3.1.1, we
make several attempts to address the issue. Table 5 shows the efficiency improvement on zero-shot
classification on ImageNet when these attempts are applied. As can be seen, these attempts improve
the efficiency of late interaction without accuracy drop. Combining all three attempts achieves only
slightly slower training and larger memory consumption than the original loss in CLIP.

4.5 VISUALIZATION OF FINE-GRAINED ALIGNMENT

In this section, we visualize FILIP’s capability of capturing fine-grained cross-modal correspon-
dence using the method of word-patch alignment. To make a fair comparison, we use our FILIPy,
trained on YFCC100M and CLIP’s ViT-B/32, which are of the same size, for visualization. Each
image is patchified to 7 x 7 image patches. More visualization results can be found in Appendix A.4.
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Figure 2: Visualizations of word-patch alignment for 4 classes of the ImageNet dataset and “a photo
of a {label}.” is the prompt. Numbers in the parentheses after the class label indicate the location
indices of the class label in the tokenized textual sequence. The correct predictions are highlighted
by opaque patches with the class label indices in red.

Visualization Method. The word-patch alignment is performed based on the token-wise similarity
between the image patches and textual tokens. Specifically, for the k-th image patch, the location
index of textual token with the largest similarity with it (m£ in Equation (4)) is considered as its
predicted label, and is placed at the center of it. Take class “balloon” as an example. There are
8 tokens in the tokenized textual sequence “[BOS] a photo of a balloon. [EOS]”, and the location
index of the class label “balloon” is “5”. Note that one class label may be tokenized to more than
one token. Location indices of textual tokens corresponding to the class label are highlighted in red,
while the others are marked in white. A desired model that learns fine-grained representations would
predict image patches of the target object to red indices.

Observations. Figure 2 shows the word-patch alignment results for FILIP and CLIP on 4 classes
from the ImageNet dataset. As can be seen, FILIP exhibits the finer-grained understanding of an
image in the following aspects. (i) A single object: From the visualization of class “small white but-
terfly”, the image patches covering the object are all classified correctly; (ii) Same object in different
shapes: From the visualizations of class “balloon” and “lifeboat”, image patches corresponding to
all target objects with different shapes and locations are correctly classified; (iii) Key Components
of an object: For class “electric locomotive”, there are two key components crucial to correctly
classifying the image, i.e., “electric” and “locomotive”, whose corresponding textual token indices
are “5” and “6”, respectively. As can be seen, image patches matching these two key components
are respectively correctly classified. On the other hand, CLIP can not correctly align image patches
with corresponding textual tokens. Compared with ( ) which uses an extra optimal
transport to align the textual word and image patch distributions, the word-patch alignment can be
simply automatically learned by our method.

5 CONCLUSION AND FUTURE WORK

This paper introduces FILIP, a simple yet generic framework towards fine-grained vision-language
pre-training. By using a token-wise maximum similarity, our method learns fine-grained represen-
tation for patches in the images and words in the sentences. While it achieves competitive results
against several large-scale multi-modal pre-training on various downstream tasks, both its archi-
tecture and training procedure can still be optimized to improve its performance. In the future, a
more advanced image encoder as well as a well-designed interaction layer can be used to boost the
performance. Furthermore, we can further add more masked language/image loss to support more
generation tasks. To this end, we hope to extend FILIP as a generic and unified interface for solving
a large variety of vision-language tasks.
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A APPENDIX

A.1 ETHICAL ISSUES IN DATA COLLECTION
When collecting the large-scale image-text pairs from the Internet, we perform person-name substi-
tutions as in ( ), in order to protect the privacy of the individuals appearing in

the text. Specifically, we replace each person name appeared in the text with a special < person >
token. Besides, we also disgard image-text pairs whose text contains sensitive words.

A.2 DATASETS SUMMARY

Table 6 shows the number of image-text pairs of each datasets used in different pre-training methods.

