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Abstract

Existing code large language models (LLMs)
often rely on large-scale instruction data dis-
tilled from proprietary LLMs for fine-tuning,
which typically incurs high costs. In this pa-
per, we explore the potential of small-scale
open-source LLMs (e.g., 7B) as synthesizers
for high-quality code instruction data construc-
tion. We first observe that the data synthesis ca-
pability of small-scale LLMs can be enhanced
by training on a few superior data synthesis
samples from proprietary LLMs. Building
on this, we propose a novel multi-round self-
distillation approach to bootstrap small-scale
LLMs, transforming them into powerful synthe-
sizers that reduce reliance on proprietary LLMs
and minimize costs. Concretely, we design
multi-checkpoint sampling and multi-aspect
scoring strategies to self-distill data synthesis
samples and filter them in each round. Based
on these filtered samples, we further select high-
value ones by introducing an optimizer-aware
influence estimation method, which estimates
the influence of each self-distilled sample by
calculating its gradient similarity to the supe-
rior samples from proprietary LLMs. Based
on the code instruction data from our small-
scale synthesizers, we introduce SCoder, a fam-
ily of code generation models fine-tuned from
DeepSeek-Coder. SCoder achieves state-of-the-
art code generation capabilities, demonstrating
the effectiveness of our method.

1 Introduction

Code generation has long been a central challenge
in computer science, and has attracted wide at-
tention from the research community. Recent ad-
vancements in code large language models (LLMs)
(Chen et al., 2021; Li et al., 2022, 2023; Chowd-
hery et al., 2023; Roziere et al., 2023; Lozhkov
et al., 2024) have led to significant breakthroughs.
These models can generate code that closely aligns
with user intent and are increasingly being widely
adopted.
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Figure 1: Left: The performance of code generation
models on HumanEval using data provided by different
synthesizers (Qwen2.5-Coder-7B or -14B). Right: The
performance of our SCoder and the baseline. SCoder
uses 60K instruction data generated by a small-scale syn-
thesizer and the baseline uses 75K instruction data gen-
erated by proprietary LLMs. All code generation mod-
els are fine-tuned from DeepSeek-Coder-6.7B-Base.

Typically, instruction tuning is a crucial step to
develop high-performance code LLMs. Therefore,
extensive research on code LLMs focuses on con-
structing high-quality instruction data. A common
approach involves distilling knowledge from pro-
prietary LLMs. For instance, Code Alpaca (Chaud-
hary, 2023) and WizardCoder (Luo et al., 2024)
are fine-tuned with instruction data distilled from
GPT-3.5, using Self-Instruct (Wang et al., 2023)
and Evol-Instruct (Xu et al., 2024), respectively.
Additionally, MagicoderS (Wei et al., 2024) is fine-
tuned on data distilled from both GPT-3.5 and GPT-
4, using OSS-Instruct to generate coding problems
and solutions based on the given code snippets.
While these methods have proven effective, they
all suffer from the cost-expensive issue caused by
the distillation of large-scale instruction data from
the proprietary LLMs like GPT-3.5 and GPT-4.

In this paper, we explore the potential of small-
scale (7B, 8B, and 14B) open-source LLMs as
synthesizers for code instruction data construction,
where small-scale is a relative concept compared
to extremely large models like GPT-3.5 and GPT-4.
Previous works have shown that small LLMs can



assist in pre-training data synthesis for non-code
domains (Yang et al., 2024). However, instruc-
tion data typically takes a different form from pre-
training data and requires higher quality standards
(Wang et al., 2025). To validate the feasibility of
small LLMs in synthesizing code instruction data,
we conduct a preliminary experiment. First, we
use small-scale LLMs as original synthesizers and
further train them on a limited set of proprietary
LLM-distilled samples as enhanced synthesizers.
Then, we fine-tune code generation models using
data provided by them. The results on the left of
Figure 1 show that the instruction data provided
by the enhanced synthesizer outperforms that of
the original, highlighting that a few superior sam-
ples can unleash the data synthesis potential of
small models. However, distilling more proprietary
samples to further improve the synthesis capabil-
ity of small synthesizers would again trigger the
cost-expensive issue. Therefore, a crucial ques-
tion arises: Can we continuously improve the data
synthesis capability of small-scale synthesizers
without relying on proprietary LLMs’ samples?

To address this, we propose an effective multi-
round self-distillation bootstrap method that itera-
tively improve the code instruction data synthesis
capability of small-scale LLMs. Specifically, start-
ing with an enhanced synthesizer, we employ a
two-step approach in each round to obtain high-
quality self-distilled data synthesis samples for fur-
ther training. First, we develop multi-checkpoint
sampling and multi-aspect scoring strategies to ob-
tain and filter self-distilled samples, maintaining
their diversity and reliability. Then, we introduce
an optimizer-aware influence estimation method
to further select high-value ones by computing the
gradient similarity between each self-distilled sam-
ple to the superior samples from proprietary LLMs.
We validate our method on small-scale LLMs like
Qwen2.5-Coder-7B/14B-Ins (Hui et al., 2024), im-
proving their data synthesis capabilities as shown
in the left of Figure 1, and transforming them into
powerful data synthesizers.

Based on the code instruction data provided by
our small-scale synthesizers, we introduce SCoder,
a family of code generation models fine-tuned from
DeepSeek-Coder-6.7B-Base (Guo et al., 2024).
Experimental results on HumanEval (+) (Chen
et al., 2021; Liu et al., 2023), MBPP (+) (Austin
et al., 2021), LiveCodeBench (Jain et al., 2024),
and BigCodeBench (Zhuo et al., 2024) show that
SCoder outperforms or matches state-of-the-art

code LLMs, which use instruction data from pro-
prietary LLMs. Overall, our contributions can be
summarized as follows:

1) We propose a multi-round self-distillation
bootstrap method to fully unleash the data syn-
thesis potential of small-scale LLMs and develop
small-scale synthesizers for code instruction data
construction.

2) To obtain diverse, reliable and high-value self-
distilled data for synthesizer training in each round,
we introduce a two-step process that combines
multi-checkpoint sampling, multi-aspect scoring,
and optimizer-aware influence estimation.

