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Abstract

A prominent challenge of offline reinforcement
learning (RL) is the issue of hidden confound-
ing: unobserved variables may influence both the
actions taken by the agent and the observed out-
comes. Hidden confounding can compromise the
validity of any causal conclusion drawn from data
and presents a major obstacle to effective offline
RL. In the present paper, we tackle the problem of
hidden confounding in the nonidentifiable setting.
We propose a definition of uncertainty due to hid-
den confounding bias, termed delphic uncertainty,
which uses variation over world models compati-
ble with the observations, and differentiate it from
the well-known epistemic and aleatoric uncertain-
ties. We derive a practical method for estimating
the three types of uncertainties, and construct a
pessimistic offline RL algorithm to account for
them. Our method does not assume identifiabil-
ity of the unobserved confounders, and attempts
to reduce the amount of confounding bias. We
demonstrate through extensive experiments and
ablations the efficacy of our approach on a sepsis
management benchmark, as well as on electronic
health records. Our results suggest that nonidenti-
fiable hidden confounding bias can be mitigated
to improve offline RL solutions in practice.

1. Introduction
Large observational datasets for decision-making open the
possibility of learning expert policies with minimal envi-
ronment interaction. This holds promise for contexts where
exploration is impractical, unethical or even impossible,

1ETH AI Center, ETH Zürich 2Dept. of Computer Sci-
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such as optimising marketing, educational or clinical deci-
sions based on relevant historical datasets (Gottesman et al.,
2018; Singla et al., 2021; Thomas et al., 2017). Recent years
have thus seen the emergence of offline reinforcement learn-
ing (RL) literature (Levine et al., 2020), which proposes to
adapt RL methods to overcome estimation biases induced
by learning from finite, fully offline data.

Aside from estimation biases, confounding variables are
common in offline data (Gottesman et al., 2018). The prob-
lem of hidden confounding, where outcome and decisions
are both dependent on an unobserved factor, is widely over-
looked in many of the concurrent offline RL methods. Nev-
ertheless, it may induce significant errors, even for the sim-
plest of bandit problems, and is especially aggravated in the
sequential setting (Chakraborty & Murphy, 2014; Tennen-
holtz et al., 2022; Zhang & Bareinboim, 2019). Hidden con-
founding exists in numerous applications. In autonomous
driving, for example, the observational policy may behave
according to unobserved factors (e.g. road conditions (Haan
et al., 2019)), which also affect environment dynamics and
rewards. Alternatively, in the medical context, unrecorded
patient state information such as socio-economic factors or
visual appearance may have been taken into account by the
acting physician (Gottesman et al., 2018).

In this work, we focus on nonidentifiable hidden confound-
ing in offline RL. While prior work has mostly addressed
the problem in the identifiable setup (Kumor et al., 2021;
Lu et al., 2018a; Wang et al., 2021; Zhang & Bareinboim,
2020), we show that significant improvement in policy learn-
ing can be achieved even in the realistic nonidentifiable set-
ting. We propose an approach to estimate uncertainty due
to confounding bias and to account for the degree of con-
foundedness while learning. In turn, this leads to improved
downstream performance for offline learning algorithms.

Our main contributions are as follows. (1) To the best of
our knowledge, we are the first to address nonidentifiable
confounding bias in deep offline RL. (2) We achieve this
by introducing a novel uncertainty quantification method
from observational data, which we term delphic uncertainty.
(3) We propose an offline RL algorithm that leverages this
uncertainty to obtain confounding-averse policies, and (4)
we demonstrate its performance on both synthetic and real-
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Figure 1: Contextual MDP. Black arrows show the transition
dynamics, blues ones the reward function, and red ones the policy.
Confounding arises when both behavioural policy πb and environ-
ment returns depend on hidden context variable z (dashed lines).

world medical data.

2. Preliminaries
We consider the contextual Markov Decision Process
(MDP) (Hallak et al., 2015), defined by the tuple
M = (S,Z,A, T, r, ρ0, ν, γ), where S is the state space,A
is the action space, Z is the context space, T : S×Z×A →
∆S is the transition function, r : S × Z × A → [0, 1] is
the reward function, and γ ∈ [0, 1) is the discount factor.
We assume an initial state distribution ρ0 : Z → ∆S and
a context distribution ν, such that each interaction episode
has a fixed context z ∼ ν, which may or may not be acces-
sible to the agent, and the environment initialises at state
s0 ∼ ρ0( · |z). At time t, the environment is at state st ∈ S
and an agent selects an action at ∈ A. The agents receives
a reward rt = r(st, at, z) and the environment then transi-
tions to state st+1 ∼ T ( · |st, at, z). A causal graph of the
process is depicted in Figure 1.

We define a context-aware policy π as a mapping π : S ×
Z → ∆A, such that π(a|s, z) is the probability of taking
action a in state s and context z. Likewise, we define a
context-independent policy as π̃ : S → ∆A. We denote the
set of all such policies as Π and Π̃, respectively.1

We assume access to a dataset of N trajec-
tories D = {τ i}Ni=1, where the sequences
τ i = (si0, a

i
0, r

i
0, . . . s

i
H , aiH , riH) are trajectories in-

duced by an unknown, context-aware behavioural policy
πb ∈ Π such that ait ∼ πb( · |sit, zi). The decision-making
context zi for each trajectory is not included in the
observational dataset. In the following, we drop index i
unless explicitly needed.

Finally, we define the offline RL task with hidden con-
founding, which consists of finding an optimal context-
independent policy π̃∗ ∈ Π̃ – one which maximises

1One can also consider history-dependent policies. Neverthe-
less, Markov policies sufficiently illustrate the challenges of our
task, and can be easily generalised to history-dependent ones.

the expected discounted returns. Specifically, we define
the state-action value function of a policy π̃ ∈ Π̃ by
Qπ̃(s, a) = Eπ̃,z∼ν [

∑∞
t=0 γ

tr(st, at, z)|s0 = s, a0 = a],
where Eπ̃ denotes the expectation induced by following
policy π̃ ∈ Π̃. We also define the value of π̃ by V π̃(s) =
Ea∼π̃

[
Qπ̃(s, a)

]
. An optimal policy is then defined by

π̃∗( · |s) = argmaxπ̃∈Π̃

[
V π̃(s)

]
.

3. Sources of Error in Offline RL
Optimising a policy from observational data is prone to
various sources of error, which many RL works propose
to decompose, estimate, and bound (Levine et al., 2020;
Tennenholtz & Mannor, 2022). First, the process is prone to
statistical error in correctly estimating a value model from
the observed data (Jin et al., 2021). Inherent stochasticity
in the environment (aleatoric uncertainty) can result in im-
precise models, whereas finite data quantities (epistemic
uncertainty) can lead to poor model approximation.

When learning from observational data, improper handling
of estimation errors causes covariate shift and overestima-
tion problems, as evident in behaviour cloning (Ross et al.,
2011) and offline RL (Kumar et al., 2020). Such errors can
be reduced through access to larger data quantities or online
interactions with the true environment at training time. Of-
fline RL approaches typically mitigate these errors through
pessimism, penalising areas where error is expected to be
large (Jin et al., 2021; Levine et al., 2020).

Another source of error, often overlooked in the RL liter-
ature, is structural bias. Independent of data quantity, this
bias can occur under incomplete state-action space cover-
age (Uehara & Sun, 2022), or under inappropriate model
expressivity (Lu et al., 2018b). Our work considers con-
founding bias – a critical type of structural bias, evident
in a vast number of applications (Gottesman et al., 2018;
Haan et al., 2019; Kallus & Zhou, 2018; 2020). This bias
can arise when the data-generating policy relies on unob-
served factors that also affect downstream transitions and/or
rewards (Tennenholtz et al., 2022).

Confounding Bias. Confounding bias is a critical source
of error in offline RL, which is often disregarded despite
many data collection environments being prone to its occur-
rence (Kallus & Zhou, 2018). This source of error arises
when the observational policy depends on unobserved fac-
tors which affect the chosen action and the reward or transi-
tion function. To better understand how confounding bias
may affect offline RL algorithms, consider the process de-
tailed in Section 2 and depicted in Figure 1. The offline data
was generated by sampling trajectories from the behavioural
policy distribution τ ∼ Pπb

(τ), which is marginalised over
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ν(z) and factorises as follows:

Pπb
(τ) = Ez∼ν

[
ρ0(s0|z)

H∏
t=0

πb(at|st, z)Pr(rt|st, at, z)

T (st+1|st, at, z)

]
, (1)

where Pr is the probability of sampling reward rt from
r(st, at, z).

Any offline reinforcement learning objective can be written
as an expectation over this trajectory distribution (Levine
et al., 2020). Confounding arises when one learns models
on trajectories following Pπb

(τ), but estimates the value of
policies π that change the probability of taking an action
a in a given state and context (s, z) – as is necessarily the
case when considering context-independent policies. Since
all model terms in Equation (1) are unknown and nonidenti-
fiable due to their dependence on z, there may exist several
“worlds” that could induce the same observational distribu-
tion Pπb

(τ). This is known as the “identifiability problem”
in the causal inference literature (Kallus & Zhou, 2018;
Namkoong et al., 2020), which has been studied extensively,
providing methods for analyzing when counterfactual es-
timates can be obtained. Particularly, without additional
assumptions about the causal structure of the environment –
such as using environment interventions (Lu et al., 2018a;
Zhang & Bareinboim, 2020) or the existence of observable
back- or front-door variables (Kumor et al., 2021; Wang
et al., 2021) – the context z acting as confounder is non-
identifiable and cannot be estimated. Below, we illustrate
through a simple example, how two equally plausible mod-
els can correctly construct the same observational distribu-
tion, yet induce two different values for another policy.

