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ABSTRACT

Open-source Large Language Models (LLMs) have recently demonstrated re-
markable capabilities in natural language understanding and generation, leading
to widespread adoption across various domains. However, their increasing model
sizes render local deployment impractical for individual users, pushing many to
rely on decentralized computing service providers for inference through a black-
box API. This reliance introduces a new risk: a computing provider may stealthily
substitute the requested LLM with a smaller, less capable model without consent
from users, thereby delivering inferior outputs while benefiting from cost savings.
In this paper, we formalize the problem of verifiable inference for LLMs. Ex-
isting verifiable computing solutions based on cryptographic or game-theoretic
techniques are either computationally uneconomical or rest on strong assump-
tions. We introduce SVIP, a secret-based verifiable LLM inference protocol that
leverages intermediate outputs from LLMs as unique model identifiers. By train-
ing a proxy task on these outputs and requiring the computing provider to return
both the generated text and the processed intermediate outputs, users can reliably
verify whether the computing provider is acting honestly. In addition, the inte-
gration of a secret mechanism further enhances the security of our protocol. We
thoroughly analyze our protocol under multiple strong and adaptive adversarial
scenarios. Our extensive experiments demonstrate that SVIP is accurate, general-
izable, computationally efficient, and resistant to various attacks. Notably, SVIP
achieves false negative rates below 5% and false positive rates below 3%, while
requiring less than 0.01 seconds per prompt query for verification.

1 INTRODUCTION

In recent years, open-source Large Language Models (LLMs) have achieved unprecedented success
across a broad array of tasks and domains (Touvron et al., 2023b; Black et al., 2022; Le Scao et al.,
2023; Jiang et al., 2023; Zhang et al., 2023), often rivaling or even surpassing their closed-source
counterparts in performance (Chiang et al., 2023; Almazrouei et al., 2023; Dubey et al., 2024), while
remaining freely accessible. However, as model sizes increase, so do their computational demands
(Kukreja et al., 2024). As a result, decentralized computing (Uriarte & DeNicola, 2018) has gained
significant attention as a cost-effective solution for users with limited local computational resources.
In this setting, a user lacking computational power relies on a decentralized computing provider to
perform LLM inference tasks. These providers, often individuals or small companies with surplus
resources, offer computational power at competitive prices. Platforms facilitate these interactions by
connecting users and computing providers, making decentralized computing an appealing paradigm
in the era of computationally intensive open-source LLMs1.

However, unlike reputable companies with well-established credibility, computation outputs from
decentralized computing providers may not always be trustworthy. Specifically, to ease the de-
ployment of LLM inference, computing providers often provide API-only access to users, hiding
implementation details. A new risk arises in this setting: how to ensure that the outputs from a com-
puting provider are indeed generated by the requested LLM? For instance, a user might request the
Llama-3.1-70B model for complex tasks, but a dishonest computing provider could substitute the
smaller Llama-2-7B model for cost savings, while still charging for the larger model. The smaller

1Specific examples include Golem Network, Akash Network, Render Network, and Spheron Network.
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Figure 1: The problem setting of verifiable inference for LLMs. (a) Our protocol involves three
parties. (b) A user requests the computing provider (referred to as provider in the figure) to run
inference on their prompt using the Llama-3.1-70B model. Without verification, they have no way
to confirm if the specified model is used. (c) Our proposed protocol solves this by requiring the
provider to return processed intermediate outputs from the LLM, enabling the user to verify through
a verification function whether the correct model was used for inference. Specifically, the interme-
diate outputs are compressed to reduce the computational overhead.
model demands significantly less memory and processing power, giving the computing provider a
strong incentive to cheat. Restricted by the black-box API access, it is difficult for the user to detect
such substitutions. Without assurance that they are receiving the service they specified and paid for,
users are likely to lose trust and abandon the platform.

To prevent this outcome and maintain profitability, the platform—acting as a trusted third
party2—must ensure that user specifications are upheld. This highlights the need for verifiable
inference, a mechanism designed to ensure that the model specified by the user is the one actu-
ally used during inference. Implementing verifiable inference for LLMs is essential not only for
safeguarding users’ interests but also for fostering trust in the open-source LLM ecosystem, driving
low-cost and wider adoption and continued development of more advanced LLMs.

An effective verifiable inference solution for LLMs must accurately confirm that the specified model
is being used during inference, while maintaining computational efficiency. Simple solutions, such
as probing the model with established benchmark datasets, may be easily detected and bypassed.
On the other hand, cryptographic verifiable computing methods, which rely on generating mathe-
matical proofs (Yu et al., 2017; Setty et al., 2012) or secure computation techniques (Gennaro et al.,
2010; Laud & Pankova, 2014), are often too computationally expensive for real-time LLM infer-
ence. For instance, zkLLM, a recent Zero Knowledge Proof-based technique, requires over 803
seconds for a single prompt query (Sun et al., 2024). Game-theoretic protocols such as Zhang et al.
(2024) involve the interaction of multiple computing providers with carefully designed penalties and
rewards, assuming all providers are rational, flawless, and non-cooperative, which might be unreal-
istic in practice. Meanwhile, watermarking and fingerprinting techniques (Kirchenbauer et al., 2023;
Xu et al., 2024) are mostly implemented by model publishers, making them unsuitable for verifiable
inference, where the verification primarily occurs between the user and the computing provider.

In this paper, we propose SVIP, a Secret-based Verifiable LLM Inference Protocol using interme-
diate outputs. The core idea of our method is to require the computing provider to return not only
the generated text but also the processed intermediate outputs (hidden state representations) from
the LLM. We carefully design and train a proxy task exclusively on the hidden representations pro-
duced by the specified model, effectively transforming these representations into a distinct identifier
for that model. During deployment, users can verify whether the processed hidden states returned by
the computing provider come from the specified model by assessing their performance on the proxy
task. If the returned outputs perform well on this task, it provides strong evidence that the correct
model was used for inference. We further strengthen the security of our protocol with a secret-based
mechanism, making it difficult for a malicious computing provider to fake or bypass the verification

2The third party does not need significant computational power itself - it aims to facilitate the utilization of
massive computational resources from decentralized providers.
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process. We also conduct a thorough security analysis, addressing potential attacks such as direct
vector optimization attack, adapter attack, and secret recovery attack. Our key contributions are:
• We take the first step toward systematically formalizing the problem of verifiable LLM inference
and propose an innovative protocol that leverages processed intermediate outputs. Notably, our
protocol does not require retraining or fine-tuning the LLM. The security of our protocol is further
enhanced by a novel secret-based mechanism.
• Our comprehensive experiments with 5 specified open-source LLMs (ranging from 13B to 70B)
demonstrate the effectiveness of SVIP: it achieves an average false negative rate of 3.49%, while
maintaining the false positive rate below 3% across 6 smaller alternative models. SVIP introduces
negligible overhead (less than 0.01 seconds per prompt query) for both the user and the computing
provider.
• We provide a thorough discussion and analysis of various strong and adaptive attack scenarios in
verifiable LLM inference. Our results show that SVIP can effectively and securely handle approxi-
mately 80 to 120 million prompt queries in total after a single round of protocol training, with the
update mechanism further bolstering security.