3) We fine-tune the code generation models,
SCoder, based on the data provided by our small-
scale synthesizers. Experimental results on mul-
tiple benchmarks show the effectiveness of our
method.

2 Related Work

2.1 Code Large Language Models

Code generation based on LLMs has seen signif-
icant advancements in recent years. Prominent
closed-source models, such as Codex (Chen et al.,
2021), GPT-4 (OpenAl, 2023), PaLM (Chowdh-
ery et al., 2023), and Gemini (Anil et al., 2023),
have demonstrated impressive results across var-
ious code generation benchmarks. Meanwhile,
open-source models, including CodeGen (Nijkamp
et al., 2023), CodeGeeX (Zheng et al., 2023), Star-
Coder (Li et al., 2023), CodeLlama (Roziére et al.,
2023), DeepSeek-Coder (Guo et al., 2024), and
CodeQwen (Hui et al., 2024), have also made sub-
stantial contributions to the field. The success of
these models has not only advanced code genera-
tion capabilities but also facilitated more efficient
and automated software development.

Typically, these models are developed through
continual pre-training (Roziere et al., 2023), fol-
lowed by supervised fine-tuning (SFT) (Yu et al.,
2023). While pre-training leverages vast amounts
of unannotated real-world code corpora, fine-
tuning requires high-quality labeled instruction
data, the construction of which remains a critical
challenge (Ding et al., 2024).

2.2 Code Instruction Data Synthesis

Creating diverse and complex instruction data, es-
pecially in the coding domain, is a challenging
task that requires specialized knowledge. While
human-written instruction datasets, such as those



used in OctoPack (Muennighoff et al., 2024) and
PIE (Shypula et al., 2024), have proven effective,
they are labor-intensive and difficult to scale. As a
result, current works often rely on powerful propri-
etary LLMs to automatically generate code instruc-
tion data. For instance, Code Alpaca (Chaudhary,
2023) employs the Self-Instruct (Wang et al., 2023)
method to generate instruction data from a pool of
seed tasks, while WizardCoder (Luo et al., 2024)
uses the Evol-Instruct (Xu et al., 2024) technique,
which synthesizes diverse and complex instruction
data through evolutionary heuristics. Magicoder
(Wei et al., 2024) employs OSS-Instruct, which
utilizes open-source code snippets as seeds to gen-
erate high-quality programming problems and solu-
tions, thereby enhancing the diversity and realism
of the generated data. WaveCoder (Yu et al., 2023)
proposes a generator-discriminator framework to
generate instruction data, while OpenCodelnter-
preter (Zheng et al., 2024) leverages interactions
between users, LLMs, and compilers to create di-
verse, multi-turn instruction data. Although these
methods are effective, they often rely on costly
proprietary LLMs for data distillation, leading to
significant expenses (Wu et al., 2024). In this work,
we explore the potential of small-scale open-source
LLMs to generate high-quality code instruction
data in a more cost-effective manner, reducing the
reliance on expensive proprietary models while
maintaining comparable performance.

3 Methodology

3.1 Overview

In this work, we aim to train a set of small-scale
code instruction data synthesis models, named syn-
thesizers, capable of generating the high-quality
code instruction data, i.e., the code problem-
solution pair (g, ) given an open-source code snip-
pet ¢ and an instruction synthesis prompt p. To
achieve this, we first construct a clean and noise-
free code snippet pool C = {¢;}, following the data
pre-processing pipeline of StarCoder2 (Lozhkov
etal., 2024). Next, we distill a limited number of in-
struction data synthesis samples, denoted as D,, =
{(p,c',q?, s")}, from proprietary LLMs to obtain
enhanced synthesizers. Finally, we propose a boot-
strap method based on multi-round self-distillation
to continually train the synthesizers using self-
distilled data, denoted as D; = {(p, ¢}, q},s])}
The prompt p and more details of code snippet pool
C are provided in Appendix D and A, respectively.

Synthesizer HumanEval MBPP
Llama3.1-8B-Ins 60.4 64.7
+Enhanced 64.2 69.3
Qwen2.5-Coder-7B-Ins 61.6 70.8
+Enhanced 65.6 72.1
Qwen2.5-Coder-14B-Ins 65.3 73.7
+Enhanced 67.5 75.8

Table 1: The performance of code generation model
fined-tuned on 40K code instruction data provided by
different synthesizers.

3.2 Preliminary Study

We conduct a preliminary study to validate whether
small LL.Ms can acquire a certain level of data
synthesis capability by distilling a limited number
of proprietary LLM samples. To obtain propri-
etary samples with sufficient knowledge coverage,
we adopt a classification-based diversified code
snippet sampling technique. Specifically, we em-
ploy 10 pre-defined task categories and calculate
the similarity between each code snippet and the
task category descriptions with the help of a state-
of-the-art embedding model INSTRUCTOR (Su
et al., 2023). Based on the embedding similar-
ity, each code snippet is assigned to its most rele-
vant task category. We then randomly sample 1K
code snippets from each category to ensure suffi-
cient knowledge diversity. Finally, these selected
code snippets are used to prompt proprietary LLMs
generating code instruction data synthesis samples
D, = {(p, . q", s¥)}, where (p, c!') denotes input
and (¢?, s”) denotes output.

We use Llama3.1-8B-Ins and Qwen2.5-Coder-
7B/14B-Ins as the original synthesizers and train
them on D), to obtain enhanced synthesizers. Based
on code instruction data provided by these synthe-
sizers, we fine-tune DeepSeek-Coder-6.7B-Base as
the code generation model. The results are shown
in Table 1, the enhanced synthesizers exhibit a sig-
nificant improvement in data synthesis capability,
even with only 10K proprietary LLM samples. This
demonstrates the strong potential of small models
for code instruction data synthesis.