An Illustrative Example. Suppose access to the ban-
dit data in Figure 2a, induced by an unknown context-
dependent policy πb with marginal distribution Pπb

(a, r).
Assume no access to the episode context z in the data. Sim-
plifying Equation (1) to this setup, we obtain:

Pπb
(a, r) = Ez∼ν [πb(a|z)Pr(r|a, z)].

We can therefore change ν, πb, and Pr to induce the same
marginalised distribution Pπb

, with a significant difference
in reward for a counterfactual policy. Indeed, in Figures 2b
and 2c we show how different models that are compatible
with the observational quantities can result in substantially
different reward estimates for a different policy. Particularly,
in World 1 (Figure 2b), we assume a deterministic singleton
context, with a corresponding uniform behavioural policy,
whereas in World 2 (Figure 2c) we assume two contexts
with uniform distribution, and a behavioural policy which
changes its distribution w.r.t. the sampled context. In both

of these worlds, the observational distribution Pπb
(a, r) re-

mains the same. Nevertheless, calculating the reward of the
uniform policy π̃uni(·) = 1/|A| results in different reward
distributions. Moreover, the optimal actions in World 1 and
World 2 are different.

Without explicit access to the ground-truth context or a
proxy thereof (in the identifiable context), modelling an
alternative policy to the privileged data-generating one will
therefore be prone to spurious correlations and estimation
biases.

In the next section, we propose to address the general non-
identifiable confounding problem in offline RL by estimat-
ing the amount of confounding error within the observa-
tional dataset and correcting for it during learning. Impor-
tantly, this source of error cannot be captured by epistemic
or aleatoric uncertainty quantification methods, as discussed
next.

4. Measuring Confounding Bias through
Delphic Uncertainty

In this section, we formulate a method for estimating uncer-
tainty arising from confounding bias in offline RL, which we
term delphic uncertainty2. While aleatoric and epistemic un-
certainty can be expressed as probability distributions over
model outputs and parameters, respectively (Hüllermeier
& Waegeman, 2021), delphic uncertainty is a distribution
over counterfactual values. We propose a general approach
to decouple aleatoric, epistemic, and delphic uncertainties,
which we later leverage to overcome confounding bias in
Section 5.

To introduce delphic uncertainty we first define a set of
worlds compatible with the marginalised data distribution
Pπb

(τ).

Definition 4.1. A compatible world for Pπb
is a tuple w =

(Zw, νw, ρ0,w, Pr,w, Tw, πb,w) which satisfies

Pπb
(τ) = Ez∼νw

[
ρ0,w(s0|z)

H∏
t=0

πb,w(at|st, z)

Pr,w(rt|st, at, z) Tw(st+1|st, at, z)
]
,

for any trajectory τ = (s0, a0, r0, . . . , sH , aH , rH). We
denote byW the set of all compatible worlds.

We focus on uncertainty estimates of value functions. Let
w ∈ W (i.e., w is some compatible world for Pπb

). We
use θw to denote the parameters of a Q-value function in
world w. For a fixed w and θw, we assume each value

2The word “delphic” characterises quantities that are ambigu-
ous and opaque, relating to the hidden confounding variables and
their elusive effect on model predictions.
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(a) Observational data (b) World 1: ν(0) = 1. (c) World 2: ν(0) = 0.5.

Figure 2: Confounding Bias Example. World 1 and 2 are two models for the binary confounding variable that are compatible with the
marginalised observational bandit data in (a), composing models for ν(z), πb(a|z) and P (r|a, z). Under an alternative policy, such as a
context-independent uniform policy π̃uni(·) = 1/|A|, these two worlds give different values to each action.

model Qθw is defined by some stochastic model, e.g., a
normal distribution Qθw |θw, w ∼ N

(
µθw , σ

2
θw

)
. Indeed,

here σθw accounts for aleatoric uncertainty, capturing the
intrinsic stochasticity of the environment (Kendall & Gal,
2017). Additional statistical uncertainty arises from the
distribution over model parameters θw in the fixed world
w ∈ W . Starting from a prior over θw, evidence from the
data leads to a posterior estimate over the correct model pa-
rameters P (θw|D), which captures epistemic uncertainty
(Hüllermeier & Waegeman, 2021). We refer the interested
reader to Appendix A.1 for an overview of statistical uncer-
tainty estimation methods.

We are now ready to define the uncertainty induced by con-
founding variables, which we term delphic uncertainty. To
do this, we leverage Definition 4.1 and define delphic uncer-
tainty by varying over compatible world models. Based on
the law of total variance (Weiss et al., 2006) and following
on prior work separating epistemic and aleatoric uncertainty
(Kendall & Gal, 2017), we can decompose the variance in
the value function estimate between the three types of uncer-
tainties. Particularly, let w be a compatible world for Pπb

,
and let Pw 7→ ∆W be some distribution over worlds inW .
We have the following result. Its proof, based on the law of
total variance (Weiss et al., 2006), is given in Appendix B.

Theorem 4.2 (Variance Decomposition). For any π ∈ Π,
we have

Var(Qπ
θw) = Ew

[
Eθw

[
Var(Qπ

θw |θw, w)|w
]︸ ︷︷ ︸

aleatoric uncertainty

+Varθw
(
E[Qπ

θw |θw, w]|w
)︸ ︷︷ ︸

epistemic uncertainty

]

+Varw(Eθw [E[Qπ
θw |θw, w]|w])︸ ︷︷ ︸

delphic uncertainty

.

To gain further intuition of this result, consider the case of
normal distributions. We can rewrite Theorem 4.2 as:

Var(Qπ
θw) = Ew

[
Eθw [σθw |w]2

+ Varθw(µθw |w) + Varθw(σθw |w)
]

+ Varw(Eθw [µθw |w]) (2)

The first three terms, calculated by the square average of pre-
dicted standard deviations and the variance of the predicted
means and standard deviations, correspond to aleatoric and
epistemic uncertainties, whereas the final term, calculated
by the variation over compatible world models, corresponds
to delphic uncertainty. Indeed, the latter form of uncertainty
cannot be diminished, even in deterministic environments
and infinite data: as |D| → ∞ (no epistemic uncertainty),
and σθw → 0 (no aleatoric uncertainty), the delphic uncer-
tainty remains. We refer the reader to Appendix B.2 for
further discussion.

5. Offline RL Under Delphic Uncertainty
In the previous section, we defined delphic uncertainty
through variation over compatible world models. In this
section, we propose a method to measure delphic uncer-
tainty in practice. We then leverage our uncertainty estimate
within an offline reinforcement learning framework and
demonstrate its ability to mitigate confounding bias.

Following the estimation approach outlined in Theorem 4.2,
delphic uncertainty can be measured through the disagree-
ment within value functions for a given policy, under differ-
ent worlds w compatible with the observational distribution.

5.1. Measuring Delphic Uncertainty

Modelling Compatible Worlds. The first practical step
for evaluating delphic uncertainty is the definition of compat-
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ible world models. While one could theoretically consider
all possible world models in Definition 4.1, we found that,
in practice, varying over a subset of compatible models was
enough to show improved offline RL efficiency.

A compatible world w ∈ W must capture key relationships
from the observational data. Figure 7 depicts our proposed
approach. Our model, parameterised by θ, consists of a
confounder prior, a behaviour policy, and a value function
estimator. During training, a trajectory τ ∼ D is mapped to
a latent distribution νθ(z|τ), from which the policy πb,θ and
value Qπb

θ are estimated. Estimates are trained by draws
from state-action pairs (s, a) ∼ τ and a sampled z.

More specifically, we train compatible world models
through variational inference, using the posterior νθ(z|τ)
and prior p(z). For τ ∼ D, the model is trained by maximis-
ing the Evidence Lower BOund (ELBO, Kingma & Welling
(2014)):

E(s,a)∼τ ; z∼νθ(z|τ)
[
logQπb

θ (s, a, z) + α log πb,θ(a|s, z)
]

−βDKL

(
νθ(z|τ)

∥∥ p(z))
where {α, β} are hyperparameters (Higgins et al., 2017)
and DKL is the Kullback-Leibler divergence between
two distributions. Sampling from νθ is achieved through
the reparametrisation trick (Kingma & Welling, 2014).
Optimal parameters for {νθ, πb,θ, Q

πb

θ } are obtained by
maximising the objective over D. Once a compatible
world model is trained, the value function of a pol-
icy π can be estimated over one step using importance
sampling and marginalising over z, i.e., Qπ(s, a) =

Eτ∼DEz∼νθ(z|τ)

[
π(a|s)

πb,θ(a|s,z)Q
πb

θ (s, a, z)
]
. We discuss alter-

native approaches to estimating counterfactual quantities in
Appendix C.

