Group Fairness in Peer Review

Haris Aziz Evi Micha Nisarg Shah
UNSW Sydney University of Toronto University of Toronto
haris.aziz@unsw.edu.au emicha@cs.toronto.edu nisarg@cs.toronto.edu

Abstract

Large conferences such as NeurIPS and AAAI serve as crossroads of various
Al fields, since they attract submissions from a vast number of communities.
However, in some cases, this has resulted in a poor reviewing experience for
some communities, whose submissions get assigned to less qualified reviewers
outside of their communities. An often-advocated solution is to break up any
such large conference into smaller conferences, but this can lead to isolation of
communities and harm interdisciplinary research. We tackle this challenge by
introducing a notion of group fairness, called the core, which requires that every
possible community (subset of researchers) to be treated in a way that prevents
them from unilaterally benefiting by withdrawing from a large conference.

We study a simple peer review model, prove that it always admits a reviewing as-
signment in the core, and design an efficient algorithm to find one such assignment.
We use real data from CVPR and ICLR conferences to compare our algorithm to
existing reviewing assignment algorithms on a number of metrics.

1 Introduction

Due to their large scale, conferences like NeurIPS and AAAI use an automated procedure to assign
submitted papers to reviewers. Popular such systems include the Toronto Paper Matching System [1],
Microsoft CMT!, and OpenReview?. The authors submitting their works are often very interested
in receiving meaningful and helpful feedback from their peers [2—4]. Thus, their overall experience
with the conference heavily depends on the quality of reviews that their submissions receive.

The typical procedure of assigning papers to reviewers is as follows. First, for each paper-reviewer
pair, a similarity score is calculated based on various parameters such as the subject area of the
paper and the reviewer, the bids placed by the reviewer, etc. [1, 5-8]. Then, an assignment is
calculated through an optimization problem, where the usual objectives are to maximize either the
utilitarian social welfare, which is the total similarity score of all matched paper-reviewer pairs, or
the egalitarian social welfare, which is the least total score of reviewers assigned to any submission.
Relevant constraints are imposed to ensure that each submission receives an appropriate number of
reviews, reviewer workloads are respected, and any conflicts of interest are avoided.

Peng et al. [9] recently mentioned that a major problem with the prestigious mega conferences
is that they constitute the main venues for several communities, and as a result, in some cases,
people are asked to review submissions that are beyond their main areas of work. They claim that a
reasonable solution is to move to a de-centralized publication process by creating more specialized
conferences appropriate for different communities. While specialized conferences definitely have
their advantages, the maintenance of large conferences that attract multiple communities is also
crucial for the emergence of interdisciplinary ideas that can be reviewed by diverse subject experts.
Therefore, it is important to ensure that no group has an incentive to break off due to a feeling of
being mistreated by the reviewing procedure of a large conference. In this work, we ask whether it

"https://cmt3.research.microsoft.com/
*https://github.com/openreview/openreview-matcher

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://cmt3.research.microsoft.com/
https://github.com/openreview/openreview-matcher

is possible to modify the existing reviewing processes to resolve this issue by treating the various
communities satisfactorily. We clarify that the goal is not to build roadblocks to the creation of
specialized conferences, but rather to mitigate the harm imposed on communities in large conferences.

To answer this, we look toward the literature on algorithmic fairness. Specifically, we adapt the group
fairness notion known as the core [10]; to the best of our knowledge, we are the first to introduce
it to the peer review setting. For a reviewing assignment to be in the core, it must ensure that no
community (subset of researchers) can “deviate” by setting up its own conference in which (a) no
author reviews her own submission, (b) each submission from within the community is reviewed by
just as many reviewers as before, but now from within the community, (c) each reviewer reviews
no more papers than before, and (d) the submissions are assigned to better reviewers, making the
community happier. Intuitively, this is a notion of group fairness because it ensure that the treatment
provided to every group of participants meets their “entitlement” (which is defined by what the group
can achieve on its own). It is also a notion of stability (often also known as core stability) because
it provides no incentives for any community to break off and get isolated by setting up their own
conference instead. Note that this definition provides fairness to every possible community, and not
only to predefined groups, as is the case for fairness definitions such as demographic parity and
equalized odds that are popular in the machine learning literature [11]. In particular, it ensures fair
treatment to emerging interdisciplinary communities even before they become visible.

1.1 Our Contribution

We consider a simple peer review model in which each agent submits (as the sole author) a number
of papers to a conference and also serves as a potential reviewer. A reviewing assignment is valid if
each paper is reviewed by k,, reviewers, each reviewer reviews no more than k, papers, and no agent
reviews her own submissions. To ensure that a valid assignment always exists, we assume that the
maximum number of papers that each agent is allowed to submit is at most |k, /kp].

In Section 3, we present an efficient algorithm that always returns a valid assignment in the core under
minor conditions on the preferences of the authors. Specifically, our algorithm takes as input only the
preference ranking of each author over individual potential reviewers for each of her submissions.
Then, it produces an assignment that we prove to be in the core for any manner in which the agent’s
submission-specific preferences over individual reviewers may be extended to preferences over a
set of k, reviewers assigned to each submission, aggregated over submissions, subject to two mild
conditions being satisfied.

