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ABSTRACT

Decoding and forecasting human behavior from neuroimaging data is a fundamen-
tal challenge spanning neuroscience, artificial intelligence, and machine learning.
Naturalistic tasks such as real-world navigation generate complex, nonlinear dy-
namics that are difficult to model: linear methods cannot capture these interac-
tions, while deep learning architectures often overfit in the limited and noisy data
regimes typical of fMRI. We introduce Manifold Dimensional Expansion (MDE),
a simple yet powerful prediction algorithm grounded in dynamical systems the-
ory. Leveraging the generalized Takens theorem and Simplex projection, MDE
reconstructs latent state spaces directly from voxelwise fMRI signals and inte-
grates feature selection with cross-validation to identify causally relevant neural
drivers of behavior. Applied to a naturalistic driving task, MDE predicts Steer-
ing, Acceleration, and Braking from fMRI time series with accuracy comparable
to or exceeding regression and Transformer baselines. Crucially, MDE is the first
method to combine strong predictive performance with guaranteed mechanistic in-
terpretability, as it does not rely on latent variables. This property enables causal
insights into brain–behavior dynamics. Such interpretability is essential in neuro-
science, where the goal is not only to predict but also to discover and understand
the mechanisms linking neural activity to behavior, insights that are critical for
advancing scientific understanding and guiding interventions. More broadly, our
results demonstrate that manifold-based dynamical embeddings offer a principled
path toward accurate, causally grounded forecasting of complex nonlinear systems
in domains where interpretability is as important as performance.

1 INTRODUCTION

A fundamental test of our understanding of complex natural systems is the ability to accurately
predict their future behavior from past observations. Modeling and forecasting human behavior
remains a central challenge across neuroscience, machine learning, and artificial intelligence. In
particular, naturalistic tasks such as real-world navigation inherently generate complex, nonlinear
dynamics in neural activity. These dynamics pose significant challenges for existing modeling ap-
proaches: traditional linear methods are fundamentally limited in their ability to capture nonlinear
relationships, while more flexible deep learning architectures typically require large-scale datasets
and are prone to overfitting in the limited, noisy environments characteristic of neural recordings.
As a result, accurately predicting behavior from fMRI data during naturalistic tasks remains an un-
solved and pressing problem. Explicit mechanistic modeling is often infeasible for naturalistic tasks
that unfold through continuous perception, decision-making, and action. Nevertheless, accumulat-
ing evidence indicates that task-relevant cognitive and behavioral dynamics are embedded within
low-dimensional neural manifolds, even when observed in the high-dimensional space of brain ac-
tivity Churchland et al. (2012); Eckmann and Tlusty (2021); Zhang et al. (2021); Fontenele et al.
(2024). This observation makes state-space reconstruction a particularly well-suited approach, as
it leverages the manifold structure to recover the underlying dynamics while providing both pre-
dictive power and mechanistic interpretability. In this work, we introduce Manifold Dimensional
Expansion (MDE), a theoretically principled algorithm for decoding and forecasting behavior from
neural time series. Grounded in the generalized Takens’ theorem Deyle and Sugihara (2011), MDE
leverages the Simplex projection algorithm Sugihara and May (1990) prediction skill maximization
via feature selection and convergent cross-mapping (CCM) causal inference Sugihara et al. (2012)
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to reconstruct low-dimensional latent dynamics directly from voxel time series. This enables accu-
rate short-term behavioral forecasting without resorting to complex or overparameterized black-box
models. By explicitly identifying causally relevant features, MDE provides interpretable embed-
dings of the dynamical structure underlying brain-behavior relationships. We validated MDE on a
naturalistic driving experiment (Fig. 1), demonstrating its ability to predict behavior one time step
into the future (each step corresponding to 2 seconds) from fMRI recordings. MDE achieved ac-
curacy comparable to or exceeding that of regularized regression and Transformer baselines, while
offering a mechanistic explanation of the observed dynamics through causal feature attribution and
manifold reconstruction. Although we focus on fMRI decoding, the framework is broadly applica-
ble to forecasting any high-dimensional time series dataset with low-dimensional latent dynamics,
such as financial markets, climate systems, or robotic control.

Our contributions are threefold:

• Algorithmic: We propose MDE, a new forecasting algorithm that integrates state-space
reconstruction with causal feature selection, enabling interpretable manifold embeddings
from high-dimensional time series.

• Theoretical: MDE is grounded in dynamical systems theory, providing principled condi-
tions (via Takens’ theorem and CCM) for reconstructing low-dimensional dynamics and
attributing causal drivers.

• Empirical: On naturalistic fMRI data, MDE matches or outperforms strong baselines
(Lasso, Ridge, Transformers) while uniquely offering mechanistic explanations of brain–
behavior dynamics, highlighting its value as both a decoder and a general-purpose fore-
casting tool.

Figure 1: Experimental setup: naturalistic behavior in fMRI. The subject performed a taxi driver task
while brain activity was recorded with fMRI. On each trial, the subject was instructed to navigate
to a randomly-selected destination while obeying all traffic rules. Ground-truth behavioral data was
recorded using a combination of the built-in Unreal Engine recording system, OBS studio, and an
Avotec eyetracker.

2 RELATED WORK

Early approaches to fMRI decoding and analysis primarily relied on linear regression to link exper-
imental features with brain activity Friston et al. (1994); Kriegeskorte et al. (2008); Naselaris et al.
(2011). These methods have been instrumental in mapping functional regions and representational
structures, but they are inherently limited in capturing nonlinear relationships between brain activity
and behavior. Extensions based on engineered feature spaces, such as spatiotemporal Gabor filters
for vision Nishimoto et al. (2011) or embeddings from language models for semantic processing
Huth et al. (2016); Tang et al. (2023), partially address these limitations but still depend on linear
mappings. Moreover, studies of naturalistic behaviors, such as driving Spiers and Maguire (2007);
Choi et al. (2017); Mader et al. (2009), have largely provided correlational insights rather than pre-
dictive or mechanistic explanations. Recent work has applied deep learning to neural decoding,
including recurrent, convolutional, and autoencoder-based architectures Sussillo et al. (2012); Pan-
darinath et al. (2018); Tseng et al. (2019); Livezey and Glaser (2021); Zhou and Wei (2020). These
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models capture nonlinear dynamics and often achieve strong predictive performance. Transformer-
based models have also shown promise in fMRI decoding tasks Nguyen et al. (2020); Zhao et al.
(2022); Candelori et al. (2024). However, such models are typically data-hungry, prone to overfit-
ting in noisy, small-sample regimes, and difficult to interpret, characteristics that limit their utility
in neuroimaging and other high-dimensional scientific domains. A complementary perspective is to
model neural activity as a dynamical system. This line of work reconstructs latent state spaces that
capture the temporal structure of neural processes Churchland et al. (2012); Abbaspourazad et al.
(2021); Schneider et al. (2023), with reviews emphasizing their potential for neuroimaging John
et al. (2022). While powerful for uncovering low-dimensional dynamics, many of these methods
rely on hidden-variable models that prioritize compactness over interpretability, making it difficult
to connect causal neural features to behavior. Our work bridges these lines of research by intro-
ducing a forecasting framework that combines the predictive strength of machine learning with the
mechanistic interpretability of dynamical systems theory. Unlike black-box deep learning models
or purely correlational linear approaches, our method explicitly reconstructs neural dynamics from
high-dimensional time series and attributes causal contributions, enabling accurate prediction to-
gether with explanatory insight.

