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Figure 1. We introduce our vision for Geo-Visual Agents—multimodal AI agents capable of understanding and responding to nuanced
visual-spatial inquiries about the world by analyzing large-scale repositories of geospatial images combined with traditional GIS data
sources. For example, StreetViewAI [14] (above) makes street view accessible to blind users by combining geographic context, user
information, and dynamic street view images into an MLLM, accessed via an AI chat interface and accessible screen reader controls.

Abstract

Interactive digital maps have revolutionized how people001
travel and learn about the world; however, they rely on pre-002
existing structured data in GIS databases (e.g., road net-003
works, POI indices), limiting their ability to address geo-004
visual questions related to what the world looks like. We005
introduce our vision for Geo-Visual Agents—multimodal006
AI agents capable of understanding and responding to nu-007
anced visual-spatial inquiries about the world by analyz-008
ing large-scale repositories of geospatial images, including009
streetscapes (e.g., Google Street View), place-based photos010
(e.g., TripAdvisor, Yelp), and aerial imagery (e.g., satel-011
lite photos) combined with traditional GIS data sources.012
We define our vision, describe sensing and interaction ap-013
proaches, provide three exemplars, and enumerate key chal-014
lenges and opportunities for future work.015

1. Introduction 016

Over the last two decades, precise location sensing, per- 017
vasive internet connectivity, and interactive digital maps 018
have transformed travel planning and in situ navigation, en- 019
abling turn-by-turn directions, location-aware search, and 020
dynamic route optimization. Despite these advances, cur- 021
rent mapping systems are confined to pre-existing struc- 022
tured geospatial data, leaving a vast repository of visual 023
information—latent within street-level, aerial, and user- 024
contributed imagery—untapped and inaccessible for an- 025
swering what we term geo-visual questions. That is, 026
visually-oriented questions about a location. Imagine, for 027
example, a wheelchair user asking “Are there stairs lead- 028
ing up to the library on 35th?” or a blind traveler inquiring 029
“Where is the door to the cafe and what does it look like?” 030

In this workshop paper, we introduce our vision for 031
Geo-Visual Agents—multimodal AI agents capable of un- 032
derstanding and responding to nuanced visual-spatial in- 033
quiries about the world by analyzing large-scale repositories 034
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of geospatial images (e.g., street-level and aerial imagery)035
combined with traditional GIS databases (e.g., road net-036
works, POI databases, transit schedules). We envision Geo-037
Visual Agents acting as “visual-spatial co-pilots” across a038
spectrum of contexts from a priori travel planning to in situ039
navigation. Crucially, while we expect many high-value040
user scenarios where a Geo-Visual Agent is actively sens-041
ing and processing visual-spatial data in real-time via AR042
glasses [12, 33, 62] or smartphone cameras [39, 49, 56], an043
equally large set of questions can be answered by analyzing044
existing (and largely untapped) repositories of geo-related045
imagery—either on-demand (e.g., spinning up an AI agent046
to query and analyze sources) or via pre-computation.047

Our vision moves beyond the current paradigm of048
geospatial artificial intelligence (GeoAI) [17, 30, 35] such049
as CARTO AI [7] and SuperMap [51], which primarily fo-050
cuses on large-scale data analysis for domain experts. Sim-051
ilarly, our work is related to but distinct from emerging052
paradigms in GIS research such as “Autonomous GIS”—053
AI-based scientific assistants that help “reason, derive, in-054
novate, and advance geospatial solutions to pressing global055
challenges” [38]. Moreover, because our envisioned agents056
work primarily via multimodal conversational AI, we draw057
inspiration from recent work in Geospatial Visual Question058
Answering (GVQA) such as MQVQA [61] and TAMMI [6],059
which attempt to imbue multimodal LLMs with domain-060
specific geographic knowledge; however, again these sys-061
tems are aimed at analysts and function primarily on remote062
aerial imagery. While related, our focus is on addressing the063
personal, interactive, and often immediate needs of an indi-064
vidual planning travel or actively navigating a space.065

Below, we expand on our vision including a breakdown066
of visual-spatial inquiries, modalities of sensing and inter-067
action, and three emerging examples, StreetViewAI [14],068
Access Scout [27], and BikeButler. Throughout, we high-069
light key opportunities and open challenges.070

2. Geo-Visual Queries Across Travel Stages071

We envision Geo-Visual Agents providing value across the072
full mobility cycle from pre-travel planning to in-situ nav-073
igation. Below, we enumerate four travel stages and op-074
portunities for Geo-Visual Agents therein, focusing on ac-075
cessibility but also broader user scenarios such as driving076
and biking. Selecting and fusing data sources will be a077
function of user task and data availability. For example,078
pre-travel planning may rely on streetscape images, user-079
contributed photos, and place-based reviews while in-situ080
navigation might combine these sources with visual content081
from a user’s real-time camera feed (e.g., from AR glasses)082
and context sensing (e.g., travel mode inference, location).083

