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ABSTRACT

Small-large model collaboration is a promising approach for efficient reason-
ing, where lightweight assistant models generate intermediate representations
to guide larger, more capable models. However, this paradigm encounters two
key challenges: representation heterogeneity between different model archi-
tectures and unidirectional information flow that prevents mutual learning.
Small assistant models and large base models develop distinct geometric struc-
tures for encoding similar concepts, making direct alignment difficult and lead-
ing to information degradation. Additionally, unidirectional flow creates asym-
metric dynamics where assistant models cannot benefit from large models’ su-
perior representational capacity. We introduce CycleCoT, a bidirectional frame-
work that addresses these bottlenecks through cycle-consistent soft thought align-
ment. Our approach uses dual residual transformation networks to establish
invertible mappings between heterogeneous model spaces through three mech-
anisms: (1) expressive mappings between different model representations, (2)
bidirectional alignment objectives enforcing semantic consistency in both direc-
tions, and (3) cycle consistency constraints preserving information during round-
trip transformations. This enables large models’ knowledge to enhance assis-
tant models’ soft thought generation, creating symbiotic collaboration. Evalua-
tion on LLaMA-3.1-8B-Instruct and Qwen2.5-7B-Instruct across mathematical,
commonsense, and symbolic reasoning benchmarks demonstrates consistent im-
provements over unidirectional baselines, with gains up to 5.5% on mathematical
reasoning tasks. Our analysis reveals that alignment quality surpasses quantity:
fewer, well-aligned soft thoughts outperform longer sequences. Code is available
at https://anonymous.4open.science/r/CycleCoT-0B7D/.

1 INTRODUCTION

Large Language Models (LLMs) excel at complex reasoning tasks but require prohibitive computa-
tional resources for practical deployment (Brown et al., 2020; OpenAI, 2023; Hoffmann et al., 2022;
Narayanan et al., 2021). This cost makes it difficult to serve full-scale models at interactive latency.
Small-large model collaboration offers a practical approach, where a lightweight assistant runs ahead
of the main model to draft continuations, filter search branches, or supply domain-specific priors, so
the large model can be more focused on high-difficult reasoning tasks (Kim et al., 2023; Leviathan
et al., 2023; Chen et al., 2023). Since the assistant is inexpensive to adapt, the paradigm also en-
ables rapid task personalization while reusing a frozen, general-purpose large base model (Xu et al.,
2025).

Chain-of-Thought (CoT) reasoning exemplifies this collaborative paradigm, where small assistant
models generate intermediate reasoning steps to guide large models toward improved solutions (Wei
et al., 2022; Kojima et al., 2022). While traditional CoT operates through discrete token generation,
recent work has explored continuous representations to overcome tokenization bottlenecks (Zhang
et al., 2025; Hao et al., 2024). These continuous approaches enable small assistant models to gener-
ate latent “soft thoughts” that steer large models through learned projection mechanisms (Xu et al.,
2025; Wang et al., 2025), offering computational advantages over sequential token-based reason-
ing. However, current frameworks face fundamental architectural limitations that constrain their
collaborative effectiveness.
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Figure 1: Unidirectional vs. Bidirectional Collaboration. Left: Conventional unidirectional flow
from a small to a large model results in a large representation gap and inconsistent understanding.
Right: Our proposed bidirectional flow enables mutual learning, reducing the representation gap
and aligning the models for consistent, and synergistic reasoning.

Challenges. The core challenge lies in the following aspects. (1) Representation heterogeneity
emerges as small assistant models and large capable models develop distinct geometric structures
for encoding similar concepts, making direct alignment fundamentally difficult (Jiao et al., 2020;
Sun et al., 2019; Zhang et al., 2018). Existing projection mechanisms struggle with this mismatch,
leading to information degradation and suboptimal reasoning guidance. Additionally, (2) single
directional information flow creates an asymmetric learning dynamic where the assistant model
cannot benefit from the large model superior representational capacity, fundamentally limiting the
collaborative potential of the framework.

