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Abstract

Existing code large language models (LLMs)001
often rely on large-scale instruction data dis-002
tilled from proprietary LLMs for fine-tuning,003
which typically incurs high costs. In this pa-004
per, we explore the potential of small-scale005
open-source LLMs (e.g., 7B) as synthesizers006
for high-quality code instruction data construc-007
tion. We first observe that the data synthesis ca-008
pability of small-scale LLMs can be enhanced009
by training on a few superior data synthesis010
samples from proprietary LLMs. Building011
on this, we propose a novel multi-round self-012
distillation approach to bootstrap small-scale013
LLMs, transforming them into powerful synthe-014
sizers that reduce reliance on proprietary LLMs015
and minimize costs. Concretely, we design016
multi-checkpoint sampling and multi-aspect017
scoring strategies to self-distill data synthesis018
samples and filter them in each round. Based019
on these filtered samples, we further select high-020
value ones by introducing an optimizer-aware021
influence estimation method, which estimates022
the influence of each self-distilled sample by023
calculating its gradient similarity to the supe-024
rior samples from proprietary LLMs. Based025
on the code instruction data from our small-026
scale synthesizers, we introduce SCoder, a fam-027
ily of code generation models fine-tuned from028
DeepSeek-Coder. SCoder achieves state-of-the-029
art code generation capabilities, demonstrating030
the effectiveness of our method.031

1 Introduction032

Code generation has long been a central challenge033

in computer science, and has attracted wide at-034

tention from the research community. Recent ad-035

vancements in code large language models (LLMs)036

(Chen et al., 2021; Li et al., 2022, 2023; Chowd-037

hery et al., 2023; Rozière et al., 2023; Lozhkov038

et al., 2024) have led to significant breakthroughs.039

These models can generate code that closely aligns040

with user intent and are increasingly being widely041

adopted.042

Figure 1: Left: The performance of code generation
models on HumanEval using data provided by different
synthesizers (Qwen2.5-Coder-7B or -14B). Right: The
performance of our SCoder and the baseline. SCoder
uses 60K instruction data generated by a small-scale syn-
thesizer and the baseline uses 75K instruction data gen-
erated by proprietary LLMs. All code generation mod-
els are fine-tuned from DeepSeek-Coder-6.7B-Base.

Typically, instruction tuning is a crucial step to 043

develop high-performance code LLMs. Therefore, 044

extensive research on code LLMs focuses on con- 045

structing high-quality instruction data. A common 046

approach involves distilling knowledge from pro- 047

prietary LLMs. For instance, Code Alpaca (Chaud- 048

hary, 2023) and WizardCoder (Luo et al., 2024) 049

are fine-tuned with instruction data distilled from 050

GPT-3.5, using Self-Instruct (Wang et al., 2023) 051

and Evol-Instruct (Xu et al., 2024), respectively. 052

Additionally, MagicoderS (Wei et al., 2024) is fine- 053

tuned on data distilled from both GPT-3.5 and GPT- 054

4, using OSS-Instruct to generate coding problems 055

and solutions based on the given code snippets. 056

While these methods have proven effective, they 057

all suffer from the cost-expensive issue caused by 058

the distillation of large-scale instruction data from 059

the proprietary LLMs like GPT-3.5 and GPT-4. 060

In this paper, we explore the potential of small- 061

scale (7B, 8B, and 14B) open-source LLMs as 062

synthesizers for code instruction data construction, 063

where small-scale is a relative concept compared 064

to extremely large models like GPT-3.5 and GPT-4. 065

Previous works have shown that small LLMs can 066
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assist in pre-training data synthesis for non-code067