Pre-travel planning. In this phase, the user is not phys-084
ically present at a location but planning a future visit. The085
agent acts as a remote, interactive guide, enabling detailed086

investigation and reducing uncertainty before travel. For ex- 087
ample: (1) a blind parent planning a trip to a park may ask, 088
“What kind of equipment does the playground have, and 089
does it seem safe?” (2) A person with a mobility disability 090
virtually investigates a route and inquires “Are there curb 091
ramps all the way to my doctor’s office?” (3) A potential 092
homebuyer may ask neighborhood-related questions such 093
as “What do the streets look like?”, “Are there tree-lined 094
sidewalks?”, and “How much graffiti is there?” 095

While navigating. During travel itself, the user is under 096
cognitive and physical load, navigating their environment, 097
making route choices, and dynamically avoiding obstacles. 098
Here, the agent provides forward-looking information about 099
the destination or upcoming maneuvers, enhancing situa- 100
tional awareness and facilitating in situ travel decisions. For 101
example: (1) A driver approaching a destination asks, “You 102
said to turn left at the next light. Are there any landmarks?” 103
(2) A cyclist nearing a decision point queries, “Is there a 104
protected bike lane at the next intersection, and which side 105
of the road is it on?” (3) A rail user exiting a train asks, 106
“Which exit is closest to the library’s accessible entrance?” 107

Destination arrival. When arriving at a destination, the 108
user is faced with a litany of “last 10 meters” problems re- 109
lated to the appearance of their destination, the path to and 110
location of an entrance, and the presence of obstacles or 111
safety issues. For example, (1) approaching their destina- 112
tion, a delivery driver may inquire “Where is the loading 113
zone for this building?”; (2) a person meeting a friend in a 114
busy plaza may ask, “I’m looking for the coffee shop; can 115
you describe its storefront so I can more easily spot it?”. 116
(3) a blind traveler’s ride share arrives for pickup at a busy 117
airport and asks, “Can you help me find the silver Toyota 118
Camry with license plate KNI667?”. 119

Indoor exploration. Finally, upon entering a desti- 120
nation, the agent’s role can shift to supporting micro- 121
navigation through complex indoor environments like air- 122
ports, stores, or office buildings. This stage presents a sig- 123
nificant data challenge, as comprehensive visual and map 124
datasets for indoor spaces are rare [13]. For example, (1) 125
a customer trying to find the location of a specific item in 126
a hardware store may ask “Based on the aisle signs, which 127
direction do I go to find the plumbing department?” (2) 128
A low-vision traveler looking at an airport departure board: 129
“Can you tell me which gate Delta Flight 850 is leaving 130
from?”; (3) A wheelchair user in a large convention center: 131
“Can you guide me to the nearest accessible restroom?” 132

Together, these scenarios illustrate how Geo-Visual 133
Agents can transform how we navigate and understand 134
places, enhancing accessibility, offering landmark-based 135
navigation, improving personal safety, and even leading to 136
serendipitous discovery. Below, we describe potential data 137
sources and then outline interaction modalities. 138
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3. Sensing and Data Sources139

The power of a Geo-Visual Agent lies in its ability to syn-140
thesize heterogeneous data sources, fusing visual evidence141
with structured geospatial data to form a holistic and accu-142
rate understanding of a place or route. We focus below on143
geo-related image sources rather than structured GIS data.144

Streetscape Imagery. Street view imagery (SVI) [25,145
37]—such as Google Street View (GSV), Cyclomedia, and146
Mapillary—provide a rich, large-scale image archive of147
the world. GSV alone has over 220 billion images span-148
ning 10 million miles across 100 countries [19]. Such data149
can be used to analyze road conditions [3], street mark-150
ings (crosswalks [2, 34], bike lanes [45]), sidewalk infras-151
tructure (sidewalk material [23], curb ramps [21, 41]), bus152
stops [32], building facades [31], graffiti [52], trees and veg-153
etation [36], neighborhood health indicators [54, 63], and154
more. Primary limitations include image recency [55], oc-155
clusions due to obstructing objects in front of the SVI cam-156
era (e.g., buses) [47], and geographic distribution (images157
are distributed every 10-15 meters along roadways but not158
foot pathways or inside parks or buildings).159

User-Contributed Photos. Place-based platforms like160
Google Places, Yelp, and TripAdvisor contain vast, crowd-161
sourced libraries of photos tied to specific POIs, which pro-162
vide a useful complement to SVI, including building interi-163
ors, curated (business uploaded) shots of storefronts, and164
pictures of menus, food [16], and social activities (e.g.,165
[60])—all which are often accompanied by user-contributed166
text (e.g., reviews). We found, however, that analysis of167
such multimodal data is less common in the literature. The168
key limitation here is data availability, particularly for un-169
popular or recently opened places, and social biases in who170
uploads and why (e.g., see [4, 58]).171