Proposed Method. We introduce CycleCoT, a bidirectional framework that addresses these limita-
tions. Our approach replaces unidirectional projectors with dual residual transformation networks
that establish cycle-consistent mappings between small assistant and large model representation
spaces. This bidirectional architecture enables the large model’s contextual knowledge to flow back
and enhance the assistant model’s soft thought generation, creating a symbiotic learning dynamic. A
comprison between unidirectional and bidrectional flow are shown in the Figure 1. Technically, Cy-
cleCoT operates through three mechanisms: (i) dual residual transformation networks that provide
expressive mappings between heterogeneous model spaces, (ii) bidirectional alignment objectives
that enforce semantic consistency across representations, and (iii) cycle consistency constraints that
preserve information during round-trip transformations. Importantly, during the inference time, Cy-
cleCoT requires only the forward projector, maintaining computational efficiency while delivering
improved soft thought quality (He et al., 2016; Zhu et al., 2017). To summarize, our contributions
are threefold:

• Fundamental Bottleneck Identification. This study identifies and formalizes representation
heterogeneity and single directional information flow as fundamental bottlenecks that limit the
effectiveness of current learning paradigm in small and large model collaboration.

• Bidirectional Alignment Framework. The proposed CycleCoT introduces dual residual trans-
formation networks with bidirectional alignment and cycle consistency objectives to achieve
semantic alignment, revealing that heterogeneous representation spaces require learnable map-
pings and that small models can transcend capacity limitations through feedback from larger
models.

• Superior Empirical Performance. Extensive experiments demonstrate consistent and signifi-
cant improvements across mathematical, commonsense, and symbolic reasoning benchmarks,
showing that semantically aligned soft thoughts substantially outperform both discrete CoT
chains and existing continuous CoT baselines.

2 RELATED WORK

Our work is related to the following key research areas, including continuous reasoning, small-large
model collaboration and bidirectional and cycle-consistent alignment.
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Reasoning with Continuous Thoughts. Chain-of-Thought (CoT) prompting has significantly im-
proved the reasoning capabilities of LLMs by eliciting explicit, intermediate steps (Wei et al., 2022;
Kojima et al., 2022). The performance of CoT often scales with the length of the reasoning chain
(Fu et al., 2022), but this incurs substantial computational costs from generating and processing long
token sequences. To address this efficiency bottleneck, research has diverged into two main direc-
tions. The first direction aims to improve the quality and efficiency of the discrete reasoning process
itself (Mohtashami et al., 2023). This includes methods that employ tree-based search to explore and
verify multiple reasoning paths, such as Tree of Thoughts (Yao et al., 2023) and CoCoNUT (Hao
et al., 2024). The second, more radical direction is to bypass discrete tokens entirely, proposing a
paradigm shift towards continuous, latent-space reasoning (Wu et al., 2025). This approach materi-
alizes the reasoning process directly within the model’s latent space, using ”soft thought” vectors as
implicit reasoning steps (Xu et al., 2025; Cheng & Van Durme, 2024).Our work, CycleCoT, builds
upon this paradigm by generating latent “soft thoughts” to steer large models efficiently.

Small-large Model Collaboration. Within the continuous reasoning paradigm, a promising strat-
egy to balance reasoning performance with computational efficiency is multi-model collaboration,
where a smaller, adaptable “assistant” model assists a larger, powerful “base” model (Chen et al.,
2024). Current approaches can be broadly categorized. One line of work focuses on inference ac-
celeration, using the small model to generate draft outputs that the large model can efficiently verify,
as seen in speculative decoding (Kim et al., 2023). Another direction involves task decomposition,
where the small model acts as a planner that breaks down complex tasks for the large model to exe-
cute (Song et al., 2023). A third paradigm, which we focus on, is latent guidance, where the assistant
generates continuous “soft thoughts” to steer the base model’s reasoning process (Xu et al., 2025).
However, this latent guidance approach is fundamentally constrained by the unidirectional informa-
tion flow and representation heterogeneity between the two models. Our work aims to resolve these
core bottlenecks.

Bidirectional and Cycle-Consistent Alignment. Our solution is also inspired by aligning different
representational spaces. For instance, dual learning has shown that enforcing two-way consistency
can benefit related tasks (Wang et al., 2024), and cycle consistency has proven to be a powerful reg-
ularizer for learning robust, information-preserving mappings between unpaired domains, famously
used in image translation (Zhu et al., 2017). While these techniques are powerful, they have not yet
been adapted to resolve the aforementioned challenges of representation heterogeneity and unidirec-
tional flow in latent-space LLM collaboration. Our work is the first to bridge this gap, establishing
a symbiotic, co-evolutionary learning dynamic between the assistant and base models.