3.3 Bootstrapping with Multi-Round
Self-Distillation

To further boost small LLMs for synthesizing
higher-quality code instruction data without dis-
tilling additional proprietary LLM samples, in this
section we propose an effective bootstrap method
based on multi-round self-distillation. Specifically,
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Figure 2: Overview of our multi-round self-distillation bootstrap method. In each round, we sample outputs
from multiple checkpoints and evaluate them with a multi-aspect scorer for diversity and reliability. We then use an
optimizer-aware influence estimation method to select the most valuable samples, which is done by evaluating the
gradient similarity between the self-distilled and proprietary LLM-distilled code instruction data.

we start with the mentioned enhanced synthesizers,
considering this as the 0-th round of the bootstrap.
Then, in subsequent each iteration, we first col-
lect diverse and reliable self-distilled data synthesis
samples by multi-checkpoint sampling and multi-
aspect scoring strategies. These samples are gener-
ated by the synthesizers from the previous round.
Next, to further identify the most valuable samples,
we introduce an optimizer-aware influence estima-
tion method, which quantifies each sample’s influ-
ence by computing its gradient similarity with pro-
prietary LLM samples. Finally, these high-quality
samples are used to train the synthesizer itself, en-
hancing its ability to generate code instruction data.
The overview of our method is shown in Figure 2.

Multi-Checkpoint Sampling with Multi-Aspect
Scoring. As our approach iteratively trains on
self-distilled data synthesis samples, ensuring their
quality and diversity is essential. Therefore, we
first develop a multi-checkpoint sampling strategy.
Specifically, given the synthesis prompt p and a
code snippet ¢, we obtain M x N diverse problem-
solution pairs {(g;;, sij)} by sampling N times
from M checkpoints of synthesizers, where ¢ €
[1,M] and j € [1, N]. Compared to the strategy
Best-of-N (Stiennon et al., 2022), which selects
candidates from a single checkpoint, our approach
expands the search space and improves both the
reliability and diversity of the selected data.

Next, to rank and select the best candidate pair
corresponding to code snippet, we introduce a

multi-aspect scoring model, namely scorer. Given
a candidate pair (g;;, 5;5), the scorer evaluates it
across Z aspects, producing a feature vector x;; =
{z;} . where x7; € [0,9] represents the integer
score in the z-th aspect, such as problem-solution
consistency '. Furthermore, considering that dif-
ferent aspects are independent and integer-based
scores provide only a hard signal that lacks gran-
ularity for distinguishing data quality, we propose
a weighted scoring aggregation method, which as-
signs each aspect a weight w* and computes the

final aggregated real-valued score Score;; as:

z
Score;; = w??. 1
J 17
z=1

To determine the optimal weight vector w = {w?},
we conduct K experiments based on the instruction
data generated by synthesizers. For each experi-
ment, we compute the average multi-aspect scores
X;. of the instruction data and use the data to fine-
tune DeepSeek-Coder-6.7B-Base. The fine-tuned
model is then evaluated on an out-of-distribution
(OQOD) test set to obtain the corresponding perfor-
mance score yi. Given the data {(Xg,yr)}, we
estimate w by solving the following ridge regres-
sion problem:

K
w = arg min Z(yk —W- ik)2 + )\||W||27 (2)
Vo=

The prompt for the multi-aspect scorer are provided in
Appendix D.



where A is a regularization term to prevent overfit-
ting, and the learned weights indicate the relative
importance of each scoring aspect in determining
the effectiveness of instruction data.

Optimizer-Aware Influence Estimation While
multi-checkpoint sampling with multi-aspect scor-
ing ensures reliability and diversity, the influence of
each selected self-distilled sample on base model
fine-tuning can vary. Inspired by previous works
(Pruthi et al., 2020; Xia et al., 2024), we introduce
an optimizer-aware influence estimation method
to further identify the most valuable samples by
estimating the fine-tuning influence of the code
instruction data they contain.

Concretely, based on the influence formulation
(Pruthi et al., 2020), the influence of a self-distilled
code instruction data d = (q, s) on the prediction
of a test instance ¢ in a base model parameterized
by 6 can be estimated by computing the similarity
between their gradients:

Inf(d, t) « Sim(Vi(d,0),VI(t,6)). (3)

However, code generation tasks are inherently
broad and diverse, and some of them may lack
well-established benchmarks. To address this, we
instead estimate the influence of d by computing
its gradient similarity to the code instruction data
{d? = (¢P, sP)} from proprietary LLM samples
D,. The idea is that proprietary LLMs (e.g., GPT-
40) have undergone extensive optimization through
various strategies, making their distilled instruction
data highly effective in improving model perfor-
mance across diverse tasks.

Specifically, inspired by previous work (Xia
et al., 2024), we first train an LL.M-based reference
model on the proprietary instruction data {dP =
(¢?, sP)} using LoRA (Hu et al., 2022), which al-
lows for low-rank adaptation, significantly reduc-
ing trainable parameters and ensuring the efficiency
for the following gradient computations. We then
compute the gradient of each self-distilled instruc-
tion data d with respect to the LoRA parameters
810ra> denoted as Vi (d, 01orq). To further im-
prove efficiency, following prior work (Park et al.,
2023), we apply a projection matrix initialized with
a Rademacher distribution to reduce gradient di-
mensionality, resulting in Vi, #(d, O1orq). Accord-
ing to the Johnson-Lindenstrauss Lemmas (John-
son et al., 1984), this transformation can preserve
gradient distances while ensuring the usefulness of
lower-dimensional features. Similarly, we compute

the projected gradients for each proprietary instruc-
tion data dP, denoted as Vi, #(dP, 010rq). Finally,
we approximate the influence of d by calculating its
cosine similarity to the average gradient of {dP}:

V(d) = Cosine (@lref(d, Orora);
_ “)
Fp Z Vlref (df7 9[07%1)) )

i=1
where V), is the size of {d}.

4 Experiments

4.1 Benchmarks

We employ multiple widely adopted benchmarks
for a comprehensive evaluation, including Hu-
manEval (Chen et al., 2021), MBPP (Austin et al.,
2021) (along with their EvalPlus (Liu et al., 2023)
versions), LiveCodeBench (V4) (Jain et al., 2024),
and BigCodeBench (Zhuo et al., 2024). We assess
model performance using the pass@ 1 metric.

