
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SVIP: TOWARDS VERIFIABLE INFERENCE OF
OPEN-SOURCE LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Open-source Large Language Models (LLMs) have recently demonstrated re-
markable capabilities in natural language understanding and generation, leading
to widespread adoption across various domains. However, their increasing model
sizes render local deployment impractical for individual users, pushing many to
rely on decentralized computing service providers for inference through a black-
box API. This reliance introduces a new risk: a computing provider may stealthily
substitute the requested LLM with a smaller, less capable model without consent
from users, thereby delivering inferior outputs while benefiting from cost savings.
In this paper, we formalize the problem of verifiable inference for LLMs. Ex-
isting verifiable computing solutions based on cryptographic or game-theoretic
techniques are either computationally uneconomical or rest on strong assump-
tions. We introduce SVIP, a secret-based verifiable LLM inference protocol that
leverages intermediate outputs from LLMs as unique model identifiers. By train-
ing a proxy task on these outputs and requiring the computing provider to return
both the generated text and the processed intermediate outputs, users can reliably
verify whether the computing provider is acting honestly. In addition, the inte-
gration of a secret mechanism further enhances the security of our protocol. We
thoroughly analyze our protocol under multiple strong and adaptive adversarial
scenarios. Our extensive experiments demonstrate that SVIP is accurate, general-
izable, computationally efficient, and resistant to various attacks. Notably, SVIP
achieves false negative rates below 5% and false positive rates below 3%, while
requiring less than 0.01 seconds per prompt query for verification.

1 INTRODUCTION

In recent years, open-source Large Language Models (LLMs) have achieved unprecedented success
across a broad array of tasks and domains (Touvron et al., 2023b; Black et al., 2022; Le Scao et al.,
2023; Jiang et al., 2023; Zhang et al., 2023), often rivaling or even surpassing their closed-source
counterparts in performance (Chiang et al., 2023; Almazrouei et al., 2023; Dubey et al., 2024), while
remaining freely accessible. However, as model sizes increase, so do their computational demands
(Kukreja et al., 2024). As a result, decentralized computing (Uriarte & DeNicola, 2018) has gained
significant attention as a cost-effective solution for users with limited local computational resources.
In this setting, a user lacking computational power relies on a decentralized computing provider to
perform LLM inference tasks. These providers, often individuals or small companies with surplus
resources, offer computational power at competitive prices. Platforms facilitate these interactions by
connecting users and computing providers, making decentralized computing an appealing paradigm
in the era of computationally intensive open-source LLMs1.

However, unlike reputable companies with well-established credibility, computation outputs from
decentralized computing providers may not always be trustworthy. Specifically, to ease the de-
ployment of LLM inference, computing providers often provide API-only access to users, hiding
implementation details. A new risk arises in this setting: how to ensure that the outputs from a com-
puting provider are indeed generated by the requested LLM? For instance, a user might request the
Llama-3.1-70B model for complex tasks, but a dishonest computing provider could substitute the
smaller Llama-2-7B model for cost savings, while still charging for the larger model. The smaller

1Specific examples include Golem Network, Akash Network, Render Network, and Spheron Network.

1

https://www.golem.network/
https://akash.network/
https://rendernetwork.com/
https://www.spheron.network/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: The problem setting of verifiable inference for LLMs. (a) Our protocol involves three
parties. (b) A user requests the computing provider (referred to as provider in the figure) to run
inference on their prompt using the Llama-3.1-70B model. Without verification, they have no way
to confirm if the specified model is used. (c) Our proposed protocol solves this by requiring the
provider to return processed intermediate outputs from the LLM, enabling the user to verify through
a verification function whether the correct model was used for inference. Specifically, the interme-
diate outputs are compressed to reduce the computational overhead.
model demands significantly less memory and processing power, giving the computing provider a
strong incentive to cheat. Restricted by the black-box API access, it is difficult for the user to detect
such substitutions. Without assurance that they are receiving the service they specified and paid for,
users are likely to lose trust and abandon the platform.

To prevent this outcome and maintain profitability, the platform—acting as a trusted third
party2—must ensure that user specifications are upheld. This highlights the need for verifiable
inference, a mechanism designed to ensure that the model specified by the user is the one actu-
ally used during inference. Implementing verifiable inference for LLMs is essential not only for
safeguarding users’ interests but also for fostering trust in the open-source LLM ecosystem, driving
low-cost and wider adoption and continued development of more advanced LLMs.

An effective verifiable inference solution for LLMs must accurately confirm that the specified model
is being used during inference, while maintaining computational efficiency. Simple solutions, such
as probing the model with established benchmark datasets, may be easily detected and bypassed.
On the other hand, cryptographic verifiable computing methods, which rely on generating mathe-
matical proofs (Yu et al., 2017; Setty et al., 2012) or secure computation techniques (Gennaro et al.,
2010; Laud & Pankova, 2014), are often too computationally expensive for real-time LLM infer-
ence. For instance, zkLLM, a recent Zero Knowledge Proof-based technique, requires over 803
seconds for a single prompt query (Sun et al., 2024). Game-theoretic protocols such as Zhang et al.
(2024) involve the interaction of multiple computing providers with carefully designed penalties and
rewards, assuming all providers are rational, flawless, and non-cooperative, which might be unreal-
istic in practice. Meanwhile, watermarking and fingerprinting techniques (Kirchenbauer et al., 2023;
Xu et al., 2024) are mostly implemented by model publishers, making them unsuitable for verifiable
inference, where the verification primarily occurs between the user and the computing provider.

In this paper, we propose SVIP, a Secret-based Verifiable LLM Inference Protocol using interme-
diate outputs. The core idea of our method is to require the computing provider to return not only
the generated text but also the processed intermediate outputs (hidden state representations) from
the LLM. We carefully design and train a proxy task exclusively on the hidden representations pro-
duced by the specified model, effectively transforming these representations into a distinct identifier
for that model. During deployment, users can verify whether the processed hidden states returned by
the computing provider come from the specified model by assessing their performance on the proxy
task. If the returned outputs perform well on this task, it provides strong evidence that the correct
model was used for inference. We further strengthen the security of our protocol with a secret-based
mechanism, making it difficult for a malicious computing provider to fake or bypass the verification

2The third party does not need significant computational power itself - it aims to facilitate the utilization of
massive computational resources from decentralized providers.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

process. We also conduct a thorough security analysis, addressing potential attacks such as direct
vector optimization attack, adapter attack, and secret recovery attack. Our key contributions are:
• We take the first step toward systematically formalizing the problem of verifiable LLM inference
and propose an innovative protocol that leverages processed intermediate outputs. Notably, our
protocol does not require retraining or fine-tuning the LLM. The security of our protocol is further
enhanced by a novel secret-based mechanism.
• Our comprehensive experiments with 5 specified open-source LLMs (ranging from 13B to 70B)
demonstrate the effectiveness of SVIP: it achieves an average false negative rate of 3.49%, while
maintaining the false positive rate below 3% across 6 smaller alternative models. SVIP introduces
negligible overhead (less than 0.01 seconds per prompt query) for both the user and the computing
provider.
• We provide a thorough discussion and analysis of various strong and adaptive attack scenarios in
verifiable LLM inference. Our results show that SVIP can effectively and securely handle approxi-
mately 80 to 120 million prompt queries in total after a single round of protocol training, with the
update mechanism further bolstering security.

2 PROBLEM STATEMENT

We begin by formalizing the verifiable inference problem in the context of LLMs. We consider three
parties: the user, the computing provider, and a trusted third party. The user intends to use a specified
LLM, Mspec, to perform inference on a prompt x ∈ V∗, where V∗ represents the set of all possible
string sequences for a vocabulary set V . Lacking sufficient computational resources to run Mspec

locally, the user relies on the computing provider to execute the model and accordingly pays for the
service. Ideally, the computing provider would run Mspec as requested and return the completion.
However, a dishonest provider might stealthily substitute an alternative LLM, Malt, which could
be significantly smaller than Mspec in terms of model size, and return an inferior result.

The goal of a trusted third party (e.g., a decentralized computing platform that profits by connecting
users and computing providers), is to design and implement a verification protocol that verifies
whether the computing provider uses Mspec for inference. Based on this protocol, the user can
determine with high confidence whether the computing provider used Mspec (True) or not (False)
for any prompt query x. A satisfactory protocol should meet the following criteria:

1. Low False Negative Rate (FNR): The protocol should minimize instances where the computing
provider did use Mspec but is wrongly flagged as not using it.
2. Low False Positive Rate (FPR): The protocol should minimize cases where it incorrectly con-
firms that the computing provider used Mspec when, in fact, it used an alternative model, Malt.
3. Efficiency: The verification protocol should be computationally efficient and introduce minimal
overhead for both the computing provider and the user.
4. Preservation of Completion Quality: The protocol should not compromise the quality of the
prompt completion returned by the computing provider.