3 METHODOLOGY

Our proposed method has three core components: (1) Soft Thought Generation: We leverage a
frozen, small assistant language model to generate a compact sequence of instance-specific latent
prompts, termed soft token, tailored to the input question. (2) Bidirectional Representation Align-
ment: We introduce a novel Residual Projector to bridge the representation and dimensionality gap
between the assistant and the base LLM. This projector establishes a robust and approximately in-
vertible alignment between their respective latent spaces. (3) Latent-Conditioned Reasoning and
Training: The projected soft thoughts are integrated into the input of the main base LLM, which
then autoregressively generates the reasoning chain and final answer. The system is trained end-
to-end with a composite objective combining a standard language modeling loss with bidirectional
alignment and cycle consistency regularizers to enforce representational fidelity.

3.1 SOFT THOUGHT GENERATION

CoT Reasoning. Given a question sequence Q = [q1, . . . , q|Q|], CoT reasoning decomposes the
prediction task into two sequential steps: (i) generating a rationale sequence R = [r1, . . . , r|R|] and
(ii) producing the final answer A = [a1, . . . , a|A|]. The autoregressive generation process follows:

ri+1 = LLM(Q;R≤i), (1)
aj+1 = LLM(Q;R;A≤j), (2)

where R≤i = [r1, . . . , ri] and A≤j = [a1, . . . , aj ] denote the partial sequences up to positions i and
j, respectively. While classical CoT operates in the discrete token space, recent approaches propose
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Figure 2: Training and Inference Pipeline. The frozen assistant model generates N soft-thought
slots. These are projected into the base LLM’s hidden space and injected at designated thought
positions to guide reasoning. Training utilizes bidirectional alignment and cycle consistency losses,
while inference only requires the efficient forward projector, preserving low latency.

reasoning in the continuous (latent) space to circumvent tokenization bottlenecks (Chen et al., 2025;
Hao et al., 2024).

In this work , we introduce an auxiliary small assistant LLM (frozen) to produce instance-specific
soft token representations for N placeholder slots inspired by (Xu et al., 2025). The small assistant
model input is constructed as:

Query = concat
[
Iassist, Q, [UNK]1:N

]
, (3)

where Iassist is a task-specific instruction template, Q is the input question sequence, and [UNK]1:N
represents N special placeholder tokens as shown in Figure 2. Feeding Query into the small assis-
tant model LLMA yields the final-layer hidden states: H(assist) = LLMA(Query), where Ta is the
sequence length and da is the hidden dimension of the assistant model. From these hidden states, we
extract the N soft-token vectors corresponding to the placeholder positions: TA = H

(assist)
sa:ea , where

indices (sa, ea) specify the start and end positions of the N placeholder tokens in the assistant
model’s sequence. This assistant-produced latent sequence serves as a compact, instance-specific
soft prompt for downstream reasoning.

3.2 BIDIRECTIONAL REPRESENTATION ALIGNMENT

To bridge the representation and dimensionality gap between the assistant model (da) and the
base LLM (db), prior work typically projects TA unidirectionally into the large base model space
(assistant→base). However, such unidirectional projection can accumulate representation mismatch
and drift over long reasoning chains (Li et al., 2023). To address this limitation, we propose a
Residual Projector to map representations between the two spaces:

ΦA→B : Rda → Rdb , ΦB→A : Rdb → Rda . (4)

Each projector is implemented as a two-layer MLP with a residual connection and Layer Normal-
ization. When da ̸= db, a linear projection is applied to the skip connection to align dimensions.
Forward mapping injects soft thoughts into the base LLM space: TA′ = ΦA→B(TA), while reverse
mapping is employed during training for reconstruction constraints and alignment regularization,
establishing an approximately invertible alignment between the two representation spaces as shown
in Figure 3.

3.3 TRAINING OBJECTIVES

Our training objective combines the primary language modeling loss with two auxiliary alignment
regularizers to ensure consistent representation alignment.

Language Modeling Loss. We apply standard autoregressive negative log-likelihood on the ground-
truth CoT trajectories and answers:

LLM = −
∑

t∈IR∪IA

log p(yt|y<t, xLLM), (5)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: Framework of proposed method. The assistant model’s (LLMA) soft thoughts (TA) are
mapped to the base model’s space via the forward projector ΦA→B . The reverse projector ΦB→A

maps representations back to the assistant’s space. This enables bidirectional alignment and a cycle
consistency loss on the round-trip transformation (TA′′ ), which reduces the representation gap.

where IR and IA index the rationale and answer tokens respectively, yt represents the target token
at position t, and y<t denotes all preceding tokens (Brown et al., 2020). The tokens preceding the
thought region are masked during loss computation to prevent label leakage.