4.2 Baselines

We compare SCoder with several powerful base-
lines, including two proprietary models: GPT-4-
Turbo-20240409 (OpenAl, 2024a) and GPT-ol-
Preview-20240912 (OpenAl, 2024b), as well as
seven open-source models built on DeepSeek-
Coder-6.7B-Base (Guo et al., 2024): DeepSeek-
Coder-6.7B-Instruct, WaveCoder-Ultra-6.7B (Yu
et al., 2023), MagicoderS-DS-6.7B (Wei et al.,
2024), OpenCodelnterpreter-DS-6.7B (Zheng et al.,
2024), AlchemistCoder-DS-6.7B (Song et al.,
2024), InverseCoder-DS-6.7B (Wu et al., 2024),
and WizardCoder-GPT-4-6.7B (Luo et al., 2024).

4.3 Implementation Details

We provide a simplified version of the implemen-
tation details here; a more detailed version can be
found in Appendix C.

Small-Scale Data Synthesizer. We train
Llama3.1-8B-Ins, Qwen2.5-Coder-7B-Ins, and
Qwen2.5-Coder-14B-Ins as data synthesizers.
Each model is initially trained on 10K GPT-40 data
D, followed by two rounds of bootstrapping using

2https://evalplus.github.io/leaderboard.html

3https://1ivecodebench.github.io/leaderboard.
html

4https://huggingface.co/spaces/bigcode/
bigcodebench-1leaderboard
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Synthesizer Data Size \ HumanEval MBPP LiveCodeBench BigCodeBench
DeepSeek-Coder-6.7B-Base
None 0 47.6" 72.0° 16.2° 41.8°
Fine-Tuning DeepSeek-Coder-6.7B-Base on 40K Synthesized Data

Llama3.1-8B-Instruct 0 60.4 64.7 16.5 42.1
+Enhanced 10K 64.2 69.3 17.3 42.8
+1 Iter 20K 65.5 71.1 17.4 43.1
+2 iter 40K 67.4 73.4 17.8 43.5

Qwen2.5-Coder-7B-Instruct 0 61.6 70.8 17.0 427
+Enhanced 10K 65.6 72.1 18.2 43.8
+1 Iter 20K 66.3 72.9 18.4 441
+2 iter 40K 68.9 74.7 18.9 44.7

Qwen2.5-Coder-14B-Instruct 0 65.3 73.7 18.7 43.2
+Enhanced 10K 67.5 75.8 194 44.5
+1 Iter 20K 68.4 76.3 19.3 45.1
+2 iter 40K 70.1 76.5 19.7 45.9

Table 2: Performance of code generation models built on instruction data generated by small synthesizers on
HumanEval, MBPP, LiveCodeBench (Full), and BigCodeBench (Complete-Full). Data size refers to the amount of

data used to train the synthesizer. 1 denotes results from the benchmark leaderboards

234

\ HumanEval MBPP LiveCodeBench BCB (Comp) BCB (Inst)
Models

| Base Plus Base Plus Full Easy Full Hard Full Hard

Proprietary Models
GPT-4-Turbo-20240409 902" 86.6 857 733 420" 824 582" 3517 482" 3217
GPT-ol-Preview-20240912 96.3" 89.0" 955" 802" 585" 94.17 / 345" 23.0°
DeepSeek-Coder-6.7B-Base
DeepSeek-Coder-6.7B-Base | 47.6° 39.6" 72.0° 587" 162" 38.7' 418" 1357/ /
Fine-Tuned Models based on DeepSeek-Coder-6.7B-Base

DeepSeek-Coder-6.7B-Instruct | 744" 71.3" 749" 656" 19.8" 45.8' 438" 155" 355" 1017
WaveCoder-Ultra-6.7B 7500 6957 749" 6357 197 468 437" 169" 339" 128
MagicoderS-DS-6.7B 768" 713" 794" 69.0" 204 479 476" 128" 362" 135
OpenCodelnterpreter-DS-6.7B | 77.4" 713" 765" 664" 189 46.6 446" 169" 3717 135
AlchemistCoder-DS-6.7B 79.9* 7560 77.08 602f 174 447 425 142 335 132
InverseCoder-DS-6.7B 79.9F 76.8% 78.6" 69.0° 203 46.6 457 149 354 95
WizardCoder-GPT-4-6.7B 774 738 754 648 21.0 496 451 155 373 108
SCoder-L-DS-6.7B 782 738 716 654 21.1 517 462 151 379 134
SCoder-Q7-DS-6.7B 787 743 791 665 214 522 474 155 386 145
SCoder-Q14-DS-6.7B 80.5 750 81.0 693 222 526 492 162 406 169

Table 3: Performance comparison of different models on multiple code generation benchmarks. Three SCoder
models are fine-tuned using data generated by our small synthesizers, where L, Q7, and Q14 denote three different
synthesizers after two rounds of bootstrap. BCB, Comp, and Inst denote BigCodeBench, Complete, and Instruct.
T denotes results from the InverseCoder work (Wu et al., 2024). The best results are in bold and the second best

results are underlined.

20K and 40K self-distilled data D;, respectively.
Training is performed with a learning rate of
1 x 1075 and a global batch size of 128, while the
temperature is set to 0.2 during inference.

SCoder. For a fair comparison, we first train
DeepSeek-Coder-6.7B-Base on the 110K evol-
codealpaca-v1 data for 2 epochs, and then fine-
tune it for 3 epochs on the 60K data synthesized

by our small synthesizers to obtain SCoder. The
110K evol-codealpaca-v1 data is also widely used
in baselines, as shown in Table 5.