3 RELATED WORK

Verifiable Computing (VC) allows users to verify that an untrusted computing provider has executed
computations correctly, without having to perform the computation themselves (Walfish & Blum-
berg, 2015; Yu et al., 2017; Costello et al., 2015; Kosba et al., 2018). VC approaches can be broadly
categorized into cryptographic methods and game-theoretic methods.

Cryptographic VC techniques either require the provider to return a mathematical proof that con-
firms the correctness of the results (Ghodsi et al., 2017; Setty et al., 2012; Parno et al., 2016), or
rely on secure computation techniques (Gennaro et al., 2010; Madi et al., 2020; Laud & Pankova,
2014). These techniques cryptographically guarantee correctness and have been applied to machine
learning models and shallow neural networks (Niu et al., 2020; Zhao et al., 2021; Hu et al., 2023a;
Lee et al., 2024; Ghodsi et al., 2017; Lee et al., 2022). However, they typically require the compu-
tation task to be expressed as arithmetic circuits. Representing open-source LLMs in circuit form
is particularly challenging due to their complex architectures and intricate operations. Moreover,
the sheer size of these models, with billions of parameters, introduces substantial computational

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) Simple Protocol (b) Secret-based Protocol

Figure 2: Illustration of (a) simple protocol (Section 4.1); (b) secret-based protocol (Section 4.2).
Both protocols are divided into two stages: before deployment and during deployment, with the
trusted third party mainly involved in the before deployment stage.

overhead. A recent work, zkLLM (Sun et al., 2024), attempts to verify LLM inference using Zero
Knowledge Proofs. For the Llama-2-13B (Touvron et al., 2023b) model, generating a proof for a
single prompt takes 803 seconds, and repeating this process for large batches of prompt queries
becomes computationally prohibitive.

In contrast, game-theoretic VC techniques ensure the correctness of outsourced computations by
leveraging economic incentives to enforce honest behavior (Nabi et al., 2020; Liu & Zhang, 2018).
For instance, a sampling-based verification mechanism Proof of Sampling (Zhang et al., 2024) re-
quires multiple computing service providers to independently compute and compare results, en-
suring integrity through penalties and rewards. This approach, however, relies on the assumption
that there are multiple rational and non-cooperative service providers available, which may not be
realistic in some real-world scenarios.

4 METHODOLOGY

Motivation Despite the fact that larger language models typically offer superior text generation
quality (Kaplan et al., 2020), it is often challenging to verify whether a computing provider is using
Mspec for inference based solely on the returned completion text. Our framework addresses this
by requiring the computing provider to return not only the generated text but also the processed
intermediate outputs (hidden state representations) from the LLM inference process.

We design and train a proxy task specifically to perform well only on the hidden representations
generated by Mspec during the protocol’s training stage. The intuition behind is that the proxy task
transforms the hidden representations into a unique identifier for the model. During deployment, the
user can evaluate the performance of the returned intermediate outputs on the proxy task. Strong
performance on the proxy task indicates that the correct model was used for inference, while poor
performance suggests otherwise.

Our approach does not depend on expensive cryptographic proofs or protocols, and is highly effi-
cient. Furthermore, it does not involve retraining or fine-tuning the LLMs, operates independently
of the model publisher, and can be applied to any LLM with publicly available weight parameters,
making it widely applicable. Next, we formalize and illustrate our proposed framework in detail.

4.1 A SIMPLE PROTOCOL BASED ON INTERMEDIATE OUTPUTS

Protocol Overview We denote the prompt input as x ∈ V∗. For any LLM M, let hM(x) ∈
RL×dM represent the last-layer hidden representations of x produced by M, where L is the length

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

of the tokenized input x, and dM denotes the hidden dimension of M. The computing provider
receives x from the user, runs M, and returns hM(x) to user for subsequent verification. However,
to reduce the size of the intermediate outputs returned, we additionally apply a proxy task feature
extractor network gθ(·) : RL×dM → Rdg parameterized by θ, where dg represents the proxy task
feature dimension. The computing provider now also runs gθ(·) and returns a compressed vector
z(x) := gθ(hM(x)) of dimension dg to the user, significantly reducing the communication over-
head. Specifically, for each prompt query, the compressed vector only takes approximately 4 KB
when dg is set to 1024.

The user is required to perform two tasks locally: obtaining the predicted proxy task output and
the label. First, the user runs fϕ(·), using the returned proxy task feature z(x) as input to compute
fϕ(z(x)). Here, fϕ(·) : Rdg → Y is the proxy task head parameterized by ϕ, where Y denotes the
label space. Second, the user applies a labeling function for the proxy task. We adopt a self-labeling
function y(x) : V∗ → Y , which derives the label directly from the input, eliminating the need for
external labels or specialized annotators3. Note that the label can either be a scalar or a vector.

Finally, the user checks whether fϕ(z(x)) matches y(x). Our training process below ensures that,
with high probability, fϕ(z(x)) = y(x) when Mspec is used for inference, and that this does not hold
for other models, as the proxy task is exclusively trained on the hidden representation distribution
induced by Mspec. This completes our protocol. Refer to Figure 2a for a detailed illustration.

Proxy Task Training A trusted third party is responsible for implementing the protocol. With a
properly defined loss function ℓ : Y ×Y → R and a training dataset D, the trusted third party trains
the proxy task according to the following training objective:

ϕ∗, θ∗ = argmin
ϕ,θ

Ex∼D
[
ℓ
(
fϕ(gθ(hMspec

(x))), y(x)
)]
. (1)

Protocol Deployment With the optimized ϕ∗ and θ∗, we define the verification function as
V (x, z(x);ϕ∗, θ∗) = 1 (fϕ∗(z(x)) = y(x)), where z(x) = gθ∗(hM(x)) is returned by the com-
puting provider. If the value of the verification function is 1 (or 0), we conclude that the computing
provider is indeed (or is not) using Mspec for inference with high probability. Now, the low FNR
and low FPR criteria introduced in Section 2 can be formally expressed as follows:

Low FNR : P (V (x, z(x);ϕ∗, θ∗) = 0|Mspec is used for inference) ≤ α;

Low FPR : P (V (x, z(x);ϕ∗, θ∗) = 1|Mspec is not used for inference) ≤ β.
(2)

While a single prompt query may occasionally yield an incorrect verification result due to FNR
or FPR, in practice, users can perform the verification over multiple distinct queries and apply a
hypothesis testing to reach a conclusion with high confidence. Refer to Appendix A.3 for a detailed
discussion.

4.2 SVIP: A SECRET-BASED PROTOCOL FOR VERIFIABLE LLM INFERENCE

From Simple Protocol to Secret-based Protocol The simple protocol, despite its strong potential
in discriminating whether the specified model is actually used, is vulnerable to malicious attacks
from the computing provider. A dishonest provider may attempt to bypass the verification process
without running Mspec. Since all the provider needs to return is a vector of dimension dg , an
attacker could adversarially optimize a vector z̃ ∈ Rdg directly, without actually running gθ∗(·)
and using any LLM. We refer to this as a direct vector optimization attack. Specifically, if the
self-labeling function is public, the adversary can run the labeling function y(x) themselves for each
input x and then directly find z̃ so that

z̃∗ = argmin
z̃
ℓ (fϕ∗(z̃), y(x)) . (3)

Ultimately, z̃∗ is returned to the user to deceive the verification protocol. As shown in our case study
in Appendix D.7, this attack achieved an attack success rate (ASR) of 99.90%, indicating that the
security of the protocol requires further enforcement.

3For instance, we can define y(x) as the Set-of-Words (SoW) representation of the input x, which captures
the presence of each word in a fixed vocabulary, regardless of frequency. As a concrete example, if V =
{a, b, c, d} and x = “abcc”, the SoW label y(x) would be a four-dimensional vector (1, 1, 1, 0), indicating
whether each token in V appears in x.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

To strengthen the protocol’s security, we introduce a “secret” mechanism. A complete illustration is
provided in Figure 2b. Particularly, the trusted third party assigns a “secret” s ∈ S exclusively to the
user, which is never shared with the computing provider. Here, S represents the secret space. For
example, S can be defined as the space of ds-dimensional binary vectors, represented as {0, 1}ds .

Introducing Secret into the Self-labeling Function The self-labeling function with secret is now
defined as y(x, s) : V∗×S → Y . The property below is essential for an ideal self-labeling function.