Bidirectional Alignment Loss. On the thought segment, we enforce bidirectional MSE alignment
between the assistant and base model representations.The bidirectional alignment loss is defined as:

Lalign =
1

2
∥TA′ − TB∥22 +

1

2
∥TB′ − TA∥22 . (6)

This loss encourages the projected representations from both directions to align with their respective
target hidden states (Zhang et al., 2018).

Cycle Consistency Loss. To prevent long-horizon representation drift and encourage approximate
invertibility of the projectors, we impose cycle consistency over the thought segment. This loss
combines MSE reconstruction error with cosine similarity preservation:

TA′′ = ΦB→A (ΦA→B(TA)) , (7)

Lcycle = ∥TA − TA′′ ∥22 + (1− cos(TA, TA′′ )) ,

where cos(·, ·) computes the cosine similarity between vectors (Zhu et al., 2017). In practice, we
slice the thought spans for each sample within the batch, accumulate losses across both directions,
and compute the average.

Overall Training Objective. The complete training objective combines all loss components:

L = LLM + λalign · Lalign + λcycle · Lcycle, (8)

where λalign and λcycle are hyperparameters controlling the relative importance of the alignment and
cycle consistency losses, respectively.

3.4 LATENT-CONDITIONED REASONING AND TRAINING

The base LLM input is constructed by concatenating the task instruction, question, and projected
soft thoughts: xLLM = concat

[
ILLM, Q, TA→B

]
, where ILLM is a task-specific instruction template

for the base model and TB are the N soft-thought vectors projected by ΦA→B (Li & Liang, 2021).
For compatibility with standard autoregressive decoding, we directly replace the input embeddings
at the designated thought slots with TB , allowing the base LLM (LLMB) to generate intermediate
reasoning and the final answer:

R̃ = LLMB(xLLM), (9)

Ã = LLMB(xLLM, R̃). (10)
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Table 1: Dataset characteristics for CycleCoT evaluation

Dataset Domain Training Test Format

GSM8K
Mathematical

7,473 1,319 Generation
ASDiv-Aug 4,183 1,038 Generation
AQuA 97,467 254 Multiple Choice

StrategyQA Commonsense 1,832 458 Binary
CommonsenseQA 9,741 1,221 Multiple Choice

DU Symbolic – 369 Multiple Choice

During training, we supervise R̃ and Ã using standard language modeling objectives. At inference,
only the forward projector ΦA→B is utilized, maintaining computational efficiency comparable to
SoftCoT.

Computational Complexity Let N denote the number of thought slots and d = max(da, db).
During training, the bidirectional projector introduces O(Nd2) additional computation for the two
MLPs across the thought span. However, the language modeling cost typically dominates for longer
output sequences. At inference, only ΦA→B is used once to produce TB , yielding identical asymp-
totic complexity to unidirectional SoftCoT approaches.

4 EXPERIMENTAL EVALUATION

In this section, we aim to address these research questions:

• RQ1: How does CycleCoT’s bidirectional alignment framework perform compared to ex-
isting approaches across diverse reasoning domains?

• RQ2: How do the individual components of CycleCoT contribute to overall performance
improvements?

• RQ3: How effectively does bidirectional alignment bridge the representation gap between
different LLMs?

• RQ4: How does CycleCoT balance computational efficiency with reasoning performance
across different token configurations?

4.1 EXPERIMENTAL SETUP

Model Configuration. We evaluate CycleCoT using two representative model pairs from 2 LLM
families. The base models are LLaMA-3.1-8B-Instruct (Dubey et al., 2024) and Qwen2.5-7B-
Instruct (Yang et al., 2024), serving as primary reasoning engines. The assistant models are LLaMA-
3.2-1B-Instruct and Qwen2.5-1B-Instruct, respectively, responsible for generating contextual soft
representations. This configuration enables assessment of cross-architectural generalizability.

Benchmark Datasets. Our evaluation encompasses six reasoning benchmarks across three cogni-
tive domains: Mathematical Reasoning: GSM8K (Cobbe et al., 2021), ASDiv-Aug (Xu et al., 2025),
and AQuA (Ling et al., 2017). Commonsense Reasoning: StrategyQA (Geva et al., 2021) and Com-
monsenseQA (Talmor et al., 2018). Symbolic Reasoning: Date Understanding (DU) (Srivastava
et al., 2023) for temporal reasoning evaluation. Table 1 summarizes the dataset characteristics and
evaluation protocols.