In Section 4, we conduct experiments with real data from CVPR and ICLR conferences, and evaluate
the price that our algorithm must pay — in lost utilitarian and egalitarian welfare — in order to satisfy
the core and prevent communities from having an incentive to deviate. We also observe that reviewer
assignment methods currently used in practice generate such adverse incentives quite often.

1.2 Related Work

As we mentioned above, usually the first step of a review assignment procedure is to calculate a
similarity score for each pair of submission and reviewer which aims to capture the expertise of the
reviewer for this submission. The problem of identifying the similarity scores has been extensively
studied in the literature [1, 5-8, 12]. In this work, we assume that the similarity scores are given as an
input to our algorithm after they have been calculated from a procedure that is considered as a black
box. Importantly, our algorithm does not need the exact values of the similarity scores, but it only
requires a ranking of the reviewers for each paper, indicating their relative expertise for this paper.

Given, the similarities scores various methods have been proposed for finding a reviewing assignment.
The most famous algorithm is the Toronto Paper Matching System [1] which is a very broadly applied
method and focuses on maximizing the utilitarian welfare, i.e. the sum of the similarities across
all assigned reviewers and all papers. This approach has been adopted by other popular conference
management systems such as EasyChair® and HotCRP # [13]. While this approach optimizes the total
welfare, it is possible to discriminate against some papers. Therefore, other methods have focused on
finding reviewing assignments that are (also) fair across all papers.

*https://easychair.org
*https://hotcrp.com

https://easychair.org
https://hotcrp.com

O’Dell et al. [14] suggest a method where the goal is to maximize the total score that a paper gets,
while Stelmakh et al. [13] generalized this method by maximizing the minimum paper score, then
maximizing the next smallest paper score, etc. Hartvigsen et al. [15] ensure fairness by requiring that
each paper is assigned at least one qualified reviewer. Kobren et al. [16] proposed two algorithms
that maximize that total utilitarian under the constraint that each paper should receive a score that
exceeds a particular threshold. Payan and Zick [17] used the idea of envy-freeness [18] from the fair
division literature to ensure fairness over the submissions. Moreover, some other works have focused
on being fair over the reviewers rather than the papers [19, 20]). The core property that we consider
in this work can be viewed as a fairness requirement over groups of authors. The reader can find
more details about the challenges of the peer review problem in the recent survey of Shah [21].

In our model, the review assignment problem is related to exchange problems with endowments [22],
since authors can be viewed as being endowed by their own papers which they wish to exchange with
other authors that also serve as reviewers. For the basic exchange problem of housing reallocation,
Shapley and Scarf [22] showed that an algorithm called Top-Trading-Cycle (TTC) finds an allocation
which is in the core. The first part of our algorithm uses a variation of TTC where the agents
(authors) are incorporated with multiple items (submissions), and constraints related to how many
items each agent can get and to how many agents one item should be assigned should be satisfied. In
contrast to classical exchange problem with endowments, our model has a distinctive requirement
that agents/authors need to give away all their items/papers as the papers need to be reviewed by the
agent who gets the paper. As we further explain in Section 3, this difference is crucial and requires
further action from our algorithm than simply executing this variation of TTC. Various variations of
TTC have been considered in the literature, tailored for different variations of the basic problem, but
to the best of our knowledge, none of them can be directly applied in our model. To give an example,
Suzuki et al. [23] consider the case that there are multiple copies of the same object and there are
some quotas that should be satisfied, but they assume that each agent gets just one object while here
each paper is assigned to multiple distinct reviewers.

2 Model

For ¢ € N, define [¢] £ {1,...,q}. There is a set of agents N = [n]. Each agent 4 submits a set
of papers P, = {p; 1,. .., pimu} for review by her peers, where m; € N, and is available to review
the submissions of her peers. We refer to p; ¢ as the ¢-th submission of agent 7; when considering
the special case of each agent ¢ having a single submission, we will drop ¢ and simply write p;. Let
P = Ujen P; be the set of all submissions and m =), <~ T be the total number of submissions.

Assignment. Our goal is to produce a (reviewing) assignment R : N x P — {0,1}, where
R(i,j) = lif agenti € N is assigned to review submission j € P. With slight abuse of notation,
let R} = {j € P: R(i,j) = 1} be the set of submissions assigned to agent i and R} = {i € N :
R(i,7) = 1} be the set of agents assigned to review submission j. We want the assignment to be
valid, i.e., satisfy the following constraints:

* Each agent must be assigned at most k, submissions for review, i.e., |R?| < k4, Vi € N.
* Each submission must be assigned to £, agents, i.e., |R§| =k,,VjeP.

* No agent should review one of her own submissions, i.e., R(i,p;¢) = 0,Vi € N, € [m;].

To ensure that a valid assignment always exists, we impose the constraint that m; - k, < k, for each
i € N, which implies that m - k, < n - k,. Intuitively, this demands that each agent submitting papers
be willing to provide as many reviews as the number of reviews assigned to the submissions of any
single agent. For further discussion on this condition, see Section 5.

Note that given N’ C N and P/ C P, for each i € N’ with P’ = U;c - P/, the validity requirements
above can also be extended to a restricted assignment R : N’ x P’ — {0, 1}. Hereinafter, we will
assume validity unless specified otherwise or during the process of building an assignment.