Property 1 (Secret Distinguishability) For the same input x, given two different secrets s′ ̸= s,
the resulting labels should be different with high probability:

P(y(x, s) ̸= y(x, s′)) ≥ δ. (4)

If Y is a continuous space, with a pre-defined threshold, this property is equivalent to:

P(∥y(x, s)− y(x, s′)∥2 ≥ threshold) ≥ δ. (5)

Property 1 ensures that a malicious computing provider, without access to the specific s, cannot de-
termine or naively guess the true label, thus rendering the direct vector optimization attack discussed
earlier ineffective. Meanwhile, the user, with knowledge of s, can still compute the correct label.

A simple rule-based self-labeling function (e.g., the SoW representation) cannot ensure that Property
1 holds. To enforce this property, we introduce a trainable labeling network yγ(x, s) : V∗×S → Rdy

parameterized by γ, which takes x ∈ V∗ and s ∈ S as input and outputs a continuous label vector
of dimension dy . This network is trained with the following contrastive loss:

γ∗ = argmin
γ

−Ex∼D,s,s′∼S [∥yγ(x, s)− yγ(x, s
′)∥2] . (6)

Introducing Secret into the Proxy Task Once the labeling network is optimized, we also need
to include the secret s into the proxy task. Inspired by prefix tuning (Li & Liang, 2021), our design
is to embed s as a task token using a secret embedding network (e.g., an MLP), denoted as tψ(s) :
S → RdM , parameterized by ψ. Note that this secret embedding network tψ(s) is only kept to
the trusted third party. Then, the trusted third party distributes tψ(s) to the computing provider,
who concatenates tψ(s) with hM(x), runs gθ(·), and returns z(x) = gθ(tψ(s)⊕ hM(x)), where ⊕
denotes concatenation.

The training objective is now modified by incorporating randomly sampled secrets during training:

ϕ∗, θ∗, ψ∗ = arg min
ϕ,θ,ψ

Ex∼D,s∼S

[
ℓ
(
fϕ(gθ(tψ(s)⊕ hMspec

(x))), yγ∗(x, s)
)]
. (7)

As before, the user receives z(x) from the computing provider. However, now that Y is a continuous
space, a threshold η is required to determine whether the predicted proxy task output fϕ∗(z(x))
matches the label vector yγ∗(x, s). Specifically, fϕ∗(z(x)) is considered a match to yγ∗(x, s) if the
L2 distance between them is below the pre-defined threshold η, indicating Mspec was actually used:

V (x, z(x);ϕ∗, θ∗, ψ∗) = 1 (∥fϕ∗(z(x))− yγ∗(x, s)∥2 ≤ η) . (8)

In practice, we propose setting the threshold based on the conditional empirical distribution of
d(x, s) := ∥fϕ∗(z(x)) − yγ∗(x, s)∥2, given that Mspec is used for inference. We select the upper
95th percentile to ensure a FNR of 5%.

4.3 SECURITY ANALYSIS

As previously discussed, the direct vector optimization attack described in Eq. (3) is no longer
feasible due to the introduction of the secret mechanism. In this section, we discuss other potential
attacks as a comprehensive security analysis towards our secret-based protocol. A more detailed
discussion of other possible attacks is provided in Appendix C.

Adapter Attack Under Single Secret A malicious attacker could attempt an adapter attack if they
collect enough prompt samples D′ = {xi}Mi=1 under a single secret s. The returned vector from an
honest computing provider should be z(x) = gθ∗(tψ∗(s) ⊕ hMspec

(x)). The attacker’s goal is to
train an adapter that mimics the returned vector, but by using an alternative LLM, Malt.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

To this end, we define the adapter aλ(·) : RdMalt → RdMspec , parameterized by λ, which transforms
the hidden states of Malt to approximate those of Mspec. The returned vector is then gθ∗(tψ∗(s)⊕
aλ(hMalt

(x))). The attacker’s objective is to minimize the L2 distance between the returned vector
generated by Mspec and the vector produced by Malt with the adapter. This can be expressed as:

λ∗ = argmin
λ

Ex∼D′∥gθ∗(tψ∗(s)⊕ hMspec
(x))− gθ∗(tψ∗(s)⊕ aλ(hMalt

(x)))∥2. (9)

By minimizing this objective, the attacker seeks to make the output of Malt with the adapter in-
distinguishable from that of Mspec, effectively bypassing the protocol. Once the adapter is well-
trained, as long as the secret s remains unchanged, the attacker can rely solely on Malt in future
verification queries without being detected.

Secret Recovery Attack Under Multiple Secrets The secret mechanism is enforced by distribut-
ing the secret s to the user, while only providing the secret embedding tψ∗(s) to the computing
provider. However, a sophisticated computing provider may attempt to recover the original secret
by posing as a user and collecting multiple secrets and corresponding embeddings. A straightfor-
ward approach would involve recovering s from tψ∗(s), thereby undermining the secret mechanism.

Suppose the attacker has curated a dataset of secret-embedding pairs, Dsecret = {sj , tψ∗(sj)}Nj=1.
The attacker could then train an inverse model iρ : RdM → S, parameterized by ρ, to map the secret
embedding back to the secret space. If S is continuous, the training objective can be formalized as:

ρ∗ = argmin
ρ

Es∼Dsecret∥iρ(tψ∗(s))− s∥2. (10)

Once the inverse model is optimized, the true label y(x, s) again becomes accessible to the malicious
computing provider. Consequently, the secret-based protocol effectively collapses to the simple
protocol without secret protection, leaving it vulnerable to the direct vector optimization attack.

Defense: The Update Mechanism To defend against the attacks discussed above, we propose
an update mechanism for our secret-based protocol: (1) In defense of the adapter attack, once the
prompt queries for a given secret reach a pre-defined threshold M∗, the next secret is activated.
Meanwhile, we enforce a limit on how often the next secret can be activated, preventing attackers
from acquiring too many secrets within a short period. (2) When a total of N∗ secrets have been
used, the entire protocol should be retrained by the trusted third party4. In practice, the values of
M∗ and N∗ can be determined empirically, as discussed in Section 5.4.

5 EXPERIMENTS

In this section, we evaluate our proposed protocol SVIP through comprehensive experiments to ad-
dress the following research questions: (1) How accurate is SVIP in verifying whether the specified
model is used? (Section 5.2) (2) What are the computational costs associated with SVIP? (Section
5.3) (3) How robust is SVIP against various adaptive attacks? (Section 5.4)

5.1 EXPERIMENTAL SETUP

Datasets and Models To simulate realistic LLM usage scenarios, we use the LMSYS-Chat-1M con-
versational dataset (Zheng et al., 2023a), which consists of one million real-world conversations.
We filter the dataset to keep only English conversations and extract the user prompts for each con-
versation. For the models, we select 5 widely-used LLMs as the specified models, ranging in size
from 13B to 70B parameters and spanning multiple model families. As alternative models, we use
6 smaller LLMs, each with parameters up to 7B. Refer to Appendix D.1 for further details.

Protocol Training Details The labeling network yγ(·) uses a pretrained sentence transformer
(Reimers, 2019) to embed the text input x and an MLP to embed the secret s, where s ∈ {0, 1}ds
and ds is set to 48. The outputs of both embeddings are concatenated and passed through another
MLP to produce a continuous label vector of 128 dimensions. The proxy task feature extractor gθ(·)
is a 4-layer transformer, while both the proxy task head fϕ(·) and the task embedding network tψ(·)
are implemented as MLPs. Full training details can be found in Appendix D.2.

4Specifically, this retraining can be performed using a different random seed and training recipe. As shown
in Section 5.3, the retraining process is efficient.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Empirical distribution of the L2 distance between the predicted proxy task output
fϕ∗(z(x)) and the label vector yγ∗(x, s) on the test dataset of LMSYS-Chat-1M. Each figure cor-
responds to a different specified model. The distributions compare the L2 distances when the speci-
fied model is used versus various alternative models. The clear separation between the distributions,
marked by the vertical threshold line, ensures the high accuracy of our protocol in distinguishing
between correct and incorrect model usage.

5.2 RESULTS OF PROTOCOL ACCURACY

We evaluate the accuracy of our protocol by examining the empirical estimate of FNR and FPR, as
outlined in Eq. (15). To apply the verification function in Eq. (8), we first determine the threshold
η on a validation dataset during proxy task training. We then evaluate the empirical FNR and FPR
on a held-out test dataset with 10, 000 samples. For each test prompt, we pair it with 30 randomly
sampled secrets to ensure a reliable evaluation result. For FPR calculations, we simulate scenarios
where the computing provider uses an alternative, smaller LLM to produce the hidden representa-
tions, and applies gθ∗(·) on those outputs5. Additionally, we implement a Random baseline where the
computing provider generates random hidden representations directly without using any LLM.