Table 6: Number of image-text pairs used in the pre-training of FILIP, CLIP and ALIGN.

FILIP CLIP ALIGN
CC3M CCI2M  YFCC100M  FILIP300M | ( , ) | ( , )
# 3M 10M 26M 300M 400M 1800M
A.3 DETAILED EXPERIMENTAL SETTINGS
Table 7: The architecture parameters for FILIP models.
Model Embedding Input Image Encoder Text Encoder
dimension  resolution #layers width #heads #layers width #heads
FILIPpgse 256 224 x 224 12 768 12 12 512 8
FILIPiarge 256 224 x 224 24 1024 16 12 768 12

Model Architectures. We follow the same architecture design as CLIP, for both FILIPy,s and
FILIPjare, except that we reduce the embedding dimension from 512/768 to 256 for the efficiency
of loss computation. Table 7 describes the details of architectures.

Details for Pre-training and Hyperparameters. For the implementation of the contrastive loss,
following CLIP ( R ) and ALIGN ( s ), we also set the temperature
in the softmax function to be a learnable parameter and initialize it as 0.07. For the pre-training,
we use the LAMB optimizer implemented by the cybertronai’s open-source repository (https:
//github.com/cybertronai/pytorch—lamb). For the learning rate scheduler, we first
assign a base learning rate and then linearly warm it up to the peak learning rate according to the

. : _ total_bs
effective total batch size by a square root strategy, peak_Ir = base_lr X y/*5>*. We note that a

large weight decay is crucial to stabilize training and improve generalization. Specifically, we found
that the training stability is a challenging issue when applying mix-precision training to large-scale
models, i.e., the training is extremely unstable and the NaN loss easily happens. Recent works

Table 8: Common hyperparameters used for FILIP pre-training.

Hyperparameter | Value
Vocabulary size 49408
Initial temperature | 0.07
LAMB j; 0.9

LAMB gs 0.999
LAMB ¢ 10*
Warm-up iters 3000
Training epochs 30
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Table 9: Model- and dataset-specific hyperparameters used for FILIP pre-training. Numbers in batch
size represent the total batch size across all workers and are calculated as: batch size per GPU x
#GPUs. FILIP340M is the combination of FILIP300M, YFCC100M, CC12M and CC3M.

Model | Dataset | Batchsize =~ Base LR~ Weight decay
FILIPy,s. | YFCCI00M | 1024 x 8 6 x 1073 3e-2
FILIP,,. | FILIP340M | 320 x 128 2 x 1073 3e-3
FILIPy,. | FILIP340M | 160 x 192 1.5 x 1073 3e-3
DALL-E ( , ) and Cogview ( , ) also notice this issue and provide

their solutions. However, we found that simply increasing the weight decay and applying the trick
of removing the weight decay of specific parameters as described in Section 4.1 work for our case.
The base learning rate and weight decay are selected manually via observing the performance at
the early training stage. Table 8 summarizes the common hyperparameters and Table 9 shows the
model- and dataset-specific hyperparameters for FILIP pre-training.

Details for Image-text Retrieval. Following previous works ( ; ),
for Flickr30K, we test on the 1K test set with or without fine-tuning on the 30K tralmng set while
for MSCOCO, we test on the 5K test set with or without fine-tuning on the 113K training set. We
use the similarity between image and text for ranking and use the contrastive loss for fine-tuning.
Since there are multiple texts for each image in these two datasets, we change the ground-truth label
of contrastive loss to consider multiple positives, by assigning a probability of 1/#positive to each
positive following ALBEF ( , ). Besides, we also use prompts during evaluation for
both datasets, see Appendix A.5 for details. Table 10 shows the hyperparameters for image-text
retrieval fine-tuning.

Table 10: Hyperparameters used for image-text retrieval fine-tuning.

