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Abstract—This paper proposes a learning-from-demonstration
method using probability densities on the workspaces of robot
manipulators. The method, named “PRobabilistically-Informed
Motion Primitives (PRIMP)”, learns the probability distribution
of the end effector trajectories in the 6D workspace that includes
both positions and orientations. It is able to adapt to new
situations such as novel via-point poses with uncertainty and
a change of viewing frame. The method itself is robot-agnostic,
in which the learned distribution can be transferred to another
robot with the adaptation to its workspace density. The learned
trajectory distribution is then used to guide an optimization-
based motion planning algorithm to further help the robot
avoid novel obstacles that are unseen during the demonstration
process. The proposed methods are evaluated by several sets
of benchmark experiments. PRIMP runs more than 5 times
faster than the compared existing probabilistic methods while
generalizing trajectories more than twice as close to both the
demonstrations and novel desired poses. It is then combined with
our robot imagination method that learns object affordances,
illustrating the applicability of PRIMP to learn tool use through
physical experiments.

I. INTRODUCTION

For a robot to be truly intelligent, it needs the ability to
learn from prior knowledge while adapting to unseen scenar-
ios. The prior knowledge can be from human-demonstrated
motions, which are difficult to pre-program but are ubiquitous
in household environments, like scooping powder (as in Fig.
1). It is related to a popular field in robot learning, namely
Learning-from-Demonstration (LfD) [21] or Programming-by-
Demonstration (PbD) [4]. Many works on LfD encode demon-
strations as trajectories in Euclidean space [16, 30]. However,
the models in the full workspace (including both position and
orientation) of a robot manipulator have not been considered
until recently [29, 5, 14, 23, 2]. Our work focuses on the robot
workspace and proposes a novel method using probability
densities on Lie groups, denoted as PRobabilistically-Informed
Motion Primitives (PRIMP). The mathematical model is in-
spired by a concept initially introduced in our group more
than 25 years ago, the concept of loop entropy [8, 6] and
more recent work on inverse reachability mapping [24, 15]. It
is further extended here into LfD with via-point conditioning
as compared to only subjecting to end constraints. The learned
knowledge is robot-agnostic but can be transferred among
different robots. It is also able to deal with extrapolation cases

Fig. 1: The robot arm is asked to use a spoon to scoop from a
bowl in a household environment. With the help of human
demonstrations, imagination of object affordance, learning
skills from the demonstrations and motion planning, the robot
is able to fulfill the task in a novel scene with unseen obstacles.

and model with a few or even a single demonstration.
When there are some novel obstacles unseen during the

demonstrations, only using LfD methods is not enough to
generate feasible trajectories. Guided motion planning, which
combines LfD and motion planning, has become popular in
the recent decade [18, 28, 19, 11]. The goal is to make the
motion collision-free while keeping the critical features from
the learned trajectory as many as possible. In our work, an
optimization-based planner, Stochastic Trajectory Optimiza-
tion for Motion Planning (STOMP) [17], is applied as the base
framework. The learned trajectory distribution via PRIMP is
used as a reference. A novel cost function with respect to
this reference distribution is proposed to guide the planning
process. Instead of joint space, the cost function is based on
the workspace of the robot end effector. Therefore, the planner
is named as Workspace-STOMP.

Apart from novel obstacles, the object that the robot inter-
acts with might also be unseen. For example, the robot has
been demonstrated how to pour powders from a cup into a
bowl. In this case, the cup is treated as a tool for pouring



and the bowl has the affordance of containing. In a new
scenario, the tool might be changed into a spoon and the object
becomes a vase, which has the same affordance of containing.
The learned trajectory distribution should be able to adapt to
this new situation with the same set of demonstrations, even
when the appearances and categories of the tool and object are
totally different. In order to fulfill similar tasks intelligently,
the understanding of object functionality and affordance is a
key aspect [13, 27, 25]. Our work learns the key points of a
task via physics simulation, which is used as new goal or via-
point poses for re-production. The via-point pose is defined as
a pose at an intermediate time step that the robot is desired
to pass through. The affordance learning of an object is then
combined into a robotic system with PRIMP and Workspace-
STOMP through physical experiments.

