

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ONE STEP FURTHER WITH MONTE-CARLO SAMPLER TO GUIDE DIFFUSION BETTER

Anonymous authors

Paper under double-blind review

ABSTRACT

Stochastic differential equation (SDE)-based generative models have achieved substantial progress in conditional generation via **training-free** differentiable loss-guided approaches. However, existing methodologies utilizing posterior sampling typically confront a substantial estimation error, which results in inaccurate gradients for guidance and leading to inconsistent generation results. To mitigate this issue, we propose that performing an **additional** backward denoising step and **Monte-Carlo sampling** (ABMS) can achieve better guided diffusion, which is a plug-and-play adjustment strategy. To verify the effectiveness of our method, we provide theoretical analysis and propose the adoption of a *dual-focus evaluation framework*, which further serves to highlight the critical problem of *cross-condition interference* prevalent in existing approaches. We conduct experiments across various task settings and data types, mainly including conditional online handwritten trajectory generation, image inverse problems (inpainting, super resolution and gaussian deblurring) molecular inverse design and so on. Experimental results demonstrate that our approach **can be effectively used with higher order samplers** and consistently improves the quality of generation samples across all the different scenarios.

1 INTRODUCTION

In recent years, with the rapid advancement of diffusion model techniques (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b; Song & Ermon, 2019), conditional diffusion models have emerged as a powerful paradigm in generative AI for solving generative tasks such as high-resolution image synthesis, image restoration, text-to-image generation, 3D shape modeling, molecular design and so on (Dhariwal & Nichol, 2021; Rombach et al., 2022; Zhang et al., 2023; Mardani et al., 2023). By incorporating conditional information (e.g., text descriptions, class labels, degraded images, specific molecular property) into the diffusion process, these models enable fine-grained control over generated outputs. However, despite significant attention, conditional generation still faces a series of challenges in terms of cost and generalizability: typical conditional generation approaches such as classifier guidance (Dhariwal & Nichol, 2021) and classifier-free guidance (Ho & Salimans, 2022) either require additional task-specific training of diffusion models or necessitate training extra noise-compatible conditional discriminators, thus limiting the range of applications. Moreover, for inverse problems that require highly precise conditions, such as the quantum numerical attributes of molecules, the classifier-free paradigm is not applicable.

In this context, a highly versatile approach is the *training-free* guidance methods (Wallace et al., 2023; Chung et al., 2022; Lugmayr et al., 2022; Dou & Song, 2024; Cardoso et al., 2023; Feng et al., 2023) for conditional generation, using off-the-shelf loss guidance during denoising to achieve satisfactory results. These approaches avoid task-specific training or extra conditional networks by directly leveraging pre-defined loss signals, enabling plug-and-play conditional generation across diverse scenarios. Among these methods, DPS (Chung et al., 2023) is a prominent approach leveraging diffusion models to tackle inverse problems, with a series of subsequent improvements. Recent studies (He et al., 2023; Yang et al., 2024) have made some improvements by enforcing manifold preservation during the guidance process, thereby enabling the use of larger guidance step sizes in denoising. This advancement not only accelerates sampling efficiency but also enhances the stability of conditional generation, fostering a stronger alignment between theoretical foundations and practical utility.

Nevertheless, despite recent progress, we observe that the majority of existing methods using the gradient direction delivered by the plain DPS formulation as guidance, suffer from systematically biased gradients. Empirically, *guiding the sample toward one condition frequently perturbs other conditions that are intended to remain decoupled*, revealing an inherent cross-talk implicit in the gradient estimate. Motivated by this observation, we argue that the evaluation of a guidance method must simultaneously account for two facets: (i) the degree of alignment between the generated samples and the target condition, and (ii) the preservation of global properties, *e.g.*, FID for images or molecular stability in drug design. Experiments exhibit the trade-off in practice: as the guidance weight increases, compliance with the specified condition improves at the systematic expense of sample quality, manifested by rising FID or diminished molecular stability. Consequently, reporting only alignment metrics paints an incomplete picture and risks selecting operating points that violate downstream requirements.