Counterfactual Variation Across Worlds. We ap-
proximate W by a set of W compatible worlds
{νθw , πb,θw , Q

πb

θw
}Ww=1 on the observational training dataset

D, each trained using different priors and model architec-
tures. Following our definition of confounding bias (The-
orem 4.2), we measure delphic uncertainty through the
variance in Qπ

θw
(s, a) across worlds. That is, delphic un-

certainty for policy π at state-action (s, a) is defined by
uπ
d (s, a) = Varw(Qπ

θw
(s, a)). When no confounding exists,

all models inW should identify similar ν,Qπb and πb (up
to epistemic uncertainty), returning a similar value of Qπ.
On the other hand, confounding with ambiguous returns
would lead to different values across world models. Epis-
temic and aleatoric uncertainty are separately captured by
implementing each world model component as an ensemble
of probabilistic models. We refer the reader to Appendix C
for an exhaustive overview of the training procedure.

Algorithm 1 Delphic Offline Reinforcement Learning

Input: Observational dataset D, Offline RL algorithm.
Learn compatible worlds {Zw, νw, ρ0,w, Pr,w, Tw,
πb,w}w∈W that factorise to Pπb

.
Obtain counterfactual predictions Qπ

w for each w ∈ W .
Define local delphic uncertainty: uπ

d (s, a) =
Varw(Qπ

w(s, a)).
Apply pessimism using ud in Offline RL algorithm (§5.2)

5.2. Delphic ORL: Offline Reinforcement Learning with
Delphic Uncertainty

Inspired by pessimistic approaches in offline RL (Fujimoto
et al., 2019; Jin et al., 2021; Kumar et al., 2019; 2020;
Levine et al., 2020), we propose to penalise the value of
states and actions where delphic uncertainty is high, such
that the learned policy is less likely to rely on spurious
correlations between actions, states and rewards. This pes-
simistic approach, which enables the agent to account for
and mitigate confounding bias when making decisions, is
summarised in Algorithm 1.

In this paper, we incorporate pessimism with respect to
delphic uncertainty by modifying the target Qtarget for the
Bellman update in a model-free offline RL algorithm to

Q′
target(s, a) = Qtarget(s, a)− λuπ

d (s, a),

where π is the latest learned policy, (s, a) is a tuple sam-
pled for the update and hyperparameter λ controls the
penalty strength. We apply our penalty to Conservative
Q-Learning (Kumar et al., 2020), but this approach could
also be implemented within any model-free offline RL al-
gorithm – which already induces pessimism with respect to
epistemic uncertainty (Fujimoto & Gu, 2021; Kumar et al.,
2020; Levine et al., 2020).

Note that various other methods can be adopted to drive
pessimism against delphic uncertainty within existing of-
fline RL algorithms (Fujimoto & Gu, 2021; Kumar et al.,
2020; Yu et al., 2020), depending on the task at hand. The
above penalty can be subtracted from the reward function
in model-based methods (Yu et al., 2020). The uncertainty
measure can also be used to identify a subset of actions over
which to optimise the policy, as demonstrated by Fujimoto
et al. (2019), or to weigh samples in the objective func-
tion, prioritising unconfounded data. We refer the reader
to Appendix C for implementation details, including on the
aforementioned techniques.

6. Experiments
In this section, we study the benefits of our proposed del-
phic uncertainty estimation method and its application in
offline RL. We validate two principal claims: (1) Our del-
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Figure 3: Uncertainty measures as a function of data properties, averaged over state-action pairs in the sepsis dataset. Epistemic
uncertainty reduces most with more data, aleatoric uncertainty increases most with environment stochasticity (reward variance), and
delphic uncertainty increases most with confounding strength.

phic uncertainty measure captures bias due to hidden con-
founders. (2) Algorithm 1 leads to improved offline RL
performance in both simulated and real-world confounded
decision-making problems, compared to state-of-the-art
but biased approaches. As baselines compatible with the
discrete action spaces of environments studied here, we
consider Conservative Q-Learning (CQL) (Kumar et al.,
2020), Batch-Constrained Q-Learning (BCQ) (Fujimoto
et al., 2019) and behaviour cloning (BC) (Bain & Sam-
mut, 1996). Implementation and dataset details are pro-
vided in Appendices C and D respectively. In the follow-
ing, we measure and vary confounding strength through the
dependence of the behavioural policy on the hidden con-
founders, Γ = maxz,z′∈Z [πb(a|s, z)/πb(a|s, z′)] (Rosen-
baum, 2002), where z also affects the transition dynamics
or reward function.

6.1. Sepsis Simulation

We explore a simulation of patient evolution in the inten-
sive care unit adapted from Oberst & Sontag (2019). The
diabetic status of a patient, accessible to the near-optimal
behavioural policy but absent from the observational dataset,
acts as a hidden confounder z.

Uncertainty Measures. First, we study the relationship
between our uncertainty estimates and the decision-making
setup. In Figure 3, we find that epistemic uncertainty re-
duces with greater data quantities and increases out of the
training set distribution, whereas aleatoric uncertainty in-
creases with environment stochasticity, in agreement with
prior work (Kendall & Gal, 2017). Our delphic uncertainty
estimate, on the other hand, cannot be reduced with more
data and increases with greater confounding. Moreover, we
found that delphic uncertainty relates to meaningful regions
of state-action space, as it is highest under vasopressor ad-
ministration – the only treatment for which patient evolution
is confounded by the hidden diabetic status. We refer the
reader to Appendix E for an exhaustive overview and further
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Figure 4: Performance Results as a function of confounding
strength Γ. Normalised environment returns (mean and shaded
95% CIs) over 10 runs.

experiments.

Offline RL Performance. In Figure 4, we compare en-
vironment returns obtained through offline RL, imitation
learning, and our proposed approach. Our results reveal
the susceptibility of offline RL to confounding bias: the
presence of unobserved factors z that influence both the
behaviour policy and transition dynamics leads to inaccu-
rate value function estimates. Behaviour cloning appears
to be less prone to this bias but still faces challenges in
dealing with missing information in z, evidenced by the per-
formance gap to the online policy in the unconfounded case
(Γ = 1), and with the distribution shift in observed histories
(Ortega et al., 2021). In contrast, our approach to penalising
delphic uncertainty leads to superior performance, espe-
cially as confounding strength increases. In Appendix E,
we also compare different approaches to implementing pes-
simism with respect to delphic uncertainty, as detailed in
Section 5.2, and provide an ablation over performance as a
function of pessimism hyperparameter λ.

6.2. Real-World Data

We demonstrate the added value of our algorithm in optimis-
ing decision-making policies from real-world medical data.
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Figure 5: Delphic uncertainty as a function of (s, z) in real-world medical data, for a = {vasopressors}. In (a, b), we note the
dependence of the behavioural policy πb (top) and/or state distribution P (s) (bottom) on confounders z. In (c), delphic uncertainty
increases most in confounded states and under factors with greater confounding strength, compared to orthopaedic diagnosis (Γ = 3.4).

Our clinical policies are trained using a publicly available
dataset of electronic health records, with over 33 thousand
patient stays in intensive care and over 200 measured vari-
ables (Hyland et al., 2020). We consider the problem of
optimising the treatment policy for vasopressor and fluid
administration3, and design the reward function to avoid
states of circulatory failure. Significant information about
patients’ conditions is not available in the dataset, despite
being critical to the treatment choices of attending physi-
cians, such as socio-economic factors or medical history
(Yang & Lok, 2018). For ease of evaluation, we introduce
additional, artificial confounders by excluding them from
the observational dataset, focusing on diagnostic indicator
variables, age and weight (Γ ∈ [1, 200]). Disease severity
is measured through the SOFA score system (Vincent et al.,
1996).

Confounding in Medical Dataset. As the aforementioned
variables affect both the probability of treatment assignment
and downstream patient evolution, they act as confounders
over outcome models when excluded from the data. In Fig-
ure 5, we highlight how our delphic uncertainty measure
captures confounded state-action pairs in concordance with
the introduced confounders. Delphic uncertainty is gen-
erally highest for high disease severity, where important
factors such as age or comorbidity may affect the choice of
treatment intensity (Azoulay et al., 2009). Indeed, delphic
uncertainty increased to a greater extent under important
confounders (e.g., age or patients’ neurological diagnosis)
than less critical factors (e.g., orthopaedic diagnosis).

Confounding-Averse Policies. We investigate the efficacy
of our penalisation approach in learning policies that op-
timise patient outcomes in the presence of confounding

3These therapeutic agents are commonly given to overcome
shock in intensive care (Benham-Hermetz et al., 2012). Their
administration strategy has already been studied as an RL task
(Gottesman et al., 2018; Raghu et al., 2017).