4.4 Main Results

As shown in Table 2, our proposed method sig-
nificantly enhances the instruction data synthesis
capabilities of small models with only two rounds



Models HumanEval MBPP LiveCodeBench BigCodeBench
SCoder-Q7-DS-6.7B 78.7 79.1 214 474
w/o multi-checkpoint sampling 74.9 73.8 18.7 443
w/o multi-aspect scoring 72.3 76.7 19.9 45.5
w/o optimizer-aware influence estimation 75.1 74.4 18.2 43.2
SCoder-Q14-DS-6.7B 80.5 81.0 22.2 49.2
w/o multi-checkpoint sampling 75.6 74.4 20.4 46.3
w/o multi-aspect scoring 74.9 75.8 20.8 45.1
w/o optimizer-aware influence estimation 76.1 74.9 20.0 44.8

Table 4: Ablation study on HumanEval, MBPP, LiveCodeBench (Full), and BigCodeBench (Complete-Full). The

best results are in bold and the second best results are underlined.

Model Common Data Specific Data
WizardCoder-GPT-4 0K

WaveCoder-Ultra 20K (GPT-4)

MagicoderS 75K (GPT-3.5)

AlchemistCoder 110K (GPT-4)

InverseCoder
SCoder (ours)

>80K (GPT-3.5)
90K (self-generated)
60K (small model-generated)

Table 5: Comparison of data used by different models.
The source of the data is indicated in parentheses.

of bootstrap, regardless of their model family or
scale. For example, the fine-tuning performance
of the 40K data synthesized by Llama3.1-8B-Ins
on the base model achieves a 5.0% improvement
on HumanEval and a 5.9% improvement on MBPP
after two rounds of bootstrap. This demonstrates
that our approach, leveraging well-designed sam-
pling and filtering strategies, enables small models
to acquire self-distilled data synthesis samples with
strong reliability, broad diversity, and high value.
As aresult, they progressively evolve into effective
data synthesizers while minimizing dependence on
proprietary LLM distillation.

Furthermore, Table 3 shows that SCoder, trained
on data generated by bootstrapped small-scale
data synthesizers, outperforms or matches other
state-of-the-art open-scource baselines across mul-
tiple benchmarks. For example, SCoder-Q14-DS-
6.7B surpasses the best open-source baselines by
5.9% and 9.7% on average in the challenging Live-
CodeBench and BigCodeBench, respectively. No-
tably, the open-source baselines typically utilize a
larger amount of proprietary LLM-distilled instruc-
tion data as listed in Table 5, further validating the
effectiveness of our method in constructing strong
small-scale data synthesizers.

4.5 Ablation Study

We conduct ablation studies based on SCoder-Q7-
DS-6.7B and SCoder-Q14-DS-6.7B. The results

presented in Table 4 demonstrate the importance of
our extensive sampling and refined filtering strate-
gies.

First, without multi-checkpoint sampling (i.e.,
sampling an equal number of outputs solely from
the last checkpoint of the previous round), the
performance of both code generation models on
HumanEval and LiveCodeBench drops by at least
4.8% and 8.1%, respectively. This indicates that a
limited sampling space reduces the likelihood of
obtaining high-quality self-distilled data, thereby
hindering the effectiveness of the bootstrap process.
Furthermore, when either multi-aspect scoring or
optimizer-aware influence estimation is removed
from the data selection process, the performance
on MBPP and BigCodeBench drops by up to 7.5%
and 8.9%, respectively. This highlights that both
strategies are essential for ensuring the reliability,
diversity, and value of self-distilled data, and re-
moving either significantly impacts the overall ef-
fectiveness.

4.6 Data Scaling

To further evaluate the data synthesis quality of
small data synthesizers, we investigate the data
scaling law using the bootstrapped Qwen2.5-Coder-
14B-Ins. As shown in Figure 3, increasing the
data size leads to significant improvements of the
code generation model fine-tuned on DeepSeek-
Coder-6.7B-Base, surpassing DeepSeek-Coder-
6.7B-Instruct on most benchmarks. This further
validates the effectiveness of our approach in con-
structing high-quality small-scale data synthesiz-
ers.

4.7 Further Discussion

In this section, we provide a more fine-grained
analysis of the effectiveness of our method.
First, we compare the impact of different selec-
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Figure 3: Impact of data scaling. The dashed lines
represent the performance of DeepSeek-Coder-6.7B-
Instruct across various benchmarks.
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Figure 4: Comparison of different selection methods
and the number of self-distilled data used in different
bootstrap rounds. The y-axis denotes the performance
of the code generation models fine-tuned on 40K syn-
thesized data.

tion strategies during the bootstrap process. As
shown in the left of Figure 4, for multi-aspect scor-
ing, replacing the aggregated score with either the
raw composite score from the scorer or the simple
average of scores leads to a decline in the synthe-
sizer’s data synthesis performance. Moreover, sub-
stituting the optimizer-aware influence estimation
with alternative selection methods, such as random
selection or lowest/highest perplexity selection, re-
sults in an even more substantial performance drop.
These findings highlight the effectiveness of our
selection strategy in identifying reliable and high-
value self-distilled samples, thereby ensuring the
success of the bootstrap process.

Second, as the synthesizer’s capability improves
with more bootstrap iterations, we progressively in-
crease the number of self-distilled samples used in
training across two iterations (20K — 40K). Here,
we compare different settings, including removing
multi-round iteration (60K — Null), progressively
decreasing the sample size (40K — 20K), increas-
ing the sample size in the first iteration (40K —
40K), and decreasing the sample size in the second
iteration (20K — 20K). As shown in the right of
Figure 4, in all cases, performance declines, indicat-
ing that a well-balanced and progressively increas-

—— evol-codealpacavl —— our dataset

Difficulty

Correctyfe Retevance
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Figure 5: Quality comparison between the evol-
codealpaca-v1 dataset and our synthesized dataset.

ing data schedule plays a crucial role in maximizing
the effectiveness of the bootstrap process.

4.8 Data Quality Analysis

To further validate the quality of data generated by
the synthesizers, we sampled 100 code instruction
data from evol-codealpaca-v1 and the bootstrapped
Qwen2.5-Coder-14B-Ins, respectively and use
GPT-40-20240513 and GPT-4-turbo-20240409 to
score the data across 10 aspects based on the
prompt provided in Appendix D. The average re-
sults, shown in Figure 5, demonstrate that our syn-
thesized data achieves higher scores across all as-
pects, further confirming the effectiveness of our
method in building high-quality small-scale code
instruction synthesizers.