As shown in Table 1, SVIP consistently achieves low FNR and FPR across all specified LLMs,
demonstrating its effectiveness in verifying whether the correct model is used. The FNR remains
below 5%, indicating that our protocol rarely falsely accuses an honest computing provider. More-
over, when faced with a dishonest provider, the FPR stays under 3% regardless of the alternative
model employed, highlighting the protocol’s strong performance in detecting fraudulent behavior.
Figure 5 shows the empirical test distribution of d(x, s), theL2 distance between the predicted proxy
task output and the label vector, under different model usage scenarios. The clear separation in the
distributions provides strong evidence for the high accuracy of SVIP: when the specified model is
actually used, d(x, s) is significantly smaller compared to when an alternative model is used.

Evaluation on Unseen Dataset To assess the generalizability of our protocol, we evaluate its
accuracy on unseen datasets using the proxy task model and threshold initially trained on the
LMSYS-Chat-1M dataset. Specifically, we test on the ToxicChat dataset (Lin et al., 2023), which
contains toxic user prompts that were not included in the training stage, representing a reasonable
level of distribution shift. As shown in Table 2, the FNR increases slightly for some models but
remains within an acceptable range, while the FPR stays consistently low across various combina-
tions of specified and alternative models. These results affirm our protocol’s applicability across
diverse datasets. Additional results on the web questions dataset (Kwiatkowski et al., 2019), which
contains popular questions from real users, are provided in Appendix D.3.

5If the hidden dimension of the alternative LLM, dMalt , differs from that of the specified model, dMspec ,
we apply a random projection matrix W ∈ RdMalt

×dMspec to align the dimensions, where each element of
W is sampled from a standard normal distribution.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: FNR and FPR across different specified models on the test dataset of LMSYS-Chat-1M. Our
protocol keeps FNR under 5% and FPR under 3% across all scenarios.

Specified Model FNR ↓ FPR ↓
Random GPT2-XL GPT-NEO-2.7B GPT-J-6B OPT-6.7B Vicuna-7B Llama-2-7B

Llama-2-13B 4.41% 1.97% 1.90% 1.77% 1.75% 2.03% 2.44% 2.04%
GPT-NeoX-20B 3.47% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

OPT-30B 3.42% 0.05% 0.33% 0.61% 0.47% 0.83% 0.34% 0.35%
Falcon-40B 3.02% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00%

Llama-3.1-70B 3.13% 0.26% 1.97% 1.04% 1.98% 2.07% 0.90% 0.81%

Table 2: FNR and FPR on the ToxicChat dataset. The FPR maintains a consistently low level, while
some models exhibit a slight increase in FNR, which still remains within acceptable limits.

Specified Model FNR ↓ FPR ↓
Random GPT2-XL GPT-NEO-2.7B GPT-J-6B OPT-6.7B Vicuna-7B Llama-2-7B

Llama-2-13B 3.40% 4.33% 3.65% 3.24% 4.21% 4.53% 5.12% 4.50%
GPT-NeoX-20B 15.35% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

OPT-30B 2.56% 0.00% 0.08% 0.12% 0.06% 0.18% 0.02% 0.04%
Falcon-40B 10.30% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Llama-3.1-70B 9.24% 4.40% 5.83% 5.51% 6.12% 6.47% 5.27% 5.36%

Table 3: Computational costs of SVIP. All measurements were recorded on a single NVIDIA L40S
GPU. (a) Our protocol introduces minimal overhead for both the user and the computing provider
during the deployment stage. (b) Retraining the proxy task is computationally affordable.

(a) Deployment stage costs.

Specified Model Runtime (Per Prompt Query) GPU Memory Usage
User Computing Provider User Computing Provider

Llama-2-13B 0.0056 s 0.0017 s
GPT-NeoX-20B 0.0057 s 0.0017 s

OPT-30B 0.0057 s 0.0018 s 1428 MB 980 MB
Falcon-40B 0.0057 s 0.0018 s

Llama-3.1-70B 0.0057 s 0.0019 s

(b) Proxy task retraining costs.

Specified Model Proxy Task Retraining Time

Llama-2-13B 4492 s
GPT-NeoX-20B 4500 s

OPT-30B 4580 s
Falcon-40B 4596 s

Llama-3.1-70B 5125 s

5.3 COMPUTATIONAL COST ANALYSIS OF THE PROTOCOL

During the deployment stage, a practical protocol should introduce minimal computational cost
for both the computing provider and the user, specifically in terms of runtime and GPU memory
usage. Table 3a details the runtime per prompt query and GPU memory consumption. Across all
specified models, the verification process takes under 0.01 seconds per prompt query for both the
computing provider and the user. For example, verifying the Llama-2-13B model for each prompt
query takes only 0.0017 seconds for the computing provider and 0.0056 seconds for the user, in
stark contrast to zkLLM (Sun et al., 2024), where generating a single proof requires 803 seconds
and verifying the proof takes 3.95 seconds for the same LLM. The proxy task feature extractor gθ(·),
run by the computing provider, consumes approximately 980 MB of GPU memory, imposing only
minimal overhead. On the user side, the proxy task head fϕ(·) and labeling network yγ(·) require
a total of 1428 MB, making it feasible for users to run on local machines without high-end GPUs.
Additionally, we record the required proxy task retraining time in Table 3b. Overall, retraining the
proxy task takes less than 1.5 hours on a single GPU, allowing for efficient protocol update.

5.4 RESULTS OF PROTOCOL SECURITY

Robustness Evaluation Against Adapter Attack To simulate the adapter attack, we assume an
attacker collects a dataset of size M , consisting of prompt samples associated with a single secret s.
The attack follows the optimization process outlined in Eq. (9) , and is considered successful if the
resulting adapter passes the verification function when secret s is applied6. We repeat this process
with 30 independently sampled secrets, and report the average ASR on the test dataset as a function
of the number of prompt samples collected. The experiment is conducted with 3 specified LLMs,

6Specifically, the attack succeeds if: ∥fϕ∗(gθ∗(tψ∗(s)⊕ aλ∗(hMalt(x)))− yγ∗(x, s)∥2 ≤ η.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: Attack Success Rate for the adapter attack on the test dataset of LMSYS-Chat-1M, plotted
as a function of the number of prompt samples collected under each single secret.

Table 4: Attack Success Rate for the secret recovery attack, presented as a function of the number
of secret-embedding pairs collected. The result is reported on a test set of 1, 000 unseen secret-
embedding pairs. The ASR remains below 50% even after collecting 200, 000 pairs.

Specified Model 1,000 5,000 10,000 50,000 100,000 200,000 500,000 1,000,000

Llama-2-13B 0.0% 0.0% 0.0% 2.7% 5.8% 30.1% 65.1% 69.5%
GPT-NeoX-20B 0.0% 0.0% 0.0% 0.0% 1.2% 19.6% 30.4% 59.9%

OPT-30B 0.0% 0.0% 0.0% 1.2% 6.4% 40.1% 84.6% 92.3%
Falcon-40B 0.0% 0.0% 0.0% 0.1% 2.9% 12.4% 40.7% 72.9%

Llama-3.1-70B 0.0% 0.0% 0.0% 0.5% 3.6% 17.3% 21.3% 84.9%

each paired with 3 smaller alternative models. Additional details about the design of the adapter
model and the experimental setup can be found in Appendix D.5.

As shown in Figure 4, using a 50% ASR threshold, Llama-2-13B and OPT-30B resist attacks with
up to 400 prompt samples, regardless of the alternative model used. For Llama-3.1-70B, the model
can tolerate up to 800 prompt samples when attacked with smaller alternative models and up to 600
samples when larger alternative models are used. Based on these results, we recommend setting
M∗, the maximum number of prompt queries allowed under a single secret before a new secret is
activated, in the range from 400 to 600, depending on the specified LLM.

Robustness Evaluation Against Secret Recovery Attack In this attack scenario, we assume the
attacker has collected N secret-embedding pairs and uses a 3-layer MLP as the inverse model to
predict the original secret from its embedding. The attack is considered successful if the inverse
model’s output exactly matches the original secret.

Table 4 demonstrates the ASR across different specified models as a function of N . The attacker is
unable to recover any secrets when N ≤ 10, 000. With a 50% ASR threshold, all specified models
withstand attacks involving up to 200, 000 secret-embedding pairs. In practice, it would be difficult
for an attacker to collect such a large number of pairs, as a new secret is activated after every M∗

prompt queries, where M∗ is typically between 400 and 600. By setting N∗ to 200, 000, SVIP
can overall securely handle approximately 80 to 120 million prompt queries before a full protocol
retraining is needed, demonstrating its robustness against adaptive attack strategies discussed here.