Hyperparameter \ Value
Image size 392 x 392
Training epochs 3
Optimizer LAMB
Batch size 5120
Base LR 2x 1074

Weight decay 3x 1074

A.4 MORE VISUALIZATIONS OF WORD-PATCH ALIGNMENT AND GRAD-CAM HEATMAPS

In Figure 3, we visualize the cross-modal alignment of the proposed method for more images, in
terms of both word-patch alignment as described in Section 4.5 and Grad-CAM heatmaps (

, ). We compute the Grad-CAM heatmaps based on the average self-attention maps over
the image patches classified to targeted textual tokens (i.e., the textual token(s) corresponding to the
class label in the ImageNet dataset) in the last layer of the image encoder. We average the heatmaps
over all attention heads. As can be seen, our proposed model learns meaningful alignment between
image patches and textual tokens.

A.5 PROMPT TEMPLATES FOR DOWNSTREAM TASKS

Image Classification. Table 11 shows the prompt templates for different image classification
datasets in the form of “ [prefix] {label}, [category description]. [suffix]. ” in Equation (6). There
are three components to be determined in the template, i.e., the prefix, the category description and
the suffix. For each component, we select several well-performed ones for each dataset. Then we
use the full combinations of all three components as the set of prompt templates for ensemble. For
instance, we use 5 prefixes, no category descriptions, and 6 suffixes for dataset ImageNet. Then the
total number of prompt templates for this dataset is: 5 x 1 x 6 = 30.
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Figure 3: More visualizations on different classes of ImageNet dataset. Numbers in the parentheses
after the class label indicate the location indices of class label in the tokenized textual sequence.
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Table 11: Prompt templates used for 12 downstream image classification tasks.

Category

Dataset Prefix L Suffix
description
a’% I?g Otziztfiﬁ ’Ofa ;??%tgh‘::?a?,f None, “It’s common in daily
CIFAR10 o P % w2 P »» <« | None life”, “It’s cute”, “It’s ugly”,
grafﬁtl, of a”, "a cartoon”, “a “It’s weird”, “Hope you like it”
doodle’ ’
“a jpeg photo of a”, “a painting None, “It’s common in daily
of a”, “a good photo of a”, “a life”, “It’s beautiful”, “It’s
CIFAR100 bad photo of a”, “a photo of a”, None ugly”, “I like it”, “I take it to-
“itap of a”, “a rendering of a” day”
“a photo of a”, “a cropped W il G0 <o
Caltech101 | photo of a”, “a good photo of | None 5“’,“6’ I,,h‘lfe,lt ’ ,I, hate it”,
» » 1t’s ugly”, “It’s cute
a”, “a bad photo of a ’
« » o« « » | “T like it”, “It belongs to my
Stanford- a photo ,(,) f “a » “a close-up “a type of car”, friend”, “It’s brand new”, “It’s
Car photo of a”, “a good photo of a type of auto- popular recently”, “I’s impor-
a”, “a bad photo of a” mobile” I ’ . -
tant to me”, “I take it today
“a photo of a (many) ”, “aren- | “a type of | “It’s beautiful”, “It’s from my
Flowers102 | dering of a (many) ”, “itap of a | flower”, “atype | best friend”, “It gives out a
(many) ” of bloom” sweet perfume/fragrance”
“a photo of a”, ”a good photo of I . hke. IE, 7 IE § common 1n
» e e daily life”, “It’s not common
ImageNet a”, “a bad photo of a”, “a close- | None . e e e 1 cyes
ub photo of a”. “itap of a” in daily life”, “It’s ugly”, “It’s
PP - 1P cute”, “It’s beautiful”
“9  tvpe of “I made it today”, “I like it”,
“q photo of mv”. “a close-u food” yEa tvDe “I hate it”, “It’s delicious”, “It’s
Food101 p ' “}., > - P ’ yp with nice flavour”, “It’s with
photo of my”, “itap of my of nourish- . v e
ment” terrible flavour”, “It’s popular
recently”
“a photo of a”, “a good photo of
a”, “a bad photo of a”, “a bright None, “I like it”, “I hate it”,
photo of a”, a dark photo of a”, “It’s beautiful”, “It’s common
SUN397 “a black and white photo of a”, None in daily life”, “It’s important to
“a nice scene of a”, “a terrible me”
scene of a”
“itap of 2. “a close-up photo of “texture”, None, “It’s out of style”, “It’s
DTD 2 P ’ PP “surface”, popular in old days”, “It’s
“material” ugly”, “It’s beautiful”
“a photo of the”, “a close-up ?ane’fyr‘)‘il ¢ 0:: None,“T like it”, “It’s important
Aircrafts photo of the”, “a good photo of g ; airc’raft” yBa to me”, “I take it today”, “Hope
the ”, “a pixelated photo of the” . 1.0, | youlike it”
type of airliner
“a photo of my”, “a low reso- | “a type of pet”, | None, “It’s cute”, “It’s impor-
Oxford Pet | lution photo of my”, “a good | “a type of dog | tant to me”, “I like it”, “It’s
photo of my” or cat” beautiful”
“aphoto of a”, “a painting of a”, | None, “an ex- | None, “I like it”, “It’s taken
“a cropped photo of a”, “a good | ample of aerial | from an aircraft or some flyin
EuroSAT pPec P & P . . Lymng
photo of a”, “a blurry photo of | or satellite im- | object”, “It’s collected by imag-
a” ages” ing satellites”
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Table 12: Prompt templates used for zero-shot image-text retrieval on Flickr30K and MSCOCO
datasets.