domains (Yang et al., 2024). However, instruc-068

tion data typically takes a different form from pre-069

training data and requires higher quality standards070

(Wang et al., 2025). To validate the feasibility of071

small LLMs in synthesizing code instruction data,072

we conduct a preliminary experiment. First, we073

use small-scale LLMs as original synthesizers and074

further train them on a limited set of proprietary075

LLM-distilled samples as enhanced synthesizers.076

Then, we fine-tune code generation models using077

data provided by them. The results on the left of078

Figure 1 show that the instruction data provided079

by the enhanced synthesizer outperforms that of080

the original, highlighting that a few superior sam-081

ples can unleash the data synthesis potential of082

small models. However, distilling more proprietary083

samples to further improve the synthesis capabil-084

ity of small synthesizers would again trigger the085

cost-expensive issue. Therefore, a crucial ques-086

tion arises: Can we continuously improve the data087

synthesis capability of small-scale synthesizers088

without relying on proprietary LLMs’ samples?089

To address this, we propose an effective multi-090

round self-distillation bootstrap method that itera-091

tively improve the code instruction data synthesis092

capability of small-scale LLMs. Specifically, start-093

ing with an enhanced synthesizer, we employ a094

two-step approach in each round to obtain high-095

quality self-distilled data synthesis samples for fur-096

ther training. First, we develop multi-checkpoint097

sampling and multi-aspect scoring strategies to ob-098

tain and filter self-distilled samples, maintaining099

their diversity and reliability. Then, we introduce100

an optimizer-aware influence estimation method101

to further select high-value ones by computing the102

gradient similarity between each self-distilled sam-103

ple to the superior samples from proprietary LLMs.104

We validate our method on small-scale LLMs like105

Qwen2.5-Coder-7B/14B-Ins (Hui et al., 2024), im-106

proving their data synthesis capabilities as shown107

in the left of Figure 1, and transforming them into108

powerful data synthesizers.109

Based on the code instruction data provided by110

our small-scale synthesizers, we introduce SCoder,111

a family of code generation models fine-tuned from112

DeepSeek-Coder-6.7B-Base (Guo et al., 2024).113

Experimental results on HumanEval (+) (Chen114

et al., 2021; Liu et al., 2023), MBPP (+) (Austin115

et al., 2021), LiveCodeBench (Jain et al., 2024),116

and BigCodeBench (Zhuo et al., 2024) show that117

SCoder outperforms or matches state-of-the-art118

code LLMs, which use instruction data from pro- 119

prietary LLMs. Overall, our contributions can be 120

summarized as follows: 121

1) We propose a multi-round self-distillation 122

bootstrap method to fully unleash the data syn- 123

thesis potential of small-scale LLMs and develop 124

small-scale synthesizers for code instruction data 125

construction. 126

2) To obtain diverse, reliable and high-value self- 127

distilled data for synthesizer training in each round, 128

we introduce a two-step process that combines 129

multi-checkpoint sampling, multi-aspect scoring, 130

and optimizer-aware influence estimation. 131

3) We fine-tune the code generation models, 132

SCoder, based on the data provided by our small- 133

scale synthesizers. Experimental results on mul- 134

tiple benchmarks show the effectiveness of our 135

method. 136

2 Related Work 137

2.1 Code Large Language Models 138

Code generation based on LLMs has seen signif- 139

icant advancements in recent years. Prominent 140

closed-source models, such as Codex (Chen et al., 141

2021), GPT-4 (OpenAI, 2023), PaLM (Chowdh- 142

ery et al., 2023), and Gemini (Anil et al., 2023), 143

have demonstrated impressive results across var- 144

ious code generation benchmarks. Meanwhile, 145

open-source models, including CodeGen (Nijkamp 146

et al., 2023), CodeGeeX (Zheng et al., 2023), Star- 147

Coder (Li et al., 2023), CodeLlama (Rozière et al., 148

2023), DeepSeek-Coder (Guo et al., 2024), and 149

CodeQwen (Hui et al., 2024), have also made sub- 150

stantial contributions to the field. The success of 151

these models has not only advanced code genera- 152

tion capabilities but also facilitated more efficient 153

and automated software development. 154

Typically, these models are developed through 155

continual pre-training (Rozière et al., 2023), fol- 156

lowed by supervised fine-tuning (SFT) (Yu et al., 157

2023). While pre-training leverages vast amounts 158

of unannotated real-world code corpora, fine- 159

tuning requires high-quality labeled instruction 160

data, the construction of which remains a critical 161

challenge (Ding et al., 2024). 162

2.2 Code Instruction Data Synthesis 163

Creating diverse and complex instruction data, es- 164

pecially in the coding domain, is a challenging 165

task that requires specialized knowledge. While 166

human-written instruction datasets, such as those 167
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used in OctoPack (Muennighoff et al., 2024) and168