3 METHOD: MDE AND DYNAMICAL SYSTEMS FOUNDATIONS

In this work, we address the task of predicting behavioral outputs from brain activity recorded by
fMRI during a naturalistic navigation task. The primary challenge lies in inferring meaningful, low-
dimensional latent dynamics from high-dimensional, noisy brain activity recordings. The foundation
of our method lies in Takens’ theorem, a key result in dynamical systems theory that provides the
conditions under which the latent state space of a deterministic system can be reconstructed from a
sequence of observations Takens (1981a). Given a time series x(t), Takens demonstrated that one
can construct a state-space embedding using delayed values of the observed variable:

y(t) = [x(t), x(t− τ), x(t− 2τ), . . . , x(t− (E − 1)τ)] (univatiate delay embedding)

where E is the embedding dimension and τ is the time delay. If the embedding dimension satisfies
E ≥ 2D + 1, where D is the true dimension of the underlying attractor, then the reconstructed
space is diffeomorphic to the system’s original state space, meaning it preserves the same dynamical
and topological properties. This ensures that the attractor can be faithfully recovered from partial
observations, which is especially valuable in fMRI studies where only a limited set of neural mea-
surements is available. Takens’ generalized theorem (Deyle and Sugihara, 2011) further shows that
state-space reconstruction can be achieved from multiple observables rather than delays of a single
one:

y(t) =
[
x1(t), x2(t), . . . , xE(t)

]
(multivariate embedding)

where {xi(t)} are distinct time series (e.g., voxel signals) and E is the embedding dimension (see
Appendix for details). This is especially important for fMRI data, where each voxel signal captures
a distinct projection of the latent neural dynamics. By integrating several signals into a multivari-
ate embedding, we can reconstruct a more complete representation of the system’s evolution over
time, recovering neural trajectories without relying on latent variables or parametric models. The
reconstructed state spaces provides the basis for accurate forecasting of behavior. To forecast be-
havior from the reconstructed state space, we adopt Simplex Projection algorithm, a nonparametric
prediction method developed by Sugihara and May (1990). This technique uses the local geometry
of the embedded space to produce short-term forecasts. Given an embedded point y(t∗) at time t∗,
we locate its E + 1 nearest neighbors in the embedding space. The future state x(t∗ +∆t) is then
predicted as a weighted average of the future observations associated with these neighbors. The
weights are computed using an exponential decay function based on Euclidean distances, ensuring
that closer neighbors contribute more significantly to the prediction:

x̂(t∗ +∆t) =

E+1∑
i=1

wi x(ti +∆t), wi =
e−di/dmin∑E+1

j=1 e−dj/dmin

,

where di is the distance between y(t∗) and its neighbor y(ti), and dmin is the smallest of these
distances. Simplex Projection offers several advantages: it preserves local nonlinear structure, does
not require an explicit parametric model, and avoids overfitting by relying on geometric regularities
in the data. These features make it well-suited for analyzing complex, nonlinear dynamical systems
such as neural dynamics inferred from fMRI.
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3.1 THE MDE ALGORITHM

MDE is a feature selection and prediction framework designed for time series forecasting based on
state-space reconstruction. It is tailored to identify subsets of features (e.g. voxels time series) that
are both causally relevant and predictive of behavior, leveraging principles from nonlinear dynamics
and causal inference. At its core, the method uses the Simplex Projection algorithm implemented in
the pyEDM library to forecast future behavioral states from reconstructed embeddings. It follows a
forward feature selection strategy, incrementally building multivariate embeddings by adding voxel
features one at a time. The only parameters used are the embedding dimension E and time delay τ of
the target variable that are automatically estimated from the training data, unless explicitly specified
by the user. Details on how these parameters are estimated within the MDE algorithm can be found
in the Appendix.

3.2 PSEUDOCODE FOR MDE ALGORITHM

Algorithm 1 MDE
Require: fMRI time series data, target; horizon Tp; maximum size dmax; # folds K, convergence

check flag conv
1: Split data into train and test (preserve temporal order)
2: for k = 1..K do ▷ CV on the training portion
3: Split train into (traink, valk) (preserve temporal order)
4: Estimate target embedding (E, τ) on traink (if not provided)
5: Sk ← ∅ ▷ selected voxels for fold k
6: First voxel (univariate)
7: For each voxel v in data:
8: Build univariate delay embedding of v with (E, τ)
9: Predict the target variable using Simplex projection and compute prediction score

10: Run CCM(v → target); require convergence
11: Let v(1) be the highest-scoring voxel among those that pass CCM:
12: Sk ← {v(1)}
13: Subsequent voxels (multivariate)
14: while |Sk| < dmax do
15: C ← all voxels not in Sk;
16: For each v ∈ C:
17: Build multivariate state space from Sk ∪ {v , v(1)}
18: Predict the target variable using Simplex projection and compute prediction score
19: Run CCM(v → target); require convergence
20: Among CCM-passing candidates, let v⋆ be the best-scoring
21: Sk ← Sk ∪ {v⋆ , v(1)}
22: end while
23: Fold evaluation
24: Build multivariate state space from Sk; train Simplex on traink; evaluate on valk to get fold

score Vk

25: end for
26: Final test
27: Choose a final voxel set (frequency-based)
28: Train Simplex on full train with chosen set; evaluate on test; report MAE, RMSE

The algorithm integrates feature selection with K-fold cross-validation to evaluate generalization
performance. In each fold, it incrementally constructs a multivariate embedding by selecting up to
a user-specified maximum number of features, dmax (set to 50 in this work). At each selection step,
candidate voxels are ranked by their predictive accuracy when added to the current embedding, as
measured with Simplex projection on the training and validation split. The top-ranked voxel is then
subjected to a Convergent Cross Mapping (CCM) test Sugihara et al. (2012) to verify that it exerts
a causal influence on the target variable; only voxels that pass the CCM convergence criterion are
retained. This procedure is repeated until either dmax voxels have been selected or no additional
voxel both improves prediction and passes the causal test. This two-stage selection process ensures