Preferences. Each agent i € N has a preference ranking, denoted o; ¢, over the agents in N \ {i}

for reviewing her ¢-th submission p;, ¢.> These preferences can be based on a mixture of many factors,
such as how qualified the other agents are to review submission p; ¢, how likely they are to provide

3Our algorithms continue to work with weak orders; one can arbitrarily break ties to convert them into strict
orders before feeding them to our algorithms.

a positive review for it, etc. Let 0i.0(1) be the position of agent i’ e N \ {i} in the ranklng We
say that agent ¢ prefers agent 7’ to agent i” as a reviewer for p; ¢ if 0, ¢(i') < 0;¢(i"). Again, in
the special case where the agents have a single submission each, we drop ¢ and just write o;. Let
o= (01,17 <oy 01lmyy ey Only .- 7U7L,mn)-

While our algorithm takes & as input, to reason about its guarantees, we need to define agent
preferences over assignments by extending . In particular, an agent is assigned a set of reviewers for
each of her submissions, so we need to define her preferences over sets of sets of reviewers. First, we
extend to preferences over sets of reviewers for a given submission, and then aggregate preferences
across different submissions. Instead of assuming a specific parametric extension (e.g., additive
preferences), we allow all possible extensions that satisfy two mild constraints; the group fairness
guarantee of our algorithm holds with respect to any such extension.

Extension to a set of reviewers for one submission: Let S >=; ; S (resp., S »=; ¢ S’) denote that agent
i strictly (resp., weakly) prefers the set of agents S to the set of agents S’ for her ¢-th submission p; ¢.
We require only that these preferences satisfy the following mild axiom.

Definition 1 (Order Separability) For every disjoint S1,52,53 C N with |S1] = [Se| > 0, if it
holds that o; ¢(i') < 0 ¢(¢"") for each i’ € Sy and i’ € Sy, then we must have S; U S3 ;¢ Sa U Ss.

An equivalent reformulation is
ignoring the common reviewers in S N T, if the agent strictly prefers every (even the worst) reviewer
in S\ T to every (even the best) reviewer in 7"\ S, then the agent must strictly prefer S to T'.
Example 1. Consider the common example of additive preferences, where each agent ¢ has a utility
function u; ¢ : N\ {i} — R over individual reviewers for her ¢-th submission, inducing her prefer-
ence ranking o; ¢. In practice, these utilities are sometimes called similarity scores. Her preferences
over sets of reviewers are defined via the additive utility function u; ¢(S) £ Y, g us ¢(i'). Itis casy
to check that for any disjoint S1, Sa, S3 with |S1| = [Sa| > 0, w; ¢(i') > w; (i) for all i’ € Sy
and 7" € Sy would indeed imply u; ¢(S1 U S3) > u; ¢(S2 U S3). Additive preferences are just one
example from a broad class of extensions satisfying order separability.

Extension to assignments. Let us now cons1der agent preferences over sets of sets of reviewers, or
equivalently, over assignments. Let R ~i R (resp., R >=; R) denote that agent ¢ strictly (resp., weakly)

prefers assignment R to assignment R. Note that these preferences collate the submission-wise
preferences ~; o across all submissions of the agent. We require only that the preference extension
satisfies the following natural property.

Definition 2 (Consistency). For any assignment R, restricted assignment R over any N’ C N and
P’ = U;en' P} (where P! C P, for each ¢ € N'), and agent i* € N’, if it holds that RD . L FirL

Rg ., foreach p;- ¢ € P/, then we must have R = i R.
In words, if an agent weakly prefers R to R for the set of reviewers assigned to each of her submissions
individually, then she must prefer R to R overall.

Example 2. Let us continue with the previous example of additive utility functions. The pref-
erences of agent ¢ can be extended additively to assignments using the utility function u;(R) =
Zpi,eeP ui,g(Rgu). It is again easy to check that if uM(RgM) > ui,g(Rgu) for each p; ¢, then
u;(R) > u;(R). Hence, additive preferences are again one example out of a broad class of preference
extensions that satisfy consistency.

Core. Our goal is to find a group-fair assignment which treats every possible group of agents at
least as well as they could be on their own, thus ensuring that no subset of agents has an incentive to
deviate and set up their own separate conference. Formally:

Definition 3 (Core). An assignment R is in the core if there isno N’ C N, P/ C P, foreachi € N’,
and restricted assignment R over N" and P’ = U;cn/ P/ such that R >; R for each i € N'.

In words, if any subset of agents deviate with any subset of their submissions and implement any
restricted reviewing assignment, at least one deviating agent would not be strictly better off, thus
eliminating the incentive for such a deviation. We also remark that our algorithm takes only the
preference rankings over individual reviewers & as input and produces an assignment R that is

ALGORITHM 1: CoBRA
Input: N, P,G,kq, kp
Output: R

1 R,L,U =PRA-TTC(N, P, , ko, k,);
2 if |[U| > 0 then

w

X X A AW N =

| R =Filling-Gaps(N, P, &, k. kp, R, L, U);

ALGORITHM 2: PRA-TTC

Input: N, P, G, kq, kp

Output: R, L, U

R(i,j) < 0,V¥i € N and Vj € P;

Construct the preference graph Gg;

while 3 cycle in G do
Eliminate the cycle;
Update P;-s by removing any completely assigned paper;
Update Gg;

U<+ {ie N:P;#0};

L < the last k, — |U| + 1 agents in N \ U to have all their submissions completely assigned ;

guaranteed to be in the core according to every preference extension of & satisfying order separability
and consistency.