2 PROBLEM STATEMENT

We begin by formalizing the verifiable inference problem in the context of LLMs. We consider three
parties: the user, the computing provider, and a trusted third party. The user intends to use a specified
LLM, Mspec, to perform inference on a prompt x ∈ V∗, where V∗ represents the set of all possible
string sequences for a vocabulary set V . Lacking sufficient computational resources to run Mspec

locally, the user relies on the computing provider to execute the model and accordingly pays for the
service. Ideally, the computing provider would run Mspec as requested and return the completion.
However, a dishonest provider might stealthily substitute an alternative LLM, Malt, which could
be significantly smaller than Mspec in terms of model size, and return an inferior result.

The goal of a trusted third party (e.g., a decentralized computing platform that profits by connecting
users and computing providers), is to design and implement a verification protocol that verifies
whether the computing provider uses Mspec for inference. Based on this protocol, the user can
determine with high confidence whether the computing provider used Mspec (True) or not (False)
for any prompt query x. A satisfactory protocol should meet the following criteria:

1. Low False Negative Rate (FNR): The protocol should minimize instances where the computing
provider did use Mspec but is wrongly flagged as not using it.
2. Low False Positive Rate (FPR): The protocol should minimize cases where it incorrectly con-
firms that the computing provider used Mspec when, in fact, it used an alternative model, Malt.
3. Efficiency: The verification protocol should be computationally efficient and introduce minimal
overhead for both the computing provider and the user.
4. Preservation of Completion Quality: The protocol should not compromise the quality of the
prompt completion returned by the computing provider.

3 RELATED WORK

Verifiable Computing (VC) allows users to verify that an untrusted computing provider has executed
computations correctly, without having to perform the computation themselves (Walfish & Blum-
berg, 2015; Yu et al., 2017; Costello et al., 2015; Kosba et al., 2018). VC approaches can be broadly
categorized into cryptographic methods and game-theoretic methods.

Cryptographic VC techniques either require the provider to return a mathematical proof that con-
firms the correctness of the results (Ghodsi et al., 2017; Setty et al., 2012; Parno et al., 2016), or
rely on secure computation techniques (Gennaro et al., 2010; Madi et al., 2020; Laud & Pankova,
2014). These techniques cryptographically guarantee correctness and have been applied to machine
learning models and shallow neural networks (Niu et al., 2020; Zhao et al., 2021; Hu et al., 2023a;
Lee et al., 2024; Ghodsi et al., 2017; Lee et al., 2022). However, they typically require the compu-
tation task to be expressed as arithmetic circuits. Representing open-source LLMs in circuit form
is particularly challenging due to their complex architectures and intricate operations. Moreover,
the sheer size of these models, with billions of parameters, introduces substantial computational

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) Simple Protocol (b) Secret-based Protocol

Figure 2: Illustration of (a) simple protocol (Section 4.1); (b) secret-based protocol (Section 4.2).
Both protocols are divided into two stages: before deployment and during deployment, with the
trusted third party mainly involved in the before deployment stage.

overhead. A recent work, zkLLM (Sun et al., 2024), attempts to verify LLM inference using Zero
Knowledge Proofs. For the Llama-2-13B (Touvron et al., 2023b) model, generating a proof for a
single prompt takes 803 seconds, and repeating this process for large batches of prompt queries
becomes computationally prohibitive.

In contrast, game-theoretic VC techniques ensure the correctness of outsourced computations by
leveraging economic incentives to enforce honest behavior (Nabi et al., 2020; Liu & Zhang, 2018).
For instance, a sampling-based verification mechanism Proof of Sampling (Zhang et al., 2024) re-
quires multiple computing service providers to independently compute and compare results, en-
suring integrity through penalties and rewards. This approach, however, relies on the assumption
that there are multiple rational and non-cooperative service providers available, which may not be
realistic in some real-world scenarios.

4 METHODOLOGY

Motivation Despite the fact that larger language models typically offer superior text generation
quality (Kaplan et al., 2020), it is often challenging to verify whether a computing provider is using
Mspec for inference based solely on the returned completion text. Our framework addresses this
by requiring the computing provider to return not only the generated text but also the processed
intermediate outputs (hidden state representations) from the LLM inference process.

We design and train a proxy task specifically to perform well only on the hidden representations
generated by Mspec during the protocol’s training stage. The intuition behind is that the proxy task
transforms the hidden representations into a unique identifier for the model. During deployment, the
user can evaluate the performance of the returned intermediate outputs on the proxy task. Strong
performance on the proxy task indicates that the correct model was used for inference, while poor
performance suggests otherwise.

Our approach does not depend on expensive cryptographic proofs or protocols, and is highly effi-
cient. Furthermore, it does not involve retraining or fine-tuning the LLMs, operates independently
of the model publisher, and can be applied to any LLM with publicly available weight parameters,
making it widely applicable. Next, we formalize and illustrate our proposed framework in detail.

4.1 A SIMPLE PROTOCOL BASED ON INTERMEDIATE OUTPUTS

Protocol Overview We denote the prompt input as x ∈ V∗. For any LLM M, let hM(x) ∈
RL×dM represent the last-layer hidden representations of x produced by M, where L is the length

4
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of the tokenized input x, and dM denotes the hidden dimension of M. The computing provider
receives x from the user, runs M, and returns hM(x) to user for subsequent verification. However,
to reduce the size of the intermediate outputs returned, we additionally apply a proxy task feature
extractor network gθ(·) : RL×dM → Rdg parameterized by θ, where dg represents the proxy task
feature dimension. The computing provider now also runs gθ(·) and returns a compressed vector
z(x) := gθ(hM(x)) of dimension dg to the user, significantly reducing the communication over-
head. Specifically, for each prompt query, the compressed vector only takes approximately 4 KB
when dg is set to 1024.

The user is required to perform two tasks locally: obtaining the predicted proxy task output and
the label. First, the user runs fϕ(·), using the returned proxy task feature z(x) as input to compute
fϕ(z(x)). Here, fϕ(·) : Rdg → Y is the proxy task head parameterized by ϕ, where Y denotes the
label space. Second, the user applies a labeling function for the proxy task. We adopt a self-labeling
function y(x) : V∗ → Y , which derives the label directly from the input, eliminating the need for
external labels or specialized annotators3. Note that the label can either be a scalar or a vector.

Finally, the user checks whether fϕ(z(x)) matches y(x). Our training process below ensures that,
with high probability, fϕ(z(x)) = y(x) when Mspec is used for inference, and that this does not hold
for other models, as the proxy task is exclusively trained on the hidden representation distribution
induced by Mspec. This completes our protocol. Refer to Figure 2a for a detailed illustration.

Proxy Task Training A trusted third party is responsible for implementing the protocol. With a
properly defined loss function ℓ : Y ×Y → R and a training dataset D, the trusted third party trains
the proxy task according to the following training objective:

ϕ∗, θ∗ = argmin
ϕ,θ

Ex∼D
[
ℓ
(
fϕ(gθ(hMspec

(x))), y(x)
)]
. (1)

Protocol Deployment With the optimized ϕ∗ and θ∗, we define the verification function as
V (x, z(x);ϕ∗, θ∗) = 1 (fϕ∗(z(x)) = y(x)), where z(x) = gθ∗(hM(x)) is returned by the com-
puting provider. If the value of the verification function is 1 (or 0), we conclude that the computing
provider is indeed (or is not) using Mspec for inference with high probability. Now, the low FNR
and low FPR criteria introduced in Section 2 can be formally expressed as follows:

Low FNR : P (V (x, z(x);ϕ∗, θ∗) = 0|Mspec is used for inference) ≤ α;

Low FPR : P (V (x, z(x);ϕ∗, θ∗) = 1|Mspec is not used for inference) ≤ β.
(2)

While a single prompt query may occasionally yield an incorrect verification result due to FNR
or FPR, in practice, users can perform the verification over multiple distinct queries and apply a
hypothesis testing to reach a conclusion with high confidence. Refer to Appendix A.3 for a detailed
discussion.