Aerial Imagery. Aerial imagery from satellites, air-172
planes, or drones can provide high-resolution, top-down or173
oblique (45-degree angle) views of spatial structures, in-174
cluding building footprints, parking lots, vegetation, and175
pedestrian infrastructure [24]. While remote sensing and176
photogammetry research has existed for many decades—177
e.g., for land use classification, agriculture, disaster re-178
sponse, and military analyses [29, 59]—such techniques179
have not been applied to the Geo-Visual Agent context180
(e.g., answering queries about parking lot locations, rooftop181
restaurant patios, or unmapped pedestrian shortcuts). Sim-182
ilar to streetscapes, aerial imagery can suffer from occlu-183
sions (from tree cover, clouds), shadows from tall buildings,184
and lack of availability. In the US, high-resolution aerial im-185
agery is often provided by the federal government such as186
USGS [53] and NASA [40].187

Robotic scans. Robots such as autonomous vehicles,188
ground-based delivery robots, and drones [48, 50] infused189
with sensor suites (cameras, LiDAR) can generate high-190
fidelity scans of the environment, producing not just images191

but 3D reconstructions with mensuration [26]. While a po- 192
tentially promising future data source, there is currently a 193
lack of open data and APIs. 194

Infrastructure-based Cameras. Infrastructure-based 195
cameras installed for traffic, weather, security, and safety 196
monitoring provide real-time views of cities and uniquely 197
offer dynamic information about pedestrian and car move- 198
ment, human activity, weather conditions, and transient ob- 199
structions [28, 43, 46]; however, while some camera feeds 200
are open—e.g., DOT traffic cameras—most are not and pri- 201
vacy is a key consideration. Moreover, there is a lack of 202
density and availability (e.g., in rural areas). 203

First-person Camera Streams. Finally, first-person 204
camera streams from AR glasses [12, 33, 62], smartphone 205
cameras [5, 39, 49, 56], and dashcams [42, 57] are criti- 206
cal for in-situ travel stages, offering a real-time, egocen- 207
tric view for navigation, identifying transient obstacles, and 208
reading signs. While primarily used for immediate assis- 209
tance, these streams could also help update or correct exist- 210
ing geospatial datasets in a continuous feedback loop (e.g., 211
[57]). However, key considerations include high computa- 212
tional and power requirements, robust network connectivity, 213
and privacy concerns for both the user and bystanders. 214

4. Processing and Interpreting with AI 215

Our vision relies not just on diverse forms of geospatial im- 216
agery and pre-existing GIS data but also advances in mul- 217
timodal AI (e.g., scene understanding [9, 11], object affor- 218
dances [22, 33], and spatial reasoning [8, 10, 15, 44]) to ex- 219
tract semantic information and object relationships. While 220
some analyses could be pre-computed for known high-value 221
entities (e.g., presence and location of curb ramps [21, 41]), 222
we expect a long-tail of bespoke queries, which will re- 223
quire a Geo-Visual Agent to seek out, analyze, and synthe- 224
size image-based sources with pre-existing metadata in GIS 225
databases in real-time. 226

5. Delivering the Answers 227

Finally, a crucial aspect of our vision is how the agent deliv- 228
ers information, which is a function of the user’s abilities, 229
their current context, and the complexity and type of data. 230
Regardless of delivery mode, agents need to report uncer- 231
tainty and data provenance to build trust and mitigate error. 232

Audio-First Interfaces: For hands-free and/or eyes-free 233
operation—essential for drivers, cyclists, and blind and low 234
vision users—audio interfaces are critical (e.g., using ear- 235
buds or a smart speaker). The challenge, however, is pro- 236
viding well-structured verbal descriptions to convey com- 237
plex visual information without overwhelming the user. 238

Multimodal Interfaces: Agents should also select and 239
show relevant imagery. For instance, after describing an 240
entrance, the agent could display a photo of the door 241

3



ICCV
#*****

ICCV
#*****

ICCV 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(e.g., drawn from SVI or Yelp). The challenge lies in242
the AI’s ability to select the most appropriate photo(s)—243
appropriately cropped—from large archives.244

AI-Generated Abstracted Visualizations: For highly245
complex spatial information, a raw photo or a long verbal246
description may be insufficient. An exciting frontier is the247
agent’s ability to generate simplified, abstract diagrams on248
the fly—akin to a modern LineDrive system [1]. Making249
these abstractions accessible, perhaps tactilely, is also a crit-250
ical area of open research.251

6. Case Study Applications252

To help showcase and concretize our vision, we highlight253
three emerging Geo-Visual Agent prototypes.254