PIE (Shypula et al., 2024), have proven effective,169

they are labor-intensive and difficult to scale. As a170

result, current works often rely on powerful propri-171

etary LLMs to automatically generate code instruc-172

tion data. For instance, Code Alpaca (Chaudhary,173

2023) employs the Self-Instruct (Wang et al., 2023)174

method to generate instruction data from a pool of175

seed tasks, while WizardCoder (Luo et al., 2024)176

uses the Evol-Instruct (Xu et al., 2024) technique,177

which synthesizes diverse and complex instruction178

data through evolutionary heuristics. Magicoder179

(Wei et al., 2024) employs OSS-Instruct, which180

utilizes open-source code snippets as seeds to gen-181

erate high-quality programming problems and solu-182

tions, thereby enhancing the diversity and realism183

of the generated data. WaveCoder (Yu et al., 2023)184

proposes a generator-discriminator framework to185

generate instruction data, while OpenCodeInter-186

preter (Zheng et al., 2024) leverages interactions187

between users, LLMs, and compilers to create di-188

verse, multi-turn instruction data. Although these189

methods are effective, they often rely on costly190

proprietary LLMs for data distillation, leading to191

significant expenses (Wu et al., 2024). In this work,192

we explore the potential of small-scale open-source193

LLMs to generate high-quality code instruction194

data in a more cost-effective manner, reducing the195

reliance on expensive proprietary models while196

maintaining comparable performance.197

3 Methodology198

3.1 Overview199

In this work, we aim to train a set of small-scale200

code instruction data synthesis models, named syn-201

thesizers, capable of generating the high-quality202

code instruction data, i.e., the code problem-203

solution pair (q, s) given an open-source code snip-204

pet c and an instruction synthesis prompt p. To205

achieve this, we first construct a clean and noise-206

free code snippet pool C = {ci}, following the data207

pre-processing pipeline of StarCoder2 (Lozhkov208

et al., 2024). Next, we distill a limited number of in-209

struction data synthesis samples, denoted as Dp =210

{(p, cpi , q
p
i , s

p
i )}, from proprietary LLMs to obtain211

enhanced synthesizers. Finally, we propose a boot-212

strap method based on multi-round self-distillation213

to continually train the synthesizers using self-214

distilled data, denoted as Ds = {(p, csi , qsi , ssi )}.215

The prompt p and more details of code snippet pool216

C are provided in Appendix D and A, respectively.217

Synthesizer HumanEval MBPP

Llama3.1-8B-Ins 60.4 64.7
+Enhanced 64.2 69.3

Qwen2.5-Coder-7B-Ins 61.6 70.8
+Enhanced 65.6 72.1

Qwen2.5-Coder-14B-Ins 65.3 73.7
+Enhanced 67.5 75.8

Table 1: The performance of code generation model
fined-tuned on 40K code instruction data provided by
different synthesizers.

3.2 Preliminary Study 218

We conduct a preliminary study to validate whether 219

small LLMs can acquire a certain level of data 220

synthesis capability by distilling a limited number 221

of proprietary LLM samples. To obtain propri- 222

etary samples with sufficient knowledge coverage, 223

we adopt a classification-based diversified code 224

snippet sampling technique. Specifically, we em- 225

ploy 10 pre-defined task categories and calculate 226

the similarity between each code snippet and the 227

task category descriptions with the help of a state- 228

of-the-art embedding model INSTRUCTOR (Su 229

et al., 2023). Based on the embedding similar- 230

ity, each code snippet is assigned to its most rele- 231

vant task category. We then randomly sample 1K 232

code snippets from each category to ensure suffi- 233

cient knowledge diversity. Finally, these selected 234

code snippets are used to prompt proprietary LLMs 235

generating code instruction data synthesis samples 236

Dp = {(p, cpi , q
p
i , s

p
i )}, where (p, cpi ) denotes input 237

and (qpi , s
p
i ) denotes output. 238

We use Llama3.1-8B-Ins and Qwen2.5-Coder- 239

7B/14B-Ins as the original synthesizers and train 240

them on Dp to obtain enhanced synthesizers. Based 241

on code instruction data provided by these synthe- 242

sizers, we fine-tune DeepSeek-Coder-6.7B-Base as 243

the code generation model. The results are shown 244

in Table 1, the enhanced synthesizers exhibit a sig- 245

nificant improvement in data synthesis capability, 246

even with only 10K proprietary LLM samples. This 247

demonstrates the strong potential of small models 248

for code instruction data synthesis. 249

3.3 Bootstrapping with Multi-Round 250

Self-Distillation 251

To further boost small LLMs for synthesizing 252

higher-quality code instruction data without dis- 253

tilling additional proprietary LLM samples, in this 254

section we propose an effective bootstrap method 255

based on multi-round self-distillation. Specifically, 256
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Figure 2: Overview of our multi-round self-distillation bootstrap method. In each round, we sample outputs
from multiple checkpoints and evaluate them with a multi-aspect scorer for diversity and reliability. We then use an
optimizer-aware influence estimation method to select the most valuable samples, which is done by evaluating the
gradient similarity between the self-distilled and proprietary LLM-distilled code instruction data.