5 Conclusion

In this paper, we propose a multi-round self-
distillation bootstrap method to fully unlock the
data synthesis potential of small-scale LLMs, trans-
forming them into powerful instruction data syn-
thesizers while reducing reliance on proprietary
LLMs and minimizing costs. We design a multi-
checkpoint sampling and multi-aspect scoring
method to ensure the diversity and reliability of
self-distilled samples, followed by an optimizer-
aware influence estimation method to select high-
value ones for training. We validate our method
on Llama3.1-8B-Ins and Qwen2.5-Coder-7B/14B-
Ins, demonstrating their effectiveness as data syn-
thesizers. Based on the data generated by these
small-scale synthesizers, we introduce SCoder, a
family of code generation models that achieves
strong performance on HumanEval (+), MBPP (+),
LiveCodeBench, and BigCodeBench, showcasing
the potential of small models in code instruction
data synthesis.



6 Limitations

Although our proposed multi-round self-distillation
bootstrap method shows effectiveness in fully ex-
ploiting small models’ potential for code instruc-
tion data synthesis, limitations remain. For exam-
ple, while the method demonstrates strong perfor-
mance across benchmarks, the synthesis process
could still benefit from further exploration into
other data synthesis methods, such as Self-Instruct
(Wang et al., 2023) and Evol-Instruct (Xu et al.,
2024), which we plan to explore in future work.

References

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Mil-
lican, and et al. 2023. Gemini: A family of highly
capable multimodal models. CoRR, abs/2312.11805.

Jacob Austin, Augustus Odena, Maxwell 1. Nye,
Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program synthesis with
large language models. CoRR, abs/2108.07732.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. https:
//github.com/sahil280114/codealpaca.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, and et al. 2021.
Evaluating large language models trained on code.
CoRR, abs/2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, and et al.
2023. Palm: Scaling language modeling with path-
ways. J. Mach. Learn. Res., 24:240:1-240:113.

Bosheng Ding, Chengwei Qin, Ruochen Zhao, Tianze
Luo, Xinze Li, Guizhen Chen, Wenhan Xia, Junjie
Hu, Anh Tuan Luu, and Shafiq Joty. 2024. Data
augmentation using llms: Data perspectives, learning
paradigms and challenges. In Findings of the As-
sociation for Computational Linguistics, ACL 2024,
Bangkok, Thailand and virtual meeting, August 11-
16, 2024, pages 1679-1705. Association for Compu-
tational Linguistics.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming - the rise of code
intelligence. CoRR, abs/2401.14196.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, and et al. 2024. Qwen2.5-
coder technical report. CoRR, abs/2409.12186.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free eval-
uation of large language models for code. CoRR,
abs/2403.07974.

William B Johnson, Joram Lindenstrauss, et al. 1984.
Extensions of lipschitz mappings into a hilbert space.
Contemporary mathematics, 26(189-206):1.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian
Liu, and et al. 2023. Starcoder: may the source be
with you! Trans. Mach. Learn. Res., 2023.

Yujia Li, David H. Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, and et al. 2022. Competition-level code gener-
ation with alphacode. CoRR, abs/2203.07814.

Jiawei Liu, Chunqgiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurlIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
and et al. 2024. Starcoder 2 and the stack v2: The
next generation. CoRR, abs/2402.19173.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2024. Wizardcoder:
Empowering code large language models with evol-
instruct. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net.

Niklas Muennighoff, Qian Liu, Armel Randy Ze-
baze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
Swayam Singh, Xiangru Tang, Leandro von Werra,
and Shayne Longpre. 2024. Octopack: Instruction
tuning code large language models. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.


https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2312.11805
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://arxiv.org/abs/2107.03374
https://jmlr.org/papers/v24/22-1144.html
https://jmlr.org/papers/v24/22-1144.html
https://jmlr.org/papers/v24/22-1144.html
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.97
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.97
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.97
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.97
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.97
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.48550/ARXIV.2409.12186
https://doi.org/10.48550/ARXIV.2409.12186
https://doi.org/10.48550/ARXIV.2409.12186
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=KoFOg41haE
https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.48550/ARXIV.2203.07814
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2402.19173
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=mw1PWNSWZP
https://openreview.net/forum?id=mw1PWNSWZP
https://openreview.net/forum?id=mw1PWNSWZP

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. Codegen: An open large language
model for code with multi-turn program synthesis. In
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.

OpenAl. 2023. CoRR,

abs/2303.08774.

GPT-4 technical report.

OpenAl. 2024a. Gpt-4. https://openai.com/index/
gpt-4-research/.

OpenAl.  2024b. Learning to reason with
IIms. https://openai.com/index/
learning-to-reason-with-11lms/.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guil-
laume Leclerc, and Aleksander Madry. 2023. TRAK:
attributing model behavior at scale. In International
Conference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages
27074-27113. PMLR.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund
Sundararajan. 2020. Estimating training data influ-
ence by tracing gradient descent. In Advances in
Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Sys-
tems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, and et al. 2023. Code
Ilama: Open foundation models for code. CoRR,
abs/2308.12950.

Alexander Shypula, Aman Madaan, Yimeng Zeng,
Uri Alon, Jacob R. Gardner, Yiming Yang, Mi-
lad Hashemi, Graham Neubig, Parthasarathy Ran-
ganathan, Osbert Bastani, and Amir Yazdanbakhsh.
2024. Learning performance-improving code edits.
In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Zifan Song, Yudong Wang, Wenwei Zhang, Kuikun
Liu, Chengqi Lyu, Demin Song, Qipeng Guo, Hang
Yan, Dahua Lin, Kai Chen, and Cairong Zhao. 2024.
Alchemistcoder: Harmonizing and eliciting code ca-
pability by hindsight tuning on multi-source data.
Preprint, arXiv:2405.19265.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M.
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul Christiano. 2022. Learn-
ing to summarize from human feedback. Preprint,
arXiv:2009.01325.