II. PROBABILISTICALLY-INFORMED MOTION PRIMITIVES

The trajectory is represented discretely by a user-selected
number of time steps (i.e., Nstep). Each pose is modeled as an
element in Lie group G. Therefore, the full state is considered
in a product space G × ... × G. The set of demonstrated
trajectories is denoted as

{
g
(k)
i ∈ SE(3)

}
, where i is the step

number and k is the index of the demonstration. The process
is assumed as Markovian, where ith step is only affected by
its neighboring (i− 1)th and (i+ 1)th steps.

A. General framework of PRIMP

The probability distribution of the ith pose with respect
to the (i − 1)-th pose is approximated using a Lie-theoretic
method (Sec. II-B). The computed initial mean and covariance
is then encoded into the joint distribution of the whole trajec-
tory (Sec. II-C). Several types of adaptations to novel scenarios
are then introduced (Sec. II-D): (1) via-point conditioning
(Sec. II-D1); (2) equivariance to new viewing points (Sec.
II-D2); and (3) fusion with robot-specific workspace density
(Sec. II-D3).

B. Computation of relative pose distribution

For a set of poses in SE(3), the sample mean µi ∈
SE(3) satisfies

∑m
k=1 log(µ

−1
i g

(k)
i ) = O, which can be

iteratively solved [1]. The mean trajectory can be di-
rectly computed from the demonstrations. The initial co-
variance Σi,i+1 encodes the uncertainty of (i + 1)-th step
given the ith step. It is estimated by the set of rela-

tive poses, i.e.,
{
∆

(k)
i,i+1 =

(
g
(k)
i

)−1

g
(k)
i+1

}
. With this set,

the sample covariance can be computed as Σi,i+1 =
1
m

∑m
k=1 log

∨
(
µ−1
i,i+1∆

(k)
i,i+1

)
log∨T

(
µ−1
i,i+1∆

(k)
i,i+1

)
, where

the ∨ operator extracts the Lie algebra coefficients into a vector
(as defined in [7]).

C. Probabilistic encoding of joint distributions

After computing the trajectory distribution with mean {µi ∈
SE(3)} and covariance between adjacent steps {Σi,i+1 ∈
R6×6} from Sec. II-B, the joint distributions of the whole
trajectory can be computed. The key assumption is that the

(a) Original trajectory
mean and samples

(b) Condition on goal
pose

(c) Condition on goal
and a via-point pose

Fig. 2: Examples of the conditional probability on new via-
point poses with uncertainty. The solid blue and magenta
curves are the means of the encoded joint and conditioned
distribution, respectively. Dashed magenta curves are the ran-
dom trajectory samples from the probability distribution.

variation of ith pose only depends on its two neighboring poses
and g0 = µ0 is fixed. The probability density for Gaussian
distributions with small variations can be explicit expressed
with the joint variable x1,...,n

.
= [xT

1 , ...,x
T
i , ...,x

T
n ]

T , where
xi = log∨(µ−1

i gi) and joint covariance Σ′−1
1,...,n, where the

non-zero elements are

Σ′−1
1,...,n(i, i) =

{
Σ−1

i−1,i + Σ̃−1
i,i+1 (i = {1, ..., n− 1})

Σ−1
i−1,i (i = n)

Σ′−1
1,...,n(i, i+ 1) = −Ad−T

i,i+1Σ
−1
i,i+1 (i = {1, ..., n− 1})

Σ′−1
1,...,n(i+ 1, i) = −Σ−1

i,i+1Ad−1
i,i+1 (i = {1, ..., n− 1}) ,

(1)
where Σ′

1,...,n ∈ R6n×6n, Ad(g) is the adjoint operator for g in
a Lie group, which is defined as Ad(g)x̂

.
= gx̂g−1, ·̂ is the in-

verse operation of ∨ for elements in Lie algebra and Adi,i+1
.
=

Ad(µ−1
i µi+1) is the adjoint operator for the relative poses

between µi and µi+1 and Σ̃i,i+1 = Adi,i+1Σi,i+1Ad
T
i,i+1.