Furthermore, we analyze the root cause of the problems in existing methods: the large bias in estimating the conditional expectation. To address this issue, we propose ABMS, a strategy that effectively controls estimation bias through Monte Carlo sampling, yielding more accurate guidance gradients. We demonstrate its effectiveness across multiple tasks and data types. Our contributions are summarized as follows:

- We highlight the limitations of previous methods: the significant estimation error typically results in imprecise guidance gradient, leading to inconsistent generation outcomes.
- We advocate for the dual-focus evaluation framework to better assess guidance-based methods and reveal the severe issue of cross-condition interference in existing methods.
- We analyze the source of the estimation error and propose a simple, plug-and-play improvement strategy ABMS to mitigate its impact and also provide theoretical support.
- Experiments on various tasks and data types demonstrate the generality and effectiveness of the proposed strategy.

2 RELATED WORK

Training-free conditional diffusion sampling. In recent years, the technology of training-free conditional sampling in diffusion models (Wang et al., 2022; Kawar et al., 2022; Chung et al., 2023; 2022; Lugmayr et al., 2022) has witnessed rapid development (Dou & Song, 2024; Cardoso et al., 2023; Feng et al., 2023; Janati et al., 2024). Essentially, these methods enable conditional generation under any differentiable constraint. For example, Red-Diff (Mardani et al., 2023) casts the condition as a differentiable loss and treats the diffusion prior as a regularizer, thereby formulating the problem as an optimization task. Another popular and widely adopted paradigm is Diffusion Posterior Sampling (DPS)(Chung et al., 2023), which is the basic of our method.

As mentioned earlier, the core idea of DPS is to leverage Tweedie’s formula to approximate conditional scores, generalizing linear inverse problem solvers to arbitrary generation tasks. In a series of subsequent works on DPS, LGD-MC (Song et al., 2023) reduces estimation bias by using Monte Carlo sampling from imperfect Gaussian distributions. However, the strong assumption that $p(x_0|x_t)$ follows a Gaussian distribution prevents any increase in sampling steps from adequately capturing the multi-modal distributions in real world scenarios. Other work such as UGD (Bansal et al., 2023) and DiffPIR (Zhu et al., 2023) perform guidance on clean data x_0 followed by projection to intermediate states x_t . Recently, MPGDI (He et al., 2023) enforces guidance within the tangent space of the clean data manifold using autoencoders, improving sample quality at the cost of relying on pre-trained models and linearity assumptions. DSG (Yang et al., 2024), on the other hand, focuses on the high-density regions near the center of the high-dimensional Gaussian distribution, constraining the guidance step within the intermediate data manifold through optimization, and enabling the use of larger guidance steps. However, it is worth noting that the existing improvements to DPS primarily focus on preventing the intermediate data x_t from deviating from the manifold \mathcal{M}_t at time step t , without addressing the issue of the *guidance gradient imprecision* in the plain DPS.

Inference time scale diffusion sampling. Several existing methods enhance sample quality without modifying model parameters by leveraging additional computational cost during sampling(Ma et al., 2025; Zhang et al., 2025; Xu et al., 2023). These methods typically fully exploit the capability of pretrained generative models through noise search or reintroducing noise during the generation

108 process to restart sampling. Motivated by the same principle, our method aims to obtain more
 109 accurate guidance gradients for arbitrary differentiable conditions by increasing appropriate compu-
 110 tational budget.

111

112 3 PRELIMINARY

113 3.1 DIFFUSION MODELS FUNDAMENTALS

116 Diffusion models (Sohl-Dickstein et al., 2015) construct a forward process that gradually adds noise
 117 to data samples through T time steps, then learn to reverse this process for generation. The frame-
 118 work has evolved through two main perspectives: stochastic differential equations (SDEs) (Song
 119 et al., 2021b) and discrete-time Markov chains (Ho et al., 2020).

120

121 **Stochastic differential equation framework.** The continuous-time perspective formulates diffu-
 122 sion through SDEs:

$$123 \quad d\mathbf{x} = h(\mathbf{x}, t)dt + g(t)\mathbf{w}. \quad (1)$$

124 where $h(\cdot)$ is the drift coefficient, $g(t)$ controls noise scaling, and \mathbf{w} denotes Brownian motion
 125 (Anderson, 1982). The reverse process becomes:

$$126 \quad d\mathbf{x} = [h(\mathbf{x}, t) - g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x})]dt + g(t)d\bar{\mathbf{w}}. \quad (2)$$

127 where $\nabla_{\mathbf{x}} \log p_t(\mathbf{x})$ is estimated by a neural network. Various noise schedules yield distinct
 128 forward-noising and reverse trajectories but all are subsumed under Equation 2.