Baseline Methods. We compare CycleCoT against four representative baseline approaches. LoRA
Fine-Tuning (Hu et al., 2022) results are reported from (Xu et al., 2025) for direct comparison. Co-
conut (Hao et al., 2024) and SoftCoT (Xu et al., 2025) are implemented using their official source
code to ensure fair evaluation. Zero-Shot CoT is evaluated by directly prompting the respective
base models (LLaMA-3.1-8B-Instruct and Qwen2.5-7B-Instruct) with instructions without addi-
tional training. To ensure statistical reliability, we conduct five independent runs with different
random seeds in our main experiments (Coconut, SoftCoT, Zero-Shot CoT, and CycleCoT), and
report mean performance with standard deviations across all runs.

6
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Table 2: Performance comparison on LLaMA-3.1-8B-Instruct across reasoning domains

Method GSM8K ASDiv-Aug AQuA StrategyQA CommonsenseQA DU Avg.

LLaMA-3.1-8B-Instruct Mathematical Commonsense Symbolic

LoRA Fine-Tuning 75.66± 0.00 86.67± 0.00 52.36± 0.00 – – – –
Coconut 76.88± 0.36 86.24± 0.72 52.98± 0.82 – 73.42± 0.94 – –
Zero-Shot CoT 79.88± 0.43 86.84± 0.96 54.85± 1.18 65.49± 2.08 73.42± 0.94 54.98± 2.29 69.06
SoftCoT 79.27± 0.31 86.79± 0.38 54.59± 2.07 65.11± 1.28 74.23± 1.06 58.18± 2.67 69.70
CycleCoT 85.37± 0.65 87.67± 0.26 56.29± 0.85 67.78± 2.02 74.34± 0.16 60.56± 2.10 72.00

Table 3: Performance comparison on Qwen2.5-7B-Instruct across reasoning domains

Method GSM8K ASDiv-Aug AQuA StrategyQA CommonsenseQA DU Avg.

Qwen2.5-7B-Instruct Mathematical Commonsense Symbolic

LoRA Fine-Tuning 81.80± 0.00 86.80± 0.00 62.60± 0.00 – – – –
Coconut 82.45± 0.77 87.22± 0.46 63.61± 0.59 – 73.74± 0.25 – –
Zero-Shot CoT 82.46± 0.81 88.09± 0.34 65.09± 2.29 50.39± 2.21 72.96± 0.44 65.41± 1.78 70.73
SoftCoT 84.47± 1.26 87.79± 0.85 70.34± 1.22 60.16± 2.47 74.85± 0.22 66.17± 2.47 73.96
CycleCoT 86.44± 0.92 89.85± 0.19 73.49± 1.29 64.59± 3.95 73.95± 0.36 65.59± 3.01 75.65

4.2 MAIN RESULTS

How CycleCoT Performs Across Diverse Reasoning Domains. (RQ1) Our method CycleCoT
achieves superior performance across both different base models and tasks, demonstrating consistent
improvements over existing approaches. The method reaches 72.00% average accuracy on LLaMA-
3.1-8B-Instruct and 75.65% on Qwen2.5-7B-Instruct, substantially outperforming various baseline
methods. In the following, we present the detailed findings.

For mathematical reasoning, the results (Tables 2 and 3) reveal a compelling pattern where Cycle-
CoT’s bidirectional alignment particularly excels at complex mathematical reasoning tasks. The
dramatic improvement on GSM8K (+6.1% for LLaMA) suggests that the cycle consistency mech-
anism helps preserve crucial numerical relationships and multi-step logical dependencies that are
often lost in unidirectional projection. Interestingly, Qwen models show their strongest gains on
AQuA (+3.15%), a dataset requiring abstract algebraic reasoning, indicating that the bidirectional
alignment better captures the semantic relationships between different mathematical concepts across
model representations.

For commonsense and symbolic reasoning, while mathematical tasks benefit from preserving pre-
cise numerical relationships, commonsense reasoning reveals a different advantage of our approach.
As shown in Tables 2 and 3, the substantial improvements on StrategyQA (+2.67% for LLaMA,
+4.43% for Qwen) demonstrate that bidirectional alignment helps transfer the nuanced contextual
understanding that smaller assistant models possess. For the DU dataset, which lacks a training set,
we directly evaluate using models trained on GSM8K, demonstrating effective cross-domain transfer
from mathematical to symbolic reasoning tasks. This suggests that the cycle consistency constraint
prevents the degradation of implicit world knowledge during cross-model projection, enabling more
effective reasoning about everyday scenarios and temporal relationships.