Confounders Z Γ BCQ BC CQL Delphic ORL

All ≈200 54.6 ± 1.3 59.6 ± 0.8 59.3 ± 0.9 62.2 ± 1.0

{age} 48.2 58.8 ± 0.8 64.7 ± 0.5 64.4 ± 0.8 66.5 ± 0.9
{neuro. diag.} 29.1 55.0 ± 1.3 61.8 ± 0.9 59.6 ± 1.7 65.7 ± 1.2
{gastro. diag.} 19.0 55.8 ± 0.8 60.9 ± 0.6 59.8 ± 0.6 63.3 ± 1.1
{trauma} 16.3 56.3 ± 0.8 63.2 ± 1.1 63.5 ± 0.7 65.7 ± 1.0
{cardio. diag.} 13.2 56.2 ± 1.0 60.6 ± 0.7 58.6 ± 0.9 62.7 ± 1.1
{hemato. diag.} 11.6 59.6 ± 0.9 63.2 ± 0.6 63.1 ± 0.7 65.3 ± 1.1
{weight} 8.3 60.1 ± 0.8 64.2 ± 1.0 65.4 ± 0.6 66.3 ± 0.9
{ortho. diag.} 3.4 62.3 ± 0.8 64.6 ± 0.6 65.8 ± 0.7 65.9 ± 1.0
{sepsis} 2.8 60.3 ± 0.9 63.9 ± 0.6 65.4 ± 0.7 66.2 ± 1.0
{intoxication} 1.2 62.3 ± 0.9 63.4 ± 0.5 65.2 ± 0.6 66.6 ± 1.1

∅ 1 62.6 ± 0.8 65.4 ± 0.5 68.2 ± 0.7 67.6 ± 1.1

Table 1: Off-Policy Evaluation (OPE) on the real-world medical
dataset. Delphic ORL yields improvements when z strongly con-
founds treatment decisions (large Γ). Mean and 95% CIs over 10
runs. Best and overlapping results in bold.

bias. To evaluate the performance of these policies, we
employ doubly-robust off-policy evaluation (OPE) (Jiang &
Li, 2016; Le et al., 2019), which provides a confounding-
independent estimate of treatment success by leveraging
access to z. We refer the reader to Appendix D.2 for an
exhaustive overview of this evaluation method.

Table 1 shows our approach maintains improved perfor-
mance even as the confounding level increases, while of-
fline RL methods suffer from bias and yield suboptimal
policies. As an ablation, we also studied the discrepancy
of our trained policy with that in the data. Particularly, we
compared the actions taken by our policy and the policy in
the data and found that, unlike behaviour cloning, our policy
was significantly different. This suggests our learned pol-
icy was indeed able to extrapolate from the data efficiently,
identifying treatment strategies that may be more robust to
confounding biases. We refer the reader to Appendix E for
an overview of this ablation.

Expert Clinician Evaluation. Motivated by the observed
success of our method, we evaluated our algorithm using



Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding

1
=

15 20 100 200
= {all}

30

40

50

60

70
Ex

pe
rt 

pr
ef

er
en

ce
 (%

)
Delphic ORL (Ours) CQL BC

Figure 6: Expert Clinician Evaluation of treatment policies,
supporting the conclusion that Delphic ORL improves learning in
confounded settings.

expert clinicians. Figure 6 shows the evaluation results of
six human expert clinicians, who ranked pairs of different
policies based on their observed patient outcomes. More
specifically, the human experts were shown simulated pa-
tient trajectories and were asked to blindly compare the
expected value of actions from either our policy or the CQL
policy to those of the behaviour cloning policy. The results
provide additional validation for the performance improve-
ments of our method in confounded settings. We refer the
reader to Appendix D.2 for an exhaustive overview of the
clinician evaluation experiment.

7. Related Work
Online-RL methods rely on environment interaction for
training, limiting their applicability in many real-world do-
mains such as healthcare (Gottesman et al., 2018). This has
fueled research efforts in offline methods to optimise poli-
cies through pessimism (Buckman et al., 2021; Cheng et al.,
2022; Jin et al., 2021; Levine et al., 2020; Uehara & Sun,
2022; Xie et al., 2021). Recent practical algorithmic devel-
opments in offline RL have focused on addressing statistical
errors induced by epistemic and aleatoric uncertainty, in
both model-based and model-free methods (Fujimoto & Gu,
2021; Kidambi et al., 2020; Kostrikov et al., 2021; Kumar
et al., 2020; Yu et al., 2020).

Structural errors such as confounding bias are also perva-
sive in offline RL (Lu et al., 2018a). Such biases cannot be
captured by epistemic or aleatoric uncertainty quantification
methods, as they do not depend on data quantity. Confound-
ing bias cannot be reduced to the missing information prob-
lem in partially-observable environments either (Hausknecht
& Stone, 2015). History-dependent policies, for example,
are equally prone to this source of error: while long-term
information can recover latent environment information,

it exacerbates distribution shifts between behavioural and
learned policies when learning from observational data (Or-
tega et al., 2021; Swamy et al., 2022).

Several approaches have been proposed to address confound-
ing bias in offline RL. Most make assumptions to estimate
the confounding variables, including access to the environ-
ment (Lu et al., 2018a; Zhang & Bareinboim, 2020) or to
observable back- or front-door proxy variables (Kumor et al.,
2021; Lu et al., 2022; Shi et al., 2022; Wang et al., 2021).
This allows algorithms to apply covariate adjustment meth-
ods (Pearl, 2009) to correct for confounding when modelling
alternative policies (interventional probabilities and counter-
factuals). Extensive work also discusses confounding bias
in off-policy evaluation (Bennett & Kallus, 2021; Bennett
et al., 2021) and bandits (Chen et al., 2023; Sen et al., 2017;
Tennenholtz et al., 2021), but the proposed solutions remain
poorly translatable to learning offline RL policies in practice,
due to the aforementioned limiting assumptions.

Our work is also closely related to research on sensitivity
analysis for treatment effect estimation under hidden con-
founding (Jesson et al., 2021; Kallus et al., 2019; Oprescu
et al., 2023; Rosenbaum, 2002). These works propose par-
tial identification bounds for confounded heterogeneous
treatment effect estimation or bandit decision-making prob-
lems (Kallus & Zhou, 2018) by assuming a bound on the de-
pendence of the behavioural policy on hidden confounders.
In this context, Jesson et al. (2021) also distinguish sources
of aleatoric and epistemic uncertainty from confounding
biases. Other work has proposed sensitivity analysis bounds
for off-policy evaluation, formulating uncertainty sets over
policy returns (Namkoong et al., 2020; Zhang & Barein-
boim, 2019). Still, regret bounds from sensitivity analysis
remain wide and often ill-adapted to high-dimensional state
and action spaces or sequential decision-making problems.
Our approach complements these theoretical frameworks
with a practical solution to addressing confounding bias
in offline RL. Finally, Saengkyongam et al. (2023); Ten-
nenholtz et al. (2022) also study confounding in offline
environments, but are more concerned with the complemen-
tary challenge of covariate shift – with the latter work even
assuming access to the contextual information.

8. Conclusion
We proposed a practical solution to the challenge of learn-
ing from confounded data, specifically in situations where
confounders are unobserved and cannot be identified. Del-
phic ORL captures uncertainty by modelling world models
compatible with the observational distribution, achieving
improved performance across both simulated and real-world
confounded offline RL tasks. Our results demonstrate that
Delphic ORL can learn useful policies in cases where tradi-
tional algorithms fail due to excessive confounding. Overall,



Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding

research into tackling hidden confounding in offline RL will
lead to more reliable and effective decision-making tools in
various critical fields: we discuss the broader impact and
limitations of our work in Appendix A.3.
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A. Additional Related Work
A.1. Statistical Uncertainty Estimation

Uncertainty estimation is a crucial aspect of machine learning models, as it provides valuable insights into the reliability and
confidence of model predictions and can be used to guide policy optimisation in reinforcement learning. Statistical sources
of error can be estimated through aleatoric and epistemic uncertainty, which have been widely studied in the machine
learning literature (Hüllermeier & Waegeman, 2021). In this section, we review existing methodologies for capturing and
quantifying these two types of uncertainty.

Aleatoric Uncertainty. Aleatoric uncertainty, also known as data uncertainty or irreducible noise, stems from the inherent
variability and randomness in the observed data (Hüllermeier & Waegeman, 2021). This form of statistical uncertainty
cannot be reduced even with infinite data quantities.

The most common approach to modelling aleatoric uncertainty is to set a probability distribution over model outputs and to
learn its parameters (Kendall & Gal, 2017). Outputs can for instance be assumed to be normally distributed with either a
fixed variance (introducing a single parameter to be estimated through maximum likelihood), or a variance that depends
on the input. In this latter case of heteroscedastic aleatoric uncertainty, a separate neural network branch can be trained to
predict the variance (Kendall & Gal, 2017).

Epistemic Uncertainty. Epistemic uncertainty arises from the lack of knowledge or ambiguity in the model parameters
(Hüllermeier & Waegeman, 2021), which can be reduced with additional data. Capturing epistemic uncertainty is particularly
important to approximate model error in out-of-distribution scenarios (Jin et al., 2021).

Bayesian neural networks (BNNs) offer a principled approach to capturing epistemic uncertainty (Neal, 2012). By placing
prior distributions over the model weights and using Bayesian inference, BNNs can provide posterior distributions over the
weights, which represent the uncertainty in the model parameters. This uncertainty can then be propagated through the
network to obtain predictive distributions that quantify epistemic uncertainty.

Bootstrap ensemble methods are another effective epistemic uncertainty estimation technique (Efron, 1982). These
methods rely on creating multiple subsets, or bootstrapped samples, from the original dataset by randomly sampling
with replacement. Each bootstrapped sample is then used to train a separate model, resulting in an ensemble of models
with slightly different parameter configurations. By aggregating the predictions from these diverse models, the epistemic
uncertainty can be estimated through measures such as variance or entropy. Bootstrap ensemble methods provide a practical
and scalable approach to capturing model uncertainty, particularly when Bayesian methods are computationally expensive
or infeasible (Lakshminarayanan et al., 2017).