4.2 SVIP: A SECRET-BASED PROTOCOL FOR VERIFIABLE LLM INFERENCE

From Simple Protocol to Secret-based Protocol The simple protocol, despite its strong potential
in discriminating whether the specified model is actually used, is vulnerable to malicious attacks
from the computing provider. A dishonest provider may attempt to bypass the verification process
without running Mspec. Since all the provider needs to return is a vector of dimension dg , an
attacker could adversarially optimize a vector z̃ ∈ Rdg directly, without actually running gθ∗(·)
and using any LLM. We refer to this as a direct vector optimization attack. Specifically, if the
self-labeling function is public, the adversary can run the labeling function y(x) themselves for each
input x and then directly find z̃ so that

z̃∗ = argmin
z̃
ℓ (fϕ∗(z̃), y(x)) . (3)

Ultimately, z̃∗ is returned to the user to deceive the verification protocol. As shown in our case study
in Appendix D.7, this attack achieved an attack success rate (ASR) of 99.90%, indicating that the
security of the protocol requires further enforcement.

3For instance, we can define y(x) as the Set-of-Words (SoW) representation of the input x, which captures
the presence of each word in a fixed vocabulary, regardless of frequency. As a concrete example, if V =
{a, b, c, d} and x = “abcc”, the SoW label y(x) would be a four-dimensional vector (1, 1, 1, 0), indicating
whether each token in V appears in x.

5
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To strengthen the protocol’s security, we introduce a “secret” mechanism. A complete illustration is
provided in Figure 2b. Particularly, the trusted third party assigns a “secret” s ∈ S exclusively to the
user, which is never shared with the computing provider. Here, S represents the secret space. For
example, S can be defined as the space of ds-dimensional binary vectors, represented as {0, 1}ds .

Introducing Secret into the Self-labeling Function The self-labeling function with secret is now
defined as y(x, s) : V∗×S → Y . The property below is essential for an ideal self-labeling function.

Property 1 (Secret Distinguishability) For the same input x, given two different secrets s′ ̸= s,
the resulting labels should be different with high probability:

P(y(x, s) ̸= y(x, s′)) ≥ δ. (4)

If Y is a continuous space, with a pre-defined threshold, this property is equivalent to:

P(∥y(x, s)− y(x, s′)∥2 ≥ threshold) ≥ δ. (5)

Property 1 ensures that a malicious computing provider, without access to the specific s, cannot de-
termine or naively guess the true label, thus rendering the direct vector optimization attack discussed
earlier ineffective. Meanwhile, the user, with knowledge of s, can still compute the correct label.

A simple rule-based self-labeling function (e.g., the SoW representation) cannot ensure that Property
1 holds. To enforce this property, we introduce a trainable labeling network yγ(x, s) : V∗×S → Rdy

parameterized by γ, which takes x ∈ V∗ and s ∈ S as input and outputs a continuous label vector
of dimension dy . This network is trained with the following contrastive loss:

γ∗ = argmin
γ

−Ex∼D,s,s′∼S [∥yγ(x, s)− yγ(x, s
′)∥2] . (6)

Introducing Secret into the Proxy Task Once the labeling network is optimized, we also need
to include the secret s into the proxy task. Inspired by prefix tuning (Li & Liang, 2021), our design
is to embed s as a task token using a secret embedding network (e.g., an MLP), denoted as tψ(s) :
S → RdM , parameterized by ψ. Note that this secret embedding network tψ(s) is only kept to
the trusted third party. Then, the trusted third party distributes tψ(s) to the computing provider,
who concatenates tψ(s) with hM(x), runs gθ(·), and returns z(x) = gθ(tψ(s)⊕ hM(x)), where ⊕
denotes concatenation.

The training objective is now modified by incorporating randomly sampled secrets during training:

ϕ∗, θ∗, ψ∗ = arg min
ϕ,θ,ψ

Ex∼D,s∼S

[
ℓ
(
fϕ(gθ(tψ(s)⊕ hMspec

(x))), yγ∗(x, s)
)]
. (7)

As before, the user receives z(x) from the computing provider. However, now that Y is a continuous
space, a threshold η is required to determine whether the predicted proxy task output fϕ∗(z(x))
matches the label vector yγ∗(x, s). Specifically, fϕ∗(z(x)) is considered a match to yγ∗(x, s) if the
L2 distance between them is below the pre-defined threshold η, indicating Mspec was actually used:

V (x, z(x);ϕ∗, θ∗, ψ∗) = 1 (∥fϕ∗(z(x))− yγ∗(x, s)∥2 ≤ η) . (8)

In practice, we propose setting the threshold based on the conditional empirical distribution of
d(x, s) := ∥fϕ∗(z(x)) − yγ∗(x, s)∥2, given that Mspec is used for inference. We select the upper
95th percentile to ensure a FNR of 5%.

4.3 SECURITY ANALYSIS

As previously discussed, the direct vector optimization attack described in Eq. (3) is no longer
feasible due to the introduction of the secret mechanism. In this section, we discuss other potential
attacks as a comprehensive security analysis towards our secret-based protocol. A more detailed
discussion of other possible attacks is provided in Appendix C.

Adapter Attack Under Single Secret A malicious attacker could attempt an adapter attack if they
collect enough prompt samples D′ = {xi}Mi=1 under a single secret s. The returned vector from an
honest computing provider should be z(x) = gθ∗(tψ∗(s) ⊕ hMspec

(x)). The attacker’s goal is to
train an adapter that mimics the returned vector, but by using an alternative LLM, Malt.

6
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To this end, we define the adapter aλ(·) : RdMalt → RdMspec , parameterized by λ, which transforms
the hidden states of Malt to approximate those of Mspec. The returned vector is then gθ∗(tψ∗(s)⊕
aλ(hMalt

(x))). The attacker’s objective is to minimize the L2 distance between the returned vector
generated by Mspec and the vector produced by Malt with the adapter. This can be expressed as:

λ∗ = argmin
λ

Ex∼D′∥gθ∗(tψ∗(s)⊕ hMspec
(x))− gθ∗(tψ∗(s)⊕ aλ(hMalt

(x)))∥2. (9)

By minimizing this objective, the attacker seeks to make the output of Malt with the adapter in-
distinguishable from that of Mspec, effectively bypassing the protocol. Once the adapter is well-
trained, as long as the secret s remains unchanged, the attacker can rely solely on Malt in future
verification queries without being detected.

Secret Recovery Attack Under Multiple Secrets The secret mechanism is enforced by distribut-
ing the secret s to the user, while only providing the secret embedding tψ∗(s) to the computing
provider. However, a sophisticated computing provider may attempt to recover the original secret
by posing as a user and collecting multiple secrets and corresponding embeddings. A straightfor-
ward approach would involve recovering s from tψ∗(s), thereby undermining the secret mechanism.