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang,
Yushi Hu, Mari Ostendorf, Wen-tau Yih, Noah A.
Smith, Luke Zettlemoyer, and Tao Yu. 2023. One

10

embedder, any task: Instruction-finetuned text em-
beddings. In Findings of the Association for Com-
putational Linguistics: ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 1102-1121. Association for
Computational Linguistics.

Yaoxiang Wang, Haoling Li, Xin Zhang, Jie Wu, Xiao
Liu, Wenxiang Hu, Zhongxin Guo, Yangyu Huang,
Ying Xin, Yujiu Yang, et al. 2025. Epicoder: Encom-
passing diversity and complexity in code generation.
arXiv preprint arXiv:2501.04694.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2023, Toronto, Canada, July 9-14, 2023,
pages 13484—-13508. Association for Computational
Linguistics.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2024. Magicoder: Empowering
code generation with oss-instruct. In Forty-first In-
ternational Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenRe-
view.net.

Yutong Wu, Di Huang, Wenxuan Shi, Wei Wang,
Lingzhe Gao, Shihao Liu, Ziyuan Nan, Kaizhao
Yuan, Rui Zhang, Xishan Zhang, Zidong Du, Qi Guo,
Yewen Pu, Dawei Yin, Xing Hu, and Yunji Chen.
2024. Inversecoder: Unleashing the power of
instruction-tuned code llms with inverse-instruct.
CoRR, abs/2407.05700.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,
Sanjeev Arora, and Danqi Chen. 2024. LESS: se-
lecting influential data for targeted instruction tuning.
In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024. Wizardlm: Empow-
ering large pre-trained language models to follow
complex instructions. In The Twelfth International
Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong
Tu, Jingren Zhou, Junyang Lin, et al. 2024. Qwen?2.
5-math technical report: Toward mathematical ex-
pert model via self-improvement. arXiv preprint
arXiv:2409.12122.

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang,
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng
Yin. 2023. Wavecoder: Widespread and versatile
enhanced instruction tuning with refined data genera-
tion. CoRR, abs/2312.14187.


https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://doi.org/10.48550/ARXIV.2303.08774
https://openai.com/index/gpt-4-research/
https://openai.com/index/gpt-4-research/
https://openai.com/index/gpt-4-research/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://proceedings.mlr.press/v202/park23c.html
https://proceedings.mlr.press/v202/park23c.html
https://proceedings.mlr.press/v202/park23c.html
https://proceedings.neurips.cc/paper/2020/hash/e6385d39ec9394f2f3a354d9d2b88eec-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e6385d39ec9394f2f3a354d9d2b88eec-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e6385d39ec9394f2f3a354d9d2b88eec-Abstract.html
https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.48550/ARXIV.2308.12950
https://openreview.net/forum?id=ix7rLVHXyY
https://arxiv.org/abs/2405.19265
https://arxiv.org/abs/2405.19265
https://arxiv.org/abs/2405.19265
https://arxiv.org/abs/2009.01325
https://arxiv.org/abs/2009.01325
https://arxiv.org/abs/2009.01325
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.71
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.71
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.71
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.71
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.71
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://openreview.net/forum?id=XUeoOBid3x
https://openreview.net/forum?id=XUeoOBid3x
https://openreview.net/forum?id=XUeoOBid3x
https://doi.org/10.48550/ARXIV.2407.05700
https://doi.org/10.48550/ARXIV.2407.05700
https://doi.org/10.48550/ARXIV.2407.05700
https://openreview.net/forum?id=PG5fV50maR
https://openreview.net/forum?id=PG5fV50maR
https://openreview.net/forum?id=PG5fV50maR
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023.
Codegeex: A pre-trained model for code generation
with multilingual benchmarking on humaneval-x. In
Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD
2023, Long Beach, CA, USA, August 6-10, 2023,
pages 5673-5684. ACM.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang Yue.
2024. Opencodeinterpreter: Integrating code gener-
ation with execution and refinement. In Findings of
the Association for Computational Linguistics, ACL
2024, Bangkok, Thailand and virtual meeting, Au-
gust 11-16, 2024, pages 12834—12859. Association
for Computational Linguistics.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Si-
mon Brunner, Chen Gong, and et al. 2024. Big-
codebench: Benchmarking code generation with di-
verse function calls and complex instructions. CoRR,
abs/2406.15877.

11

A Code Snippet Gathering

To ensure the validity of our experimental results,
we first construct a clean and noise-free code snip-
pet pool that serves as the foundation for code
instruction data synthesis. Specifically, inspired
by the data preprocessing pipeline of StarCoder2
(Lozhkov et al., 2024), we follow the steps below
to construct the code snippet pool C from the Stack
V1, a collection of source code in over 300 pro-
gramming languages.

* Code Snippet Extraction: We first extract all
Python functions that include docstrings from
the Stack V1 dataset. To ensure a high level
of diversity while minimizing redundancy, we
perform near-deduplication using MinHash,
Locality-Sensitive Hashing (LSH), and Jac-
card similarity with a threshold of 0.5.

Invalid Function Filtering: We remove any
functions that do not contain a return state-
ment or contain syntax errors. Additionally,
we supplement the remaining functions with
necessary dependency packages and remove
functions that import problematic packages
(e.g., os or sys), which could lead to issues in
execution.

Quality Evaluation: We further evaluate the
remaining functions using the StarCoder2-
15B as a classifier to filter out examples with
bad documentation or low-quality code.

Data Decontamination: Finally, we employ
an n-gram filtering technique to remove any
functions that contain solutions or prompts
from the benchmarks used in this work.

B Task Category

Following the Magicoder (Wei et al., 2024), we
use the following ten task categories for classify-
ing code snippets: "Algorithmic and Data Struc-
ture Problems", "Mathematical and Computational
Problems", "Database and SQL Problems", "Sys-
tem Design and Architecture Problems", "Security
and Cryptography Problems", "Performance Op-
timization Problems", "Web Problems", "Domain
Specific Problems", "User Interface and Applica-
tion Design Problems", and "Data Science and Ma-
chine Learning Problems".
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C Implementation Details

Multi-Aspect Scorer. We sample 2.5K code in-
struction data from Llama3.1-8B-Ins, Qwen2.5-
Coder-7B-Ins, Qwen2.5-Coder-14B-Ins, and the
evol-codealpaca-v1 dataset (Luo et al., 2024), re-
spectively. Using the prompt in Appendix D, we
distill scoring results from GPT-40-20240806 from
Z = 10 aspects and train Llama3.1-8B-Base for
3 epochs with a learning rate of 1 x 10> and a
global batch size of 64, obtaining the multi-aspect
scorer. During inference, we set the temperature
to 0. To derive the weight vector w, we conduct
K = 20 experiments and evaluate the results on
LiveCodeBench (202410-202501).