we start with the mentioned enhanced synthesizers,257

considering this as the 0-th round of the bootstrap.258

Then, in subsequent each iteration, we first col-259

lect diverse and reliable self-distilled data synthesis260

samples by multi-checkpoint sampling and multi-261

aspect scoring strategies. These samples are gener-262

ated by the synthesizers from the previous round.263

Next, to further identify the most valuable samples,264

we introduce an optimizer-aware influence estima-265

tion method, which quantifies each sample’s influ-266

ence by computing its gradient similarity with pro-267

prietary LLM samples. Finally, these high-quality268

samples are used to train the synthesizer itself, en-269

hancing its ability to generate code instruction data.270

The overview of our method is shown in Figure 2.271

Multi-Checkpoint Sampling with Multi-Aspect272

Scoring. As our approach iteratively trains on273

self-distilled data synthesis samples, ensuring their274

quality and diversity is essential. Therefore, we275

first develop a multi-checkpoint sampling strategy.276

Specifically, given the synthesis prompt p and a277

code snippet c, we obtain M ×N diverse problem-278

solution pairs {(qij , sij)} by sampling N times279

from M checkpoints of synthesizers, where i ∈280

[1,M ] and j ∈ [1, N ]. Compared to the strategy281

Best-of-N (Stiennon et al., 2022), which selects282

candidates from a single checkpoint, our approach283

expands the search space and improves both the284

reliability and diversity of the selected data.285

Next, to rank and select the best candidate pair286

corresponding to code snippet, we introduce a287

multi-aspect scoring model, namely scorer. Given 288

a candidate pair (qij , sij), the scorer evaluates it 289

across Z aspects, producing a feature vector xij = 290

{xzij} , where xzij ∈ [0, 9] represents the integer 291

score in the z-th aspect, such as problem-solution 292

consistency 1. Furthermore, considering that dif- 293

ferent aspects are independent and integer-based 294

scores provide only a hard signal that lacks gran- 295

ularity for distinguishing data quality, we propose 296

a weighted scoring aggregation method, which as- 297

signs each aspect a weight wz and computes the 298

final aggregated real-valued score Scoreij as: 299

Scoreij =
Z∑

z=1

wzxzij . (1) 300

To determine the optimal weight vector w = {wz}, 301

we conduct K experiments based on the instruction 302

data generated by synthesizers. For each experi- 303

ment, we compute the average multi-aspect scores 304

x̄k of the instruction data and use the data to fine- 305

tune DeepSeek-Coder-6.7B-Base. The fine-tuned 306

model is then evaluated on an out-of-distribution 307

(OOD) test set to obtain the corresponding perfor- 308

mance score yk. Given the data {(x̄k, yk)}, we 309

estimate w by solving the following ridge regres- 310

sion problem: 311

w = argmin
w

K∑
k=1

(yk −w · x̄k)
2 + λ∥w∥2, (2) 312

1The prompt for the multi-aspect scorer are provided in
Appendix D.
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where λ is a regularization term to prevent overfit-313

ting, and the learned weights indicate the relative314

importance of each scoring aspect in determining315

the effectiveness of instruction data.316

Optimizer-Aware Influence Estimation While317

multi-checkpoint sampling with multi-aspect scor-318

ing ensures reliability and diversity, the influence of319

each selected self-distilled sample on base model320

fine-tuning can vary. Inspired by previous works321

(Pruthi et al., 2020; Xia et al., 2024), we introduce322

an optimizer-aware influence estimation method323

to further identify the most valuable samples by324

estimating the fine-tuning influence of the code325

instruction data they contain.326

Concretely, based on the influence formulation327

(Pruthi et al., 2020), the influence of a self-distilled328

code instruction data d = (q, s) on the prediction329

of a test instance t in a base model parameterized330

by θ can be estimated by computing the similarity331

between their gradients:332

Inf(d, t) ∝ Sim(∇l(d, θ),∇l(t, θ)). (3)333

However, code generation tasks are inherently334

broad and diverse, and some of them may lack335

well-established benchmarks. To address this, we336

instead estimate the influence of d by computing337

its gradient similarity to the code instruction data338

{dp = (qp, sp)} from proprietary LLM samples339

Dp. The idea is that proprietary LLMs (e.g., GPT-340

4o) have undergone extensive optimization through341

various strategies, making their distilled instruction342

data highly effective in improving model perfor-343

mance across diverse tasks.344

Specifically, inspired by previous work (Xia345

et al., 2024), we first train an LLM-based reference346

model on the proprietary instruction data {dp =347

(qp, sp)} using LoRA (Hu et al., 2022), which al-348

lows for low-rank adaptation, significantly reduc-349

ing trainable parameters and ensuring the efficiency350

for the following gradient computations. We then351

compute the gradient of each self-distilled instruc-352

tion data d with respect to the LoRA parameters353

θlora, denoted as ∇lref (d, θlora). To further im-354

prove efficiency, following prior work (Park et al.,355

2023), we apply a projection matrix initialized with356

a Rademacher distribution to reduce gradient di-357

mensionality, resulting in ∇̂lref (d, θlora). Accord-358

ing to the Johnson-Lindenstrauss Lemmas (John-359

son et al., 1984), this transformation can preserve360

gradient distances while ensuring the usefulness of361

lower-dimensional features. Similarly, we compute362

the projected gradients for each proprietary instruc- 363

tion data dp, denoted as ∇̂lref (d
p, θlora). Finally, 364

we approximate the influence of d by calculating its 365

cosine similarity to the average gradient of {dp}: 366

V (d) = Cosine

(
∇̂lref (d, θlora),

1

Np

Np∑
i=1

∇̂lref (d
p
i , θlora)