3 CoBRA: An Algorithm for Computing Core-Based Reviewer Assignment

In this section, we prove our main result: when agent preferences are order separable and consistent,
an assignment in the core always exists and can be found in polynomial time.

Techniques and key challenges: The main algorithm CoBRA (Core-Based Reviewer Assignment),
presented as Algorithm 1, uses two other algorithms, PRA-TTC and Filling-Gaps, presented as
Algorithm 2 and Algorithm 3, respectively. We remark that PRA-TTC is an adaptation of the popular
Top-Trading-Cycles (TTC) mechanism, which is known to produce an assignment in the core for the
house reallocation problem (and its variants) [22]. The adaptation mainly incorporates the constraints
related to how many papers each reviewer can review and how many reviewers should review each
paper. While for k, = k, = 1, PRA-TTC is identical with the classic TTC that is used for the house
reallocation problem, the main difference of this problem with the review assignment problem is that
in the latter each agent should give away her item (i.e. her submission) and obtain the item of another
agent. Therefore, by simply executing TTC in the review assignment problem, one can get into a
deadlock before producing a valid assignment. For example, consider the case of three agents, each
with one submission. Each submission must receive one review (k, = 1) and each agent provides
one review (k, = 1). The TTC mechanism may start by assigning agents 1 and 2 to review each
other’s submission, but this cannot be extended into a valid assignment because there is no one left to
review the submission of agent 3. This is where Filling-Gaps comes in; it makes careful edits to the
partial assignment produced by the PRA-TTC, and the key difficulty is to prove that this produces a
valid assignment while still satisfying the core.

3.1 Description of COBRA

Before we describe CoBRA in detail, let us introduce some more notation. Let m* = max;c y m;.
For reasons that will become clear later, we want to ensure that m; = m™*, foreach ¢ € IN. To achieve
that, we add m* — m,; dummy submissions to agent ¢, and the rankings over reviewers with respect
to these submissions are arbitrarily. An assignment is called partial if there are submissions that
are reviewed by less than k,, agents. A submission that is reviewed by k, agents under a partial
assignmeEt is called completely assigned. Otherwise, it is called incompletely assigned. We denotAe
with P;(R) the set of submissions of i that are incompletely assigned under a partial assignment R.

We omit R from the notation when it is clear from context.

CoBRA calls PRA-TTC, and then if needed, it calls Filling-Gaps. Below, we describe the algorithms.

A U R W N =

=

10
11
12

13
14

ALGORITHM 3: Filling-Gaps

Input: N,P,d,k,,k,, R, L,U

Output: R

Phase 1,

Construct the greedy graph Gr;

while 3 cycle do

Eliminate the cycle ;

Update P;-s by removing any completely assigned paper;

Update U and L by moving any agent i from U to L if P; = (J;

Update Gg;

Phase 2;

Construct the topological order g’ of Gg;

for ¢t € [|U]] do

while P, # 0 do B
Pick arbitrary p,4),¢ € Pp) s
Find completely assigned p;s ¢/, with R(p(t), pir o) = 0, for some i/ € U UL\ {p(t)};
Find i # p(t) such that R(i",p,1),¢) = 0 and R(i",pyr o) = 1;
R(i", ppy,e) < 1 R((",pir o) = 0; R(p(t), pirer) < 1
Remove p, () ¢ from ?p(t) if it is completely assigned;

PRA-TTC. In order to define PRA-TTC, we first need to introduce the notion of a preference graph.
Suppose we have a partial assignment R. Each agent i with P; # () picks one of her incompletely
assigned submissions arbitrarily. Without loss of generality, we assume that she picks her £*-th
submission. We define the directed preference graph G = (N, E;) where each agent is a node
and for each i with P; # (), (i,i') € Ep if and only if ¢’ is ranked highest in o; ¢» among the
agents that don’t review p; ;- and review less than k, submissions. Moreover, for each ¢ € N with
P; = (), we add an edge from i to i/, where i’ is an arbitrary agent with P; # (). PRA-TTC starts
with an empty assignment, constructs the preference graph and searches for a directed cycle. If
such a cycle exists, the algorithm eliminates it as following: For each (4,4’) that is included in the
cycle, it assigns submission p; ¢« to ¢’ (if i’s submissions are already completely assigned, it does
nothing) and removes p; ¢« from P, if it is now completely assigned. Then, the algorithm updates
the preference graph and continues to eliminate cycles in the same way. When there are no left cycles
in the preference graph, the algorithm terminates and returns two sets, U and L. The first set contains
all the agents that some of their submissions are incompletely assigned and the set L contains the last
k, — |U| + 1 agents whose all submissions became completely assigned.