For cross-dataset knowledge transfer, to assess whether CycleCoT learns generalizable reasoning
patterns rather than dataset-specific artifacts, we evaluate transfer performance within the mathe-
matical reasoning domain by training models on one dataset and testing on another. As shown in
Table 4, cross-dataset training often matches or even exceeds in-dataset performance, with cross-
trained models achieving within 0.5% of their in-domain counterparts. This suggests that the cycle
consistency constraint forces the model to learn more abstract mathematical reasoning represen-
tations that transfer across different datasets within the same domain. Similar transfer patterns are
observed for Qwen models (Table 6). For cross-dataset evaluation, we further report results averaged
over three random seeds to ensure robustness.
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Table 4: Cross-dataset generalization on LLaMA-3.1-8B-Instruct

Training Testing Accuracy vs Zero-shot vs In-domain

–
AQuA

54.85± 1.18 – −1.44
AQuA 56.29± 0.85 +1.44 –
ASDiv-Aug 56.07± 2.23 +1.22 −0.22

–
ASDiv-Aug

86.84± 0.96 – −0.83
ASDiv-Aug 87.67± 0.26 +0.83 –
AQuA 87.19± 1.11 +0.35 −0.48

Table 5: Ablation studies on Qwen2.5-7B-Instruct

Configuration GSM8K ASDiv-Aug AQuA StrategyQA

Qwen2.5-7B-Instruct Mathematical Commonsense

CycleCoT (Full) 86.44 ± 0.92 89.85 ± 0.19 73.49 ± 1.29 64.59 ± 3.95
w/o Residual Projector 83.16± 1.58 86.39± 0.73 70.58± 1.24 54.49± 1.28
w/o Bidirectional Losses 80.58± 1.12 86.24± 2.13 69.78± 0.67 59.21± 1.87
w/o Cycle Loss 83.20± 0.85 88.15± 0.52 71.80± 1.15 62.30± 1.85
w/o Align Loss 84.15± 0.75 87.40± 0.65 72.10± 1.05 61.85± 2.25

4.3 ABLATION STUDIES

How CycleCoT Components Contribute to Performance Gains. (RQ2) The ablation study
(Table 5) reveals several key insights about CycleCoT’s design. Residual projectors provide sub-
stantial improvements, particularly on StrategyQA (+10.10 points), while removing bidirectional
losses causes significant performance drops across all tasks. However, a counter-intuitive phe-
nomenon emerges: when residual projectors are used without bidirectional losses, performance
often falls below simpler configurations, suggesting that sophisticated projectors without proper
constraints can introduce harmful representational distortions. The individual loss function analy-
sis demonstrates that both cycle consistency and alignment losses contribute meaningfully to per-
formance—removing cycle consistency drops GSM8K to 83.20% while removing alignment loss
yields 84.15%, both representing clear degradation compared to the full model’s 86.44%. Similar
ablation patterns are observed on LLaMA models, with detailed results provided in Appendix A.4.
All ablation experiments are further averaged over three random seeds to ensure robustness.

4.4 ANALYSIS

How Bidirectional Alignment Bridges Representation Gaps (RQ3) The most compelling evi-
dence for CycleCoT’s effectiveness lies in how it fundamentally transforms cross-model represen-
tation alignment. Figure 4 demonstrates that while traditional unidirectional approaches struggle
with representation drift and semantic inconsistency, our bidirectional framework achieves remark-
able alignment improvements across multiple geometric measures. The 69.3% reduction in Eu-
clidean distance reveals that projected representations become substantially closer to their target
spaces, while the 19.1% improvement in cosine similarity demonstrates better preservation of se-
mantic directionality. Most striking is the 90.1% reduction in mean squared error, indicating that
the cycle consistency constraint virtually eliminates point-wise projection errors that plague linear
approaches.