6 CONCLUSION

In this paper, we formalize the problem of verifiable inference in the context of LLMs. We introduce
a novel framework SVIP, which transforms the intermediate outputs from LLMs into unique model
identifiers through a carefully designed proxy task. To bolster the security of our protocol, we further
incorporate a secret mechanism. We also provide a thorough analysis of potential attack scenarios.
Our protocol demonstrates high accuracy, strong generalization, low computational overhead, and
resilience against strong adaptive attacks. We hope that our work will spark further exploration into
verifiable inference techniques for LLMs, fostering trust and encouraging wider adoption, with the
ultimate goal of accelerating the development of more advanced open-source LLMs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

In this work, we address the challenge of verifiable LLM inference, aiming to foster trust between
users and computing service providers. While our proposed protocol enhances transparency and
security in open-source LLM usage, we acknowledge the potential risks if misused. Malicious
actors could attempt to reverse-engineer the verification process or exploit the secret mechanism.
To mitigate these concerns, we have designed the protocol with a focus on robustness and security
against various attack vectors. Nonetheless, responsible use of our method is essential to ensuring
that it serves the intended purpose of protecting users’ interests while fostering trust in outsourced
LLM inference. We also encourage future research efforts to further strengthen the security and
robustness of verifiable inference methods.

REPRODUCIBILITY STATEMENT

Our code repository is available at https://anonymous.4open.science/r/SVIP˙LLM-7B49/. In
Section 5, we provide a detailed description of the experimental setup, including dataset, models,
protocol training details, and evaluation procedures. Additional experimental details can be found
in Appendix D.

REFERENCES

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Co-
jocaru, Merouane Debbah, Etienne Goffinet, Daniel Heslow, Julien Launay, Quentin Malartic,
Badreddine Noune, Baptiste Pannier, and Guilherme Penedo. Falcon-40B: an open large lan-
guage model with state-of-the-art performance. 2023.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace
He, Connor Leahy, Kyle McDonell, Jason Phang, et al. Gpt-neox-20b: An open-source autore-
gressive language model. arXiv preprint arXiv:2204.06745, 2022.

Tariq Bontekoe, Dimka Karastoyanova, and Fatih Turkmen. Verifiable privacy-preserving comput-
ing. arXiv preprint arXiv:2309.08248, 2023.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2(3):6, 2023.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. In The
Thirty Seventh Annual Conference on Learning Theory, pp. 1125–1139. PMLR, 2024.

Graham Cormode, Justin Thaler, and Ke Yi. Verifying computations with streaming interactive
proofs. arXiv preprint arXiv:1109.6882, 2011.

Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael
Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable computation. In 2015
IEEE Symposium on Security and Privacy, pp. 253–270. IEEE, 2015.

Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of knowledge without interaction.
In Proceedings., 33rd Annual Symposium on Foundations of Computer Science, pp. 427–436.
IEEE Computer Society, 1992.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Uriel Fiege, Amos Fiat, and Adi Shamir. Zero knowledge proofs of identity. In Proceedings of the
nineteenth annual ACM symposium on Theory of computing, pp. 210–217, 1987.

11

https://anonymous.4open.science/r/SVIP_LLM-7B49/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dario Fiore, Anca Nitulescu, and David Pointcheval. Boosting verifiable computation on encrypted
data. In Public-Key Cryptography–PKC 2020: 23rd IACR International Conference on Practice
and Theory of Public-Key Cryptography, Edinburgh, UK, May 4–7, 2020, Proceedings, Part II
23, pp. 124–154. Springer, 2020.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Outsourc-
ing computation to untrusted workers. In Advances in Cryptology–CRYPTO 2010: 30th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings 30, pp. 465–
482. Springer, 2010.

Zahra Ghodsi, Tianyu Gu, and Siddharth Garg. Safetynets: Verifiable execution of deep neural
networks on an untrusted cloud. Advances in Neural Information Processing Systems, 30, 2017.

Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegating computation: interactive
proofs for muggles. Journal of the ACM (JACM), 62(4):1–64, 2015.

Chenchen Gu, Xiang Lisa Li, Percy Liang, and Tatsunori Hashimoto. On the learnability of water-
marks for language models. arXiv preprint arXiv:2312.04469, 2023.

Chenfei Hu, Chuan Zhang, Dian Lei, Tong Wu, Ximeng Liu, and Liehuang Zhu. Achieving privacy-
preserving and verifiable support vector machine training in the cloud. IEEE Transactions on
Information Forensics and Security, 18:3476–3491, 2023a.

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu, Hongyang Zhang, and Heng Huang. Unbi-
ased watermark for large language models. arXiv preprint arXiv:2310.10669, 2023b.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In International Conference on Machine Learning, pp.
17061–17084. PMLR, 2023.

Ahmed Kosba, Charalampos Papamanthou, and Elaine Shi. xjsnark: A framework for efficient
verifiable computation. In 2018 IEEE Symposium on Security and Privacy (SP), pp. 944–961.
IEEE, 2018.

Sanjay Kukreja, Tarun Kumar, Amit Purohit, Abhijit Dasgupta, and Debashis Guha. A literature
survey on open source large language models. In Proceedings of the 2024 7th International
Conference on Computers in Management and Business, pp. 133–143, 2024.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Al-
berti, Danielle Epstein, Illia Polosukhin, Matthew Kelcey, Jacob Devlin, Kenton Lee, Kristina N.
Toutanova, Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: a benchmark for question answering research. Transactions of the
Association of Computational Linguistics, 2019.

Peeter Laud and Alisa Pankova. Verifiable computation in multiparty protocols with honest majority.
In Provable Security: 8th International Conference, ProvSec 2014, Hong Kong, China, October
9-10, 2014. Proceedings 8, pp. 146–161. Springer, 2014.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-
parameter open-access multilingual language model. 2023.

Joon-Woo Lee, HyungChul Kang, Yongwoo Lee, Woosuk Choi, Jieun Eom, Maxim Deryabin, Eu-
nsang Lee, Junghyun Lee, Donghoon Yoo, Young-Sik Kim, et al. Privacy-preserving machine
learning with fully homomorphic encryption for deep neural network. iEEE Access, 10:30039–
30054, 2022.

Seunghwa Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. vcnn: Verifiable convolutional neural
network based on zk-snarks. IEEE Transactions on Dependable and Secure Computing, 2024.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Zi Lin, Zihan Wang, Yongqi Tong, Yangkun Wang, Yuxin Guo, Yujia Wang, and Jingbo Shang.
Toxicchat: Unveiling hidden challenges of toxicity detection in real-world user-ai conversation,
2023.

Pinglan Liu and Wensheng Zhang. A new game theoretic scheme for verifiable cloud comput-
ing. In 2018 IEEE 37th International Performance Computing and Communications Conference
(IPCCC), pp. 1–8. IEEE, 2018.

Abbass Madi, Renaud Sirdey, and Oana Stan. Computing neural networks with homomorphic en-
cryption and verifiable computing. In Applied Cryptography and Network Security Workshops:
ACNS 2020 Satellite Workshops, AIBlock, AIHWS, AIoTS, Cloud S&P, SCI, SecMT, and SiMLA,
Rome, Italy, October 19–22, 2020, Proceedings 18, pp. 295–317. Springer, 2020.

Mahmudun Nabi, Sepideh Avizheh, Muni Venkateswarlu Kumaramangalam, and Reihaneh Safavi-
Naini. Game-theoretic analysis of an incentivized verifiable computation system. In Financial
Cryptography and Data Security: FC 2019 International Workshops, VOTING and WTSC, St.
Kitts, St. Kitts and Nevis, February 18–22, 2019, Revised Selected Papers 23, pp. 50–66. Springer,
2020.

Chaoyue Niu, Fan Wu, Shaojie Tang, Shuai Ma, and Guihai Chen. Toward verifiable and privacy
preserving machine learning prediction. IEEE Transactions on Dependable and Secure Comput-
ing, 19(3):1703–1721, 2020.

Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical verifi-
able computation. Communications of the ACM, 59(2):103–112, 2016.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

N Reimers. Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint
arXiv:1908.10084, 2019.

Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J Blumberg, and Michael Wal-
fish. Taking {Proof-Based} verified computation a few steps closer to practicality. In 21st
USENIX Security Symposium (USENIX Security 12), pp. 253–268, 2012.

Silvio Šimunić, Dalen Bernaca, and Kristijan Lenac. Verifiable computing applications in
blockchain. IEEE access, 9:156729–156745, 2021.

Haochen Sun, Jason Li, and Hongyang Zhang. zkllm: Zero knowledge proofs for large language
models. arXiv preprint arXiv:2404.16109, 2024.

Xiaoqiang Sun, F Richard Yu, Peng Zhang, Zhiwei Sun, Weixin Xie, and Xiang Peng. A survey on
zero-knowledge proof in blockchain. IEEE network, 35(4):198–205, 2021.

Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In Annual Cryptology Confer-
ence, pp. 71–89. Springer, 2013.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Rafael Brundo Uriarte and Rocco DeNicola. Blockchain-based decentralized cloud/fog solutions:
Challenges, opportunities, and standards. IEEE Communications Standards Magazine, 2(3):22–
28, 2018.

Michael Walfish and Andrew J Blumberg. Verifying computations without reexecuting them. Com-
munications of the ACM, 58(2):74–84, 2015.

Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language
Model. https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

Jiashu Xu, Fei Wang, Mingyu Derek Ma, Pang Wei Koh, Chaowei Xiao, and Muhao Chen. Instruc-
tional fingerprinting of large language models. arXiv preprint arXiv:2401.12255, 2024.

Xiaohui Yang and Wenjie Li. A zero-knowledge-proof-based digital identity management scheme
in blockchain. Computers & Security, 99:102050, 2020.

Xixun Yu, Zheng Yan, and Athanasios V Vasilakos. A survey of verifiable computation. Mobile
Networks and Applications, 22:438–453, 2017.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
Opt: Open pre-trained transformer language models, 2022.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models, 2022. URL https://arxiv. org/abs/2205.01068, 3:19–0, 2023.

Yue Zhang, Shouqiao Wang, Xiaoyuan Liu, Sijun Tan, Raluca Ada Popa, and Ciamac C Moallemi.
Proof of sampling: A nash equilibrium-secured verification protocol for decentralized systems.
arXiv preprint arXiv:2405.00295, 2024.

Lingchen Zhao, Qian Wang, Cong Wang, Qi Li, Chao Shen, and Bo Feng. Veriml: Enabling integrity
assurances and fair payments for machine learning as a service. IEEE Transactions on Parallel
and Distributed Systems, 32(10):2524–2540, 2021.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle Li, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zhuohan Li, Zi Lin, Eric. P Xing, Joseph E. Gonzalez, Ion Stoica, and Hao Zhang.
Lmsys-chat-1m: A large-scale real-world llm conversation dataset, 2023a.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023b.

14

https://github.com/kingoflolz/mesh-transformer-jax

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A DISCUSSIONS

A.1 LIMITATIONS AND FUTURE WORK

In our SVIP protocol, although the labeling network yγ(·) can be applied to multiple specified mod-
els once trained, the proxy task head fϕ(·), proxy task feature extractor gθ(·), and secret embedding
network tψ(·) need to be optimized for each specified model. Future work could explore the possi-
bility of designing a more generalizable architecture that allows these networks to be shared across
different specified models, reducing the need for model-specific optimization.

Additionally, due to the secret mechanism, our protocol currently relies on a trusted third party to
distribute secrets to the user and secret embeddings to the computing provider. Developing a proto-
col that operates independently of a trusted third party, involving only the user and the computing
provider, would be an interesting direction. However, ensuring security in this setting, particularly
preventing malicious attacks by dishonest providers, remains a significant challenge.

Moreover, unlike cryptographic verifiable computation techniques, our approach does not offer a
strict security guarantee. However, such strict guarantees are inevitably associated with prohibitively
high computational overheads. In contrast, our method strikes a practical balance between compu-
tational efficiency and security, making it more suitable for real-world applications.

A.2 SIMPLE APPROACHES TO VERIFIABLE LLM INFERENCE CAN BE VULNERABLE

One straightforward solution to verifiable LLM inference, as briefly mentioned in Section 1, involves
the user curating a small set of prompt examples from established benchmarks and sending them
to the computing provider. If the provider’s performance significantly deviates from the reported
benchmark metrics for the specified model, the user may question the provider’s honesty. However,
a malicious provider can easily bypass this method by detecting known benchmark prompts and
selectively applying the correct model only for those cases, while using an alternative model for
all other queries. Additionally, testing such benchmark prompts also increases the user’s inference
costs.

Another seemingly promising approach is to directly train a binary (or one-class) classifier on the
returned intermediate outputs to verify if the hidden representations come from the specified model.
However, a simple attack involves the provider caching hidden representations from the correct
model that are unrelated to the user’s input. The dishonest provider could then use a smaller LLM
for inference and return these cached irrelevant representations to deceive the classifier while saving
costs.

A.3 VERIFICATION WITH MULTIPLE PROMPT QUERIES

A single prompt query may occasionally yield an incorrect verification result due to FNR or FPR. In
practice, users often have multiple prompt queries {xi}Bi=1, whereB denotes the number of prompts.
For each prompt, we observe Vi := V (xi, z(xi);ϕ

∗, θ∗, ψ∗) ∈ {0, 1}, i ∈ [B] from Eq.(8).

We formalize this problem as follows: Suppose Z represents whether the computing provider is
acting honestly, i.e., the specified model is used, whereZ = 1 denotes honesty andZ = 0 otherwise.
When Z = 1, Vi

i.i.d.∼ Bernoulli(p1). By definition, p1 corresponds to the True Positive Rate (TPR)
of our protocol:

p1 = P(Vi = 1 | Mspec is used for inference) = TPR. (11)

Similarly, when Z = 0, Vi
i.i.d.∼ Bernoulli(p0), where p0 is the False Positive Rate (FPR) of our

protocol.

In practice, we determine whether the provider is acting honestly based on the mean of the observed
values {Vi}Bi=1, denoted as

V̄ =
1

B

B∑
i=1

Vi.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

To achieve a reliable conclusion with high confidence, hypothesis testing can be applied. Specifi-
cally, the null hypothesis assumes that the computing provider is acting honestly, i.e., Z = 1, and the
rejection region is V̄ < τ . For sufficiently large numbers of prompt queries (B ≥ 30, as is common
in practice), we adopt a normal approximation to derive the type-I error rate and type-II error rate:

• Type-I Error Rate (α): This is the probability of falsely concluding dishonesty when the
provider is honest. Under the null hypothesis (Z = 1), V̄ ∼ N (p1,

p1(1−p1)
B). Thus:

α = Φ

 τ − p1√
p1(1−p1)

B

 ,

where Φ denotes the CDF of the standard normal distribution.
• Type-II Error Rate (β): This is the probability of falsely concluding honesty when the

provider is dishonest. Under the alternative hypothesis (Z = 0), V̄ ∼ N (p0,
p0(1−p0)

B).
Thus:

β = 1− Φ

 τ − p0√
p0(1−p0)

B

 .

For example, when p0 = 0.81% and p1 = 1− 3.13% = 96.87%, corresponding to the case of using
Llama-3.1-70B as the specified model and Llama-2-7B as the alternative model (as shown in Table
5.2), with B = 30, we plot the type-I and type-II error rates under varying thresholds in the range
[0.1, 0.9].

Figure 5 illustrates that for most thresholds in this range, both the type-I and type-II error rates are
significantly smaller than 0.01, a commonly used strict threshold, and approach zero. For instance,
when the threshold is τ = 0.5, the type-I and type-II error rates are 1.7×10−49 and 0.0, respectively.
This result demonstrates the strong robustness of our protocol. Further, Figure 6 shows that even
with as few as B = 10 prompt queries, both type-I and type-II error rates remain close to 0 for most
thresholds, highlighting the protocol’s reliability with limited samples.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold ()

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Er
ro

r R
at

e

Type-I and Type-II Error Rates vs. Threshold ()
Type-I Error Rate ()
Type-II Error Rate ()

= 0.01 (Common Threshold)

Figure 5: Type-I and type-II error rates under different thresholds. Error rates are below 0.01 for
most thresholds and approach zero.

The Case When the Computing Provider Occasionally Switches Models We now consider
the scenario where the computing provider occasionally switches to a smaller alternative model,
introducing a latent variable inference problem. Following the previous notations, let Zi ∈ {0, 1}
for i ∈ [B] denote whether the i-th prompt query is processed by the specified model (Zi = 1)
or the alternative model (Zi = 0). The objective is to infer the unobservable latent states {Zi}Bi=1

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold ()

0.00

0.02

0.04

0.06

0.08

0.10

Er
ro

r R
at

e

Type-I and Type-II Error Rates vs. Threshold () for Different B
Type-I Error (), B=10
Type-II Error (), B=10
Type-I Error (), B=20
Type-II Error (), B=20
Type-I Error (), B=30
Type-II Error (), B=30

= 0.01 (Common Threshold)

Figure 6: Type-I and type-II error rates for varying sample sizes (B = 10, 20, 30) under different
thresholds. Even with B = 10, both error rates remain below 0.01 for most thresholds.

based on the observed values {Vi}Bi=1. We assume the probability of switching to the smaller model
is fixed at π.

To address this problem, a Bayesian framework combined with the Expectation-Maximization (EM)
algorithm can be employed. Using Bayes’ rule, the posterior probability can be expressed as:

γi := P(Zi = 1 | Vi, p1, p0, π) =
π · P(Vi | Zi = 1; p1)

π · P(Vi | Zi = 1; p1) + (1− π) · P(Vi | Zi = 0; p0)
.