Filling-Gaps. CoBRA calls Filling-Gaps, if the U that returned from PRA-TTC is non empty. Before
we describe the Filling-Gaps, we also need to introduce the notion of a greedy graph. Suppose
that we have a partial assignment R which indicates a set U that contains all the agents whose at
least one submission is incompletely assigned. We define the directed greedy graph G = (U, E)

where (i,1') € Eg if R(i',p;¢) = 0 for some p; o € P;. In other words, while in the preference
graph, agent ¢ points only to her favourite potential reviewer with respect to one of her incomplete
submissions, in the greedy graph agent ¢ points to any agent in U \ {i} that could review at least
one of her submissions that is incompletely assigned. Filling-Gaps consists of two phases. In the
first phase, starting from the partial assignment R that was created from PRA-TTC, it constructs the
greedy graph, searches for cycles and eliminates a cycle by assigning p; ¢ to agent ¢’ for each (4, 4")
in the cycle that exists due to p; , (when an edge exists due to multiple submissions, the algorithm
chooses one of them arbitrary). Then, it updates P; by removing any p; , that became completely
assigned and also updates U by moving any i to L if P; became empty. It continues by updating
the greedy graph and eliminating cycles in the same way. When no more cycles exist in the greedy
graph, the algorithm proceeds to the second phase, where in |U| rounds ensures that the incomplete
submissions of each agent become completely assigned.

In the appendix, there is an execution of CoBRA in a small instance.

3.2 Main Result

We are now ready to present our main result.

Theorem 1. When agent preferences are order separable and consistent, CoBRA returns an assign-
ment in the core in O(n®) time complexity.

Proof. First, in the next lemma, we show that CoBRA returns a valid assignment. The proof is quite
non trivial and several pages long, so we defer it to the supplementary material.

Lemma 1. CoBRA returns a valid assignment.

Now, we show that the final assignment R that CoOBRA returns is in the core. Note that while it
is possible that an assignment of a submission of an agent in U U L, that was established during
the execution of PRA-TTC, to be removed in the execution of Filling-Gaps, this never happens for
submissions that belong to some agent in N \ (U U L). For the sake of contradiction, assume that

N’ C N, with P/ C P, foreach i € N’, deviate to a restricted assignment R over N’ and Uien' P} .

Note that R is valid only if |N'| > k,, as otherwise there is no way each submission in U;ec v/ P/ to
be completely assigned, since no agent can review her own submissions.

We distinguish into two cases and we show that in both cases the assignment is in the core.

Casel: 3i € N' : 1 ¢ LUU. Leti* € N’ be the first agent in N’ whose all submissions became
completely assigned in the execution of PRA-TTC. Note that since there exists ¢ ¢ U U L, we get that
i* ¢ U U L from the definitions of U and L. Now, consider any p;« o. Let Q; = Rb |\ (Rb N

Pi* ¢

RP .)and Qy = Egi* L\ (RE N RP). If Q1 = 0, then we have that R? . = RP which

Pi* ¢ N Pi* ¢ Pi* ¢ Pi* ¢ Pi* ¢
. . N,
means that Rgiw i e Rgiw. Otherwise, let 7' = argmax;cg, 0+ ¢(i), i.e. 7’ is ranked at the

lowest position in o+ ¢, among the agents that review p;- , under I but not under R. Moreover, let

i" = argmin,), 0 (i), i.e. 3" is ranked at the highest position in ;- , among the agents that

review p;» ¢ under R but not under R. We have R(¢’, p;+ ¢) = 1, if and only if ¢* has an outgoing edge
to 7’ at some round of PRA-TTC. At the same round, we get that i’ can review more submissions,
since 7 € N’ and if 7* has incompletely assigned submissions, then any : € N’ has incompletely
assigned submissions, and hence |R%,/| < kj, - m* < kq. This means that if o;+ ¢(i') > oy« ¢(i"),
then ¢* would point "’ instead of i’. We conclude that ;- ¢(i') < 0« ¢(i"). Then, from the definition

of i and 7" and from the order separability property we have that R -, b . Thus, either

Pix

if @1 is empty or not, we have that for any p;» , € P!, it holds that Rg,;* , Tt RP

P and from
Pi*x ¢

consistency, we get that R =« R which is a contradiction.

Case II: #i € N’ : i ¢ L UU. In this case we have that N = UU L, as |[UU L| = k, + 1.
This means that for eachi € U U L and ¢ € [m*], Rb., = (UU L)\ {i}. Leti* € L be the
first agent in L whose all submissions became completely assigned in the execution of PRA-TTC.
Consider any p;- ,. Note that it is probable that while p;- , was assigned to some agent ¢ in PRA-
TTC, it was moved to another agent i’ during the execution of Filling-Gaps. But, ¢’ belongs to
U and we can conclude that if p;» ; is assigned to some ¢ € N \ U at the output of CoBRA, this

assignment took place during the execution of PRA-TTC. Now, let Q1 = Rp .\ (Rb N RP)

Pi* ¢ Pix e

and Q2 = }nglw \(RE. N Egle) If Q; = 0, then we have that Ry, = égiw which means that