StreetViewAI. Current SVI tools are inaccessible to255
blind users. Our group is addressing this problem through256
the design of StreetViewAI [14] (Figure 1), which uses257
context-aware, real-time AI to support virtually explor-258
ing routes, inspecting destinations, or even remotely vis-259
iting tourist locations such as the Grand Canyon [18].260
StreetViewAI provides accessible interactive controls for261
blind users to pan and move between panoramic images262
and dynamically converse with a live, multimodal AI agent263
about the scene and local geography. In a lab study, blind264
users effectively used StreetViewAI to virtually navigate265
streetscapes. Key challenges: reconciling users’ mental266
models of SVI, a tendency to over-trust AI, and the diffi-267
culty of synthesizing rich visual data into concise audio.268

AI Agent. StreetViewAI employs three separate AI sub-269
systems. Most relevant is the AI Chat Agent, which allows270
for conversational interactions about the user’s current and271
past street views as well as nearby geography. The agent272
uses Google’s Multimodal Live API [20], which supports273
real-time interaction, function calling, and retains memory274
of all interactions within a single session. When the user ini-275
tiates a chat either via typing or speaking, we transmit each276
GSV interaction along with the user’s current view and geo-277
graphic context (e.g., nearby places, current heading). Thus,278
they can ask about local geography, current and past views,279
and object relationships (e.g., “where is the entrance?”).280

Accessibility Scout. Assessing the accessibility of un-281
familiar environments is a critical but often laborious job282
for people with disabilities. While standardized checklists283
exist, they often fail to account for an individual’s unique284
and evolving needs. Accessibility Scout [27] is an LLM-285
based system designed to address this gap by generating286
personalized accessibility scans from images—e.g., from287
TripAdvisor, Yelp, and Airbnb—to identify potential con-288
cerns based on self-reported abilities and interests. In user289
studies, we found that Accessibility Scout’s personalized290
scans were more useful than generic ones and that its col-291
laborative Human-AI approach was effective and built trust.292

AI Agent. The Accessibility Scout pipeline begins by293

creating a structured user model in JSON format, initial- 294
ized from a user’s plain text description of their abilities 295
and preferences. To assess an environment, the agent mim- 296
ics how users assess environmental accessibility by first an- 297
alyzing an image and the user’s intent (e.g., “going on a 298
date”) to identify potential tasks a user might perform, such 299
as “dining” or “toileting”. The agent then decomposes 300
these tasks into primitive motions like “grabbing” that are 301
required to complete them. For each task, the agent ana- 302
lyzes the user model, task information, and segmented im- 303
age to identify and describe environmental concerns. Cru- 304
cially, the system is designed for Human-AI collaboration; 305
users can provide feedback on identified concerns which the 306
agent uses to update the user model. 307

BikeButler. Existing mapping tools define optimal bike 308
routes using objective data like distance and elevation, but 309
often ignore subjective qualities related to a cyclist’s com- 310
fort and perceived safety. However, a desirable bike route 311
depends on factors not found in standard GIS databases, 312
such as the presence of tree-lined streets, pavement qual- 313
ity, or bike lane widths. BikeButler is an early-stage proto- 314
type Geo-Visual Agent that generates personalized cycling 315
routes by fusing structured data from OpenStreetMap with 316
visual analysis of SVI. The system creates routes optimized 317
for a user’s specific profile (e.g., beginner, expert) and al- 318
lows them to rate route segments, creating a feedback loop 319
that refines their preferences for future journeys. 320

7. Discussion and Conclusion 321

In this paper, we introduced our vision for Geo-Visual 322
Agents, dynamic and conversational AI co-pilots that can 323
see and reason about the world in real-time. Our envisioned 324
agents answer nuanced visual questions about the visual 325
world—from a blind user navigating a complex intersec- 326
tion to a cyclist seeking the safest, most pleasant route. Our 327
prototypes offer an initial window into this vision, offering 328
personalized, interactive experiences extending far beyond 329
current mapping services. 330

Still, significant challenges remain, including: (1) Dy- 331
namic information synthesis: creating agents that can intel- 332
ligently select, fuse, and reason over a heterogeneous set 333
of real-time and archived data sources; (2) Trust and trans- 334
parency: communicating uncertainty and data provenance; 335
(3) Speech UIs: effectively verbalizing complex visual in- 336
formation concisely via text or speech; (4) Personalization 337
learning from a user’s unique needs and preferences; (5) 338
Spatial reasoning accurately tracking and modeling spatial 339
relationships between objects; (6) Generative spatial ab- 340
stractions: dynamically generating spatial visualizations to 341
help aid understanding. 342

Addressing these challenges will require a concerted ef- 343
fort across disciplines from computer vision and HCI to ac- 344
cessibility and geospatial science. Join us! 345
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