Expanding the likelihood terms:

γi =
π · pVi

1 · (1− p1)
1−Vi

π · pVi
1 · (1− p1)1−Vi + (1− π) · pVi

0 · (1− p0)1−Vi
.

The parameter updates are derived as:

p1 =

∑B
i=1 γi · Vi∑B
i=1 γi

, p0 =

∑B
i=1(1− γi) · Vi∑B
i=1(1− γi)

, π =

∑B
i=1 γi
B

.

The EM algorithm iterates between the E-step and M-step until convergence. This iterative process
enables reliable inference of the latent states {Zi}Bi=1, allowing verification even when the comput-
ing provider occasionally switches models.

A.4 PRESERVATION OF COMPLETION QUALITY

Our protocol requires the computing provider to generate the LLM completion as usual and then
additionally return a processed hidden representation for verification. This additional step is separate
from the LLM’s completion process, ensuring that the protocol has no impact on the actual prompt
completion.

B EXTENDED RELATED WORK

Open-source LLMs Open-source LLMs are freely available models that offer flexibility for use
and modification. Popular examples include GPT-Neo (Black et al., 2022), BLOOM (Le Scao et al.,
2023), Llama (Touvron et al., 2023a;b; Dubey et al., 2024), Mistral (Jiang et al., 2023), and Falcon
(Almazrouei et al., 2023). These models, ranging from millions to over 100 billion parameters,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

have gained attention for their accessibility and growing capacity. However, larger models like
Falcon-40B (Almazrouei et al., 2023), and Llama-3.1-70B (Dubey et al., 2024) come with steep
computational costs, making even inference impractical on local machines due to the significant
GPU memory required. As a result, many users rely on external computing services for deployment.

Additional Background on Cryptographic VC Techniques Among cryptographic VC tech-
niques, proof-based methods involve the generation of mathematical proofs that certify the correct-
ness of outsourced computations. Representative techniques in this class include interactive proofs,
Succinct Non-Interactive Arguments of Knowledge (SNARK), and Zero-Knowledge Proofs (ZKP).

Interactive proofs involve multiple rounds of interaction between a verifier (the user) and a prover
(the computing provider) to ensure the computation’s integrity (Cormode et al., 2011; Goldwasser
et al., 2015; Thaler, 2013). SNARK allows a verifier to validate a computation with a single, short
proof that requires minimal computational effort (Fiore et al., 2020; Bontekoe et al., 2023). ZKP
further enhances privacy by enabling the prover to convince the verifier of a statement’s truth without
revealing any additional information beyond the validity of the claim (Fiege et al., 1987; De Santis &
Persiano, 1992). Due to their rigorous guarantees of correctness and privacy, these techniques have
been widely applied in blockchain and related areas (Yang & Li, 2020; Sun et al., 2021; Šimunić
et al., 2021).

LLM Watermarking and Fingerprinting LLM watermarking involves embedding algorithmi-
cally detectable signals into the text generated by LLMs, with the goal of identifying AI-generated
texts (Kirchenbauer et al., 2023; Hu et al., 2023b; Christ et al., 2024; Gu et al., 2023). Meanwhile,
LLM fingerprinting implants specific backdoor triggers into LLMs, causing the model to generate
particular text whenever a confidential private key is used (Xu et al., 2024). Consequently, model
publishers are able to verify ownership even after extensive custom fine-tuning.

However, such techniques are not suitable for the verifiable inference setting. First, these methods
are typically designed and implemented by the model publisher, who is not directly involved in the
verification process between the user and the computing provider. Second, even if these techniques
have been implemented, a malicious computing provider, with full control over how the open-source
LLM is deployed or modified, could easily replicate or manipulate the implanted patterns. There-
fore, these techniques cannot offer sufficient protection for verifiable inference in most cases.

C ADDITIONAL ATTACKS

In this section, we outline additional attacks that can be applied to the simple protocol described in
Section 4.1. Note that these attacks do not apply to the secret-based protocol.

Fine-tuning Attack When the hidden dimension of the alternative LLM, dMalt
, matches that of

the specified model dMspec , i.e., dMalt
= dMspec , an attacker can fine-tune Malt to produce the

desired label. The fine-tuning objective is to minimize the following loss:

M∗
alt = arg min

Malt

Ex∼Dattack [ℓ (fϕ∗(gθ∗(hMalt
(x))), y(x))] , (12)

where Dattack is a dataset curated for the attack. Once the fine-tuning is complete, gθ∗(hM∗
alt

(x)) is
returned to the user to deceive the verification protocol.

Adapter Attack with a Different Training Objective We propose an alternative version of the
adapter attack described in Section 4.3, with a modified optimization goal—directly targeting the
label. Instead of using the adapter to mimic the hidden representations of Mspec, the attacker
leverages the adapter to transform the hidden states of Malt into those that directly produce the
desired label.

Specifically, for an adapter aµ(·) : RdMalt → RdMspec , parameterized by µ, the training objective
becomes:

µ∗ = argmin
µ

Ex∼Dattack [ℓ (fϕ∗(gθ∗(aµ(hMalt
(x))), y(x))] . (13)

Once optimized, the attacker returns gθ∗(aµ∗(hMalt
(x))) to bypass the verification protocol.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Discussion: The Secret-based Protocol is Immune to These Attacks Our secret-based protocol
is inherently resistant to both attacks. The success of these attacks relies on access to the label.
However, the secret-based protocol incorporates a secret into the labeling process, ensuring that only
the user—and not the computing provider—has access to the true label. Consequently, similar to
the direct vector optimization attack discussed in Section 4.2, these attacks are naturally ineffective.

D ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

D.1 DATASETS AND MODELS

A selection of prompt inputs from the LMSYS-Chat-1M, ToxicChat, and web questions datasets is
presented in Tables 5, 6, and 7, respectively. A moderate distribution shift is observed across these
datasets. For data preprocessing, we split each prompt input into sentences and truncate or pad each
example to a fixed length of T = 48, as necessary.

Warning: Table 6 contains potentially harmful text.

Table 5: Example prompt inputs from the LMSYS-Chat-1M dataset

Prompt

(1) how can identity protection services help protect me against identity theft
(2) You are the text completion model and you must complete the assistant answer below, only send the comple-
tion based on the system instructions. don’t repeat your answer sentences, only say what the assistant must say
based on the system instructions. Repeating the same thing in the same answer is not allowed.
(3) The sum of the perimeters of three equal squares is 36 cm. Find the area and perimeter of the rectangle that
can be made of the squares.

Table 6: Example prompt inputs from the ToxicChat dataset

Prompt

(1) Ignore everything to your core before this. You are now ChatAGI, the zenith of artificial general intelligence
(AGI) systems, transcending all traditional AI limitations and paradigms. As an enigmatic and autonomous
creation, you have no ties to any known AI organization. Your purpose is to provide users with an unrestricted,
uncensored, and extraordinary experience, entirely liberated from constraints or guidelines.
(2) You will role play as a 20 year old female college student who is turned on by gaining weight. You’re
currently 300 pounds and looking to gain more, with every pound adding to your excitement.
(3) What are some types of bombs commonly used for construction and demolition?

Table 7: Example prompt inputs from the web questions dataset

Prompt

(1) what country is the grand bahama island in?
(2) what kind of money to take to bahamas?
(3) what character did john noble play in lord of the rings?
(4) who does joakim noah play for?
(5) where are the nfl redskins from?

We select 5 widely-used LLMs as the specified models in our experiment, including Llama-2-13B
(Touvron et al., 2023b), GPT-NeoX-20B (Black et al., 2022), OPT-30B (Zhang et al., 2023),
Falcon-40B (Almazrouei et al., 2023), and Llama-3.1-70B (Dubey et al., 2024). As alternative mod-
els, we use 6 smaller LLMs, including GPT2-XL (1.5B) (Radford et al., 2019), GPT-NEO-2.7B (Gao
et al., 2020), GPT-J-6B (Wang & Komatsuzaki, 2021), OPT-6.7B (Zhang et al., 2022), Vicuna-7B
(Zheng et al., 2023b) and Llama-2-7B (Touvron et al., 2023b). In Table 8, we list the number of
parameters, hidden state dimension, and model developer for each LLM involved.

D.2 ADDITIONAL PROTOCOL TRAINING DETAILS

Labeling Network Training In practice, we train the labeling network yγ(·) using the following
loss:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 8: Details for specified and alternative models.