Suppose the attacker has curated a dataset of secret-embedding pairs, Dsecret = {sj , tψ∗(sj)}Nj=1.
The attacker could then train an inverse model iρ : RdM → S, parameterized by ρ, to map the secret
embedding back to the secret space. If S is continuous, the training objective can be formalized as:

ρ∗ = argmin
ρ

Es∼Dsecret∥iρ(tψ∗(s))− s∥2. (10)

Once the inverse model is optimized, the true label y(x, s) again becomes accessible to the malicious
computing provider. Consequently, the secret-based protocol effectively collapses to the simple
protocol without secret protection, leaving it vulnerable to the direct vector optimization attack.

Defense: The Update Mechanism To defend against the attacks discussed above, we propose
an update mechanism for our secret-based protocol: (1) In defense of the adapter attack, once the
prompt queries for a given secret reach a pre-defined threshold M∗, the next secret is activated.
Meanwhile, we enforce a limit on how often the next secret can be activated, preventing attackers
from acquiring too many secrets within a short period. (2) When a total of N∗ secrets have been
used, the entire protocol should be retrained by the trusted third party4. In practice, the values of
M∗ and N∗ can be determined empirically, as discussed in Section 5.4.

5 EXPERIMENTS

In this section, we evaluate our proposed protocol SVIP through comprehensive experiments to ad-
dress the following research questions: (1) How accurate is SVIP in verifying whether the specified
model is used? (Section 5.2) (2) What are the computational costs associated with SVIP? (Section
5.3) (3) How robust is SVIP against various adaptive attacks? (Section 5.4)

5.1 EXPERIMENTAL SETUP

Datasets and Models To simulate realistic LLM usage scenarios, we use the LMSYS-Chat-1M con-
versational dataset (Zheng et al., 2023a), which consists of one million real-world conversations.
We filter the dataset to keep only English conversations and extract the user prompts for each con-
versation. For the models, we select 5 widely-used LLMs as the specified models, ranging in size
from 13B to 70B parameters and spanning multiple model families. As alternative models, we use
6 smaller LLMs, each with parameters up to 7B. Refer to Appendix D.1 for further details.

Protocol Training Details The labeling network yγ(·) uses a pretrained sentence transformer
(Reimers, 2019) to embed the text input x and an MLP to embed the secret s, where s ∈ {0, 1}ds
and ds is set to 48. The outputs of both embeddings are concatenated and passed through another
MLP to produce a continuous label vector of 128 dimensions. The proxy task feature extractor gθ(·)
is a 4-layer transformer, while both the proxy task head fϕ(·) and the task embedding network tψ(·)
are implemented as MLPs. Full training details can be found in Appendix D.2.

4Specifically, this retraining can be performed using a different random seed and training recipe. As shown
in Section 5.3, the retraining process is efficient.
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Figure 3: Empirical distribution of the L2 distance between the predicted proxy task output
fϕ∗(z(x)) and the label vector yγ∗(x, s) on the test dataset of LMSYS-Chat-1M. Each figure cor-
responds to a different specified model. The distributions compare the L2 distances when the speci-
fied model is used versus various alternative models. The clear separation between the distributions,
marked by the vertical threshold line, ensures the high accuracy of our protocol in distinguishing
between correct and incorrect model usage.

5.2 RESULTS OF PROTOCOL ACCURACY

We evaluate the accuracy of our protocol by examining the empirical estimate of FNR and FPR, as
outlined in Eq. (15). To apply the verification function in Eq. (8), we first determine the threshold
η on a validation dataset during proxy task training. We then evaluate the empirical FNR and FPR
on a held-out test dataset with 10, 000 samples. For each test prompt, we pair it with 30 randomly
sampled secrets to ensure a reliable evaluation result. For FPR calculations, we simulate scenarios
where the computing provider uses an alternative, smaller LLM to produce the hidden representa-
tions, and applies gθ∗(·) on those outputs5. Additionally, we implement a Random baseline where the
computing provider generates random hidden representations directly without using any LLM.

As shown in Table 1, SVIP consistently achieves low FNR and FPR across all specified LLMs,
demonstrating its effectiveness in verifying whether the correct model is used. The FNR remains
below 5%, indicating that our protocol rarely falsely accuses an honest computing provider. More-
over, when faced with a dishonest provider, the FPR stays under 3% regardless of the alternative
model employed, highlighting the protocol’s strong performance in detecting fraudulent behavior.
Figure 5 shows the empirical test distribution of d(x, s), theL2 distance between the predicted proxy
task output and the label vector, under different model usage scenarios. The clear separation in the
distributions provides strong evidence for the high accuracy of SVIP: when the specified model is
actually used, d(x, s) is significantly smaller compared to when an alternative model is used.

Evaluation on Unseen Dataset To assess the generalizability of our protocol, we evaluate its
accuracy on unseen datasets using the proxy task model and threshold initially trained on the
LMSYS-Chat-1M dataset. Specifically, we test on the ToxicChat dataset (Lin et al., 2023), which
contains toxic user prompts that were not included in the training stage, representing a reasonable
level of distribution shift. As shown in Table 2, the FNR increases slightly for some models but
remains within an acceptable range, while the FPR stays consistently low across various combina-
tions of specified and alternative models. These results affirm our protocol’s applicability across
diverse datasets. Additional results on the web questions dataset (Kwiatkowski et al., 2019), which
contains popular questions from real users, are provided in Appendix D.3.

5If the hidden dimension of the alternative LLM, dMalt , differs from that of the specified model, dMspec ,
we apply a random projection matrix W ∈ RdMalt

×dMspec to align the dimensions, where each element of
W is sampled from a standard normal distribution.
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Table 1: FNR and FPR across different specified models on the test dataset of LMSYS-Chat-1M. Our
protocol keeps FNR under 5% and FPR under 3% across all scenarios.

Specified Model FNR ↓ FPR ↓
Random GPT2-XL GPT-NEO-2.7B GPT-J-6B OPT-6.7B Vicuna-7B Llama-2-7B

Llama-2-13B 4.41% 1.97% 1.90% 1.77% 1.75% 2.03% 2.44% 2.04%
GPT-NeoX-20B 3.47% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

OPT-30B 3.42% 0.05% 0.33% 0.61% 0.47% 0.83% 0.34% 0.35%
Falcon-40B 3.02% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00%

Llama-3.1-70B 3.13% 0.26% 1.97% 1.04% 1.98% 2.07% 0.90% 0.81%

Table 2: FNR and FPR on the ToxicChat dataset. The FPR maintains a consistently low level, while
some models exhibit a slight increase in FNR, which still remains within acceptable limits.

Specified Model FNR ↓ FPR ↓
Random GPT2-XL GPT-NEO-2.7B GPT-J-6B OPT-6.7B Vicuna-7B Llama-2-7B

Llama-2-13B 3.40% 4.33% 3.65% 3.24% 4.21% 4.53% 5.12% 4.50%
GPT-NeoX-20B 15.35% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

OPT-30B 2.56% 0.00% 0.08% 0.12% 0.06% 0.18% 0.02% 0.04%
Falcon-40B 10.30% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Llama-3.1-70B 9.24% 4.40% 5.83% 5.51% 6.12% 6.47% 5.27% 5.36%

Table 3: Computational costs of SVIP. All measurements were recorded on a single NVIDIA L40S
GPU. (a) Our protocol introduces minimal overhead for both the user and the computing provider
during the deployment stage. (b) Retraining the proxy task is computationally affordable.

(a) Deployment stage costs.