Reference Model. We train Llama3.1-8B-Base
as the reference model on 10K GPT-40-20240806
data (D)) for 3 epochs with a learning rate of 2 x
10~ and a global batch size of 32. For LoRA
configurations, we set lora_r = 128, lora_alpha =
512, and apply LoRA to the target modules: q_proj,
k_proj, v_proj, and o_proj.

Small-Scale Data synthesizer. We train
Llama3.1-8B-Ins, Qwen2.5-Coder-7B-Ins, and
Qwen2.5-Coder-14B-Ins as data synthesizers.
Each model is first trained on 10K GPT-40-
20240806 data (D, before undergoing two rounds
of bootstrapping. In each round, we sample N = 3
data synthesis samples from M 5 different
checkpoints, respectively. The first round trains on
20K self-distilled samples, while the second round
uses 40K. Each training runs for 3 epochs with a
learning rate of 1 x 1075 and a batch size of 128.
During inference, we set the temperature to 0.2.

SCoder. To maintain consistency with the base-
lines, we use DeepSeek-Coder-6.7B-Base as the
base model and distill 60K code instruction sam-
ples from each of the three bootstrapped small-
scale synthesizers. For a fair comparison, we
also incorporate the evol-codealpaca-v1 dataset,
an open-source Evol-Instruct implementation with
approximately 110K data, widely used in baselines
such as WizardCoder-GPT-4, WaveCoder-Ultra,
MagicoderS, AlchemistCoder, and InverseCoder.
The training data size comparison across different
models is presented in Table 5.

To obtain SCoder, we first fine-tune DeepSeek-
Coder-6.7B-Base on the 110K evol-codealpaca-v1
data for 2 epochs with an initial learning rate of
5 x 107° and a global batch size of 512. We
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then further fine-tune it on the 60K small model-
generated data for 3 epochs with an initial learning
rate of 1 x 107 and a batch size of 64. Both phases
of training utilize a linear learning rate scheduler
with a 0.05 warmup ratio and the AdamW opti-
mizer. Training is conducted on 16 A100-80G
GPUs.

D Prompts

The data synthesis prompt is inspired by Wei et al.
(2024) and is shown in Figure 6. The multi-aspect
scoring prompt is inspired by Hui et al. (2024) and
is shown in Figure 7.



Data Synthesis Prompt

Please gain inspiration from the following random code snippet to create a high-quality programming problem. Present
your output in two distinct sections: [Problem Description] and [Solution].
Code snippet for inspiration:

<<code>>

Guidelines for each section:

1. [Problem Description]: This should be **completely self-contained**, providing all the contextual information one
needs to understand and solve the problem. Assume common programming knowledge, but ensure that any specific
context, variables, or code snippets pertinent to this problem are explicitly included.

2. [Solution]: Provide a comprehensive and correct solution that accurately addresses the [Problem Description] you
have provided. First, analyze the problem, then provide the specific code, and finally, explain the code.

Figure 6: Data Synthesis Prompt.
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Multi-Aspect Scoring Prompt

You are responsible for training a large language model with coding abilities. Given a code instruction and a
corresponding response, you need to evaluate the quality of this code data pair. Score the data based on its value for
training a large code language model, using a scale from 0 to 9, where 0 represents the worst and 9 represents the best.

Constraints:
1. The evaluation score must be judged among these ten scores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], and decimal scores cannot
appear.
2. The output should have [Reason] part. You need to Generate the evaluation reason first and then generate the score.
3. You should concentrate on the quality only. The following irrelevant matters **should not** influence the quality
evaluation.

3.1 whether the data is domain-specific or not should not be considered, given that the code language model need to
deal with inputs with diverse domains.

3.2 whether the data contains non-English content or not should not be considered, given the code language model
may need to deal with multilingual inputs.

3.3 whether the data has timeliness statements or not should not be considered, given the code language model may
need to deal with issues with timeliness.
4. For each data pair, evaluate the following scoring criteria individually and provide an overall composite score:

4.1 Consistency: Whether Q&A are consistent and correct for fine-tuning.

4.2 Relevance: Whether Q&A are related to the computer field.

4.3 Difficulty: Whether Q&A are sufficiently challenging.

4.4 Code Exist: Whether the code is provided in question or answer.

4.5 Code Correctness: Evaluate whether the provided code is free from syntax errors and logical flaws.

4.6 Code Standardization: Consider factors like proper variable naming, code indentation, and adherence to best
practices.

4.7 Code Clarity: Assess how clear and understandable the code is. Evaluate if it uses meaningful variable names,
proper comments, and follows a consistent coding style.

4.8 Code Comments: Evaluate the presence of comments and their usefulness in explaining the code’s functionality.

4.9 Easy to Learn: Determine its educational value for a student whose goal is to learn basic coding concepts.

4.10 Composite Score: Considering the above factors, an overall quality score is assigned to the data pair, weighted by
the importance of each criterion.

The instruction and response you need to evaluate is as following:
[Instruction]

<<instruction>>

[Instruction End]

[Response]

<<response>>

[Response End]

Your response should be in the following format:
[Reason]
{reason}
[Score]
{
"Consistency": {score},
"Relevance" : {score},
"Difficulty": {score},
"Code Exist" : {score},
"Code Correctness": {score},
"Code Standardization" : {score},
"Code Clarity": {score},
"Code Comments" : {score},
"Easy to Learn": {score},
"Composite Score” : {score}
¥
\ [End] )

Figure 7: Multi-Aspect Scoring Prompt.
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