Dix* e
Rb., =ie RY . 1EQ1 # f,then @ € N\ (UUL)and Qy C U U L since Rb.,=UUL.
Leti = argmax; e, O (1), i.e. 7' is ranked at the lowest position in o;~ , among the agents that
review p;« ¢ under R but not under R. Moreover, let i = argmin, (), o ¢(1), 1.e. 7" is ranked at

the highest position in o;« , among the agents that review p;« , under R but not under . From above,
we know that the assignment of p;« , to ¢’ was implemented during the execution of PRA-TTC, since
i’ € N\ (U U L). Hence, with very similar arguments as in the previous case, we will conclude that
o 0(1") < o+ ¢(i"). We have R(#', p;+ ¢) = 1 if and only if ¢* has an outgoing edge to ¢’ at some
round of PRA-TTC. At this round, we know that 7"/ can review more submissions, since ¢ € N’ and
if #* has incompletely assigned submissions, then any ¢ € N’ has incompletely assigned submissions.
This means that if o;- ¢(i") > 04+ ¢(i"), then ¢* would point ¢" instead of ¢’. Hence, we conclude that

o 0(1") < 04« ¢(7"). Then, from the definition of i’ and ¢" and from the order separability property
we have that R ;- o Rb . Thus, either if (1 is empty or not, we have that for any p;- € P/,

it holds that Rgﬁ § i Rgi*‘e and from consistency we get that R =« R which is a contradiction.

Lastly, we analyze the time complexity of CoOBRA. First, we consider the time complexity of PRA-
TTC. In each iteration, the algorithm assigns at least one extra reviewer to at least one incompletely-
assigned submission. This can continue for at most m - k, < n - k, iterations, since each submission
should be reviewed by k,, reviewers. In each iteration, it takes O(n) time to find and eliminate a cycle
in the preference graph. Then, it takes O(n?) time to update the preference graph, since for each
arbitrarily-picked incompletely-assigned submission of each agent, we need to find the most qualified
reviewer who can be additionally assigned to it. By all the above, we conclude that the runtime of
PRA-TTC is O(n?), by ignoring k, which is a small constant in practice. After PRA-TTC terminates,
CoBRA calls the Filling-Gaps algorithm. However, Lemma 3 ensures that at the end of PRA-TTC,
|LUU| < kp + 1, which is also a small constant. And Filling-Gaps only makes local changes that
affect these constantly many agents. As such, the running time of Filling-Gaps is constant as well.
Therefore, the time complexity of CoBRA is O(n?)

O

4 Experiments

In this section, we empirically compare CoBRA to TPMS [1], which is widely used (for example,
it was used by NeurIPS for many years), and PR4A [13], which was used in ICML 2020 [24]. As
mentioned in the introduction, these algorithms assume the existence of a similarity or affinity score
for each pair of reviewer ¢ and paper j, denoted by S(4, j). The score (or utility) of a paper under an

assignment R, denoted by u? , is computed as u? = > icrre S(i, 7). TMPS finds an assignment R
J

that maximizes the utilitarian social welfare (USW), i.e., the total paper score jep u? , Whereas
PR4A finds an assignment that maximizes the egalitarian social welfare (ESW), i.e., the minimum
paper score min;e p uf b We use k, = k, = 3 in these experiments.’

Datasets. We use three conference datasets: from the Conference on Computer Vision and Pattern
Recognition (CVPR) in 2017 and 2018, which were both used by Kobren et al. [16], and from the
International Conference on Learning Representations (ICLR) in 2018, which was used by Xu et al.
[25]. In the ICLR 2018 dataset, similarity scores and conflicts of interest are also available. While
a conflict between a reviewer and a paper does not necessarily indicate authorship, it is the best
indication we have available, so, following Xu et al. [25], we use the conflict information to deduce
authorship. Since in our model each submission has one author, and no author can submit more
than |k, /k,| = 1 papers, we compute a maximum cardinality matching on the conflict matrix to
find author-paper pairs, similarly to what Dhull et al. [26] did. In this way, we were able to match
883 out of the 911 papers. We disregard any reviewer who does not author any submissions, but
note that the addition of more reviewers can only improve the results of our algorithm since these
additional reviewers have no incentive to deviate. For the CVPR 2017 and CVPR 2018 datasets,
similarity scores was available, but not the conflict information. In both these datasets, there are fewer
reviewers than papers. Thus, we constructed artificial authorship relations by sequentially processing
papers and matching each paper to the reviewer with the highest score for it, if this reviewer is still
unmatched. In this way, we were able to match 1373 out of 2623 papers from CVPR 2017 and 2840
out of 5062 papers from CVPR 2018. In the ICLR 2018 and CVPR 2017 datasets, the similarity
scores take values in [0, 1], so we accordingly normalized the CVPR 2018 scores as well.

Measures. We are most interested in measuring the extent to which the existing algorithms provide
incentives for communities of researchers to deviate. To quantify this, we need to specify the utilities
of the authors. We assume that they are additive, i.e., the utility of each author in an assignment is the
total similarity score of the &k, = 3 reviewers assigned to their submission.

8Technically, subject to this, it maximizes the second minimum paper score, and then the third minimum
paper score, etc. This refinement is also known as leximin in the literature.

"Note that k, = 3 reviews per submission is quite common, although the reviewer load k, is typically higher
in many conferences, often closer to 6. However, the differences between different algorithms diminish with
higher values of k.