)
,

(4) 367

where Np is the size of {dp}. 368

4 Experiments 369

4.1 Benchmarks 370

We employ multiple widely adopted benchmarks 371

for a comprehensive evaluation, including Hu- 372

manEval (Chen et al., 2021), MBPP (Austin et al., 373

2021) (along with their EvalPlus (Liu et al., 2023) 374

versions), LiveCodeBench (V4) (Jain et al., 2024), 375

and BigCodeBench (Zhuo et al., 2024). We assess 376

model performance using the pass@1 metric. 377

4.2 Baselines 378

We compare SCoder with several powerful base- 379

lines, including two proprietary models: GPT-4- 380

Turbo-20240409 (OpenAI, 2024a) and GPT-o1- 381

Preview-20240912 (OpenAI, 2024b), as well as 382

seven open-source models built on DeepSeek- 383

Coder-6.7B-Base (Guo et al., 2024): DeepSeek- 384

Coder-6.7B-Instruct, WaveCoder-Ultra-6.7B (Yu 385

et al., 2023), MagicoderS-DS-6.7B (Wei et al., 386

2024), OpenCodeInterpreter-DS-6.7B (Zheng et al., 387

2024), AlchemistCoder-DS-6.7B (Song et al., 388

2024), InverseCoder-DS-6.7B (Wu et al., 2024), 389

and WizardCoder-GPT-4-6.7B (Luo et al., 2024). 390

4.3 Implementation Details 391

We provide a simplified version of the implemen- 392

tation details here; a more detailed version can be 393

found in Appendix C. 394

Small-Scale Data Synthesizer. We train 395

Llama3.1-8B-Ins, Qwen2.5-Coder-7B-Ins, and 396

Qwen2.5-Coder-14B-Ins as data synthesizers. 397

Each model is initially trained on 10K GPT-4o data 398

Dp, followed by two rounds of bootstrapping using 399

2https://evalplus.github.io/leaderboard.html
3https://livecodebench.github.io/leaderboard.

html
4https://huggingface.co/spaces/bigcode/

bigcodebench-leaderboard
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Synthesizer Data Size HumanEval MBPP LiveCodeBench BigCodeBench

DeepSeek-Coder-6.7B-Base

None 0 47.6† 72.0† 16.2† 41.8†

Fine-Tuning DeepSeek-Coder-6.7B-Base on 40K Synthesized Data

Llama3.1-8B-Instruct 0 60.4 64.7 16.5 42.1
+Enhanced 10K 64.2 69.3 17.3 42.8
+1 Iter 20K 65.5 71.1 17.4 43.1
+2 iter 40K 67.4 73.4 17.8 43.5

Qwen2.5-Coder-7B-Instruct 0 61.6 70.8 17.0 42.7
+Enhanced 10K 65.6 72.1 18.2 43.8
+1 Iter 20K 66.3 72.9 18.4 44.1
+2 iter 40K 68.9 74.7 18.9 44.7

Qwen2.5-Coder-14B-Instruct 0 65.3 73.7 18.7 43.2
+Enhanced 10K 67.5 75.8 19.4 44.5
+1 Iter 20K 68.4 76.3 19.3 45.1
+2 iter 40K 70.1 76.5 19.7 45.9

Table 2: Performance of code generation models built on instruction data generated by small synthesizers on
HumanEval, MBPP, LiveCodeBench (Full), and BigCodeBench (Complete-Full). Data size refers to the amount of
data used to train the synthesizer. † denotes results from the benchmark leaderboards234.

Models HumanEval MBPP LiveCodeBench BCB (Comp) BCB (Inst)

Base Plus Base Plus Full Easy Full Hard Full Hard

Proprietary Models

GPT-4-Turbo-20240409 90.2† 86.6† 85.7‡ 73.3‡ 42.0† 82.4† 58.2† 35.1† 48.2† 32.1†

GPT-o1-Preview-20240912 96.3† 89.0† 95.5† 80.2† 58.5† 94.1† / 34.5† / 23.0†

DeepSeek-Coder-6.7B-Base

DeepSeek-Coder-6.7B-Base 47.6† 39.6† 72.0† 58.7† 16.2† 38.7† 41.8† 13.5† / /

Fine-Tuned Models based on DeepSeek-Coder-6.7B-Base

DeepSeek-Coder-6.7B-Instruct 74.4† 71.3† 74.9† 65.6† 19.8† 45.8† 43.8† 15.5† 35.5† 10.1†

WaveCoder-Ultra-6.7B 75.0† 69.5† 74.9† 63.5† 19.7 46.8 43.7† 16.9† 33.9† 12.8†

MagicoderS-DS-6.7B 76.8† 71.3† 79.4† 69.0† 20.4 47.9 47.6† 12.8† 36.2† 13.5†

OpenCodeInterpreter-DS-6.7B 77.4† 71.3† 76.5† 66.4† 18.9 46.6 44.6† 16.9† 37.1† 13.5†

AlchemistCoder-DS-6.7B 79.9‡ 75.6‡ 77.0‡ 60.2‡ 17.4 44.7 42.5 14.2 33.5 13.2
InverseCoder-DS-6.7B 79.9‡ 76.8‡ 78.6‡ 69.0‡ 20.3 46.6 45.7 14.9 35.4 9.5
WizardCoder-GPT-4-6.7B 77.4 73.8 75.4 64.8 21.0 49.6 45.1 15.5 37.3 10.8

SCoder-L-DS-6.7B 78.2 73.8 77.6 65.4 21.1 51.7 46.2 15.1 37.9 13.4
SCoder-Q7-DS-6.7B 78.7 74.3 79.1 66.5 21.4 52.2 47.4 15.5 38.6 14.5
SCoder-Q14-DS-6.7B 80.5 75.0 81.0 69.3 22.2 52.6 49.2 16.2 40.6 16.9

Table 3: Performance comparison of different models on multiple code generation benchmarks. Three SCoder
models are fine-tuned using data generated by our small synthesizers, where L, Q7, and Q14 denote three different
synthesizers after two rounds of bootstrap. BCB, Comp, and Inst denote BigCodeBench, Complete, and Instruct.
‡ denotes results from the InverseCoder work (Wu et al., 2024). The best results are in bold and the second best
results are underlined.