Monte Carlo dropout sampling (Gal & Ghahramani, 2016) can also be used to estimate epistemic uncertainty by performing
multiple forward passes with dropout enabled at test time. The distribution of predictions from these multiple samples
gives an estimate of the predictive uncertainty. Finally, more recent efforts in epistemic uncertainty estimation include
randomised priors (Osband et al., 2018), epistemic neural networks (Osband et al., 2022) and deep ensembles trained with
Stein variational gradient descent (D’Angelo et al., 2021; Liu & Wang, 2016).

A.2. Nonidentifiable Confounding Bias

Comparison to Sensitivity Analysis. In the causal inference literature, sensitivity analysis studies the robustness of
treatment effect estimation to hidden confounding. This framework assumes a bound on the ratio between treatment
propensities between any two confounder values (Rosenbaum, 2002) or on the ratio between treatment propensities when
accounting for and marginalising confounders (Jesson et al., 2020; Kallus et al., 2019; Oprescu et al., 2023).

In contrast, the main assumptions in our delphic uncertainty estimate determine which ‘world models’ compatible with the
observational data are considered to construct uncertainty sets over a given outcome model (Conditional Average Treatment
Effect or, in the sequential setting, Q-value function). In particular, we consider a set of possible Z and prior distributions
p(z), and specify a model architecture for the dependence of the behavioural policy and transition, reward or value function
on z (which is then trained to fit the marginalised observational trajectory distribution).

Importantly, sensitivity analysis approaches require domain expertise to set maximum propensity-ratio parameter Γ (Kallus
et al., 2019), from which uncertainty sets over the modelled outcome are derived. Delphic ORL does come with its own set
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of hyperparameters (number of world models considered in ud, pessimism hyperparameter λ), which can be determined
through practical, quantitative means with arguably less domain expertise.

Time-Varying Confounders. The Contextual Markov Decision Process (Hallak et al., 2015) and associated problem
described in Section 2 describes confounders as sampled from a context distribution ν(z) and fixed over the course of an
episode. We note that this framework does not exclude the existence of time-varying confounders. Consider the Markov
Decision Process with Unmeasured Confounding (MDPUC) (Zhang & Bareinboim, 2016), in which a new i.i.d. hidden
confounder variable zt affects the transition at each timestep t. This framework can be framed as a CMDP where the overall
episode context z = {z1, . . . , zH} includes all confounder variables. Although we do not focus on this specific framework
in our experimental setting, this would form an interesting avenue for further work. An important distinction between
MDPUC and Partially-Observable Markov Decision Processes (POMDPs) is the assumption that confounder variables are
sampled i.i.d. at each timestep. While POMDPs can therefore be viewed as the generalisation of this decision-making setup,
note that confounding biases are only induced in this setup if the behavioural policy has access to some missing information
about the state variable.

A.3. Broader Impact, Limitations and Future Work

Addressing hidden confounding in offline reinforcement learning has the potential to significantly impact the development
and deployment of reinforcement learning systems in real-world applications. By improving the validity of causal conclusions
drawn from data, Delphic ORL can improve the effectiveness and safety of RL-based decision-making in critical fields
(Gottesman et al., 2018; Singla et al., 2021; Thomas et al., 2017).

While our results demonstrate the efficacy of Delphic ORL in learning useful policies in the presence of confounding, it is
important to acknowledge the limitations and potential unintended consequences associated with RL algorithms, especially
in high-stakes applications such as healthcare. Collaboration with domain experts is crucial to ensure thorough evaluation of
RL algorithms (Gottesman et al., 2018). In clinical settings, predictive or recommendation models derived from Delphic
ORL should not be solely relied upon, and mitigation strategies must be implemented to minimise negative consequences
during deployment.

An important consideration in the application of Delphic ORL is the trade-off between confounding bias and estimation
variance in Q-function estimation, as noted in other work addressing confounding bias (Wang & Blei, 2019). This
emphasizes the significance of large, high-quality training datasets to leverage the benefits of Delphic ORL and ensure
sufficient predictive power.

As our experiments primarily focused on medically-motivated confounding scenarios, future work should investigate the
applicability and generalisation of Delphic ORL to other domains. Although our framework does not in theory exclude
dynamic environments where confounding factors change over time (see Appendix A.2), an empirical study of the behaviour
of delphic uncertainty estimates and pessimism penalties may reveal new challenges in this context.

Finally, the question of how to best approximate the set of compatible worldsW in Definition 4.1 remains open. In Section 5
and Appendix C, we detail our approach which efficiently captures variability across counterfactual value-function, but
further theoretical or practical work on how best to modelW would likely improve the calibration of delphic uncertainty
estimates. Better approximation algorithms may also improve the efficiency, scalability, and modelling power of our method
for very high-dimensional, highly confounded problems – although our real-world data analysis forms a promising first
proof-of-concept.

B. Theoretical Details
B.1. Proof of Theorem 4.2

We start by considering the decomposition of variance in Qπ
θ caused by random variable θ. In the following, we drop

superscript π for clarity.
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First, we decompose Var(Qθ | θ):

Var(Qθ | θ) = E[Q2
θ|θ]− E[Qθ|θ]2

Eθ[Var(Qθ | θ)] = Eθ[E[Q2
θ|θ]]− Eθ[E[Qθ|θ]2]

= E[Q2
θ]− Eθ[E[Qθ|θ]2] (3)

where the last line results from the law of iterated expectations: EB [E[A|B]] = E[A] for two random variables A,B.

Next, we study Var(E[Qθ | θ]):

Varθ(E[Qθ | θ]) = Eθ[E[Qθ | θ]2]− Eθ[E[Qθ | θ]]2

= Eθ[E[Qθ | θ]2]− E[Qθ]
2 (4)

again using iterated expectations.

Summing equations 3 and 4, we obtain:

Eθ[Var(Qθ | θ)] + Varθ(E[Qθ | θ]) = E[Q2
θ]− E[Qθ]

2

= Var(Qθ) (5)

This result is known as the law of total variance (Weiss et al., 2006), which can be interpreted as a decomposition of
epistemic and aleatoric uncertainty (Kendall & Gal, 2017).

We can rewrite the above result within a given world model w, denoting θ as θw. Now conditioning on the world model w,
we have:

Var(Qθw | w) = Eθw [Var(Qθw | θw, w)|w] + Varθw(E[Qθw | θw, w]|w) (6)

We also write equation 5 such that the conditioning random variable is now w, which induces variation in Qθw if we consider
a counterfactual trajectory distribution. Combined with Equation (6), we obtain:

Var(Qθw) = Ew[Var(Qθw |w)] + Varw (E[Qθw | w])

= Ew

[
Eθw [Var(Qθw | θw, w)|w] + Varθw(E[Qθw | θw, w]|w)

]
+ Varw

(
Eθw [E[Qθw | θw, w]|w]

)
(7)

using iterated expectations. This concludes the proof of Theorem 4.2.

Note that if we assume Qθw has a Gaussian distribution for fixed {θw, w}, parameterised as N (µθw , σ
2
θw
), we have

Var(Qθw | θw, w) = σ2
θw

and E[Qθw | θw, w] = µθw . We obtain results in Equation (2) by expanding the first term in the
variance decomposition, Eθw [σ

2
θw
|w], as follows:

Eθw [σ
2
θw |w] = Eθw [σ

2
θw |w]− Eθw [σθw |w]2 + Eθw [σθw |w]2

= Varθw(σθw |w) + Eθw [σθw |w]2.

B.2. Asymptotic Interpretation of Theorem 4.2

We consider three extreme cases of Theorem 4.2 to clarify its decomposition. First, we consider the limit of infinite-data
with no confounding (e.g., no dependence on z). In this case, θw and w converge to a single ground-truth. Any remaining
statistical error will come from the intrinsic environment stochasticity or the behavioural policy, and therefore has an
aleatoric nature. Indeed, only the first term in Theorem 4.2 would remain.

Next, consider the setting in which the value is a deterministic mapping of states, with only one compatible world model.
Learning from finite data quantities leads to statistical error in optimising the parameters θw, and is known as epistemic
uncertainty. Indeed, deterministic environments with only one compatible world model will reduce Theorem 4.2 to the
second term.
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Finally, we consider the case of infinite data in a deterministic setting. In this case, multiple compatible world models
may exist which induce the same observational distribution (as demonstrated in Section 3). The source of error remaining
is delphic uncertainty, and arises if multiple models assign high likelihood to the observational data, but return different
estimates of the value. In this paper we propose to estimate this final form of uncertainty by learning an ensemble of
compatible world models, in a similar fashion to the bootstrap method for quantifying epistemic uncertainty.

C. Implementation Details
C.1. Statistical & Delphic Sources of Uncertainty

KL

Figure 7: Individual world model architecture w =
(νθ, πb,θ, Q

πb
θ ), under a prior p(z) for the confounder distribution.

Multiple worlds are trained and their variance in estimating Qπ is
taken as delphic uncertainty.