«a-Core

Dataset Alg USW ESW CV-Pr
#unb-o o

CoBRA 1.22540.021 0.000 £ 0.000 0% 1.000 £0.000 0%
CVPR’17 TPMS 1.497+£0.019 0.000+0.000 89% 3.134+0.306 100%
PR4A 1.416+0.019 0.120+£0.032 51% 1.700 £0.078 100%

CoBRA 0.224 £0.004 0.004 £ 0.001 0% 1.000 £ 0.000 0%
CVPR’18 TPMS 0.286 £0.005 0.043 + 0.004 0% 1.271+£0.038 100%
PR4A 0.282 £ 0.005 0.099 + 0.001 0% 1.139 £0.011 100%

CoBRA 0.166 +£0.001 0.028 +0.001 0% 1.000 £0.000 0%

ICLR’18 TPMS 0.1844+0.001 0.048 £0.002 0% 1.048 £0.008 90%
PR4A 0.179£0.001 0.082+0.001 0% 1.087 +£0.009 100%

Table 1: Results on CVPR 2017 and 2018, and ICLR 2018.

Core violation factor: Following the literature [27], we measure the multiplicative violation of the
core (if any) that is incurred by TPMS and PR4A (CoBRA provably does not incur any). This is
done by computing the maximum value of o > 1 for which there exists a subset of authors such that
by deviating and implementing some valid reviewing assignment of their papers among themselves,
they can each improve their utility by a factor of at least «. This can easily be formulated as a binary
integer linear program (BILP). Because this optimization is computationally expensive (the most
time-consuming component of our experiments), we subsample 100 papers® from each dataset in
each run, and report results averaged over 100 runs. Note that whenever there exists a subset of
authors with zero utility each in the current assignment who can deviate and receive a positive utility
each, the core deviation o becomes infinite. We separately measure the percentage of runs in which
this happens (in the column #unb-«), and report the average ov among the remaining runs in the a*
column.

Core violation probability: We also report the percentage of runs in which a core violation exists (i.e.,
there exists at least one subset of authors who can all strictly improve by deviating from the current
assignment). We refer to this as the core violation probability (CV-Pr).

Social welfare: Finally, we also measure the utilitarian and egalitarian social welfare (USW and
ESW) defined above, which are the objectives maximized by TPMS and PR4A, respectively.

Results. The results are presented in Table 1. As expected, TPMS and PR4A achieve the highest
USW and ESW, respectively, on all datasets because they are designed to optimize these objectives.
In CVPR 2017, CoBRA and TPMS always end up with zero ESW because this dataset includes many
zero similarity scores, but PR4A is able to achieve positive ESW. In all datasets, COBRA achieves
a relatively good approximation with respect to USW, but this is not always the case with respect
to ESW. For example, in CVPR 2018, CoBRA achieves 0.004 ESW on average whereas PR4A
achieves 0.099 ESW on average. This may be due to the fact that this dataset also contains many
zero similarity scores, and the myopic process of CoBRA locks itself into a bad assignment, which
the global optimization performed by PR4A avoids.

While CoBRA suffers some loss in welfare, TPMS and PR4A also generate significant adverse
incentives. They incentivize at least one community to deviate in almost every run of each dataset
(CV-Pr). While the magnitude of this violation is relatively small when it is finite (except for TPMS
in CVPR 2017), TPMS and PR4A also suffer from unbounded core violations in more than half
of the runs for CVPR 2017; this may again be due to the fact that many zero similarity scores lead
to deviations by groups where each agent has zero utility under the assignments produced by these
algorithms.

Of all these results, the high probability of core violation under TPMS and PR4A is perhaps the most
shocking result; when communities regularly face adverse incentives, occasional deviations may
happen, which can endanger the stability of the conference. That said, CoOBRA resolves this issue at a
significant loss in fairness (measured by ESW). This points to the need for finding a middle ground
where adverse incentives can be minimized without significant loss in fairness or welfare.

8In Table 2 in the appendix, we report USW and ESW without any subsampling and we note that the
qualitative relationships between the different algorithms according to each metric remain the same.

5 Discussion

In this work, we propose a way for tackling the poor reviewing problem in large conferences by
introducing the concept of “core” as a notion of group fairness in the peer review process. This
fairness principle ensures that each subcommunity is treated at least as well as it would be if it was
not part of the larger conference community.

We show that under certain —albeit sometimes unrealistic—assumptions , a peer review assignment
in the core always exists and can be efficiently found. In the experimental part, we provide evidence
that peer review assignment procedures that are currently used in practice, quite often motivate
subcommunities to deviate and build their own conferences.

Our theoretical results serve merely as the first step toward using it to find reviewer assignments that
treat communities fairly and prevent them from deviating. As such, our algorithm has significant
limitations that must be countered before it is ready for deployment in practice. A key limitation is
that it only works for single-author submissions, which may be somewhat more realistic for peer
review of grant proposals, but unrealistic for computer science conferences. We also assume that
each author serves as a potential reviewer; while many conferences require this nowadays, exceptions
must be allowed in special circumstances. We also limit the number of submissions by any author to
be at most |k, /k, |, which is a rather small value in practice, and some authors ought to submit more
papers than this. We need to make this assumption to theoretically guarantee that a valid assignment
exists. An interesting direction is to design an algorithm that can produce a valid assignment in the
(approximate) core whenever it exists. Finally, deploying group fairness in real-world peer review
processes may require designing algorithms that satisfy it approximately at minimal loss in welfare,
as indicated by our experimental results.