D. Adaptation to novel situations

One of the most essential abilities of an LfD method is its
adaptability to novel unseen situations.

1) Adaptation to via-point pose: Suppose that the robot is
asked to pass a via-point pose g∗i with uncertainty descibed
by a covariance matrix Σ∗

i . The posterior distribution of the
trajectory can be computed, which is shown in Fig. 2.

2) Equivariant adaptation to the change of view: To change
the viewing frame, a group action is applied. Suppose h ∈
SE(3) is the relative transformation from the current frame
(O) to a new frame (A), then the pose g viewed in frame O
can be switched to be viewed in frame A as go = h−1gh
[9]. The distribution of the whole trajectory as view in frame
A can be obtained, which satisfies the equivariance property
under the change of view.

3) Adaptation to robot-specific workspace density: An im-
portant issue for the skill transfer among different robots is the
adaptation to the workspace limit and reachability. Previous
work has extensively investigated the density of the robot
workspaces, in which the more reachable space of the end ef-
fector has higher probability [8]. The mathematical foundation



(a) Franka Emika Panda (b) Kinova Gen3

Fig. 3: Fusion with robot-specific workspace density. Thin
cyan curves are the demonstrated trajectories using Franka
robot; solid thick blue and magenta curves are the conditioned
mean trajectory without and with the fusion, respectively.

is based on the convolution of Gaussian distributions on SE(3)
[22, 26, 3]. Then, the distribution of each intermediate pose
along the trajectory is conditioned by this density function,
which can be viewed as a fully observable model. Figure 3
shows the fusion with robot-specific workspace density for
Franka Emika Panda and Kinova Gen3 robots.

III. A ROBOTIC SYSTEM COMBINING PRIMP,
WORKSPACE-STOMP AND ROBOT IMAGINATION

Common tasks in daily household environment are con-
sidered to showcase the proposed robotic system. For each
motion primitive, human operators firstly conduct several
demonstrations by dragging the robot end effector to fulfill
the specific task. The trajectory of the end effector poses for
each demonstration is recorded. For a new planning request,
key poses for the robot are generated from manual inputs,
ArUco tags [12] or robot imagination module (as in Sec.
III-B). A set of key pose candidates are then fed into PRIMP to
condition the trajectory probabilistic distribution. The posterior
trajectory distribution tries to reach the desired pose at a
certain time step while maintaining the key features of the
demonstrations. The learned distribution is then used to guide
the STOMP planner with new planning scene, which includes
some novel obstacles. Once a feasible trajectory is found by
Workspace-STOMP, the robot executes the planned motion the
fulfill the designated task. If there is no feasible trajectory,
more key pose candidates are generated for re-planning.

A. Motion planning guided by PRIMP

A novel cost function for the end effector trajectory is pro-
posed to guide the STOMP algorithm, resulting in Workspace-
STOMP. The cost is computed based on the distance metric
in SE(3) between each rollout trajectory q at each iteration
and the workspace trajectory distribution learned by PRIMP.

The trajectory of the end effector is computed via forward
kinematics, denoted as g(q, t) ∈ SE(3)×T . Then, a number of
mr random samples from the reference trajectory distribution
are generated, denoted as g

(k)
r =

(
R

(k)
r , t

(k)
r

)
. And the cost

Fig. 4: Robot imagination process for scooping. The container
is represented by the white meshed object. A spoon scoops
particles that are initially inside the container.

function c(qi, ti) for ith time step is computed as

c(qi, ti) =
1

mr

mr∑
k=1

(
wrot

∥∥∥log∨ (
RT (qi, ti)R

(k)
r (ti)

)∥∥∥
+wtran

∥∥∥t(qi, ti)− t(k)r (ti)
∥∥∥) ,

(2)
where wrot and wtran are the weights for rotation and trans-
lation parts. The planner is initialized by the mean trajectory
of the learned distribution. A plug-in package of the proposed
cost function is implemented in MoveIt! platform [10].