World Model Training. We implement world models
as variational models for estimating the confounder dis-
tribution, jointly with a model for the behaviour policy
πb and for the action-value function Qπb , both dependent
on a z sampled from the posterior. As the environments
we consider have discrete action spaces, we learn the
behaviour policy by minimising its cross-entropy on the
training data, as in behaviour cloning. Training is carried
out for 50 epochs or until loss on the validation subset
(10% of training data) increases for more than 5 consec-
utive epochs. Within a world model w, hyperparameters
{α, β} can be tuned based on prediction performance on
the validation set.

Model Qπb corresponds to an on-policy action-value function approximation. We compute targets through Monte Carlo
updates (for the sepsis environment with sparse episodic rewards) or Temporal Difference learning (for the real-world ICU
dataset) based on samples from the observational training data with a discount factor of γ = 0.99. The Q-function is trained
as a classifier over 200 quantiles.

Between world models w, the confounder space dimensionality is randomly varied over |Z| = {1, 2, 4, 8, 16}, and the prior
for p(z) = N (z; 0,Σ2) is randomly varied through the variance for each z-dimension, Σ2

ii = {1.0, 0.1, 0.01}. For the sepsis
simulation, the encoder architecture for the confounder distribution ν(z|τ)) consists of a multi-layer perceptron with hidden
layer dimensions (128, 64, 32) and ReLU activation before the final layer mapping to dimension |Z|. For the real dataset,
the encoder architecture is implemented as a transformer (Vaswani et al., 2017) with 2 layers, 4 heads, and embedding
dimension 32, considering a maximum history length of 10 tokens. The behavioural policy πb(a|s, z) and action-value
function Qπb(s, a, z) are both implemented as multilayer perceptrons with hidden layer dimensions (32, 64, 128) and ReLU
activation.

Uncertainty Estimates. Additional inductive biases can be incorporated to capture epistemic and aleatoric uncertainty
within a single world model w, as these relate to statistical sources of uncertainty. Following prior work (Kendall & Gal,
2017; Yu et al., 2020), we capture aleatoric uncertainty by modelling a normal probability distribution over outputs (πb, Q

πb).
We then measure epistemic uncertainty within each world model w by training on different data bootstraps, returning an
ensemble of parameters {θ1w, θ2w, . . .} for each w.

Recalling Equation (2), the delphic uncertainty term Varw(Eθ[µθw ]) is estimated by measuring the variance between
predictions µθw (averaged over model parameters θw), across across multiple generative models w. Epistemic uncertainty
can be estimated as the variance of outputs over different model parameters θw, averaged across worlds w ∈ Z . Finally,
aleatoric uncertainty is measured through the fitted probability distribution over model outputs Qπb

θw
, averaged over all θw in

a given world, and over all worlds w ∈ W .

The number of world models W was varied between 5 and 20 for both datasets and was chosen as the smallest number
converging to an average delphic uncertainty comparable to the largest W . An ablation of delphic uncertainty as a function
of the number of world models is given in Appendix E. This resulted in 10 and 15 world models for the sepsis and real-world
datasets respectively. Finally, each world model was trained over 5 different data bootstraps to estimate epistemic uncertainty.
Overall, compared to sensitivity analysis where parameter Γ needs to be fixed through domain expertise (Oprescu et al.,
2023), we found delphic uncertainty to be less dependent on expert input in determining model parameters.
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Algorithm 2 Delphic Offline Reinforcement Learning: Bellman Penalty in Offline Q-Learning Algorithm.

Input: Observational dataset D, Model-free Offline RL algorithm, Penalty hyperparameter λ.
Learn a set of compatible world models {Zw, νw, ρ0,w, Pr,w, Tw, πb,w}w∈W that all factorise to Pπb

(τ).
Obtain counterfactual predictions Qπ

w for each w ∈ W .
Define local delphic uncertainty: uπ

d (s, a) = Varw(Qπ
w(s, a)).

Initialise Q-function parameters ϕ.
for each iteration do

Sample (s, a, r, s′) ∼ D.
Compute penalised Bellman target: Q′

target = r + γmaxa′∈A Qϕ(s
′, a′)−λuπ

d (s, a), where π(a|s) =
argmaxaQϕ(s, a).
Perform gradient descent w.r.t. ϕ on

[
Qϕ(s, a)−Q′

target(s, a)
]2

+Roffline(ϕ), where regularisation termRoffline

depends on the choice of offline learning algorithm.
end for

Counterfactual Estimates. Note that while our approach changes the policy term in Pπb
to obtain counterfactual estimates,

other factors in the world model (e.g. νw, Qπb
w ) could be varied to obtain general counterfactual predictions in this world

model. As an example, we also found promising results by measuring delphic uncertainty through variation across w over
the following counterfactual quantity: E(s,a)∈DEz∼pw(z)Eθw [Q

πb

θw
(s, a, z)], where z is sampled from the model prior pw(z)

instead of the learned posterior νθw(z|τ). In this case, the resulting delphic uncertainty estimate, capturing variation over the
counterfactual quantity across world models, becomes independent of a given policy – and dependent on the new quantity
introduced (in the previous example, on prior pw(z)).

C.2. Delphic Offline Reinforcement Learning

We detail our learning procedure in Algorithm 2. As our base offline RL algorithm is CQL (Kumar et al., 2020), our
regularisation term Roffline(ϕ) is the CQL penalty: Roffline(ϕ) = α

[
log

∑
ã∈A expQϕ(s, ã)−Qϕ(s, a)

]
. We base

our algorithm on an existing implementation for CQL (Seno & Imai, 2022), which includes additional training details for
stability, such as target networks, double Q-networks and delayed updates (Fujimoto et al., 2018). For architecture details,
see the baseline implementation of CQL in Appendix C.3. As for all baseline algorithms, we train for 100 epochs, using 500
(sepsis dataset) or 104 (ICU dataset) timesteps per epoch. In practice, the policy π considered for uncertainty estimation and
the target network are updated every 8000 timesteps, to improve stability in training.

Note that an actor-critic variant of Algorithm 2 is also feasible, setting π in uπ
d to be the actor policy, as well as other offline

learning paradigms inRoffline(ϕ), such as BC regularisation (Fujimoto & Gu, 2021).

Alternative Forms of Pessimism. Following the discussion on alternative forms of pessimism in Section 5.2, we propose
practical alternatives to the Delphic ORL penalty in Algorithm 2 of Algorithm 2, which substracts a factor of ud from the
Q-function Bellman target based. In the following, note that ud can also be independent of π if varying over different factors
in Pπb

as detailed above.

• Delphic ORL via Uncertainty Threshold: One approach, inspired by Batch Constrained Q-Learning (Fujimoto et al.,
2019), is to constrain value function updates to only consider actions falling below a certainty uncertainty threshold. For
a tuple (s, a, r, s′), the Q-function Bellman target can be computed as: Q′

target = r + γmaxa′:uπ
d (s

′,a′)<λ Qϕ(s
′, a′),

where λ is a threshold controlling the maximum delphic uncertainty accepted for a given action choice.

• Model-Based Delphic ORL: In model-based methods, a penalty proportional to the uncertainty ud(s, a) can be
substracted from the reward function r(s, a), as in Yu et al. (2020). The effective reward function becomes: r̃(s, a) =
r(s, a)−λud(s, a).

• Delphic ORL via Weighting: The uncertainty measure can also be used to weight samples in the objective function,
prioritising unconfounded states and actions during training:

E(s,a,r)∼D

[
λ

ud(s, a)
L(s, a, r)

]
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where L can be the Q-function Bellman update or the supervised learning objective for behaviour cloning.

We compare the performance of different implementations of pessimism on the simulated sepsis environment in Appendix E.

Hyperparameter Tuning. There is no natural validation criterion in Offline RL, and the best approach to choose
hyperparameters in this context remains an open question (Levine et al., 2020). In practice, we run our algorithm for 4
different values of λ ∈ {10−3, 10−2, 10−1, 1} and choose the final policy giving the best off-policy evaluation performance
on the validation set (using the Fitted Q-Evaluation implementation available in the codebase, Le et al. (2019)). As noted
in related works, expert input may be useful at this stage to also determine how strong a penalty again potential hidden
confounding would be desirable or how much confounding could be expected (Rosenbaum, 2002). Other hyperparameters
specific to offline RL algorithms are tuned in the same way and are given in the following section.

C.3. Baseline Methods & Training Details

All reinforcement learning algorithms and baselines are implemented based on the open access d3rlpy library (Seno &
Imai, 2022). The discount factor used is γ = 0.99, and state and actions are normalised to mean 0 and variance 1 (Fujimoto
& Gu, 2021) for all algorithms. Training is carried out on NVIDIA RTX2080Ti GPUs on our local cluster, using the Adam
optimiser with default learning rate and a batch size of 32. Models are trained for 100 epochs with 500 (sepsis dataset) or
104 (ICU dataset) timesteps per epoch. Model-specific hyperparameters are tuned as in Delphic ORL.