129

130 3.2 TRAINING-FREE GUIDED DIFFUSION

131 **Problem formulation.** Let $\mathbf{x}_0 \in \mathcal{X} \subseteq \mathbb{R}^d$ be the *unknown* clean signal we wish to generate or
 132 recover, and $\mathbf{y} \in \mathcal{Y}$ an *arbitrary conditioning variable* (e.g. a corrupted measurement, categories, or
 133 numerical properties). We assume access to

134

- 135 • a pre-trained diffusion prior $p(\mathbf{x}_0)$ that models the marginal distribution of clean data;
- 136 • a differentiable, plug-and-play loss $\mathcal{L}(\mathbf{x}_0; \mathbf{y})$ defined *on the clean space* \mathcal{X} , which encodes
 137 the conditional likelihood $p(\mathbf{y}|\mathbf{x}_0) \propto \exp(-\mathcal{L}(\mathbf{x}_0; \mathbf{y}))$.

138

Our goal is to sample from the posterior

$$140 \quad p(\mathbf{x}_0|\mathbf{y}) \propto p(\mathbf{x}_0) \exp(-\mathcal{L}(\mathbf{x}_0; \mathbf{y})).$$

141 No retraining or time-dependent classifier is required: guidance is performed by back-propagating
 142 the loss \mathcal{L} at every diffusion time-step, yielding a fully training-free inference pipeline.

143

144 **Diffusion posterior sampling.** Diffusion posterior sampling (DPS) (Chung et al., 2023) casts de-
 145 terministic inverse problems as posterior sampling via the Bayesian identity:

146

$$147 \quad \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|\mathbf{y}) = \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t) + \underbrace{\nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t)}_{\text{intractable}}. \quad (3)$$

148

To sidestep the intractable likelihood score, DPS performs *two successive approximations*.

149

Approximation-1: Factories the likelihood and move the expectation *inside* the loss,

150

$$151 \quad p(\mathbf{y}|\mathbf{x}_t) = \int p(\mathbf{y}|\mathbf{x}_0) p(\mathbf{x}_0|\mathbf{x}_t) d\mathbf{x}_0 \approx p(\mathbf{y}|\mathbb{E}[\mathbf{x}_0|\mathbf{x}_t]). \quad (4)$$

152

Approximation-2: Invoke Tweedie’s formula and replace the posterior mean with the *plug-in* esti-
 153 mate produced by the denoising network $\hat{\mathbf{x}}_0$. Combining the two steps yields the gradient surrogate:

154

$$155 \quad \nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\mathbf{x}_t) \approx \nabla_{\mathbf{x}_t} \log p(\mathbf{y}|\hat{\mathbf{x}}_0(\mathbf{x}_t)). \quad (5)$$

156

157

4 METHOD

158

159

In this part, we first analyze the limitations of current mainstream approaches in Section 4.1 and
 160 propose mitigation strategies. Then, in Section 4.2, we conduct an error analysis, providing a the-
 161 oretical guarantee for the effectiveness of the proposed strategy. Finally, in Section 4.3, we present
 the complete pipeline of the method.

162 4.1 ADDITIONAL BACKWARD STEP WITH MONTE-CARLO SAMPLER
163

164 **The estimation error problem in DPS.** As discussed in Section 3.2, more generally, for any
165 differentiable conditional function $f(x)$, with the conditioning variable y suppressed for notational
166 simplicity: **the core objective** is to estimate $\mathbb{E}_{x_0|x_t}[f(x_0)]$, *i.e.*, the conditional expectation of f
167 evaluated at the clean signal x_0 , given the noisy input x_t . The common approach DPS uses the de-
168 noising network output $\hat{x}_0(x_t)$ to predict x_0 and uses the conditional gradient to guide the diffusion
169 generation process as:

$$170 \quad x_{t-1} \leftarrow x'_{t-1} - \omega_t \nabla_{x_t} f(\hat{x}_0(x_t)), \quad (6)$$

171 where x'_{t-1} is the unconditional update term and ω_t is the guidance scale. However, this single-point
172 approximation fails to account for the inherent uncertainty in $p(x_0|x_t)$ and introduces significant
173 bias, particularly when f is nonlinear (by Jensen’s inequality) and x_t is highly noisy. Crucially,
174 while the target quantity $\mathbb{E}_{x_0|x_t}[f(x_0)]$ depends on the full posterior $p(x_0|x_t)$, this distribution is
175 generally complex and analytically intractable, precluding direct sampling or exact computation.