B. Robot imagination

The robot imagination provides functional poses for the
pouring and scooping tasks, which are performed using
Gazebo physics simulator. The pouring imagination applies
the same principle with [27], while the scooping imagination
is novel in this work (as shown in Fig. 4). The candidates
of the functional poses are sampled uniformly within a range
defined by the bounding box of the object of interest. The
obtained functional poses are transformed into key poses for
the robot and will be used in PRIMP.

IV. PHYSICAL EXPERIMENTS AND EVALUATIONS OF THE
PROPOSED METHODS

A. Physical experiments

Physical experiments using the Franka Emika Panda robot
are conducted. The results for different tasks are demonstrated
in Fig. 5.

B. Benchmarks among learning-from-demonstration methods

The proposed PRIMP method is compared with ProMP [20]
and Orientation-KMP [14], both of which are probabilistic LfD
methods. For Orientation-KMP, different levels of magnitude
for the parameter of kernel are varied. With manually defining
50 different pairs of goal and via-point poses, different LfD
algorithms are applied to re-produce the task. The results for
the pouring task (Task 1) are shown in Fig. 6.

PRIMP outperforms other probabilistic methods being com-
pared in most cases, in terms of similarity metric for the whole
trajectory as well as the distance to the desired via-point pose.
This illustrates that PRIMP is able to adapt to a desired via
point along the trajectory while maintaining the shape or key
features from the demonstration set. The computation is also



Fig. 5: Physical experiments for different tasks. Planning scenes and key poses are unseen during the demonstration processes.
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Fig. 6: Benchmarks for LfD methods in pouring (Task 1) task.
The labels in x-axis are the name of the methods, and the y-
axis denotes the comparison metric.

TABLE I: Success rate comparisons among different planners.

Scene Task Cartesian-STOMP Workspace-STOMP

Empty 2 40% 100%
Sparse 1 10% 10%

Cluttered 4 28% 30%
Narrow 2 12% 32%

efficient, with an averaged time of less than 50ms, which is
more than 5 times faster than the compared counterparts.

C. Benchmarks on guided motion planning

Different planning scenes are constructed using simple
geometric primitives in simulation. The proposed Workspace-
STOMP planner is compared with the vanilla STOMP [17]
and Cartesian-guided STOMP [11]. The initial trajectories for
all the planners are set to be the same, referred as a reference
trajectory. The benchmark results include planning time (Fig.
7), success rate (Tab. I) and distance between the planned and
reference trajectories (Fig. 8).

The proposed Workspace-STOMP algorithm runs as fast
as the vanilla one, but always has much smaller deviations
with the reference trajectory. In more complex and narrow
environment, the proposed planner is also competitive with
Cartesian-STOMP, which only uses the mean trajectory. The
covariance information provided by PRIMP gives more flex-
ibility in varying the samples and guide the optimization
through critical regions.
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Fig. 7: Planning time comparisons for different STOMP vari-
ants in pouring (Task 1) and drawer opening (Task 4) tasks.
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Fig. 8: Comparisons of distance between planned trajectory
and reference trajectory for different variants of STOMP in
pouring (Task 1) and drawer opening (Task 4) tasks.

V. CONCLUSION

This paper presents PRobabilistically-Informed Motion
Primitives (PRIMP), a learning-from-demonstration method
that computes the probability distribution in robot workspace.
It only requires a few number of or even a single demon-
stration, and is able to adapt to new via-point poses, a
change of viewing frame and robot-specific workspace density.
Workspace-STOMP planner is then proposed with the guidance
of the learned trajectory distribution to avoid novel obstacles.
The applicability is demonstrated experimentally in a novel
robotic system with the study of object affordance.
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