Behaviour Cloning (BC). Behaviour cloning (Ross et al., 2011) is a supervised learning model of the behaviour policy,
mapping states to actions observed in the dataset. After considering the following architectures: multi-layer perceptron
(MLP), Long Short Term Memory (LSTM) network (Hochreiter & Schmidhuber, 1997), Gated Recurrent Unit (GRU) (Cho
et al., 2014) and Transformer (Vaswani et al., 2017), GRU was found to give the best validation performance on both the
simulated and real datasets. Implementation details for the GRU BC models include two hidden layers of dimension (64, 32)
and ReLU activation. The last layer is passed through a softmax layer to produce action probability outputs, and the model
is trained by minimising action cross-entropy over the observational dataset, with L2 regularisation of weight 0.01.

Conservative Q-Learning (CQL). Discrete CQL (Kumar et al., 2019) is implemented with a penalty hyperparameter α
of 1.0 (sepsis environment) and 0.5 (ICU dataset), tuned over the following values: {0.1, 0.5, 1.0, 2.0, 5.0}. The Q-function
is implemented as a distributional model with a standard MLP architecture (two linear layers with 256 hidden units) and 200
quantile regression outputs.

Batch Constrained Q-Learning (BCQ). Discrete BCQ (Fujimoto et al., 2019) is implemented with a threshold for action
flexibility set to 0.5 for both environments, tuned over the following values: {0.1, 0.3, 0.5, 1.0, 2.0, 5.0}. The Q-function is
implemented as a distributional model with a standard MLP architecture (two linear layers with 256 hidden units) and 200
quantile regression outputs.

D. Experimental Details
D.1. Decision-Making Environments

Sepsis Environment. Introduced by Oberst & Sontag (2019), this environment simulates the trajectory of patients in the
intensive care. Based on the authors’ publicly available code4, our state space S consists of 4-dimensional observation
vectors (measures for heart rate, systolic blood pressure, oxgenation and blood glucose levels) which we normalise to
mean and variance (0, 1). The discrete action space A comprises the combination of three binary treatments (antibiotic,
vasopressor or ventilation administration) for a total dimension of 8. An unobserved binary variable z encodes the diabetic
status of patients, with 20% of trajectories having a positive status. The agent obtains a reward of +1 if the patient reaches a
healthy state (and is thus ready for discharge) and a negative reward of −1 if the patient reaches a death state.

The observational dataset D is generated by rolling out the optimal (diabetes-aware) policy in the environment for 10,000
environment interaction steps, taking a random action with probability ϵ = 0.1 to ensure sufficient state-action coverage for
offline learning. The maximum episode length is set to 20 timesteps. The resulting dataset has a confounding strength of
Γ = 100.

4https://github.com/clinicalml/gumbel-max-scm

https://github.com/clinicalml/gumbel-max-scm
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Environment stochasticity can be varied by changing the variance around the originally deterministic reward obtained at the
end of a trajectory, between σ2

r = 0 as in the original environment and σ2
r = 0.4. Datasets of varying confounding strength

Γ ∈ [1, 100] are obtained by setting the behaviour policy for z = 1 as a weighted average of the policies for different z
values: (1− p)πb(z = 0) + pπb(z = 1), where p depends on Γ and ϵ. Environment transition and reward functions and
their dependence on z are kept fixed. Finally, we vary the dimension of the confounder space Z by introducing more binary
indicators with the same effect on the transition dynamics as the diabetes indicator.

Electronic Health Records Dataset. Our real-world data experiment is based on the publicly available HiRID dataset
(Hyland et al., 2020). This dataset counts over 33 thousand patient admissions at an intensive care unit in Bern University
Hospital, Switzerland (Hyland et al., 2020) and can be pre-processed using open access code from the HiRID benchmark
(Yèche et al., 2021). Patient stays were downsampled to hourly measurements and truncated to a maximum length of 20
hours and default training, validation and test sets were used.

We consider the task of optimising fluid and vasopressor administration (A is the combination of two binary choices). The
reward function is designed to penalise circulatory failure events (r = −1 for all timepoints in the duration of the event) and
to reward timepoints where the patient is not in such a critical state (r = 1, and r = 2 in the timepoint following recovery
from circulatory failure). Circulatory failure events for each patient are labelled following internationally accepted criteria
(Yèche et al., 2021). This short-term reward function is dense, unlike previous RL work on optimising intravenous fluid and
vasopressor administration (Raghu et al., 2017), making off-policy evaluation more reliable (Gottesman et al., 2018).

The state space S consists of all variables in the electronic health records which are not considered treatment for the organ
system considered, based on the variable categorisation released with the dataset (Hyland et al., 2020). This results in a state
space dimensionality of 203. The list of variables excluded for each task in given in Table 2. At each timepoint within a
patient stay, we also compute the Sequential Organ Failure Assessment (SOFA) score (Vincent et al., 1996) which is used to
quantify the severity of a patient’s illness in the intensive care unit. A higher score indicates greater severity of illness.

Selected confounders are obtained by excluding some state dimensions from the observational dataset (up to |Z| = 14).
These variables do not constitute the entire confounder space, as much exogenous, unrecorded information affects patient
evolution and is taken into account in medical treatment decisions (Yang & Lok, 2018). We ignore this in our analysis as we
cannot evaluate with respect to this missing information, but we note that this is precisely the motivation behind our work.

The confounding strength Γ for each confounding space Z considered was estimated as follows. Each point in the training
dataset was binned into a (s, a, z) category, depending on its discrete action and context values (a, z) and on its SOFA score
as a summary variable for s. We discretise the SOFA score into 5 quantiles. Finally, we compute the mean policy value for
each (s, a, z) bin through πb(a|s, z) = P (a, s, z)/P (s, z), and we take Γ as the ratio maxz,z′ [πb(a|s, z)/πb(a|s, z′)].

D.2. Analysis Details

In this section, we provide additional details pertaining to the analysis of our experimental results. All results reported
in this work include 95% confidence intervals around the mean, computed over ten training runs unless otherwise stated.
Environment returns and off-policy evaluation results are normalised on a scale of 0 to 100. Figure 3 was obtained by
varying the dimension on the x-axis, while keeping the other variables fixed to N = 864 trajectories, confounding strength
Γ = 15 and reward function variance σ2

r = 0.0. To generate Figure 5, patients with the relevant confounder (z) value were
binned by disease severity and the probability of vasopressor prescription (top) and the overall density (bottom) in each
group were computed. Figure 5c was then obtained by computing the relative increase in delphic uncertainty when including
the relevant z-dimension to the hidden context space Z (in other words, removing this dimension from the visible state
space).

Off-Policy Evaluation (OPE). Doubly robust methods trade off bias of an approximate reward model and of weighted
methods with the high variance of importance sampling approaches (Jiang & Li, 2016). Assuming z is accessible for each
trajectory at evaluation time to overcome confounding, doubly-robust off-policy evaluation estimates the value of policy π̃
as follows:

VDR(π̃) = E(s,a,r,z)∈D

[
π̃(a|s)

π̂b(a|s, z)
{r −Q(s, a, z)}+Q(s, π̃(s), z)

]
, (8)

where π̂b is a model for the behavioural policy and Q for expected returns under π̃, learned on the dataset with observable z.

Fitted Q-Evaluation is an established value estimation method (Le et al., 2019). The algorithm itera-
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Table 2: Offline reinforcement learning task on real-world medical dataset.

Task Circulatory treatment

Action space A = {0, 1}2 Fluids Vasopressors

Organ failure avoided by R Circulatory failure

State space S (selected variables, Heart rate Respiratory rate
|S| = 204) Body temperature Urinary output

Blood pressure GCS score
Cardiac output Central venous pressure
Oxygen saturation Base excess
Lactate Arterial pH
PaO2 Creatinine
Serum sodium Serum potassium
Haemoglobin Glucose
Other lab values Ventilator settings
Antibiotics Steroids
Diuretics Insulin
Cerebrospinal fluid drain Anticoagulants

. . .

Other treatment variables excluded Blood product infusions Vasodilators
Cristalloid infusion Antiarrhymic agents
Colloid infusion Antihypertensive agents

Confounder variables z Age Cardiovascular diagnosis
Weight Pulmonary diagnosis
Gastrointestinal diagnosis Orthopaedic diagnosis
Neurological diagnosis Metabolic/endocrine diagnosis
Hematology diagnosis Trauma diagnosis
Sedation Intoxication
Emergency status Surgical status
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tively applies the Bellman equation to compute bootstrapping targets for Q-function updates: Qk+1 ←
argminQ E(s,a,r,z)∈D

[
{r −Q(s, a, z) + γQk(s

′, π̃(s′), z)}2
]

which can be solved as a supervised learning problem. This
results in a learned Q-value for the evaluated policy Qπ̃(s, a, z) which can be used in the weighted doubly-robust estimate
in Equation (8) to provide return estimates in Table 1.

Both the Q-function and the behaviour policy in Equation (8) are parametrised as a fully-connected neural network dimension
with 3 layers of hidden dimension (64, 32, 16) and ReLU activation. The former is trained by minimising the mean squared
error with the Q-function update above, the latter by minimising the cross-entropy with respect to action choices in D.

Human Policy Evaluation. Off-policy evaluation has limitations, being itself prone to its own set of statistical errors and
data-related concerns (Gottesman et al., 2018). We aim to confirm conclusions drawn over OPE returns through a human
expert evaluation of treatment policies.