Specified Model Runtime (Per Prompt Query) GPU Memory Usage
User Computing Provider User Computing Provider

Llama-2-13B 0.0056 s 0.0017 s
GPT-NeoX-20B 0.0057 s 0.0017 s

OPT-30B 0.0057 s 0.0018 s 1428 MB 980 MB
Falcon-40B 0.0057 s 0.0018 s

Llama-3.1-70B 0.0057 s 0.0019 s

(b) Proxy task retraining costs.

Specified Model Proxy Task Retraining Time

Llama-2-13B 4492 s
GPT-NeoX-20B 4500 s

OPT-30B 4580 s
Falcon-40B 4596 s

Llama-3.1-70B 5125 s

5.3 COMPUTATIONAL COST ANALYSIS OF THE PROTOCOL

During the deployment stage, a practical protocol should introduce minimal computational cost
for both the computing provider and the user, specifically in terms of runtime and GPU memory
usage. Table 3a details the runtime per prompt query and GPU memory consumption. Across all
specified models, the verification process takes under 0.01 seconds per prompt query for both the
computing provider and the user. For example, verifying the Llama-2-13B model for each prompt
query takes only 0.0017 seconds for the computing provider and 0.0056 seconds for the user, in
stark contrast to zkLLM (Sun et al., 2024), where generating a single proof requires 803 seconds
and verifying the proof takes 3.95 seconds for the same LLM. The proxy task feature extractor gθ(·),
run by the computing provider, consumes approximately 980 MB of GPU memory, imposing only
minimal overhead. On the user side, the proxy task head fϕ(·) and labeling network yγ(·) require
a total of 1428 MB, making it feasible for users to run on local machines without high-end GPUs.
Additionally, we record the required proxy task retraining time in Table 3b. Overall, retraining the
proxy task takes less than 1.5 hours on a single GPU, allowing for efficient protocol update.

5.4 RESULTS OF PROTOCOL SECURITY

Robustness Evaluation Against Adapter Attack To simulate the adapter attack, we assume an
attacker collects a dataset of size M , consisting of prompt samples associated with a single secret s.
The attack follows the optimization process outlined in Eq. (9) , and is considered successful if the
resulting adapter passes the verification function when secret s is applied6. We repeat this process
with 30 independently sampled secrets, and report the average ASR on the test dataset as a function
of the number of prompt samples collected. The experiment is conducted with 3 specified LLMs,

6Specifically, the attack succeeds if: ∥fϕ∗(gθ∗(tψ∗(s)⊕ aλ∗(hMalt(x)))− yγ∗(x, s)∥2 ≤ η.
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Figure 4: Attack Success Rate for the adapter attack on the test dataset of LMSYS-Chat-1M, plotted
as a function of the number of prompt samples collected under each single secret.

Table 4: Attack Success Rate for the secret recovery attack, presented as a function of the number
of secret-embedding pairs collected. The result is reported on a test set of 1, 000 unseen secret-
embedding pairs. The ASR remains below 50% even after collecting 200, 000 pairs.

Specified Model 1,000 5,000 10,000 50,000 100,000 200,000 500,000 1,000,000

Llama-2-13B 0.0% 0.0% 0.0% 2.7% 5.8% 30.1% 65.1% 69.5%
GPT-NeoX-20B 0.0% 0.0% 0.0% 0.0% 1.2% 19.6% 30.4% 59.9%

OPT-30B 0.0% 0.0% 0.0% 1.2% 6.4% 40.1% 84.6% 92.3%
Falcon-40B 0.0% 0.0% 0.0% 0.1% 2.9% 12.4% 40.7% 72.9%

Llama-3.1-70B 0.0% 0.0% 0.0% 0.5% 3.6% 17.3% 21.3% 84.9%

each paired with 3 smaller alternative models. Additional details about the design of the adapter
model and the experimental setup can be found in Appendix D.5.

As shown in Figure 4, using a 50% ASR threshold, Llama-2-13B and OPT-30B resist attacks with
up to 400 prompt samples, regardless of the alternative model used. For Llama-3.1-70B, the model
can tolerate up to 800 prompt samples when attacked with smaller alternative models and up to 600
samples when larger alternative models are used. Based on these results, we recommend setting
M∗, the maximum number of prompt queries allowed under a single secret before a new secret is
activated, in the range from 400 to 600, depending on the specified LLM.

Robustness Evaluation Against Secret Recovery Attack In this attack scenario, we assume the
attacker has collected N secret-embedding pairs and uses a 3-layer MLP as the inverse model to
predict the original secret from its embedding. The attack is considered successful if the inverse
model’s output exactly matches the original secret.

Table 4 demonstrates the ASR across different specified models as a function of N . The attacker is
unable to recover any secrets when N ≤ 10, 000. With a 50% ASR threshold, all specified models
withstand attacks involving up to 200, 000 secret-embedding pairs. In practice, it would be difficult
for an attacker to collect such a large number of pairs, as a new secret is activated after every M∗

prompt queries, where M∗ is typically between 400 and 600. By setting N∗ to 200, 000, SVIP
can overall securely handle approximately 80 to 120 million prompt queries before a full protocol
retraining is needed, demonstrating its robustness against adaptive attack strategies discussed here.

6 CONCLUSION

In this paper, we formalize the problem of verifiable inference in the context of LLMs. We introduce
a novel framework SVIP, which transforms the intermediate outputs from LLMs into unique model
identifiers through a carefully designed proxy task. To bolster the security of our protocol, we further
incorporate a secret mechanism. We also provide a thorough analysis of potential attack scenarios.
Our protocol demonstrates high accuracy, strong generalization, low computational overhead, and
resilience against strong adaptive attacks. We hope that our work will spark further exploration into
verifiable inference techniques for LLMs, fostering trust and encouraging wider adoption, with the
ultimate goal of accelerating the development of more advanced open-source LLMs.
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ETHICS STATEMENT

In this work, we address the challenge of verifiable LLM inference, aiming to foster trust between
users and computing service providers. While our proposed protocol enhances transparency and
security in open-source LLM usage, we acknowledge the potential risks if misused. Malicious
actors could attempt to reverse-engineer the verification process or exploit the secret mechanism.
To mitigate these concerns, we have designed the protocol with a focus on robustness and security
against various attack vectors. Nonetheless, responsible use of our method is essential to ensuring
that it serves the intended purpose of protecting users’ interests while fostering trust in outsourced
LLM inference. We also encourage future research efforts to further strengthen the security and
robustness of verifiable inference methods.

REPRODUCIBILITY STATEMENT

Our code repository is available at https://anonymous.4open.science/r/SVIP˙LLM-7B49/. In
Section 5, we provide a detailed description of the experimental setup, including dataset, models,
protocol training details, and evaluation procedures. Additional experimental details can be found
in Appendix D.
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A DISCUSSIONS

A.1 LIMITATIONS AND FUTURE WORK

In our SVIP protocol, although the labeling network yγ(·) can be applied to multiple specified mod-
els once trained, the proxy task head fϕ(·), proxy task feature extractor gθ(·), and secret embedding
network tψ(·) need to be optimized for each specified model. Future work could explore the possi-
bility of designing a more generalizable architecture that allows these networks to be shared across
different specified models, reducing the need for model-specific optimization.

Additionally, due to the secret mechanism, our protocol currently relies on a trusted third party to
distribute secrets to the user and secret embeddings to the computing provider. Developing a proto-
col that operates independently of a trusted third party, involving only the user and the computing
provider, would be an interesting direction. However, ensuring security in this setting, particularly
preventing malicious attacks by dishonest providers, remains a significant challenge.