176 **Leveraging the trackable structure in diffusion backward process.** Fortunately, we notice
177 that the reverse diffusion process defines a Markov chain in which the one-step transition kernel
178 $p(x_{t-1}|x_t)$ can be substituted by an explicitly parameterized Gaussian in practice. This allows us to
179 re-express the desired expectation via the law of total expectation:

$$180 \quad \mathbb{E}_{x_0|x_t}[f(x_0)] = \mathbb{E}_{x_{t-1}|x_t}[\mathbb{E}[f(x_0)|x_{t-1}]].$$

181 Rather than approximating x_0 directly from x_t , our method propagates uncertainty through an inter-
182 mediate step, effectively averaging over multiple plausible denoising paths. Based on this insight,
183 we define the **ABMS** strategy as follows:

- 185 1. Sample M intermediate states: $x_{t-1}^{(m)} \sim p(x_{t-1}|x_t)$ for $m = 1, \dots, M$.
- 186 2. For each $x_{t-1}^{(m)}$, obtain a denoised estimate $\hat{x}_0(x_{t-1}^{(m)})$ using the pretrained denoising network.
- 187 3. Evaluate the conditional function: compute $f(\hat{x}_0(x_{t-1}^{(m)}))$ for each sample.
- 188 4. Average the evaluations:

$$191 \quad \hat{f}_{\text{ABMS}}(M, x_t) = \frac{1}{M} \sum_{m=1}^M f(\hat{x}_0(x_{t-1}^{(m)})). \quad (7)$$

194 Intuitively, by injecting a stochastic intermediate step, ABMS lets the generative network explore
195 multiple plausible denoising trajectories, naturally capturing the multi-modal shape of $p(x_0|x_t)$ in-
196 stead of being trapped in a single point estimation.

197 Furthermore, in the experiment section we also demonstrate the method’s suitability for higher order
198 samplers involving stochasticity, not just for single step updates.

200 4.2 ESTIMATION ERROR ANALYSIS
201

202 We also present a rigorous comparison of the estimation error between the DPS estimator and our
203 ABMS estimator. To establish our theoretical results, we make the following assumptions, which
204 are empirically well-supported and commonly adopted in diffusion modeling:

- 205 **A1.** The conditional function $f : \mathcal{X} \rightarrow \mathbb{R}^d$ is K -Lipschitz continuous and L -Lipschitz gradient.
- 206 **A2.** The accuracy of the denoiser improves monotonically along the reverse diffusion process.
207 Specifically, for any state x_t , the expected reconstruction error satisfies:

$$209 \quad \mathbb{E}_{x_{t-1}|x_t}[\|\hat{x}_0(x_{t-1}) - \mathbb{E}_{x_0|x_{t-1}}[x_0]\|] \leq \|\hat{x}_0(x_t) - \mathbb{E}_{x_0|x_t}[x_0]\|.$$

210 This assumption reflects the intuitive and empirically observed fact that reconstructions
211 from less noisy intermediate states (x_{t-1}) are closer to the true posterior mean than those
212 from noisier states (x_t).

213 Then we can have the following proposition:

214 *Proposition 1: ABMS attains a lower-bounded expected estimation error than plain DPS.*

216 **Proof. Error bound for DPS.** The DPS estimator uses a single reconstruction $\hat{x}_0(x_t)$ to approximate $\mathbb{E}_{x_0|x_t}[f(x_0)]$, yielding:

$$217 \quad \hat{f}_{\text{DPS}} = f(\hat{x}_0(x_t)).$$

218 Its estimation error is bounded by decomposing:

$$\begin{aligned} 219 \quad \|\text{Error}_{\text{DPS}}\| &= \|f(\hat{x}_0(x_t)) - \mathbb{E}_{x_0|x_t}[f(x_0)]\| \\ 220 \quad &\leq \|f(\hat{x}_0(x_t)) - f(\mathbb{E}_{x_0|x_t}[x_0])\| + \underbrace{\|f(\mathbb{E}_{x_0|x_t}[x_0]) - \mathbb{E}_{x_0|x_t}[f(x_0)]\|}_{\text{Jensen gap item: } \delta_f(x_t)} \\ 221 \quad &\leq K \cdot \|\hat{x}_0(x_t) - \mathbb{E}_{x_0|x_t}[x_0]\| + \delta_f(x_t), \end{aligned} \quad (8)$$

222 where $\delta_f(x_t) \geq 0$ known as Jensen gap quantifies the deviation due to the nonlinearity of f , and vanishes only if f is affine.