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

that each voxel included in the final embedding contributes mechanistically, not just statistically,
to behavior prediction. After cross-validation, the final feature set is constructed by aggregating
selections across folds (e.g., by frequency of occurrence). This set is then used to build the mul-
tivariate embedding for out-of-sample evaluation on the test data, providing a principled balance
between predictive accuracy and causal interpretability. Parallel computing via joblib accelerates
the evaluation of candidate voxels, making the method scalable to high-dimensional fMRI data. For
training and evaluation, we adopt a leave-one-run-out cross-validation framework. In each iteration,
one fMRI run is held out for testing, while the remaining four runs are concatenated and used for
training. Within the training set, we perform a 10-fold cross-validation to guide feature selection.
Model performance is evaluated on the held-out run using two complementary metrics: Mean Abso-
lute Error (MAE), which measures the average absolute difference between predictions and ground
truth; and Root Mean Squared Error (RMSE), which captures the average magnitude of prediction
errors. These metrics together provide a comprehensive assessment of both predictive accuracy and
consistency.

4 EXPERIMENTAL SETUP

4.1 DATA DESCRIPTION

We used Unreal Engine 4 and the CARLA plugin to build a driving simulator that contains a large
2 × 3 km virtual city populated by dynamic AI pedestrians and vehicles Zhang (2021). The subject
learned the layout of the world prior to scanning, examples of the virtual world are provided in the
Appendix Fig.4. In the MRI, the subject performed a taxi-driver task. On each trial, a destination
was randomly selected from 77 possible locations across the map. A text cue was displayed at the
center of the screen for 2 seconds. The subject then drove to the destination via the fastest path while
obeying all traffic laws and responding to vehicular and pedestrian traffic. At the destination, the
subject came to a complete stop to indicate arrival. A text cue was then displayed for 2 seconds to
acknowledge their arrival. After a randomized jitter of 4-12 seconds, a new trial then began (Fig.1).
More details about fMRI data acquisition and preprocessing are provided in the Appendix. Four
subjects with normal vision participated in this study, performing 5 experimental runs. The experi-
mental procedures were approved by the Institutional Review Board at the University (anonymized
for review), and written informed consent was obtained from the subject. From the experiment
recordings, we extracted three behavioral output dimensions at 15 Hz and then downsampled to
match the fMRI sampling rate. Steer Angle: the Steer angle is recorded on a range of [-1, 1] in
which 0 is the neutral position, -1 is maximum Steer to the left, and +1 is maximum Steer to the
right. Acceleration: the throttle input is recorded on a range of [0, 1] in which 0 is no input, and 1 is
maximum throttle. Braking: the Brake input is recorded on a range of [0, 1] in which 0 is no input,
and 1 is maximum braking.

4.2 BASELINES

As predictive baselines, we used linear models with ℓ1 (Lasso) and ℓ2 (Ridge) regularization from
scikit-learn (v. 1.6.1). All voxel-wise time series were z-scored prior to fitting. Regularization
strengths were optimized via Bayesian optimization (50 evaluations) with scikit-optimize
(v. 0.10.2), nested within 5-fold cross-validation, and all random seeds were fixed. Hyperparam-
eters minimizing RMSE on the validation folds were selected by searching log-uniformly over
α ∈ [101, 108] for Ridge and C−1 ∈ [10−5, 101] for Lasso. To assess whether restricting the
regression models to causally relevant features improved prediction or interpretability, we also re-
peated Lasso and Ridge regression after masking the voxel space to include only those identified as
causal to the behavior by CCM. This analysis allowed us to test whether access to causal features
alone was sufficient for improved prediction, or whether nonlinear, manifold-based modeling (as
in MDE) was required. For our deep learning baselines, we implemented seven PyTorch mod-
els using PCA-reduced inputs. To enable a fair dimensionality comparison with MDE, we used 50
principal components, matching the maximum number of features used by MDE. Additionally, we
evaluated the same models with a number of components which capture over 99% of the variance
in the data. The tested architectures included a multilayer perceptron (MLP), a bottleneck regres-
sor, recurrent networks (GRU, bidirectional GRU, and LSTM), a temporal convolutional network
(TCN), and a Transformer encoder. We did not apply causal masking to the deep learning baselines,
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as these models are capable of capturing nonlinear dependencies directly from the data without
requiring explicit causal preselection. Training followed a 10-fold cross-validation procedure on
the concatenated training runs, combined with a leave-one-run-out strategy for evaluation. Further
details on the model architectures are provided in the Appendix.

5 RESULTS

We evaluated MDE in a leave-one-run-out cross-validation framework. We assessed the stability of
MDE performance as a function of the number of selected features (dmax), testing it with increasing
feature counts from 10 to 50 (see appendix Fig.6). The final results reported here were obtained
with dmax=50. We compared MDE against ridge regression, lasso regression, and deep learning
models trained on PCA-reduced data (retaining either 50 components just like MDE, or 99% of
variance). We report transformer results in the main tables and provide results for other deep models
in the Appendix (Fig.7, Fig.8). Performance was assessed using mean absolute error (MAE) and
root mean squared error (RMSE), Tables1 and 2 report mean and standard deviation for each model
and behavioral target.

Table 1: MAE between observations and predictions for each model and target (mean ± std).

model MDE lasso ridge transf-50 transf-99
target

Acceleration 0.23 ± 0.06 0.21 ± 0.04 0.21 ± 0.04 0.23 ± 0.02 0.21 ± 0.02
Brake 0.15 ± 0.06 0.16 ± 0.06 0.16 ± 0.06 0.17 ± 0.02 0.18 ± 0.02
Steer 0.05 ± 0.03 0.06 ± 0.04 0.06 ± 0.04 0.08 ± 0.01 0.06 ± 0.01

Table 2: RMSE between observations and predictions for each model and target (mean ± std).

model MDE lasso ridge transf-50 transf-99
target

Acceleration 0.27 ± 0.07 0.25 ± 0.04 0.25 ± 0.04 0.28 ± 0.02 0.26 ± 0.02
Brake 0.21 ± 0.08 0.22 ± 0.08 0.22 ± 0.08 0.24 ± 0.03 0.25 ± 0.04
Steer 0.1 ± 0.05 0.1 ± 0.05 0.1 ± 0.05 0.11 ± 0.02 0.09 ± 0.02

For the Steer target, MDE achieved the lowest MAE (0.05 ± 0.03) and tied for the lowest RMSE
(0.10 ± 0.05), matching or outperforming all other models. This demonstrates strong predictive
accuracy and robustness for a target characterized by complex, nonlinear dynamics. For the Accel-
eration and Brake targets, lasso and ridge regression achieved the best overall performance, while
MDE remained competitive with nearly identical error values (Acceleration: 0.23 ± 0.06 MAE,
0.27± 0.07 RMSE; Brake: 0.15± 0.06 MAE, 0.21± 0.08 RMSE). This indicates that while MDE
consistently achieves strong performance across all targets, the advantage of manifold embedding is
most pronounced for the more complex Steer dynamics that arise from low-dimensional nonlinear
interactions, rather than for relatively linear or lower-variance targets.