References

[1] Laurent Charlin and Richard Zemel. The toronto paper matching system: an automated paper-
reviewer assignment system. In Proceedings of the ICML Workshop on Peer Reviewing and
Publishing Models, 2013.

[2] G. David L. Travis and Harry M. Collins. New light on old boys: Cognitive and institutional
particularism in the peer review system. Science, Technology, & Human Values, 16(3):322-341,
1991.

[3] Raymond S. Nickerson. What authors want from journal reviewers and editors. American
Psychological, pages 661—-662, 2005.

[4] Nihar B. Shah. Challenges, experiments, and computational solutions in peer review. Commun.
ACM, 65(6):76-87, 2022.

[5] David Mimno and Andrew McCallum. Expertise modeling for matching papers with reviewers.
In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 500-509, 2007.

[6] Xiang Liu, Torsten Suel, and Nasir Memon. A robust model for paper reviewer assignment. In
Proceedings of the 8th ACM Conference on Recommender systems, pages 25-32, 2014.

[7] Marko A. Rodriguez and Johan Bollen. An algorithm to determine peer-reviewers. In Proceed-
ings of the 17th ACM conference on Information and knowledge management, pages 319-328,
2008.

[8] Hong Diep Tran, Guillaume Cabanac, and Gilles Hubert. Expert suggestion for conference
program committees. In 2017 11th International Conference on Research Challenges in
Information Science (RCIS), pages 221-232. IEEE, 2017.

[9] Andi Peng, Jessica Zosa Forde, Yonadav Shavit, and Jonathan Frankle. Strengthening sub-
communities: Towards sustainable growth in ai research. arXiv preprint arXiv:2204.08377,
2022.

[10] Donald Bruce Gillies. Some theorems on n-person games. Princeton University, 1953.

10

[11] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning.
Advances in neural information processing systems, 29, 2016.

[12] Ivan Stelmakh, John Wieting, Graham Neubig, and Nihar B Shah. A gold standard dataset for
the reviewer assignment problem. arXiv preprint arXiv:2303.16750, 2023.

[13] Ivan Stelmakh, Nihar B. Shah, and Aarti Singh. Peerreview4all: Fair and accurate reviewer
assignment in peer review. In Algorithmic Learning Theory, pages 828—856. PMLR, 2019.

[14] Regina O’Dell, Mirjam Wattenhofer, and Roger Wattenhofer. The paper assignment problem.
Technical Report/ETH Zurich, Department of Computer Science, 491, 2005.

[15] David Hartvigsen, Jerry C Wei, and Richard Czuchlewski. The conference paper-reviewer
assignment problem. Decision Sciences, 30(3):865-876, 1999.

[16] Ari Kobren, Barna Saha, and Andrew McCallum. Paper matching with local fairness constraints.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 1247-1257, 2019.

[17] Justin Payan and Yair Zick. I will have order! optimizing orders for fair reviewer assignment.
In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence,
1JCAI-22, pages 440446, 2022.

[18] Duncan Karl Foley. Resource allocation and the public sector. Yale University, 1966.

[19] Naveen Garg, Telikepalli Kavitha, Amit Kumar, Kurt Mehlhorn, and Julidn . Mestre. Assigning
papers to referees. Algorithmica, 58(1):119-136, 2010.

[20] Jing Wu Lian, Nicholas Mattei, Renee Noble, and Toby Walsh. The conference paper assignment
problem: Using order weighted averages to assign indivisible goods. In Sheila A. Mcllraith and
Kilian Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), pages 1138—1145. AAAI Press, 2018.

[21] Nihar B. Shah. Challenges, experiments, and computational solutions in peer review. Communi-
cations of the ACM, 65(6):76-87, 2022.

[22] Lloyd Shapley and Herbert Scarf. On cores and indivisibility. Journal of Mathematical
Economics, 1(1):23-37, 1974.

[23] Takamasa Suzuki, Akihisa Tamura, and Makoto Yokoo. Efficient allocation mechanism with
endowments and distributional constraints. In Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems (AAMAS), pages 50-58, 2018.

[24] Ivan Stelmakh. Towards fair, equitable, and efficient peer review. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 15736-15737, 2021.

[25] Yichong Xu, Xiaofei Zhao, Han Shi, and Nihar B. Shah. On strategyproof conference peer
review. In Proceedings of the 28th International Joint Conference on Artificial Intelligence
(IJCAI), pages 616-622, 2019.

[26] Komal Dhull, Steven Jecmen, Pravesh Kothari, and Nihar B. Shah. Strategyproofing peer
assessment via partitioning: The price in terms of evaluators’ expertise. In Proceedings of the
AAAI Conference on Human Computation and Crowdsourcing, pages 53—-63, 2022.

[27] Brandon Fain, Kamesh Munagala, and Nisarg Shah. Fair allocation of indivisible public goods.
In Proceedings of the 2018 ACM Conference on Economics and Computation, pages 575-592,
2018.

11

	Introduction
	Our Contribution
	Related Work

	Model
	CoBRA: An Algorithm for Computing Core-Based Reviewer Assignment
	Description of CoBRA
	Main Result

	Experiments
	Discussion