223 **Error bound for ABMS.** Recalling the ABMS estimator defined in equation 7, as M is large enough, it converges to $\mathbb{E}_{x_{t-1}|x_t}[f(\hat{x}_0(x_{t-1}))]$. Using the Markov property,

$$224 \quad \mathbb{E}_{x_0|x_t}[f(x_0)] = \mathbb{E}_{x_{t-1}|x_t}[\mathbb{E}_{x_0|x_{t-1}}[f(x_0)]],$$

225 the asymptotic estimation error satisfies:

$$\begin{aligned} 226 \quad \|\text{Error}_{\text{ABMS}}\| &= \mathbb{E}_{x_{t-1}|x_t}[\|f(\hat{x}_0(x_{t-1})) - \mathbb{E}_{x_0|x_{t-1}}[f(x_0)]\|] \\ 227 \quad &\leq K \cdot \mathbb{E}_{x_{t-1}|x_t}[\|\hat{x}_0(x_{t-1}) - \mathbb{E}_{x_0|x_{t-1}}[x_0]\|] + \mathbb{E}_{x_{t-1}|x_t}[\delta_f(x_{t-1})]. \end{aligned} \quad (9)$$

228 **Comparison of expected error bounds.** Taking expectation over $x_t \sim p(x_t)$ on both equation 8 and equation 9 yields:

$$229 \quad \mathbb{E}\|\text{Error}_{\text{DPS}}\| \leq K \mathbb{E}\|\hat{x}_0(x_t) - \mathbb{E}_{x_0|x_t}[x_0]\| + \mathbb{E}[\delta_f(x_t)], \quad (10)$$

$$230 \quad \mathbb{E}\|\text{Error}_{\text{ABMS}}\| \leq K \mathbb{E}[\mathbb{E}_{x_{t-1}|x_t}[\hat{x}_0(x_{t-1}) - \mathbb{E}_{x_0|x_{t-1}}[x_0]\|] + \mathbb{E}[\mathbb{E}_{x_{t-1}|x_t}[\delta_f(x_{t-1})]]. \quad (11)$$

231 **Step 1: reconstruction term.** By Assumption 2, we have:

$$232 \quad \mathbb{E}_{x_{t-1}|x_t}[\hat{x}_0(x_{t-1}) - \mathbb{E}_{x_0|x_{t-1}}[x_0]\| \leq \|\hat{x}_0(x_t) - \mathbb{E}_{x_0|x_t}[x_0]\|,$$

233 so the first term in equation 10 which related to reconstruction error is larger than that in equation 11.

234 **Step 2: Jensen-gap term.** According to the L -Lipschitz gradient property in Assumption 1, we can get the upper bound of $\mathbb{E}[\delta_f(x_t)]$ and $\mathbb{E}[\mathbb{E}_{x_{t-1}|x_t}[\delta_f(x_{t-1})]]$ respectively (the proof is provided in Appendix A.1):

$$\begin{aligned} 235 \quad \text{UB}_t &= \frac{1}{2} L \mathbb{E}_{x_t}[\text{Tr}(\text{Cov}_{x_0|x_t}[x_0])], \\ 236 \quad \text{UB}_{t-1} &= \frac{1}{2} L \mathbb{E}_{x_t}[\mathbb{E}_{x_{t-1}|x_t} \text{Tr}(\text{Cov}_{x_0|x_{t-1}}[x_0])]. \end{aligned} \quad (12)$$

237 Law of total covariance gives the identity:

$$238 \quad \text{Cov}_{x_0|x_t}[x_0] = \mathbb{E}_{x_{t-1}|x_t}[\text{Cov}_{x_0|x_{t-1}}[x_0]] + \text{Cov}_{x_{t-1}|x_t}[\mathbb{E}_{x_0|x_{t-1}}[x_0]].$$