20K and 40K self-distilled data Ds, respectively.400

Training is performed with a learning rate of401

1× 10−5 and a global batch size of 128, while the402

temperature is set to 0.2 during inference.403

SCoder. For a fair comparison, we first train404

DeepSeek-Coder-6.7B-Base on the 110K evol-405

codealpaca-v1 data for 2 epochs, and then fine-406

tune it for 3 epochs on the 60K data synthesized407

by our small synthesizers to obtain SCoder. The 408

110K evol-codealpaca-v1 data is also widely used 409

in baselines, as shown in Table 5. 410

4.4 Main Results 411

As shown in Table 2, our proposed method sig- 412

nificantly enhances the instruction data synthesis 413

capabilities of small models with only two rounds 414
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Models HumanEval MBPP LiveCodeBench BigCodeBench

SCoder-Q7-DS-6.7B 78.7 79.1 21.4 47.4
w/o multi-checkpoint sampling 74.9 73.8 18.7 44.3
w/o multi-aspect scoring 72.3 76.7 19.9 45.5
w/o optimizer-aware influence estimation 75.1 74.4 18.2 43.2

SCoder-Q14-DS-6.7B 80.5 81.0 22.2 49.2
w/o multi-checkpoint sampling 75.6 74.4 20.4 46.3
w/o multi-aspect scoring 74.9 75.8 20.8 45.1
w/o optimizer-aware influence estimation 76.1 74.9 20.0 44.8

Table 4: Ablation study on HumanEval, MBPP, LiveCodeBench (Full), and BigCodeBench (Complete-Full). The
best results are in bold and the second best results are underlined.

Model Common Data Specific Data

WizardCoder-GPT-4

110K (GPT-4)

0K
WaveCoder-Ultra 20K (GPT-4)

MagicoderS 75K (GPT-3.5)
AlchemistCoder >80K (GPT-3.5)

InverseCoder 90K (self-generated)
SCoder (ours) 60K (small model-generated)

Table 5: Comparison of data used by different models.
The source of the data is indicated in parentheses.