Dataset | Task | Prefix | Suffix
. image-to-text retrieval “a good photo of the” “I hate it.”
Flickr30K ‘ text-to-image retrieval ‘ “a good photo of” None
MSCOCO image-to-text retqeval a good photo of It is ugly.
text-to-image retrieval None None
Image-text Retrieval. Following CLIP ( , ), we use prompt in zero-shot image-

text retrieval for both Flickr30K and MSCOCO datasets. The prompt is selected by the same rule as
described in Section 3.1.2, except that we do not use “[category description]” here. Table 12 shows
the prompt templates for zero-shot image-text retrieval on Flickr30K and MSCOCO datasets.

A.6 LINEAR PROBE ON IMAGE CLASSIFICATION

In this section, we evaluate FILIP on the linear probe for image classification. Following common
linear probe setting, we freeze the whole backbone network and only finetune the last linear classi-
fier. Since we remove the “[CLS]” token in our vision encoder, we apply a mean pooling over all
the other visual tokens to aggregate them into a global image representation which is then fed into
the linear classifier.

Setting. Following CLIP, we train the logistic regression classifier using scikit-learn’s L-BFGS

implementation ( , ), with maximum 1,000 iterations on those 11 datasets except
ImageNet. For ImageNet, we use a pytorch-based codebase to accelerate the training with GPU.
Following ( ), we adopt a Batch Normalization ( , ) layer

before the linear classifier which is beneficial to stabilize the mixed-precision training. Random
resized crop and horizontal flipping are used to augment training data. We use the cosine learning
rate scheduler with a linear warmup of 10 epochs. More hyperparameters used in linear probe on
ImageNet are shown in Table 13.

Table 13: Hyperparameters used for linear probe image classification on ImageNet.

Hyperparameter |  Value

Image size 224 x 224
Training epochs 90
Optimizer SGD
Batch size 4096
Base LR 0.1
Weight decay 0

Results. Table 14 compares the linear probe performance of our proposed FILIP with CLIP over
12 datasets. Our FILIPyyqe (resp. FILIPy ) achieves 85.5% (resp. 91.0%) average Top-1 accuracy
over 12 downstream tasks, which provides noticeable improvements, i.e., 1.8% (resp. 1.2%) higher,
compared to its CLIP’s counterpart. This implies that our FILIP learns more powerful vision features
which may potentially facilitate border downstream vision tasks.