5.1 INTERPRETABILITY

As shown in Fig. 2, MDE allows us to reconstruct target-specific neural manifolds and yields pre-
dictions that closely track the observed behavioral time series. Figure 3 maps the cortical voxels
selected by MDE onto the brain surface for one example subject, revealing the functional networks
predictive of each behavioral target. Because feature selection is sparse, it is difficult to identify
the cortical extent of functional regions from selected voxels alone. To address this, we computed
brain-wide correlations with the selected voxels and projected them onto the cortical surface, thresh-
olded at the 98th percentile. Importantly, MDE identifies voxels whose activity is not only correlated
but causally and dynamically coupled to the behavior, offering mechanistic insights into the neural
networks underlying complex human actions.
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1.6 minutes 1.6 minutes 1.6 minutes

A B C

Figure 2: Neural manifolds for A Acceleration, B Brake and C Steer, with the vertical axis and
color encoding target amplitude and the two horizontal axes showing the top two MDE-CV selected
features. Below are examples target time series (blue) and model prediction (orange).

Our results reveal that each behavioral output is predicted by a distinct functional network. Accel-
eration is associated with dorsal premotor cortex (PM), supplementary motor cortex (SM), punctate
regions in anterior lateral parietal cortex (LPC) and prefrontal cortex (PFC), the human middle tem-
poral complex (hMT+), and the visual periphery. Brake is associated with the primary motor and
somatosensory regions for the feet and hands (M1H/F, S1H/F), the frontal eye fields (FEF), the
supplementary motor foot area (SMFA), and parts of the intraparietal sulcus (IPS). Steer is associ-
ated with M1H and S1H, PM, the supplementary hand motor area (SMHA) and hMT+. While the
involvement of primary and supplementary motor regions is expected, these findings suggest that
additional regions across association cortex are also causally involved in producing driving behav-
ior. Taken together, these results align with known neural substrates of motor outputs while offering
new insights into additional regions that may support behavior in naturalistic tasks.

As a comparison, in Appendix Fig. 9 we show that ridge regression weights for the three behavioral
targets are spatially noisy and do not map onto clear networks, suggesting that random correla-
tions may contribute to ridge performance despite regularization. Lasso produces sparser maps than
ridge, but its selected voxels are scattered across the cortical surface and do not highlight behavior-
specific functional networks. Both regression models achieve predictive performance comparable
to MDE, but performance does not improve when restricted to voxels identified as causal (see Ap-
pendix Fig 10 and Tables 3 - 4), indicating that regularized linear models mainly exploit correlated
signals sufficient for prediction, and that causality alone does not enhance performance when paired
with linear decoders. Transformer models, which achieved the strongest performance among deep
learning baselines, also fail to provide robust neurobiological interpretability (see Appendix Fig. 9).
Voxel-level attributions are unstable across PCA settings: maps derived from PCA–50 and PCA–
99% reductions differ substantially, correlations between maps remained modest (r < 0.6) and vox-
elwise sign consistency hovered between 55–70%. For Acceleration, stability was particularly low
(r = 0.26 ± 0.07), while Brake exhibited higher but still imperfect robustness (r = 0.56 ± 0.15).
This suggests that the increased sparsity observed in the PCA–99% case largely reflects variance
dilution and cancellation across weak components rather than genuine feature selection.

6 DISCUSSION

In this work, we introduced Manifold Dimensional Expansion (MDE), a new feature selection and
time series prediction algorithm grounded in dynamical systems theory, particularly generalized
Takens’ theorem. We applied MDE to decode and forecast human behaviors from fMRI data col-
lected during a naturalistic driving task. The intrinsic low dimensionality of behaviorally relevant
neural dynamics justifies using Takens-based reconstructions, whose assumptions align with the
known structure of brain–behavior coupling. By merging theoretical insights from dynamical sys-
tems with causal feature selection, MDE effectively addresses critical limitations of existing decod-
ing strategies.

7
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Figure 3: Features selected by MDE define task-specific networks. Brain-wide BOLD correlations
(98th-percentile threshold) with these voxels are shown on flattened and inflated hemispheres for A
Acceleration, B Brake, and C Steer. Each network engages primary/supplementary motor areas and
localized prefrontal regions. ROI abbreviations in Appendix.

6.1 INTERPRETABILITY VERSUS PREDICTIVE SUFFICIENCY

Our comparisons with regression and deep learning models highlight a fundamental distinction be-
tween predictive sufficiency and mechanistic interpretability. Ridge regression achieved strong pre-
dictive accuracy but distributed, spatially noisy weights that show little anatomic specificity, pro-
viding little mechanistic insight. Lasso, by enforcing sparsity, selects voxels spread all over the
cortical surface. It initially selected motor and somatosensory regions, consistent with their causal
role in braking, but failed to consistently retain them when constrained to causal voxels. Importantly,
neither Ridge nor Lasso showed improvements in predictive performance when restricted to causal
features, meaning that causality alone does not enhance prediction when paired with linear decoders.
Together, these findings suggest that linear regularized models exploit correlated structures sufficient
for prediction without isolating the neural circuits that generate behavior, . Accordingly, the feature
weights provided by these models cannot be taken as reliable indicators of mechanistic involve-
ment. Transformer models, the best-performing among the deep learning baselines tested here, also
revealed limitations for interpretability. To avoid overfitting, transformers required PCA preprocess-
ing, which breaks the direct link between features and brain regions. When comparing voxel-level
maps across PCA configurations (50 components vs. 99% variance explained), we found limited sta-
bility: average correlation was 0.4 and sign consistency of 62.6%. Moreover, the increased sparsity
observed in the 99% PCA case reflected variance dilution and cancellation across weak components
rather than genuine feature selection. These results indicate that while transformers leverage dis-
tributed patterns for accurate predictions, the specific regions selected are unstable and should not
be overinterpreted neurobiologically.