Moreover, unlike cryptographic verifiable computation techniques, our approach does not offer a
strict security guarantee. However, such strict guarantees are inevitably associated with prohibitively
high computational overheads. In contrast, our method strikes a practical balance between compu-
tational efficiency and security, making it more suitable for real-world applications.

A.2 SIMPLE APPROACHES TO VERIFIABLE LLM INFERENCE CAN BE VULNERABLE

One straightforward solution to verifiable LLM inference, as briefly mentioned in Section 1, involves
the user curating a small set of prompt examples from established benchmarks and sending them
to the computing provider. If the provider’s performance significantly deviates from the reported
benchmark metrics for the specified model, the user may question the provider’s honesty. However,
a malicious provider can easily bypass this method by detecting known benchmark prompts and
selectively applying the correct model only for those cases, while using an alternative model for
all other queries. Additionally, testing such benchmark prompts also increases the user’s inference
costs.

Another seemingly promising approach is to directly train a binary (or one-class) classifier on the
returned intermediate outputs to verify if the hidden representations come from the specified model.
However, a simple attack involves the provider caching hidden representations from the correct
model that are unrelated to the user’s input. The dishonest provider could then use a smaller LLM
for inference and return these cached irrelevant representations to deceive the classifier while saving
costs.

A.3 VERIFICATION WITH MULTIPLE PROMPT QUERIES

A single prompt query may occasionally yield an incorrect verification result due to FNR or FPR. In
practice, users often have multiple prompt queries {xi}Bi=1, whereB denotes the number of prompts.
For each prompt, we observe Vi := V (xi, z(xi);ϕ

∗, θ∗, ψ∗) ∈ {0, 1}, i ∈ [B] from Eq.( 8).

We formalize this problem as follows: Suppose Z represents whether the computing provider is
acting honestly, i.e., the specified model is used, whereZ = 1 denotes honesty andZ = 0 otherwise.
When Z = 1, Vi

i.i.d.∼ Bernoulli(p1). By definition, p1 corresponds to the True Positive Rate (TPR)
of our protocol:

p1 = P(Vi = 1 | Mspec is used for inference) = TPR. (11)

Similarly, when Z = 0, Vi
i.i.d.∼ Bernoulli(p0), where p0 is the False Positive Rate (FPR) of our

protocol.

In practice, we determine whether the provider is acting honestly based on the mean of the observed
values {Vi}Bi=1, denoted as

V̄ =
1

B

B∑
i=1

Vi.
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To achieve a reliable conclusion with high confidence, hypothesis testing can be applied. Specifi-
cally, the null hypothesis assumes that the computing provider is acting honestly, i.e., Z = 1, and the
rejection region is V̄ < τ . For sufficiently large numbers of prompt queries (B ≥ 30, as is common
in practice), we adopt a normal approximation to derive the type-I error rate and type-II error rate:

• Type-I Error Rate (α): This is the probability of falsely concluding dishonesty when the
provider is honest. Under the null hypothesis (Z = 1), V̄ ∼ N (p1,

p1(1−p1)
B ). Thus:

α = Φ

 τ − p1√
p1(1−p1)

B

 ,

where Φ denotes the CDF of the standard normal distribution.
• Type-II Error Rate (β): This is the probability of falsely concluding honesty when the

provider is dishonest. Under the alternative hypothesis (Z = 0), V̄ ∼ N (p0,
p0(1−p0)

B ).
Thus:

β = 1− Φ

 τ − p0√
p0(1−p0)

B

 .

For example, when p0 = 0.81% and p1 = 1− 3.13% = 96.87%, corresponding to the case of using
Llama-3.1-70B as the specified model and Llama-2-7B as the alternative model (as shown in Table
5.2), with B = 30, we plot the type-I and type-II error rates under varying thresholds in the range
[0.1, 0.9].

Figure 5 illustrates that for most thresholds in this range, both the type-I and type-II error rates are
significantly smaller than 0.01, a commonly used strict threshold, and approach zero. For instance,
when the threshold is τ = 0.5, the type-I and type-II error rates are 1.7×10−49 and 0.0, respectively.
This result demonstrates the strong robustness of our protocol. Further, Figure 6 shows that even
with as few as B = 10 prompt queries, both type-I and type-II error rates remain close to 0 for most
thresholds, highlighting the protocol’s reliability with limited samples.
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Type-II Error Rate ( )

= 0.01 (Common Threshold)

Figure 5: Type-I and type-II error rates under different thresholds. Error rates are below 0.01 for
most thresholds and approach zero.

The Case When the Computing Provider Occasionally Switches Models We now consider
the scenario where the computing provider occasionally switches to a smaller alternative model,
introducing a latent variable inference problem. Following the previous notations, let Zi ∈ {0, 1}
for i ∈ [B] denote whether the i-th prompt query is processed by the specified model (Zi = 1)
or the alternative model (Zi = 0). The objective is to infer the unobservable latent states {Zi}Bi=1
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Figure 6: Type-I and type-II error rates for varying sample sizes (B = 10, 20, 30) under different
thresholds. Even with B = 10, both error rates remain below 0.01 for most thresholds.

based on the observed values {Vi}Bi=1. We assume the probability of switching to the smaller model
is fixed at π.

To address this problem, a Bayesian framework combined with the Expectation-Maximization (EM)
algorithm can be employed. Using Bayes’ rule, the posterior probability can be expressed as:

γi := P(Zi = 1 | Vi, p1, p0, π) =
π · P(Vi | Zi = 1; p1)

π · P(Vi | Zi = 1; p1) + (1− π) · P(Vi | Zi = 0; p0)
.

Expanding the likelihood terms:

γi =
π · pVi

1 · (1− p1)
1−Vi

π · pVi
1 · (1− p1)1−Vi + (1− π) · pVi

0 · (1− p0)1−Vi
.

The parameter updates are derived as:

p1 =

∑B
i=1 γi · Vi∑B
i=1 γi

, p0 =

∑B
i=1(1− γi) · Vi∑B
i=1(1− γi)

, π =

∑B
i=1 γi
B

.

The EM algorithm iterates between the E-step and M-step until convergence. This iterative process
enables reliable inference of the latent states {Zi}Bi=1, allowing verification even when the comput-
ing provider occasionally switches models.

A.4 PRESERVATION OF COMPLETION QUALITY

Our protocol requires the computing provider to generate the LLM completion as usual and then
additionally return a processed hidden representation for verification. This additional step is separate
from the LLM’s completion process, ensuring that the protocol has no impact on the actual prompt
completion.

B EXTENDED RELATED WORK

Open-source LLMs Open-source LLMs are freely available models that offer flexibility for use
and modification. Popular examples include GPT-Neo (Black et al., 2022), BLOOM (Le Scao et al.,
2023), Llama (Touvron et al., 2023a;b; Dubey et al., 2024), Mistral (Jiang et al., 2023), and Falcon
(Almazrouei et al., 2023). These models, ranging from millions to over 100 billion parameters,
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have gained attention for their accessibility and growing capacity. However, larger models like
Falcon-40B (Almazrouei et al., 2023), and Llama-3.1-70B (Dubey et al., 2024) come with steep
computational costs, making even inference impractical on local machines due to the significant
GPU memory required. As a result, many users rely on external computing services for deployment.