A.7 COMPARISON WITH ( )

As is stated in Section 3.1, compared to ( ), besides being the first to ap-
ply the late interaction to contrastive learning for vision-language pre-training, we make two other
modifications, i.e., removing padded tokens and using average over non-padded tokens instead of
summation. In the following, we show that these two modifications are crucial to the performance,
and the quality of finer-granular word-patch alignment.

For comparison, we replace the proposed cross-modal late interaction in FILIPy,, 5. with the original
late interaction in ( ). Following the setting in Section 4.4, we pre-train on
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Table 14: Top-1 accuracy(%) of linear probe on image classification on 12 datasets. Our FILIP
outperforms CLIP by 1.2~1.8% points on average.

— g [} %)
S ey
() (=) S Q 8 - - 15} -

~ = = % % 3 § £ 5 5 z | &
S 0 8 & E £ @ o < & & E 3]
CLIP-ViT-B/32 | 95.1 80.5 93.0 81.8 96.6 88.8 76.6 76.5 52.0 90.0 97.0 76.1 83.7
FILIPy 4 95.3 80.3 95.0 78.6 98.7 86.2 779 78.1 76.6 88.0 959 75.8|85.5*L8
CLIP-ViT-L/14 | 98.0 87.5 96.5 909 99.2 952 81.8 82.1 694 95.1 98.2 839 89.8
FILIP1yre 97.9 87.0 972 89.0 99.6 94.6 83.2 839 84.8 93.5 973 84.5|91.0"!2

the filtered YFCC100M with mixed-precision using 8 V100 GPUs. The batch size per GPU is 512
and the dimension of the token feature is 256. We report results with the top 25% tokens (selected
using the method in Section 3.1) during training. Note that the original late interaction in

( ) is sensitive to the temperature in the softmax function, and we report the best result
among several initialization values of the temperature.

Effect to Performance. Table 15 shows the comparison on zero-shot ImageNet classification.
When these two modifications are removed, the zero-shot Top-1 accuracy of ImageNet drops from
34.3 to0 32.7.

Table 15: Comparison of Top-1 Accuracy(%) between the proposed cross-modal late interaction
loss and ( ) on zero-shot ImageNet classification.

ours | late interaction in ( )

34.3 32.7

Effect to the Word-patch Alignment In Figure 4, we compare the word-patch alignment using
the models trained with the proposed cross-modal late interaction and the late interaction in
( ). According to the visualizations, using the original late interaction in
( ) leads to less accurate word-patch alignment. Specifically, the object patches are often
aligned to the padded tokens instead of class names. We speculate this is because the padded tokens
learn similar representations as existing key textual tokens, similar to the finding in Section 3.2 of
( ) that padding with masked tokens (which is called “query augmentation” in
( )) tend to “re-weigh existing terms based on their importance for matching
the query”.

A.8 ABLATION ON THE FULL PRE-TRAINING DATASET

In Table 16, we compare the proposed cross-modal late interaction loss with the original CLIP
loss ( s ) on the full pre-training dataset introduced in Section 3.3. In Table 16,
CLIP denotes the results reported by CLIP paper, CLIP,., is our reproduced CLIP version with
the original contrastive loss using exactly the same architecture on the same pre-training dataset as
FILIPpase. As can be seen, the FILIPy,.q has 6.7 points higher average accuracy than the CLIP .,
over 12 datasets. This further verifies that the performance gain of FILIP comes from the proposed
cross-modal late interaction, rather than the data or architecture.