By contrast, MDE produces sparse and stable voxel sets directly tied to causal feature selection,
without reliance on dimensionality reduction. Its sparsity is qualitatively different from that ob-
served in PCA-based models: it arises from the convergent cross-mapping (CCM) criterion, which
explicitly isolates causally relevant features rather than artifacts of projection. The key contribution
of MDE is to marry causal feature selection (via CCM) with a nonlinear forecasting engine (via sim-
plex projection), enabling us to capture state-dependent and potentially chaotic dynamics that global
linear maps cannot represent. This integration not only supports robust prediction of brain–behavior
dynamics but also yields transparent, interpretable feature sets that preserve mechanistic insight. As

8
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a result, MDE consistently recovers motor and somatosensory cortices as causal drivers of behavior
while revealing novel prefrontal contributions, providing a mechanistically interpretable account of
brain–behavior relationships. With very few features, MDE achieves predictive performance compa-
rable to regression and deep learning baselines, and outperforms them on predicting Steer behavior
(a complex, nonlinear control signal), underscoring its ability to decode behaviors where nonlinear
modeling is particularly beneficial.

In addition to the primary, supplementary, and pre-motor regions, MDE identified several regions in
the prefrontal and parietal cortices that may causally drive behavior. These regions may implement
higher-order abstract cognitive processes that lead to concrete motor actions, and are promising
areas for future study. Additionally, we find hMT+, which processes optic flow, to be predictive of
Steer and Acceleration, an apparently counterintuitive result. However, human drivers saccade in
the direction of upcoming turns before executing the turn Land and Lee (1994). The associated optic
flow from these saccades are then directly predictive of turning actions, thus likely making hMT+
predictive of Steer. The relationship between hMT+ (and visual periphery) activity and Acceleration
is less clear. We hypothesize that this may be part of a feedback control loop between optic flow
perception and Acceleration control; however, this relationship would require further investigation.

6.2 IMPLICATIONS FOR NEURAL DECODING

Our results suggest that the dimensionality and control characteristics of driving actions shape the
degree of linearity in the brain–behavior mapping: relatively simple, monotonic outputs such as
Acceleration and Brake can be captured by linear models, while Steer, which requires continuous,
closed-loop integration of sensory feedback and motor planning, benefits from nonlinear manifold
reconstruction. Importantly, MDE avoids the extensive hyperparameter tuning, architectural com-
plexity, and overfitting risks of deep learning approaches, providing a data-efficient method well
suited to fMRI studies with limited sample sizes.

6.3 LIMITATIONS AND FUTURE WORK

Our approach relies on the assumption that the target time series arises from a predominantly de-
terministic dynamical system residing on a low-dimensional attractor. Strong stochasticity or high
intrinsic dimensionality may degrade performance. Computational cost also scales with embedding
dimension, but GPU implementation of the algorithm could mitigate this limitation in the future. Be-
yond neuroscience, MDE’s framework can be applied to any partially observed dynamical system,
as discussed in the Appendix section F.

6.4 CONCLUSION

We conclude that MDE offers a principled bridge between prediction and mechanism in neural de-
coding. Unlike regression and deep learning baselines, which provide predictive sufficiency without
interpretability, MDE yields sparse, stable, and causally grounded voxel sets that explain behavior
mechanistically. This positions MDE as a valuable methodological advancement in NeuroAI, meet-
ing the growing demand for robust, interpretable, and data-efficient predictive models, and paving
the way toward critical applications such as brain–computer interfaces where stability and causal
grounding are essential.
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7 ETHIC STATEMENT

The experimental procedures were approved by the Institutional Review Board at the University
(anonymized for review), and written informed consent was obtained from all participants. The
dataset is currently under review as part of a journal article and will be made publicly available upon
publication of that manuscript. While our analyses include single-subject behavior prediction, they
are intended solely for advancing scientific understanding of brain–behavior dynamics and not for
clinical or surveillance applications.

8 REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our work. All model definitions,
training procedures, and evaluation pipelines are described in detail in the Methods section, with
additional hyperparameter choices, optimization details, and ablation studies provided in the Ap-
pendix. Preprocessing steps for the fMRI dataset, including voxel selection and behavioral align-
ment, are fully documented in the supplementary materials. To further facilitate reproducibility, we
provide anonymized source code and scripts for running the experiments as supplementary files.
Together, these resources should enable readers to reproduce our results and extend our analyses
with minimal additional effort.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 EXPERIMENTAL SETUP: SCANNING PROCEDURE

Blood oxygenation level-dependent (BOLD) activity were recorded in a single session consisting
of 5 11-minute functional runs. Data were acquired on a 3T Siemens Trio with a 32-channel head
coil at the Brain Imaging Center at UC Berkeley. A T2*-weighted gradient-echo EPI sequence
with a water-excitation radiofrequency pulse was used to prevent contamination from fat signal (TR
= 2.0045 s, echo time = 35 ms, flip angle = 74°, voxel size = 2.24 × 2.24 × 3.5 mm3, field of
view = 224 × 224 mm2, matrix size = 100 × 100, and 30 axial slices to cover the entire cortex).
Custom personalized headcases (caseforge, Power et al. (2019)) were used to stabilize the head and
to reduce motion artifacts. Anatomical data were also collected to reconstruct the cortical surface
(three-dimensional T1-weighted MP-RAGE sequence, 1 × 1 × 1 mm3 voxel size and 256 × 212 ×
256 mm3 field of view). Before each functional run, a gradient-recalled echo fieldmap was collected
for distortion correction. Respiration and heart rate were recorded using a BIOPAC MP150 system
(BIOPAC Systems, Inc.). Gaze location were recorded using an Avotec dark-pupil IR eyetracker at
60 Hz. To ensure accurate eyetracking calibration, at the beginning of every 11-minute functional
run, 35 calibration points were presented for 2 seconds each.

A.1.1 FMRI DATA PREPROCESSING

Freesurfer Dale et al. (1999) was used to reconstruct the cortical surface mesh from the T1-weighted
anatomical volumes. The freesurfer anatomical segmentation was checked and manually corrected.
Blender (Blender Foundation) and pycortex Gao et al. (2015) were then used to remove the medial
wall, and relaxation cuts were then made into each surface. Freesurfer was then used to flatten
the cut surfaces. Each functional run was first motion-corrected using the FMRIB Linear Image
Registration Tool (FLIRT) from FSL 5.0 Jenkinson and Smith (2001). Next, functional images
were unwarped by applying FUGUE from FSL to fieldmaps collected between functional runs. All
volumes in the run were then averaged across time to obtain a high-quality template volume. To
align data collected across multiple runs, the template volume from the first session was selected
as a target, and the template volume from all other runs were aligned to this target. Pycortex was
then used to align the functional runs to the anatomical surface. Alignment was checked manually
and adjusted as necessary to improve accuracy. Low-frequency voxel response drift was identified
using COMPCOR Behzadi et al. (2007) and removed from the signal. Physiological signals from
respiration and heartbeats were also regressed out Glover et al. (2000). Voxel activity in each 11-
minute run was z-scored separately; that is, within each run, the mean response for each voxel was
subtracted and the remaining response was scaled to have unit variance. To remove confounds from
the eyetracking calibration sequence and detrending artifacts, the first 35 and last 5 TRs were then
discarded from each functional run. For the purpose of this study, the 5 runs were concatenated
resulting in 85265 voxel-wise time series with 1475 samples each.