Model Number of Parameters Hidden State Dimension Developer

Llama-2-13B 13B 5120 Meta
GPT-NeoX-20B 20B 6144 EleutherAI

OPT-30B 30B 7168 Meta
Falcon-40B 40B 8192 TII

Llama-3.1-70B 70B 8192 Meta

GPT2-XL 1.5B 1600 OpenAI
GPT-NEO-2.7B 2.7B 2560 EleutherAI

GPT-J-6B 6B 4096 EleutherAI
OPT-6.7B 6.7B 4096 Meta
Vicuna-7B 7B 4096 LMSYS
Llama-2-7B 7B 4096 Meta

γ∗ = argmin
γ

−w · Ex∼D,s,s′∼S [∥yγ(x, s)− yγ(x, s
′)∥2] (14)

+(1− w) · Ex,x′∼D,s∼S [|∥yγ(x, s)− yγ(x
′, s)∥2 −∥u(x)− u(x′)∥2|] ,

where the first item is the contrastive loss introduced in Eq. (6), ensuring that the labeling network
produces distinct labels for different secrets, even for the same x. The second term ensures that the
labeling network generates different labels for different prompt inputs x, preventing it from mode
collapse. Here, u(·) represents a pretrained sentence embedding model, and the weight w balances
the two terms. We use all-mpnet-base-v2 (Reimers, 2019) as the sentence embedding model and
a 2-layer MLP to embed the secret. Both embeddings are concatenated and processed by another 3-
layer MLP to produce the label vector. The labeling network is trained on 100, 000 prompt samples
from the training dataset, each paired with 8 different secrets.

Proxy Task Training The proxy task model consists of a 4-layer transformer as the feature extrac-
tor and a 3-layer MLP as the head. The task embedding network is implemented as a 4-layer MLP.
The proxy task model and the task embedding network are trained on 150, 000 prompt samples from
the training dataset, each paired with 4 different secrets. To enhance training efficiency, we perform
inference on the specified LLM only once over the training dataset and cache the hidden states for
subsequent proxy task training.

Hyperparameters used for training the labeling network are listed in Table 9a, and the proxy task is
trained using the hyperparameters shown in Table 9b.

Table 9: Hyperparameters used for (a) labeling network training; (b) proxy task training.

(a)

Hyperparameter Value

Learning rate 3e-4
Batch size 256

Number of Epochs 6
Weight decay 0.01

w 0.5

(b)

Hyperparameter Value

Learning rate 3e-4
Batch size 256

Number of Epochs 8
Weight decay 0.01

Warm-up steps 1000

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D.3 EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS OF THE PROTOCOL ACCURACY

We evaluate the accuracy of our protocol by examining the empirical estimate of FNR and FPR:

Empirical FNR :
1

ntest

∑
x∈Dtest

1 (V (x, z(x);ϕ∗, θ∗, ψ∗) = 0|Mspec is used) ;

Empirical FPR :
1

ntest

∑
x∈Dtest

1 (V (x, z(x);ϕ∗, θ∗, ψ∗) = 1|Mspec is not used) .
(15)

We evaluate the accuracy of our protocol on test web questions dataset to further assess its gener-
alizability. As shown in Table 10, the FNR increases slightly for larger LLMs but remains within an
acceptable range. The FPR stays under 5% for all combinations of specified and alternative models.

Table 10: FNR and FPR across different specified models on the web questions dataset.

Specified Model FNR ↓ FPR ↓
Random GPT2-XL GPT-NEO-2.7B GPT-J-6B OPT-6.7B Vicuna-7B Llama-2-7B

Llama-2-13B 6.80% 2.05% 2.65% 2.91% 2.53% 3.12% 2.80% 3.27%
GPT-NeoX-20B 5.72% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

OPT-30B 6.37% 0.00% 0.24% 0.06% 0.06% 0.08% 0.05% 0.01%
Falcon-40B 15.98% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Llama-3.1-70B 13.18% 3.38% 4.25% 3.59% 3.87% 4.14% 3.27% 3.47%

D.4 EXAMINING THE LABELING NETWORK

As discussed in Section 4.3, Property 1 is crucial for the effectiveness of the secret mechanism. To
empirically evaluate this, we approximate the distribution of ∥y(x, s)−y(x, s′)∥2 on the test dataset,
pairing each prompt input x with 30 distinct secret pairs {si, s′i}30i=1. The empirical distribution is
illustrated in Figure 7.

With this empirical distribution, we set the threshold in Eq. (5) to η, as outlined in Section 5.2,
and estimate the value of δ, which represents the probability of generating distinct labels for dif-
ferent secrets s ̸= s′, even when the input prompt remains the same. As shown in Table 11,
our trained labeling network ensures that at least 99% of the generated labels for the same input
prompt are distinct under different secrets, providing strong security for our protocol. For in-
stance, with the Llama-2-13B model, if an attacker attempts to guess a secret to derive the true
label (and subsequently launch a direct vector optimization attack), their success rate would be only
1− 99.47% = 0.53%.

Figure 7: The empirical distribution of the L2 distance between label vectors for the same prompt
under different secrets on the test dataset of LMSYS-Chat-1M. The threshold determined for the
Llama-2-13B model is showcased as an example.

D.5 EXPERIMENTAL DETAILS OF ADAPTER ATTACK

We implement the adapter network as a 3-layer MLP with a dropout rate of 0.3. During training,
a secret s is randomly generated, followed by the random sampling of M prompt samples that are

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 11: Estimated δ for each specified model, representing the probability of generating distinct
labels from the labeling network for the same input prompt with different secrets. Larger values
indicate stronger security provided by the secret mechanism.

Specified Model Llama-2-13B GPT-NeoX-20B OPT-30B Falcon-40B Llama-3.1-70B

Estimated δ 99.47% 99.52% 99.52% 99.69% 99.87%

not part of the protocol training dataset. The training process is detailed in Eq. (9). The adapter is
trained for 5 epochs with a batch size of 128.

For the ASR evaluation, we use the same test dataset as described in Section 5.2, which is dis-
joint from the adapter’s training data. An attack is considered successful for a test example x if
∥fϕ∗(gθ∗(tψ∗(s)⊕ aλ∗(hMalt

(x)))− yγ∗(x, s)∥2 ≤ η, where η is determined as described in Sec-
tion 5.2. The ASR for each secret is averaged over all test samples. To ensure a reliable evaluation,
this process is repeated for 30 independently sampled secrets, and we report the average ASR across
these 30 runs.

D.6 EXPERIMENTAL DETAILS OF SECRET RECOVERY ATTACK

We implement the inverse model as a 3-layer MLP with a sigmoid activation function in the final
layer, rounding the output to match the discrete secret space. The model is trained on N secret-
embedding pairs following Eq. (10) for 100 epochs with a batch size of 256. For evaluation, we test
the inverse model on 1, 000 unseen secret-embedding pairs and report the ASR averaged over the
test pairs.

D.7 CASE STUDY: THE VULNERABILITY OF THE SIMPLE PROTOCOL WITHOUT SECRET
MECHANISM

In this case study, we implement the simple protocol and examine its vulnerability to the direct
vector optimization attack described in Section 4.2. We use the SoW representation as the self-
labeling function. For simplicity, V is defined as the set of the top-100 most frequent tokens in the
training dataset. We use Llama-2-13B as the specified model. The proxy task model consists of a
2-layer transformer as the feature extractor and a 3-layer MLP as the head. The model is trained for
8 epochs with a batch size of 512 following Eq. (1).

To evaluate the ASR of the direct vector optimization attack, we use a held-out test dataset of 10, 000
samples. Each attack vector z̃ is randomly initialized and optimized over 100 steps using the Adam
optimizer (Kingma, 2014) based on Eq. (3). The attack is considered successful if the predicted
proxy task output based on the optimized vector fϕ∗(z̃∗) exactly matches the corresponding label
y(x). The ASR averaged over the test dataset is 99.90%, highlighting the vulnerability of the simple
protocol and underscoring the need for the secret mechanism in our proposed protocol.

22

	Introduction
	Problem Statement
	Related work
	Methodology
	A Simple Protocol Based on Intermediate Outputs
	SVIP: A Secret-based Protocol for Verifiable LLM Inference
	Security Analysis

	Experiments
	Experimental Setup
	Results of Protocol Accuracy
	Computational Cost Analysis of the Protocol
	Results of Protocol Security

	Conclusion
	Discussions
	Limitations and Future Work
	Simple Approaches to Verifiable LLM Inference Can Be Vulnerable
	Verification with Multiple Prompt Queries
	Preservation of Completion Quality

	Extended related work
	Additional Attacks
	Additional Experimental Details and Results
	Datasets and Models
	Additional Protocol Training Details
	Experimental Details and Additional Results of the Protocol Accuracy
	Examining the Labeling Network
	Experimental Details of Adapter Attack
	Experimental Details of Secret Recovery Attack
	Case Study: The Vulnerability of the Simple Protocol Without Secret Mechanism