A.9 INFERENCE TIME OF IMAGE-TEXT RETRIEVAL

Setting. In this section, we test the inference time of both image retrieval and text retrieval on the
test set of Flickr30K and MSCOCO. We compare our proposed model FILIPy,.4. against SCAN
( R ) and CLIP (ViT-L/14) ( s ) . We test the inference time of CLIP
and SCAN using their released code. For image retrieval, we precompute the image features and
report the inference time for one text query, which contains (i) the time to extract the feature of
one text query, and (ii) the time of similarity calculation with all images and ranking. Similarly, for

19



Published as a conference paper at ICLR 2022

Raw image Patch pred. (FILIP) Patch pred. (colbert) Raw image Patch pred. (FILIP)  Patch pred. (colbert)

75 75 7575 75 75 7575

"3 7227 3141 72 3 20 [§34
72 18 4164 31 23 ) 20 15 15 31 [ 32
Bald eagle r 24 413131 16 18 24 I 70 24 15 12 31 64 27
(5.6) 343115 16 18 24 74 || 743a15341534
737434 20 74 66 74 24 23 23 20 74
7560 74717575 B 71 73 60
44 75 75 45 45 45 75 75
49 4651 5172 60 45 55 31 51 45 60
65 26 25 31 25 55 49 454655 27 51 45
Killer whale 2876 64313128 [ 55 76 31 31 76 26 55
(5.6) 171 76 76 13 15 76 71 28 76 64 64'31 76 66
66 28 76 15 76 65 60 66 28 76 13 76 29 60
71 65 73 75 60 71 28 66 63 75
75 75 61 40 56 75 75 7575 40 1575
49 72 51 13 51 72 61 48 51415561
72 19 64 [l 64 25 48 55 55 31 &Y 25 55 55
Bee eater 50 15 f6Jl6412 76 74 5024 14 14 14 51 59
(5,6) 74 13 76 13 17 59 65 74 76 14 76 29 59

717676 76 74 73 6550 15 59 71
75 66657375 75 75 7573 71 73 75 75
L 7 o -l“q 75 75 75 78

= ! 40 72 26 72 40 46 1010 46

q,ﬂa‘ 3618262022 72 26 10 76 22

Bullock cart (&8 £ - 3226 26 76 59 50 22121364
(5.6) 28 1441 76 59 76 41 16 76 59 41

71 70 59 76 76 59 2276 4159

75 60 71 65 75 75 122
75 75 60 61 60 56 75 75 56 49

60 72 51 27 55 38 38 493319 517261
367631 347259 72 25 [ 13 76 33 49
Damselfly E_ 34318 76 76 59 3323 137634 71
(5,6,7) =] 67 76 13 13 76 34 71 34 34 13 12§76 73
66 74 13 13 34 34 73 67 76 14 76 76 34 60

75 60 60 71 60 75 75 75 60 73 67 71 71

7560 7575 75 75 61 38 60 75
603621 216175 38 51 51 64 51 38 60
6129 15 15 59 60 51 64 51 14 76 51 38
Fireboat 4026 1329 33 61 202531 317638
(5,6) 6 B 3364 64 64 33 40 38 76 13 13 13 76 71
20 20 64 15 51 46 7359 16 76 59 73

q 33 33 33 71 60 75 73 71 29 73 60
7575 8 7575 7575 72 .7575
66 72 10 9 66 27278 60
ki () T I E] 72 27 36
42 76 13 13 17 76 65 5037 1810 35
71 1515643271 67 18 1337 76 76 71
5 ) YEH 715976 8 59 60 717676 76 42 75
e 757176 76 71 75 75 75 6559717575

% 75 75 197575 75 75 75

35191914 25 3326 19 23 64
Necklace 352620 181335 352620 1818 36
(5) ] S (1928211317 32 74242215 1434
L% 42 13 17 17 34 18 73 24 17 14 13 76 66
® 733476761418 73 341876 76 42 60
G| 75 60 73 34 73 60 75 757334217375 75
75 60 60 63 75 75 75 60 60 75 75 75
60 74 10 16 61 60 6055 3111 66 60
74 17 10 41 10 30 60 66 64 12 5] 12 30 60
Mosque (5) E b 74 51 16 64 16 34 66 5551 19 19 51 51 72
B Bl 66 64 17 41 16 74 60 59 20 25 15 17 74 55
-] 51 51 51 19 55 46 66 71 34 16 11 16 24 66
60 74 74 34 55 66 60 75 73 66 74 71 60 75
75 4047 75 4836 61 75 75