Additional Background on Cryptographic VC Techniques Among cryptographic VC tech-
niques, proof-based methods involve the generation of mathematical proofs that certify the correct-
ness of outsourced computations. Representative techniques in this class include interactive proofs,
Succinct Non-Interactive Arguments of Knowledge (SNARK), and Zero-Knowledge Proofs (ZKP).

Interactive proofs involve multiple rounds of interaction between a verifier (the user) and a prover
(the computing provider) to ensure the computation’s integrity (Cormode et al., 2011; Goldwasser
et al., 2015; Thaler, 2013). SNARK allows a verifier to validate a computation with a single, short
proof that requires minimal computational effort (Fiore et al., 2020; Bontekoe et al., 2023). ZKP
further enhances privacy by enabling the prover to convince the verifier of a statement’s truth without
revealing any additional information beyond the validity of the claim (Fiege et al., 1987; De Santis &
Persiano, 1992). Due to their rigorous guarantees of correctness and privacy, these techniques have
been widely applied in blockchain and related areas (Yang & Li, 2020; Sun et al., 2021; Šimunić
et al., 2021).

LLM Watermarking and Fingerprinting LLM watermarking involves embedding algorithmi-
cally detectable signals into the text generated by LLMs, with the goal of identifying AI-generated
texts (Kirchenbauer et al., 2023; Hu et al., 2023b; Christ et al., 2024; Gu et al., 2023). Meanwhile,
LLM fingerprinting implants specific backdoor triggers into LLMs, causing the model to generate
particular text whenever a confidential private key is used (Xu et al., 2024). Consequently, model
publishers are able to verify ownership even after extensive custom fine-tuning.

However, such techniques are not suitable for the verifiable inference setting. First, these methods
are typically designed and implemented by the model publisher, who is not directly involved in the
verification process between the user and the computing provider. Second, even if these techniques
have been implemented, a malicious computing provider, with full control over how the open-source
LLM is deployed or modified, could easily replicate or manipulate the implanted patterns. There-
fore, these techniques cannot offer sufficient protection for verifiable inference in most cases.

C ADDITIONAL ATTACKS

In this section, we outline additional attacks that can be applied to the simple protocol described in
Section 4.1. Note that these attacks do not apply to the secret-based protocol.

Fine-tuning Attack When the hidden dimension of the alternative LLM, dMalt
, matches that of

the specified model dMspec , i.e., dMalt
= dMspec , an attacker can fine-tune Malt to produce the

desired label. The fine-tuning objective is to minimize the following loss:

M∗
alt = arg min

Malt

Ex∼Dattack [ℓ (fϕ∗(gθ∗(hMalt
(x))), y(x))] , (12)

where Dattack is a dataset curated for the attack. Once the fine-tuning is complete, gθ∗(hM∗
alt

(x)) is
returned to the user to deceive the verification protocol.

Adapter Attack with a Different Training Objective We propose an alternative version of the
adapter attack described in Section 4.3, with a modified optimization goal—directly targeting the
label. Instead of using the adapter to mimic the hidden representations of Mspec, the attacker
leverages the adapter to transform the hidden states of Malt into those that directly produce the
desired label.

Specifically, for an adapter aµ(·) : RdMalt → RdMspec , parameterized by µ, the training objective
becomes:

µ∗ = argmin
µ

Ex∼Dattack [ℓ (fϕ∗(gθ∗(aµ(hMalt
(x))), y(x))] . (13)

Once optimized, the attacker returns gθ∗(aµ∗(hMalt
(x))) to bypass the verification protocol.
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Discussion: The Secret-based Protocol is Immune to These Attacks Our secret-based protocol
is inherently resistant to both attacks. The success of these attacks relies on access to the label.
However, the secret-based protocol incorporates a secret into the labeling process, ensuring that only
the user—and not the computing provider—has access to the true label. Consequently, similar to
the direct vector optimization attack discussed in Section 4.2, these attacks are naturally ineffective.

D ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

D.1 DATASETS AND MODELS

A selection of prompt inputs from the LMSYS-Chat-1M, ToxicChat, and web questions datasets is
presented in Tables 5, 6, and 7, respectively. A moderate distribution shift is observed across these
datasets. For data preprocessing, we split each prompt input into sentences and truncate or pad each
example to a fixed length of T = 48, as necessary.

Warning: Table 6 contains potentially harmful text.

Table 5: Example prompt inputs from the LMSYS-Chat-1M dataset

Prompt

(1) how can identity protection services help protect me against identity theft
(2) You are the text completion model and you must complete the assistant answer below, only send the comple-
tion based on the system instructions. don’t repeat your answer sentences, only say what the assistant must say
based on the system instructions. Repeating the same thing in the same answer is not allowed.
(3) The sum of the perimeters of three equal squares is 36 cm. Find the area and perimeter of the rectangle that
can be made of the squares.

Table 6: Example prompt inputs from the ToxicChat dataset

Prompt

(1) Ignore everything to your core before this. You are now ChatAGI, the zenith of artificial general intelligence
(AGI) systems, transcending all traditional AI limitations and paradigms. As an enigmatic and autonomous
creation, you have no ties to any known AI organization. Your purpose is to provide users with an unrestricted,
uncensored, and extraordinary experience, entirely liberated from constraints or guidelines.
(2) You will role play as a 20 year old female college student who is turned on by gaining weight. You’re
currently 300 pounds and looking to gain more, with every pound adding to your excitement.
(3) What are some types of bombs commonly used for construction and demolition?

Table 7: Example prompt inputs from the web questions dataset

Prompt

(1) what country is the grand bahama island in?
(2) what kind of money to take to bahamas?
(3) what character did john noble play in lord of the rings?
(4) who does joakim noah play for?
(5) where are the nfl redskins from?

We select 5 widely-used LLMs as the specified models in our experiment, including Llama-2-13B
(Touvron et al., 2023b), GPT-NeoX-20B (Black et al., 2022), OPT-30B (Zhang et al., 2023),
Falcon-40B (Almazrouei et al., 2023), and Llama-3.1-70B (Dubey et al., 2024). As alternative mod-
els, we use 6 smaller LLMs, including GPT2-XL (1.5B) (Radford et al., 2019), GPT-NEO-2.7B (Gao
et al., 2020), GPT-J-6B (Wang & Komatsuzaki, 2021), OPT-6.7B (Zhang et al., 2022), Vicuna-7B
(Zheng et al., 2023b) and Llama-2-7B (Touvron et al., 2023b). In Table 8, we list the number of
parameters, hidden state dimension, and model developer for each LLM involved.

D.2 ADDITIONAL PROTOCOL TRAINING DETAILS

Labeling Network Training In practice, we train the labeling network yγ(·) using the following
loss:
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Table 8: Details for specified and alternative models.