A.1.2 REGION OF INTEREST (ROI) ABBREVIATIONS

Functional regions were identified using localizer data that was collected separately. Abbreviations
for ROIs used in figures are as follows:

• V1: early visual cortex

• IPS: intraparital sulcus

• M1F: primary foot motor area

• S1F: primary foot somatosensory area

• M1H: primary hand motor area

• S1H: primary hand somatosensory area

• hMT+: human middle temporal complex

• FEF: frontal eye field

• SMFA: supplementary foot motor area

• SMHA: supplementary hand motor area

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• SEF: supplementary eye field

• PFC: prefrontal cortex.

• SM: supplementary motor cortex

• PM: premotor cortex

A.1.3 NATURALISTIC BEHAVIOR IN FMRI

Figure 4: Experimental setup: naturalistic behavior in fMRI. A We built a large naturalistic virtual
world that spans approximate 2 × 3 km. B This world contains diverse distinct environments,
ranging from urban city to rural forests, and is complete with AI vehicular and pedestrian traffic. C
The subject used a custom MR-compatible Steer wheel and pedals set to drive through this world.

B BENCHMARKING

B.1 DATA DIMENSIONALITY

To assess the dimensionality of the brain data, we conducted principal component analysis (PCA)
and computed the cumulative explained variance as a function of the number of principal compo-
nents. The results, shown in Fig.5, illustrate how many components are required to capture key
variance thresholds in the data. Specifically, 826 components explained 90% of the variance, 975
components explained 95%, and 1,112 components accounted for 99% of the total variance. This
analysis informed our choice of dimensionality when applying PCA-based input reductions in the
downstream predictive models.

Figure 5: PCA of the voxelwise brain data.
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B.2 HYPERPARAMETERS SELECTION

The embedding dimension E and time-delay τ in MDE are chosen in a fully data-driven manner
using the pyEDM library. Specifically, we employ pyEDM’s EmbedDimension routine, which first
scans candidate embedding dimensions E = 1, 2, . . . and, for each E, constructs the corresponding
delay-coordinate embedding of the training set. At each E, a leave-one-out Simplex projection fore-
cast is performed and the resulting predictive skill (e.g. Pearson correlation or RMSE) is recorded.
The optimal embedding dimension is then identified as the smallest E at which forecast skill ceases
to improve substantially, ensuring that the attractor is sufficiently unfolded without introducing ex-
cess noise or overfitting. This entire procedure is repeated over a range of candidate τ values, and
the (E, τ) pair that maximizes out-of-sample forecasting performance is selected for all subsequent
analyses.

B.3 EFFECT OF FEATURE NUMBER ON PERFORMANCE

We evaluated the stability of MDE performance as a function of the number of selected features,
testing models with increasing feature counts from 10 to 50. As shown in Figure6, MDE showed
relatively small variation in MAE and RMSE as the number of features increased. Notably, per-
formance improvements plateaued beyond 30 features, indicating that the model achieves strong
predictive performance even with a very low number of features. When compared to DL baseline
models, at equal dimensionality, MDE demonstrates superior performance compared to all other
models tested as we show in Fig.7. These findings suggest that MDE effectively identifies a com-
pact, task-relevant subset of features that prioritizes predictive variance over global variance, making
it well-suited for high-dimensional brain data and intrinsically low-dimensional behavioral targets.

Figure 6: MDE performance varying the number of features. Mean and std values of RMSE (left)
and MAE (right) for each target prediction are shown as a function of the number of features used
in the MDE algorithm. Targets are color coded.

B.4 DEEP LEARNING MODEL ARCHITECTURES

We compared seven deep learning architectures to MDE as baselines. All models expected inputs of
shape [B, T, F ] (batch, time, features) and produced outputs of shape [B, T, 3] corresponding to the
three behavioral targets. All models were assessed on the reduced dimensions of the inputs, once for
PCA with 50 components (small-PCA), and once for PCA with the number of components required
for 99% explained variance (large-PCA). Based on the number of components used, parameters
for each model were set accordingly. Prior to training, the fMRI data was z-scored and the motor
outputs were min-max normalized.

Non-temporal models. The multilayer perceptron (MLP) and Bottleneck regressors served as base-
lines without explicit temporal modeling. The MLP regressor used two hidden layers with 128 and
64 units for the small-PCA case and 256 and 128 units for the large-PCA case. Dropout was set
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to 0.2 for small-PCA and 0.3 for large-PCA. ReLU was used for nonlinearities. The Bottleneck
regressor had a latent dimension of 16 for small-PCA and 64 for the large-PCA case.

Recurrent models. We evaluated gated recurrent units (GRU), bidirectional GRUs (BiGRU), and
LSTMs, each with hidden dimension 64 or 128 in the small-PCA and large-PCA regimes, respec-
tively.

Convolutional model. The temporal convolutional network (TCN) used 64 channels for the small-
PCA and 128 for the large-PCA with kernel size 3 and ReLU nonlinearities between layers.

Transformer. The Transformer model used 128 hidden units, 4 attention heads, and 2 layers for
the small-PCA and 256 hidden units, 8 attention heads, and 4 layers for the large-PCA. Attention
weights were automatically captured via hooks during evaluation.

Training and evaluation. We followed a Leave-One-Run-Out (LORO) protocol. At each iteration,
one run was held out as the test set, and the remaining four runs were concatenated into a training set.
Ten-fold cross-validation was applied to training windows for model selection, after which models
were retrained on all training data and evaluated on the held-out run. Each model was trained for 50
epochs and batch size of 32 using Adam (learning rate 10−3). The procedure was repeated across all
five runs, and results are reported as mean and standard deviation across these held-out evaluations.
Performance was assessed at the window level using RMSE and MAE.

B.5 DEEP LEARNING MODELS COMPARISON

The deep learning models used here for benchmarking used PCA-reduced inputs.

When using a number of PC equal to the number of dimensions used in our model (N=50), MDE
clearly outperforms all the tested models, as shown in Fig.7. Nevertheless, since we know from the
results of PCA that a much higher number of components is needed to explain most of the variance
in our data, we also trained and validated the deep learning models using a number of components
N= 1180 that explained over the 99% of the variance of the data. In this comparison shown in Fig.8,
MDE still shows comparable performance with the other models.