48 55 19 25 27 72 49 53 55 64 64 51 46
Yellow [ i)l 742376 14 2374 7423 64 19 23 48
lady’s "Q!,, |[423147E]18 76 74 7420 76 14 76 26 74
slipper 7 67 76 76 14 76 76 67 7124 37 17 76 66
(567.8) = 7359 1976 76 73 60 74 76 64 64 74 60
75 656573 75 75 73 67 73 75 75

Figure 4: Comparison of word-patch alignment between the proposed cross-modal late interaction
and that in ColBERT (Khattab & Zaharia, 2020). “a photo of a {label}.” is the prompt. Numbers in
the parentheses after the class label indicate the location indices of the class label in the tokenized
textual sequence. The correct predictions to the class labels are highlighted by opaque patches with
the class label indices in red. Incorrect predictions to the padded tokens are highlighted by opaque
patches with the padded token indices in blue.
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Table 16: Top-1 accuracy(%) on image classification on 12 datasets. CLIP,y, is our reproduced
CLIP trained with the same training data and evaluated with the same prompts as our FILIP. With the
same backbone architecture, our FILIP significantly improves the zero-shot Top-1 average accuracy
over 12 datasets.
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CLIP 91.3 65.1 879 594 667 844 632 445 212 87 494 632|653
CLIP,, |82.0 575 89.9 45.1 80.7 75.1 63.6 46.7 3377 827 49.0 64.2|642
FILIPpase | 869 655 919 554 853 82.8 69.1 49.3 57.2 88.1 49.9 68.8|70.9

Table 17: Comparison on performance and inference time of image-text retrieval on Flickr30K and
MSCOCO datasets.

Recall Inference time
Flickr30K MSCOCO Flickr30K MSCOCO
image->text text->image image->text text->image ito-t  ttod  icto-t  ttosi
R@l R@5 R@I0 R@] R@5 R@I0 R@I R@5 R@10 R@l R@5 R@I0
SCAN 674 903 958 486 777 852 504 822 900 386 693 804 447s 7Tms 21.3s 26ms
CLIP  88.0 98.7 994 687 906 952 584 815 88.1 378 624 722 23ms 8ms 24ms 9ms
FILIP  96.6 100.0 100.0 87.1 97.7  99.1 789 944 974 612 843 90.6  24ms 8ms 26ms  9ms

text retrieval, we precompute the text features and report the inference time for one image query,
which contains (i) the time to extract the feature of one image query, and (ii) the time of similarity
calculation with all texts and ranking. The test set of Flickr30k contains 1000 images and 5000 texts,
while the test set of COCO contains 5000 images and 25000 texts. The time is averaged over 1000
runs.

Results. The inference time of retrieval is shown in Table 17. Benefitting from the efficiency opti-
mizations (i.e., FP16 quantization and reduced feature dimension) in Section 3.1, the inference time
of FILIP is close to CLIP. In image retrieval, SCAN is slightly faster than FILIP on Flickr30K with
1000 images, because SCAN uses a lightweight GRU as the text encoder. However, SCAN is much
slower than FILIP (i.e., about 17ms slower per query) on MSCOCO with more (i.e., 5000) images
because of the slower computation involved in the two-stage stacked cross-attention when comput-
ing the similarity. For text retrieval, SCAN is much slower than FILIP and its own image retrieval,
mainly due to three reasons: (i) the image encoder is a Faster RCNN which is more expensive than
the lightweight GRU text encoder; (ii) the text candidates are 5 times more than the image candi-
dates in image retrieval; and (ii) the similarity computation of SCAN relies on the cross-attention
computation, which is not straightforward to be paralleled, even in their official code; while our
FILIP’s similarity computation is simply a matrix multiplication and is readily optimized on most
modern hardwares.
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