This dramatic improvement suggests that bidirectional alignment doesn’t merely reduce noise—it
fundamentally restructures the representation space to maintain semantic coherence across model
boundaries. The geometric analysis reveals several key insights: First, the substantial Euclidean
distance reduction indicates that our dual projectors learn more accurate mappings between hetero-
geneous spaces compared to simple linear transformations. This suggests that the representation
gap between different model architectures is not merely a scaling or rotation issue, but requires so-
phisticated non-linear transformations to bridge effectively. Second, the preserved cosine similarity
demonstrates that bidirectional alignment maintains the angular relationships between concept vec-
tors, which is crucial for preserving semantic structure during cross-model transfer. Third, the near-
elimination of mean squared error through cycle consistency reveals that information loss during

8
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Figure 4: Representation alignment comparison: CycleCoT vs. No Cycle
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Figure 5: CycleCoT computational efficiency analysis (a) Performance vs. soft thoughts count (b)
Cost vs. performance trade-off (c) Performance vs. cost scatter plot

round-trip transformations—a critical failure mode in unidirectional approaches—can be effectively
mitigated through explicit invertibility constraints. These findings collectively indicate that success-
ful cross-model alignment requires both forward accuracy and backward consistency, validating our
core hypothesis that bidirectional constraints are essential for robust representation transfer.

How Efficiency-Performance Trade-offs Are Analyzed. (RQ4) The relationship between soft
token quantity and performance reveals a counterintuitive principle that challenges conventional
wisdom about representation capacity (Figures 5a, 5b, and 5c). Rather than following a monotonic
”more is better” pattern, both model families exhibit a distinctive U-shaped performance curve that
exposes the critical importance of alignment quality over raw quantity. Peak performance occurs
with minimal tokens (1 − 4), demonstrating that well-aligned representations can capture complex
reasoning patterns efficiently. The computational analysis reveals three distinct operational regimes:
the efficient regime (NST≤ 5) maintains stable inference times while achieving strong performance,
making it ideal for real-time applications; the transition regime (NST 6 − 16) shows exponential
cost growth with minimal accuracy gains, representing a computational ”dead zone” that should be
avoided; and the high-performance regime (NST > 16) achieves peak accuracy but requires dra-
matically increased resources. The emergence of NST = 2 as the optimal configuration—achieving
67.5% accuracy in just 59 seconds—validates CycleCoT’s core design philosophy: sophisticated
alignment mechanisms enable strong performance with minimal computational overhead.

5 CONCLUSION

We presented CycleCoT, a bidirectionally aligned, consistency-regularized framework for
continuous-space reasoning that addresses the core bottlenecks of representation gap and limited
assistant capacity in latent CoT. Our approach leverages a frozen small assistant model to generate
soft thoughts, which are then mapped between latent spaces using a novel Residual Projector. This
projector is trained with a composite objective, combining a language modeling loss with a bidirec-
tional alignment loss to enforce representational similarity and a cycle consistency loss to ensure
the mapping is approximately invertible. Together, these mechanisms transform the base model
from a passive consumer of thoughts into an active source of reverse guidance, creating a symbiotic
partnership that demonstrably improves reasoning performance.
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ETHICS STATEMENT

This work adheres to ethical principles in AI research. We exclusively utilize publicly available and
widely accepted benchmark datasets that do not contain personally identifiable information or sen-
sitive content. We acknowledge that the underlying large language models used in this research may
inherit biases from their training data, and our methodology does not specifically address or mitigate
these inherent biases. We advocate for responsible deployment practices, including human oversight
and careful validation of AI-generated content, when applying our framework or similar technolo-
gies in real-world scenarios. Furthermore, we are committed to transparency and reproducibility by
detailing our methods and intend to make our code publicly available to facilitate further research
and scrutiny. While we acknowledge the environmental impact of training large AI models, we pri-
oritize computational efficiency where feasible and encourage continued efforts to reduce the carbon
footprint of AI research.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our findings, all source code for the CycleCoT framework, trained
model checkpoints for our projectors, and the configuration files used for all experiments will be
made publicly available upon acceptance. An anonymized repository is provided for review at:
https://anonymous.4open.science/r/CycleCoT-0B7D/. Our experiments are con-
ducted on publicly accessible benchmarks, including GSM8K, ASDiv-Aug, and StrategyQA, and
build upon standard open-source models such as LLaMA-3.1-8B-Instruct and Qwen2.5-7B-Instruct,
all available via the Hugging Face Hub. A comprehensive list of hyperparameters, compute require-
ments, and specific dataset pre-processing steps are detailed in Appendix. All released artifacts will
comply with their original open-source licenses, and data sources will be clearly acknowledged.
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Algorithm 1: Training with Bidirectional Alignment and Cycle Consistency
Input: Assistant model A, Base LLM B, projector ΦA→B , ΦB→A, weights (λalign, λcycle),

indices (sa, ea), (sb, eb).
for minibatch {(xassist, xLLM, y)}Bb=1 do

H(assist)←A(xassist) ; // final hidden states

TA←H
(assist)
sa:ea ; // N soft thoughts

TB←ΦA→B(TA)
Replace base input embeddings on (sb : eb) with TB ;
out←B(xLLM);
LLM←NLL(out.logits, y);
H(base)←out.hidden states[−1];
H