Synthetic patient trajectories are first generated by randomly sampling from the ICU dataset along each state dimension, with
varying amounts of contextual information as detailed in Table 3. Action choices at the end of the trajectories are computed
for the Delphic ORL, CQL and BC policies, trained on the observational dataset with the same degree of confounding.
Trajectories are selected if they induced a disagreement between these methods, to shed light on potential improvements or
harmful behaviour learned by the offline RL models. Trajectories are then simplified into 12 critical variables (as shown in
Figure 8), and shown to physicians, who are asked to rank two treatment options in terms of expected patient outcomes.
Unknown to the physicians, and in a random order, one of the options was predicted by the Delphic ORL or CQL policy,
and the other by the BC baseline. Overall, we consulted six clinicians with different degrees of expertise in intensive care
(from junior assistant doctors to department heads) from Switzerland and the United Kingdom, collecting their treatment
preferences over 45 such trajectories.

Γ 1 15 20 100 200

|Z| 0 10 11 13 14

Observed {All 14} {Age, {Age, {Age} ∅
Neuro. diag., Neuro. diag.
Trauma diag., Surgery}
Surgery}

Table 3: Data settings considered during expert clinician evaluation. Physicians are asked to rank action choices based on only state
information (Γ ≈ 200), or with varying amounts of observed contextual information ({All 14} refers to all possible Z variables outlined
in Table 2).

We contacted our local institution’s ethics committee to enquire about the possible necessity of ethics approval for this
experimental framework. We were informed that this was not considered necessary as the experts contribute to the validation
of algorithms and are thus not themselves the subject of the research, and as the undertaking comes with minimal risks
to those experts (anonymous data collection). Best practice was nonetheless observed, by providing participants with an
information and consent letter to inform them of their rights and obligations, and of how their data is collected and used.
Participants were asked to read and sign this letter before collecting their anonymous expert opinion.

Results in Figure 6 report the preference of clinicians for actions from either Delphic ORL or CQL or from behaviour cloning.
We note their overall preference for the Delphic ORL policy in the confounded settings (high Γ). As more contextual
information about the patient becomes available, however, and confounding is less marked (small Γ), physicians favour the
behaviour cloning policy – closer to expected clinical practice.

E. Ablations and Additional Results
E.1. Sepsis Environment

Ablation Study: Delphic Uncertainty. In Figure 9a, we find that delphic uncertainty is highest on the sepsis dataset when
treatment involves vasopressors. By design of the simulation (Oberst & Sontag, 2019), this treatment is the only one for
which patient evolution is confounded by the hidden diabetic status, which further supports the conclusion that delphic
uncertainty captures model bias due to hidden confounding. In Figure 9b, we note that a only small number of world models
(for sepsis, |W| ≈ 10) is necessary to obtain an estimate of delphic uncertainty consistent with a large number of world
models. This motivates our practical choice to only consider a small set of world models to obtain a reasonable estimate of
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Contextual information:
• Patient age: 30
• Neurological trauma 

patient
• No surgery

At the end of this patient 
trajectory, would you:

A. Administer fluids?
B. Not administer fluids?

Figure 8: Illustration of action ranking by medical experts. Synthetic patient trajectories and a varying degree of contextual information
(varying |Z| and Γ) are given to clinicians, who must rank the treatment options in terms of expected patient outcomes.

Algorithm Environment Returns

Online RL 67.8 ± 1.1

BC 38.5 ± 4.5
BCQ 18.5 ± 2.4
CQL 31.1 ± 3.5

Delphic ORL (ud Threshold) 24.6 ± 3.4
Delphic BC (Weighting) 39.6 ± 4.1
Delphic ORL (Weighting) 44.7 ± 4.2
Delphic ORL (Algo. 2) 54.9 ± 4.6

Table 4: Performance of different pessimism methods on the sepsis environment (Γ = 46).

uncertainty for Delphic ORL, but warrants further theoretical work establishing guarantees and probability of correctness.
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Figure 10: Performance results as a function of hyperpa-
rameter λ on the sepsis environment (Γ = 46).

Ablation Study: Delphic ORL. In Figure 10, we study the
performance of Delphic ORL as a function of hyperparameter
γ, interpolating between a naive implementation of Offline RL
for very low values of γ (virtually no penalty) and an exces-
sively pessimistic algorithm, where the confounding penalty
overcomes any possible high-reward behaviour.

Next, Table 4 compares the performance of different approaches
to implement pessimism with respect to delphic uncertainty. We
find that our approach proposed in the main paper, based on pe-
nalising the target for the Bellman update, performs best in this
experimental setting (sepsis dataset with Γ = 46). Weighting-
based approaches also show promising performance (either
matching or improving the performance of BC and CQL, respec-
tively), which may be an avenue for further work and fine-tuning.
Modifying the Bellman target to only include actions below a
certain uncertainty threshold was however found to be exces-
sively pessimistic, and degraded performance compared to the base CQL algorithm. Model-based Offline RL and Delphic
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Figure 9: Ablation Study: Delphic Uncertainty. (a) Delphic uncertainty is highest under vasopressors in the sepsis environment,
correctly identifying their confounded effect (Abbreviations: Vaso = Vasopressors, Anti = Antibiotics, Vent = Ventilation). (b) Empirically,
only a small number of compatible worlds (for sepsis, |W| ≈ 10) is necessary to obtain an asymptotic estimate of ud.

Table 5: Difference in action choices from Dtest across different algorithms (%). Our method learns a distinct policy from the doctors’.
Mean and 95% CIs over 10 runs. Highest and overlapping values in bold.

Confounders Z BCQ BC CQL Delphic ORL

All below 32.2 ± 1.3 19.7 ± 1.1 33.4 ± 0.9 35.2 ± 1.5
{age} 31.5 ± 1.3 12.8 ± 0.4 27.3 ± 0.3 32.3 ± 0.5
{neuro. diag.} 31.1 ± 1.3 16.3 ± 1.0 34.3 ± 1.3 30.6 ± 1.1
{gastro. diag.} 27.1 ± 1.1 14.3 ± 0.9 28.9 ± 1.1 29.4 ± 1.3
{trauma} 30.1 ± 1.5 12.8 ± 0.4 24.2 ± 0.4 22.2 ± 0.7
{cardio. diag.} 28.7 ± 1.3 18.8 ± 1.2 36.2 ± 1.3 29.6 ± 1.6
{endo. diag.} 27.4 ± 1.3 13.5 ± 0.8 27.3 ± 0.9 23.1 ± 0.9
{hemato. diag.} 30.1 ± 1.5 12.4 ± 0.8 24.4 ± 1.1 23.6 ± 0.8
{weight} 28.9 ± 1.3 13.2 ± 0.4 25.4 ± 0.6 23.6 ± 1.2
{sedation} 30.5 ± 1.5 14.5 ± 0.7 25.1 ± 1.1 25.8 ± 1.0
{resp. diag.} 27.7 ± 1.3 14.2 ± 0.6 28.5 ± 1.1 25.2 ± 1.2
{intoxication} 25.7 ± 1.1 12.6 ± 0.6 26.3 ± 0.6 23.1 ± 0.9
{surgical status} 27.3 ± 1.3 14.3 ± 0.6 23.9 ± 0.8 22.1 ± 1.2
{ortho. diag.} 25.6 ± 1.1 12.3 ± 0.6 24.1 ± 1.1 22.3 ± 1.0
{sepsis} 26.1 ± 1.1 15.6 ± 0.8 23.5 ± 0.8 21.9 ± 1.2

∅ 25.3 ± 0.9 12.2 ± 0.4 23.1 ± 0.8 21.7 ± 0.9

ORL were not included as their performance was never found to improve over a random baseline policy. We hope this
ablation study will motivate further work into the best possible approach to implement pessimism with respect to delphic
uncertainty, to learn offline RL policies that are robust to hidden confounding bias.

E.2. Real-World Clinical Dataset

In this section, we provide additional evaluation metrics and investigations to understand the treatment strategies identified
by the different algorithms considered, and in particular how Delphic ORL determines confounding-robust policies.

Table 5 provides a quantitative analysis of the disparities in action choices between different algorithms and the doctors’
policy. As expected, behaviour cloning exhibits the closest resemblance to the doctors’ treatment policy, which aligns with
the characteristics of observational datasets. However, our proposed method outperforms behaviour cloning in terms of
learning a distinct policy that deviates from the doctors’ actions. These findings highlight the unique capabilities of our
method in capturing important features and patterns beyond the direct imitation of doctors, enabling the model to make
informed decisions that may differ from the observational data and potentially lead to improved treatment outcomes.

Following published recommendations on evaluating RL models in observational settings (Gottesman et al., 2018), we also
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analyse where policies differ most from the action choices in the observational dataset, and find that the policy learned by
Delphic ORL diverges most at high disease severity (SOFA scores ≈ 15-20). In these cases, our policy appears to prescribe
less fluids and vasopressors than in the data – which may be reasonable if unsure about possible adverse effects of an
intervention. This relates to a comment received from one of the expert clinicians interviewed: “If I lack information about a
patient [e.g. age, medical background and deliberately excluded variables], I would probably be more conservative with
my treatment”. Finally, we note a closer match to actions in the observational data at very high disease severity (SOFA
score > 20), where negative rewards for not taking a therapeutic action outweighs potential confounding bias. Beyond this
analysis, further insights could be gained by comparing interpretable representations of the trained policies (Pace et al.,
2022), but we leave this as further work.
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