of bootstrap, regardless of their model family or415

scale. For example, the fine-tuning performance416

of the 40K data synthesized by Llama3.1-8B-Ins417

on the base model achieves a 5.0% improvement418

on HumanEval and a 5.9% improvement on MBPP419

after two rounds of bootstrap. This demonstrates420

that our approach, leveraging well-designed sam-421

pling and filtering strategies, enables small models422

to acquire self-distilled data synthesis samples with423

strong reliability, broad diversity, and high value.424

As a result, they progressively evolve into effective425

data synthesizers while minimizing dependence on426

proprietary LLM distillation.427

Furthermore, Table 3 shows that SCoder, trained428

on data generated by bootstrapped small-scale429

data synthesizers, outperforms or matches other430

state-of-the-art open-scource baselines across mul-431

tiple benchmarks. For example, SCoder-Q14-DS-432

6.7B surpasses the best open-source baselines by433

5.9% and 9.7% on average in the challenging Live-434

CodeBench and BigCodeBench, respectively. No-435

tably, the open-source baselines typically utilize a436

larger amount of proprietary LLM-distilled instruc-437

tion data as listed in Table 5, further validating the438

effectiveness of our method in constructing strong439

small-scale data synthesizers.440

4.5 Ablation Study441

We conduct ablation studies based on SCoder-Q7-442

DS-6.7B and SCoder-Q14-DS-6.7B. The results443

presented in Table 4 demonstrate the importance of 444

our extensive sampling and refined filtering strate- 445

gies. 446

First, without multi-checkpoint sampling (i.e., 447

sampling an equal number of outputs solely from 448

the last checkpoint of the previous round), the 449

performance of both code generation models on 450

HumanEval and LiveCodeBench drops by at least 451

4.8% and 8.1%, respectively. This indicates that a 452

limited sampling space reduces the likelihood of 453

obtaining high-quality self-distilled data, thereby 454

hindering the effectiveness of the bootstrap process. 455

Furthermore, when either multi-aspect scoring or 456

optimizer-aware influence estimation is removed 457

from the data selection process, the performance 458

on MBPP and BigCodeBench drops by up to 7.5% 459

and 8.9%, respectively. This highlights that both 460

strategies are essential for ensuring the reliability, 461

diversity, and value of self-distilled data, and re- 462

moving either significantly impacts the overall ef- 463

fectiveness. 464

4.6 Data Scaling 465

To further evaluate the data synthesis quality of 466

small data synthesizers, we investigate the data 467

scaling law using the bootstrapped Qwen2.5-Coder- 468

14B-Ins. As shown in Figure 3, increasing the 469

data size leads to significant improvements of the 470

code generation model fine-tuned on DeepSeek- 471

Coder-6.7B-Base, surpassing DeepSeek-Coder- 472

6.7B-Instruct on most benchmarks. This further 473

validates the effectiveness of our approach in con- 474

structing high-quality small-scale data synthesiz- 475

ers. 476

4.7 Further Discussion 477

In this section, we provide a more fine-grained 478

analysis of the effectiveness of our method. 479

First, we compare the impact of different selec- 480

7



Figure 3: Impact of data scaling. The dashed lines
represent the performance of DeepSeek-Coder-6.7B-
Instruct across various benchmarks.
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40K  40K
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40K  20K

Figure 4: Comparison of different selection methods
and the number of self-distilled data used in different
bootstrap rounds. The y-axis denotes the performance
of the code generation models fine-tuned on 40K syn-
thesized data.

tion strategies during the bootstrap process. As481

shown in the left of Figure 4, for multi-aspect scor-482

ing, replacing the aggregated score with either the483

raw composite score from the scorer or the simple484

average of scores leads to a decline in the synthe-485

sizer’s data synthesis performance. Moreover, sub-486

stituting the optimizer-aware influence estimation487

with alternative selection methods, such as random488

selection or lowest/highest perplexity selection, re-489

sults in an even more substantial performance drop.490

These findings highlight the effectiveness of our491

selection strategy in identifying reliable and high-492

value self-distilled samples, thereby ensuring the493

success of the bootstrap process.494

Second, as the synthesizer’s capability improves495

with more bootstrap iterations, we progressively in-496

crease the number of self-distilled samples used in497

training across two iterations (20K → 40K). Here,498

we compare different settings, including removing499

multi-round iteration (60K → Null), progressively500

decreasing the sample size (40K → 20K), increas-501

ing the sample size in the first iteration (40K →502

40K), and decreasing the sample size in the second503

iteration (20K → 20K). As shown in the right of504

Figure 4, in all cases, performance declines, indicat-505

ing that a well-balanced and progressively increas-506

Consistency

Relevance

DifficultyCode Exist

Correctness

Standardization

Clarity

Code Comments Easy to Learn

Composite Score

evol-codealpaca-v1 our dataset

Figure 5: Quality comparison between the evol-
codealpaca-v1 dataset and our synthesized dataset.

ing data schedule plays a crucial role in maximizing 507

the effectiveness of the bootstrap process. 508

4.8 Data Quality Analysis 509

To further validate the quality of data generated by 510

the synthesizers, we sampled 100 code instruction 511

data from evol-codealpaca-v1 and the bootstrapped 512

Qwen2.5-Coder-14B-Ins, respectively and use 513

GPT-4o-20240513 and GPT-4-turbo-20240409 to 514

score the data across 10 aspects based on the 515

prompt provided in Appendix D. The average re- 516

sults, shown in Figure 5, demonstrate that our syn- 517

thesized data achieves higher scores across all as- 518

pects, further confirming the effectiveness of our 519

method in building high-quality small-scale code 520

instruction synthesizers. 521

5 Conclusion 522

In this paper, we propose a multi-round self- 523

distillation bootstrap method to fully unlock the 524

data synthesis potential of small-scale LLMs, trans- 525

forming them into powerful instruction data syn- 526

thesizers while reducing reliance on proprietary 527

LLMs and minimizing costs. We design a multi- 528

checkpoint sampling and multi-aspect scoring 529

method to ensure the diversity and reliability of 530

self-distilled samples, followed by an optimizer- 531

aware influence estimation method to select high- 532

value ones for training. We validate our method 533

on Llama3.1-8B-Ins and Qwen2.5-Coder-7B/14B- 534

Ins, demonstrating their effectiveness as data syn- 535

thesizers. Based on the data generated by these 536

small-scale synthesizers, we introduce SCoder, a 537

family of code generation models that achieves 538

strong performance on HumanEval (+), MBPP (+), 539

LiveCodeBench, and BigCodeBench, showcasing 540

the potential of small models in code instruction 541

data synthesis. 542
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6 Limitations543

Although our proposed multi-round self-distillation544

bootstrap method shows effectiveness in fully ex-545

ploiting small models’ potential for code instruc-546

tion data synthesis, limitations remain. For exam-547

ple, while the method demonstrates strong perfor-548

mance across benchmarks, the synthesis process549

could still benefit from further exploration into550

other data synthesis methods, such as Self-Instruct551

(Wang et al., 2023) and Evol-Instruct (Xu et al.,552

2024), which we plan to explore in future work.553
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A Code Snippet Gathering 787