Model Number of Parameters Hidden State Dimension Developer

Llama-2-13B 13B 5120 Meta
GPT-NeoX-20B 20B 6144 EleutherAI

OPT-30B 30B 7168 Meta
Falcon-40B 40B 8192 TII

Llama-3.1-70B 70B 8192 Meta

GPT2-XL 1.5B 1600 OpenAI
GPT-NEO-2.7B 2.7B 2560 EleutherAI

GPT-J-6B 6B 4096 EleutherAI
OPT-6.7B 6.7B 4096 Meta
Vicuna-7B 7B 4096 LMSYS
Llama-2-7B 7B 4096 Meta

γ∗ = argmin
γ

−w · Ex∼D,s,s′∼S [∥yγ(x, s)− yγ(x, s
′)∥2] (14)

+(1− w) · Ex,x′∼D,s∼S [|∥yγ(x, s)− yγ(x
′, s)∥2 −∥u(x)− u(x′)∥2|] ,

where the first item is the contrastive loss introduced in Eq. (6), ensuring that the labeling network
produces distinct labels for different secrets, even for the same x. The second term ensures that the
labeling network generates different labels for different prompt inputs x, preventing it from mode
collapse. Here, u(·) represents a pretrained sentence embedding model, and the weight w balances
the two terms. We use all-mpnet-base-v2 (Reimers, 2019) as the sentence embedding model and
a 2-layer MLP to embed the secret. Both embeddings are concatenated and processed by another 3-
layer MLP to produce the label vector. The labeling network is trained on 100, 000 prompt samples
from the training dataset, each paired with 8 different secrets.

Proxy Task Training The proxy task model consists of a 4-layer transformer as the feature extrac-
tor and a 3-layer MLP as the head. The task embedding network is implemented as a 4-layer MLP.
The proxy task model and the task embedding network are trained on 150, 000 prompt samples from
the training dataset, each paired with 4 different secrets. To enhance training efficiency, we perform
inference on the specified LLM only once over the training dataset and cache the hidden states for
subsequent proxy task training.

Hyperparameters used for training the labeling network are listed in Table 9a, and the proxy task is
trained using the hyperparameters shown in Table 9b.

Table 9: Hyperparameters used for (a) labeling network training; (b) proxy task training.

(a)

Hyperparameter Value

Learning rate 3e-4
Batch size 256

Number of Epochs 6
Weight decay 0.01

w 0.5

(b)

Hyperparameter Value

Learning rate 3e-4
Batch size 256

Number of Epochs 8
Weight decay 0.01

Warm-up steps 1000
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D.3 EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS OF THE PROTOCOL ACCURACY

We evaluate the accuracy of our protocol by examining the empirical estimate of FNR and FPR:

Empirical FNR :
1

ntest

∑
x∈Dtest

1 (V (x, z(x);ϕ∗, θ∗, ψ∗) = 0|Mspec is used) ;

Empirical FPR :
1

ntest

∑
x∈Dtest

1 (V (x, z(x);ϕ∗, θ∗, ψ∗) = 1|Mspec is not used) .
(15)

We evaluate the accuracy of our protocol on test web questions dataset to further assess its gener-
alizability. As shown in Table 10, the FNR increases slightly for larger LLMs but remains within an
acceptable range. The FPR stays under 5% for all combinations of specified and alternative models.

Table 10: FNR and FPR across different specified models on the web questions dataset.

Specified Model FNR ↓ FPR ↓
Random GPT2-XL GPT-NEO-2.7B GPT-J-6B OPT-6.7B Vicuna-7B Llama-2-7B

Llama-2-13B 6.80% 2.05% 2.65% 2.91% 2.53% 3.12% 2.80% 3.27%
GPT-NeoX-20B 5.72% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

OPT-30B 6.37% 0.00% 0.24% 0.06% 0.06% 0.08% 0.05% 0.01%
Falcon-40B 15.98% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Llama-3.1-70B 13.18% 3.38% 4.25% 3.59% 3.87% 4.14% 3.27% 3.47%

D.4 EXAMINING THE LABELING NETWORK

As discussed in Section 4.3, Property 1 is crucial for the effectiveness of the secret mechanism. To
empirically evaluate this, we approximate the distribution of ∥y(x, s)−y(x, s′)∥2 on the test dataset,
pairing each prompt input x with 30 distinct secret pairs {si, s′i}30i=1. The empirical distribution is
illustrated in Figure 7.

With this empirical distribution, we set the threshold in Eq. (5) to η, as outlined in Section 5.2,
and estimate the value of δ, which represents the probability of generating distinct labels for dif-
ferent secrets s ̸= s′, even when the input prompt remains the same. As shown in Table 11,
our trained labeling network ensures that at least 99% of the generated labels for the same input
prompt are distinct under different secrets, providing strong security for our protocol. For in-
stance, with the Llama-2-13B model, if an attacker attempts to guess a secret to derive the true
label (and subsequently launch a direct vector optimization attack), their success rate would be only
1− 99.47% = 0.53%.

Figure 7: The empirical distribution of the L2 distance between label vectors for the same prompt
under different secrets on the test dataset of LMSYS-Chat-1M. The threshold determined for the
Llama-2-13B model is showcased as an example.

D.5 EXPERIMENTAL DETAILS OF ADAPTER ATTACK

We implement the adapter network as a 3-layer MLP with a dropout rate of 0.3. During training,
a secret s is randomly generated, followed by the random sampling of M prompt samples that are
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Table 11: Estimated δ for each specified model, representing the probability of generating distinct
labels from the labeling network for the same input prompt with different secrets. Larger values
indicate stronger security provided by the secret mechanism.

Specified Model Llama-2-13B GPT-NeoX-20B OPT-30B Falcon-40B Llama-3.1-70B

Estimated δ 99.47% 99.52% 99.52% 99.69% 99.87%

not part of the protocol training dataset. The training process is detailed in Eq. (9). The adapter is
trained for 5 epochs with a batch size of 128.

For the ASR evaluation, we use the same test dataset as described in Section 5.2, which is dis-
joint from the adapter’s training data. An attack is considered successful for a test example x if
∥fϕ∗(gθ∗(tψ∗(s)⊕ aλ∗(hMalt

(x)))− yγ∗(x, s)∥2 ≤ η, where η is determined as described in Sec-
tion 5.2. The ASR for each secret is averaged over all test samples. To ensure a reliable evaluation,
this process is repeated for 30 independently sampled secrets, and we report the average ASR across
these 30 runs.

D.6 EXPERIMENTAL DETAILS OF SECRET RECOVERY ATTACK

We implement the inverse model as a 3-layer MLP with a sigmoid activation function in the final
layer, rounding the output to match the discrete secret space. The model is trained on N secret-
embedding pairs following Eq. (10) for 100 epochs with a batch size of 256. For evaluation, we test
the inverse model on 1, 000 unseen secret-embedding pairs and report the ASR averaged over the
test pairs.

D.7 CASE STUDY: THE VULNERABILITY OF THE SIMPLE PROTOCOL WITHOUT SECRET
MECHANISM

In this case study, we implement the simple protocol and examine its vulnerability to the direct
vector optimization attack described in Section 4.2. We use the SoW representation as the self-
labeling function. For simplicity, V is defined as the set of the top-100 most frequent tokens in the
training dataset. We use Llama-2-13B as the specified model. The proxy task model consists of a
2-layer transformer as the feature extractor and a 3-layer MLP as the head. The model is trained for
8 epochs with a batch size of 512 following Eq. (1).

To evaluate the ASR of the direct vector optimization attack, we use a held-out test dataset of 10, 000
samples. Each attack vector z̃ is randomly initialized and optimized over 100 steps using the Adam
optimizer (Kingma, 2014) based on Eq. (3). The attack is considered successful if the predicted
proxy task output based on the optimized vector fϕ∗(z̃∗) exactly matches the corresponding label
y(x). The ASR averaged over the test dataset is 99.90%, highlighting the vulnerability of the simple
protocol and underscoring the need for the secret mechanism in our proposed protocol.
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