Figure 7: MDE compared to DL models using N=50 principal components.
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Figure 8: MDE compared to DL using N=1180 principal components explaining over the 99% of
the variance of the data.

C NETWORK OF BRAIN REGIONS IDENTIFIED BY MDE FOR PREDICTING
DRIVING BEHAVIOR

MDE selected a unique set of voxels for predicting driving behavior. The voxel selection by MDE
may provide novel insights on the network of brain regions that produce behavior, beyond regions
whose activity may be linearly correlated with motor actions. Thus, we examined the distribution of
voxels selected by MDE in the brain.

MDE is a parsimonious algorithm that selects a sparse set of voxels. The sparsity of the selected
voxels makes the network difficult to characterize for two related reasons. First, the inherent sparsity
makes it difficult to identify the extent of functional regions in the brain. Second, because the BOLD
signal is noisy, the voxel selection may not be consistent across runs. To overcome both challenges,
we identified the set of voxels whose activity is most correlated with the voxels selected by MDE.
This set of correlated voxels reveals the extent of the cortical regions selected by MDE as predictive
of behavior, and accounts possibly noisy voxel selections.

For Brake, MDE selected voxels from the primary foot somatomotor region, secondary motor cor-
tex, the frontal eye fields, supplementary foot motor areas, and the intraparietal sulcus. Additionally,
some voxels from the visual periphery are included.

For Steer, MDE selected voxels from the primary hand somatomotor regions, secondary motor
cortex, supplementary hand motor areas, the right fusiform face area, right posterior lateral parietal
cortex, and punctate regions in the dorsalateral prefrontal cortices.

For Acceleration, MDE selected voxels from the primari foot somatomotor areas, supplementary
motor areas, parietal cortex, hMT, and multiple punctate locations distributed across the prefrontal
cortex.

C.1 BRAIN MAPS OF FEATURES SELECTED BY MODELS

For each behavioral target, we mapped the features selected or the weights of the model onto the
cortical surface Fig.9.

Interpretation of feature maps.
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• MDE (sparse, causal maps): Fig. 9 top row shows the voxels identified by MDE as
casually predictive of driving behavior. Because the voxels are sparse, in addition to the
voxels selected by MDE, we also show voxels whose activity are highly correlated with the
selected voxels (thresholded at the 98th percentile). These clusters fall in motor and so-
matosensory cortices, regions that are known for producing motor outputs, and also some
prefrontal regions that may reflect higher-order abstract action planning. By constraining
feature selection through dynamical systems principles, MDE yields structured, stable, and
neurobiologically plausible maps, consistent with the idea that behaviorally relevant activ-
ity resides in low-dimensional manifolds.

• Lasso (sparse regression): Fig. 9 second row show voxels identified by lasso regression
to predict driving behavior. Like MDE, lasso enforces sparsity, and we also show voxels
whose activity are highly correlated with the selected voxels. Lasso enforces sparsity;
however, for Acceleration and Steer, it identifies scattered voxels across the cortex that do
not appear to be anatomically coherent, and for Brake, it identified voxels only in the hand
motor area, and IPS, and precuneus, which do not align with the known function regions
that produce motor behavior. Because it ignores temporal dynamics and causality, Lasso
likely selected voxels that are by chance correlate with behavior, rather than mechanistic
substrates of specific actions. This instability undermines interpretability despite apparent
sparsity.

• Ridge regression (distributed weights): Fig. 9 third row shows weights from ridge regres-
sion. Ridge produces diffuse weight maps across the whole brain. Notably, these weights
are noisy and do not appear to identify any consistent regions. While such distributed and
spatially noisy weights can achieve predictive accuracy by exploiting correlated activity,
they lack anatomical specificity, making them neurobiologically implausible as explana-
tions of behavior.

• Transformers (attention-based models): Fig. 9 rows four and five show weights from
transformer models. To interpret Transformer models, we derive voxelwise contribution
maps. For each left-out run, a single PCA is fit on z-scored train+validation data to define a
locked basis. Models are trained on either the first 50 components (PCA–50) or the smallest
number K explaining≥ 99% variance (PCA–99%). After training, we compute per-output
attributions (Acceleration, braking, Steer) using Integrated Gradients with a zero baseline in
PC space, aggregate over time and test batches to obtain a component-importance vector,
and back-project to voxels using the same PCA loadings (wvox = C⊤wPC). Maps are
L1-normalized, sign-aligned across folds, and averaged. These maps show widespread
weights gradients across cortex. While these weights are anatomically coherent (unlike
ridge weights), they are distributed across the cortex and do not parsimoniously identify
predictive regions. Furthermore, they are unstable across PCA dimensionalities: maps
from PCA–50 and PCA–99% often differ substantially, with regions even flipping sign.
This instability indicates that Transformer attributions reflect sensitivity to preprocessing
choices rather than robust mechanistic substrates.

In summary, unlike Lasso, Ridge, or Transformers, MDE integrates causal feature selection with
state-space reconstruction, yielding stable, interpretable maps localized to motor and sensory cor-
tices. This provides mechanistic insights consistent with established neurobiology while achieving
predictive performance comparable to or exceeding black-box models.
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Figure 9: Voxel maps for decoding Acceleration, Braking, and Steer behaviors from fMRI. Each
column corresponds to one behavioral dimension (Acceleration, Brake, and Steer), and each row
to a predictive model. For sparse models (MDE, Lasso), plots show voxels directly selected by
the model and also with voxels whose activity are highly correlated with them (thresholded at the
98th percentile). For distributed models (Ridge, Transformers), maps show signed voxel weights
or importance values (red = positive, blue = negative). Results show that lasso regression, while
sparse, does not identify any anatomically coherent regions; ridge regression, while able to predict
behavior, do not identify any plausible functional regions that drive activity; transformers, while
also able to predict activity, are sensitive to preprocessing parameters, suggesting that they do not
actually capture the true brain substrates of behavior

We investigated whether restricting the input to only the voxels that are causally linked to the target
behaviors would improve regression performance. To identify these voxels, we computed causal
relationships using Convergent Cross Mapping (CCM) between each voxel’s time series and the
three behavioral variables. We then masked the data to retain only the causal voxels and trained
Ridge and Lasso regression models on this reduced representation. We did not analogously restrict
Transformer inputs to CCM-identified voxels, because the model is trained in a locked PCA basis
that aggregates distributed cortical information, and masking would alter this basis and remove
global context. Also, the Transformer’s nonlinear, attention-based architecture can in principle learn
to emphasize behavior-relevant signals without an explicit causal mask. The results in Table??
showed that the performance of both models on the causal-masked data was nearly identical to their
performance when trained on the full set of brain voxels. Maps of selected features are shown in
Fig. 10.