(base)
N ←H

(base)
sb:eb ;

La2b← 1
N ∥ΦA→B(TA)−H

(base)
N ∥2F ;

Lb2a← 1
N ∥ΦB→A(H

(base)
N )− TA ∥2F ;

Lalign← 1
2 (La2b + Lb2a);

T ′′
A←ΦB→A(ΦA→B(TA));

Lcycle← 1
N ∥T

′′
A − TA ∥2F + (1− cos(T ′′

A, TA));
L←LLM + λalignLalign + λcycleLcycle;
Update ΦA→B , ΦB→A (and optional adapters) by backprop on L;

end

A APPENDIX

A.1 ALGORITHM

A.2 IMPLEMENTATION AND TRAINING DETAILS

We implement CycleCoT with 4 soft thoughts as the standard configuration across most datasets and
models. The training hyperparameters are optimized for different model architectures: for LLaMA
models, we set alignment loss weight λalign = 0.15 and cycle consistency weight λcycle = 0.08; for
Qwen models, we use λalign = 0.10 and λcycle = 0.05 to account for architectural differences.

The BiDirectional Projector employs residual MLP blocks with bottleneck size 1024, ReLU activa-
tion, and LayerNorm for all model configurations. Training is conducted for up to 10 epochs using
AdamW optimizer with learning rate 2×10−5 and batch size 8(4 for AQuA dataset). We implement
early stopping mechanisms to conserve computational resources and improve training efficiency.
All training experiments are performed on an NVIDIA H800 GPU, while inference is conducted on
an NVIDIA RTX 5090 GPU with mixed precision (bfloat16) for optimal efficiency.

During inference, the small model generates 4 soft thoughts which are then projected to the large
model’s representation space through our bidirectional alignment framework. This configuration
provides an optimal balance between reasoning capability and computational cost across diverse
reasoning tasks. More details can be found in our anonymous GitHub repository.

A.3 ADDITIONAL CROSS-DATASET RESULTS

Table 6 presents cross-dataset generalization results for Qwen2.5-7B-Instruct, complementing the
LLaMA results shown in the main text.

A.4 ADDITIONAL ABLATION RESULTS

Table 7 presents ablation study results for LLaMA-3.1-8B-Instruct, complementing the Qwen results
shown in the main text.
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Table 6: Cross-dataset generalization on Qwen2.5-7B-Instruct

Training Testing Accuracy vs Zero-shot vs In-domain

–
AQuA

65.09± 2.29 – −8.40
AQuA 73.49± 1.29 +8.40 –
ASDiv-Aug 73.62± 1.80 +8.53 +0.13

–
ASDiv-Aug

88.09± 0.34 – −1.76
ASDiv-Aug 89.85± 0.19 +1.76 –
AQuA 87.96± 0.91 −0.13 −1.89

Table 7: Ablation study on LLaMA-3.1-8B-Instruct

Configuration GSM8K ASDiv-Aug AQuA StrategyQA

LLaMA-3.1-8B-Instruct Mathematical Commonsense

CycleCoT (Full) 85.37 ± 0.65 87.67 ± 0.26 56.29 ± 0.85 67.78 ± 2.02
w/o Residual Projector 81.96± 1.46 86.08± 3.09 54.63± 1.87 67.93± 3.09
w/o Bidirectional Losses 80.20± 0.33 86.27± 3.47 52.21± 1.26 55.10± 1.28

A.5 LLM USAGE STATEMENT

In accordance with ICLR policy, we report on the use of a large language model (Google’s Gemini)
as an assistive tool in the preparation of this manuscript. The LLM was utilized for drafting, iter-
atively refining, and stylistically polishing several sections, including the Abstract, Related Work,
and Conclusion. It also assisted in the literature review process and the formatting of academic ref-
erences. The core scientific contributions—encompassing the initial research ideation for the Cycle-
CoT framework, experimental design, and the execution and analysis of all results—were conceived
and conducted exclusively by the human authors. The authors directed all stages of research, vali-
dated all LLM-generated content, and assume full responsibility for the final claims and conclusions
of this work.
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