To ensure the validity of our experimental results, 788

we first construct a clean and noise-free code snip- 789

pet pool that serves as the foundation for code 790

instruction data synthesis. Specifically, inspired 791

by the data preprocessing pipeline of StarCoder2 792

(Lozhkov et al., 2024), we follow the steps below 793

to construct the code snippet pool C from the Stack 794

V1, a collection of source code in over 300 pro- 795

gramming languages. 796

• Code Snippet Extraction: We first extract all 797

Python functions that include docstrings from 798

the Stack V1 dataset. To ensure a high level 799

of diversity while minimizing redundancy, we 800

perform near-deduplication using MinHash, 801

Locality-Sensitive Hashing (LSH), and Jac- 802

card similarity with a threshold of 0.5. 803

• Invalid Function Filtering: We remove any 804

functions that do not contain a return state- 805

ment or contain syntax errors. Additionally, 806

we supplement the remaining functions with 807

necessary dependency packages and remove 808

functions that import problematic packages 809

(e.g., os or sys), which could lead to issues in 810

execution. 811

• Quality Evaluation: We further evaluate the 812

remaining functions using the StarCoder2- 813

15B as a classifier to filter out examples with 814

bad documentation or low-quality code. 815

• Data Decontamination: Finally, we employ 816

an n-gram filtering technique to remove any 817

functions that contain solutions or prompts 818

from the benchmarks used in this work. 819

B Task Category 820

Following the Magicoder (Wei et al., 2024), we 821

use the following ten task categories for classify- 822

ing code snippets: "Algorithmic and Data Struc- 823

ture Problems", "Mathematical and Computational 824

Problems", "Database and SQL Problems", "Sys- 825

tem Design and Architecture Problems", "Security 826

and Cryptography Problems", "Performance Op- 827

timization Problems", "Web Problems", "Domain 828

Specific Problems", "User Interface and Applica- 829

tion Design Problems", and "Data Science and Ma- 830

chine Learning Problems". 831
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C Implementation Details832

Multi-Aspect Scorer. We sample 2.5K code in-833

struction data from Llama3.1-8B-Ins, Qwen2.5-834

Coder-7B-Ins, Qwen2.5-Coder-14B-Ins, and the835

evol-codealpaca-v1 dataset (Luo et al., 2024), re-836

spectively. Using the prompt in Appendix D, we837

distill scoring results from GPT-4o-20240806 from838

Z = 10 aspects and train Llama3.1-8B-Base for839

3 epochs with a learning rate of 1 × 10−5 and a840

global batch size of 64, obtaining the multi-aspect841

scorer. During inference, we set the temperature842

to 0. To derive the weight vector w, we conduct843

K = 20 experiments and evaluate the results on844

LiveCodeBench (202410-202501).845

Reference Model. We train Llama3.1-8B-Base846

as the reference model on 10K GPT-4o-20240806847

data (Dp) for 3 epochs with a learning rate of 2×848

10−5 and a global batch size of 32. For LoRA849

configurations, we set lora_r = 128, lora_alpha =850

512, and apply LoRA to the target modules: q_proj,851

k_proj, v_proj, and o_proj.852

Small-Scale Data synthesizer. We train853

Llama3.1-8B-Ins, Qwen2.5-Coder-7B-Ins, and854

Qwen2.5-Coder-14B-Ins as data synthesizers.855

Each model is first trained on 10K GPT-4o-856

20240806 data (Dp) before undergoing two rounds857

of bootstrapping. In each round, we sample N = 3858

data synthesis samples from M = 5 different859

checkpoints, respectively. The first round trains on860

20K self-distilled samples, while the second round861

uses 40K. Each training runs for 3 epochs with a862

learning rate of 1× 10−5 and a batch size of 128.863

During inference, we set the temperature to 0.2.864

SCoder. To maintain consistency with the base-865

lines, we use DeepSeek-Coder-6.7B-Base as the866

base model and distill 60K code instruction sam-867

ples from each of the three bootstrapped small-868

scale synthesizers. For a fair comparison, we869

also incorporate the evol-codealpaca-v1 dataset,870

an open-source Evol-Instruct implementation with871

approximately 110K data, widely used in baselines872

such as WizardCoder-GPT-4, WaveCoder-Ultra,873

MagicoderS, AlchemistCoder, and InverseCoder.874

The training data size comparison across different875

models is presented in Table 5.876

To obtain SCoder, we first fine-tune DeepSeek-877

Coder-6.7B-Base on the 110K evol-codealpaca-v1878

data for 2 epochs with an initial learning rate of879

5 × 10−5 and a global batch size of 512. We880

then further fine-tune it on the 60K small model- 881

generated data for 3 epochs with an initial learning 882

rate of 1×10−5 and a batch size of 64. Both phases 883

of training utilize a linear learning rate scheduler 884

with a 0.05 warmup ratio and the AdamW opti- 885

mizer. Training is conducted on 16 A100-80G 886

GPUs. 887

D Prompts 888

The data synthesis prompt is inspired by Wei et al. 889

(2024) and is shown in Figure 6. The multi-aspect 890

scoring prompt is inspired by Hui et al. (2024) and 891

is shown in Figure 7. 892
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Figure 6: Data Synthesis Prompt.
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Figure 7: Multi-Aspect Scoring Prompt.
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