When restricted to only casual voxels, ridge regression weights shows positive mappings between
distributed regions in supplementary motor cortex, premotor cortex, parietal cortex, and the visual
periphery to Acceleration; the primary foot motor cortex to Brake; and primary hand and foot motor,
supplementary motor areas, and frontal eye fields, and precuneus and lateral parietal cortex regions
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Table 3: MAE
model lasso lasso masked ridge ridge masked
target

Acceleration 0.151 ± 0.017 0.149 ± 0.016 0.144 ± 0.019 0.143 ± 0.019
Brake 0.08 ± 0.003 0.081 ± 0.003 0.081 ± 0.002 0.081 ± 0.003
Steer 0.116 ± 0.007 0.116 ± 0.006 0.122 ± 0.004 0.122 ± 0.004

Table 4: RMSE
model lasso lasso masked ridge ridge masked
target

Acceleration 0.184 ± 0.02 0.183 ± 0.019 0.178 ± 0.023 0.177 ± 0.023
Brake 0.129 ± 0.009 0.13 ± 0.01 0.126 ± 0.009 0.126 ± 0.009
Steer 0.159 ± 0.012 0.159 ± 0.013 0.168 ± 0.012 0.167 ± 0.012

to Steer. These regions are largely consistent with the regions identified by MDE (3), albeit more
noisy and distributed. On the same casual voxels, lasso regression selected voxels in the anterior
RSC, anterior OPA, hMT+, and lateral parietal cortex for Acceleration, Brake, and Steer. While
these voxel selections are more spatially coherent than results from training on all voxels, they do
not correspond well to those selected by MDE. These results suggest that restricting the pool of
voxels to casual voxels may improve the neurobiological plausibility of ridge regression, but not
lasso regression, to predict behavior.

Figure 10: Voxel maps for decoding Acceleration, Braking, and Steer behaviors from causal voxels
only. Each column corresponds to one behavior, the first row shows the causal mask (black voxels
are causal to the behavior, white voxels are not) and the second and third rows correpsond to the
results obtained with Ridge and Lasso regression, respectively. For ridge regression, red–blue maps
show signed voxel weights or importance values (red = positive, blue = negative). For Lasso re-
gression, green–yellow overlays indicate voxels directly selected by the model together with voxels
highly correlated with them (thresholded at the 98th percentile).
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D GENERALIZED TAKENS THEOREM

Takens’ original embedding theorem (Takens, 1981b) states that for a smooth dynamical system
(M,ϕt) on a compact d-dimensional manifold M , the delay-coordinate map constructed from a
generic smooth observable h : M → R,

F (x) =
(
h(x), h(ϕτ (x)), . . . , h(ϕ(m−1)τ (x))

)
,

is an embedding of M into Rm provided m ≥ 2d + 1. Deyle and Sugihara (Deyle and Sugihara,
2011) generalized this result by allowing reconstruction from a collection of measurement functions
or a combination thereof rather than delays of a single observable. Specifically, given a set of smooth
measurement functions hi : M → R, the mapping

F (x) =
(
h1(x), . . . , hp(x)

)
,

is an embedding for generic choices of {hi} if the joint embedding dimension m =
∑p

i=1 mi ex-
ceeds 2d. This “generalized embedding” guarantees that the reconstructed attractor is diffeomorphic
to the original system’s attractor, enabling faithful recovery of system dynamics from multivariate
or heterogeneous time series or any combination thereof.

E CAUSALITY IN DYNAMICAL SYSTEMS

Convergent Cross Mapping (CCM), introduced by Sugihara et al., is a method for detecting causal
relationships in dynamical systems using state-space reconstruction as formalized by Takens’ theo-
rem (Takens, 1981b). The key idea is that if variable X drives variable Y , then the historical states
of Y should contain a footprint of X’s dynamics, allowing X to be predicted from Y ’s reconstructed
attractor.

To test whether X → Y , CCM reconstructs the attractor from the Y time series and uses simplex
projection to predict X . The central diagnostic is convergence: as the observation density increases,
prediction accuracy improves and eventually stabilizes. This occurs because longer recordings or
denser maps produce denser attractors, which yield better nearest-neighbor estimates. Convergence
thus distinguishes genuine causal influence from spurious correlation: if X truly drives Y , then in-
formation about X will be recoverable from Y ’s embedding in a consistent, map density-dependent
manner. In our framework, we use this convergence property as a principled criterion for feature
selection: variables are included only if their embeddings demonstrate convergent predictability of
the target, ensuring that selected features exert a directional influence on behavior.

F BROADER IMPACT

Our work on MDE not only advances dynamical-systems decoding in neuroscience but also general-
izes to any multivariate time series system where both accurate forecasting and mechanistic insight
are prized. Neural decoding has applications in clinical settings, where shifts in the geometry of
patient-specific neural manifolds or changes in short-horizon forecast error profiles may serve as
sensitive, interpretable biomarkers for brain disorders and injuries, enabling earlier diagnosis and
more precise monitoring of treatment response. For brain–computer interfaces, our sparse, causally
validated feature selection combined with accurate, short-term behavioral forecasting can enhance
prosthetic control, while providing clear mechanistic insight into the neural circuits at play. Finally,
by translating neural or behavioral signals into low-dimensional state spaces, MDE can inform adap-
tive robotics policies paving the way for personalized, closed-loop technologies across health, safety,
and human–machine interaction. MDE can also offer insights in realms different than neuroscience.
For example, in genomics, our method can reveal causal gene–gene interactions and predict ex-
pression dynamics under perturbations. In ecology, it can reconstruct population attractors from
species count or environmental data, forecasting regime shifts while identifying key drivers. In epi-
demiology, it could model outbreak trajectories from infection and mobility time series, pinpointing
variables that causally influence transmission. Beyond biology, applications also include financial
markets (forecasting asset trajectories and uncovering leading indicators), and smart infrastructure
(predicting energy demand and identifying critical load factors). By recovering low-dimensional
attractors and selecting causally relevant features, MDE offers a unified, interpretable framework
for prediction and discovery across science, engineering, and policy.
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G COMPUTATIONAL RESOURCES

The experiments were carried out on a high-performance Linux server equipped with two AMD
EPYC 7742 64-core CPUs (128 cores total at 1.5 GHz), 1 TB of RAM, and an NVIDIA A100 PCIe
40 GB GPU. Under this configuration, running MDE on each cross-validation fold required roughly
1.2 hours (about 1 hour and 12 minutes) per fold to complete. The linear regression models take on
average 0.1 ms for a single point prediction.

H LLM USAGE

Portions of the manuscript text were refined with the assistance of a large language model (LLM),
which was used solely for editing and polishing writing style. All technical content, analyses, and
conclusions were generated and verified by the authors.
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