239 Taking trace and expectation over x_t and we find that:

$$240 \quad \text{UB}_t - \text{UB}_{t-1} = \frac{1}{2} L \mathbb{E}_{x_t}[\text{Tr}(\text{Cov}_{x_{t-1}|x_t}[\mathbb{E}_{x_0|x_{t-1}}[x_0]])] \geq 0.$$

241 Hence $\text{UB}_{t-1} \leq \text{UB}_t$, showing that the Jensen gap in ABMS contributes to the expected error upper bound is no larger than that of DPS. Combining the two steps, we have proved the original proposition. \square

244 4.3 THE COMPLETE FRAMEWORK OF ABMS GUIDANCE

245 In the preceding sections we introduced the ABMS estimator to obtain a more accurate guidance direction, denoted as g . As regards the scale of the guidance, recall that the posterior $p(x_{t-1}|x_t)$ follows a Gaussian distribution: $p(x_{t-1}|x_t) \sim \mathcal{N}(\mu_\theta(x_t, t), \sigma_t^2 I)$. Inspired by DSG (Yang et al., 2024), for any n -dimensional isotropic Gaussian $x \sim \mathcal{N}(\mu, \sigma^2 I)$, when n is sufficiently large the distribution is concentrated on a hypersphere of radius $\sqrt{n}\sigma$ centred at μ . To prevent the guided

sample from drifting away from the data manifold, we therefore rescale and constrain the magnitude of the guidance vector to lie in this hypersphere: $g' = \omega_t \cdot \sqrt{n\sigma_t} \cdot \frac{g}{\|g\|}$, where $\omega_t \in (0, 1)$ is the guidance rate. We employ a cosine schedule to ensure that ω_t increases smoothly throughout the denoising process and the complete procedure is provided in Algorithm 1.

Algorithm 1 One Guided Diffusion Step of ABMS

Require: $x_t, x_{t-1}^{\text{mean}}, \sigma_t, w_{\max}, f, M, T, n$

- 1: $\text{radius} \leftarrow \sqrt{n} \cdot \sigma_t$ ▷ n denotes dimensionality
- 2: $\mathcal{F} \leftarrow \emptyset$
- 3: **for** $i = 1$ **to** M **do**
- 4: $\varepsilon_t \sim \mathcal{N}(\mathbf{0}, I)$
- 5: $x_{t-1} \leftarrow x_{t-1}^{\text{mean}} + \sigma_t \cdot \varepsilon_t$
- 6: $\hat{x}_0 \leftarrow \text{pred_x0}(x_{t-1})$ ▷ network predicts clean x_0
- 7: $\mathcal{F} \leftarrow \mathcal{F} \cup \{f(\hat{x}_0)\}$
- 8: **end for**
- 9: $\hat{f} \leftarrow \text{average}(\mathcal{F}), g \leftarrow -\nabla_{x_t} \hat{f}$ ▷ ABMS guidance direction
- 10: $\omega_t = \frac{w_{\max}}{2} (1 + \cos(\pi(1 - t/T)))$
- 11: $g' \leftarrow \omega_t \cdot \text{radius} \cdot \frac{g}{\|g\|}$
- 12: $x_{t-1}^{\text{new}} \leftarrow x_{t-1}^{\text{mean}} + g' + \sigma_t \cdot \varepsilon_t$

Ensure: x_{t-1}^{new}

5 EXPERIMENTS

In this section, we evaluate our methods extensively in various tasks, including a dual-conditional generation task (stylized handwritten trajectory generation), three prevalent image inverse problems (inpainting, super resolution and gaussian deblurring), molecular inverse design and text-style guidance. We primarily compare with the current state-of-the-art method, DSG (Yang et al., 2024), which has been proven to effectively prevent the manifold deviation phenomena.

A key aspect of our experimental design is the dual-focus evaluation criterion: simultaneously assessing (1) the consistency of the generated samples with the specified conditions, and (2) the resulting impact on other sample attributes. Below we detail the metric pairs used in each experiment: **content score** vs **style score** in Section 5.1, **distance** vs **FID** in Section 5.2, and **MAE** vs **mol stability** in Section 5.3. [For the analysis of sampling time, please refer to Appendix A.2. For more experiment results, please refer to Appendix A.3.](#)

5.1 STYLIZED HANDWRITTEN CHARACTER GENERATION

Implementation. The goal of this task is to generate Chinese characters with specified *categories* and *writing styles*. Following the setup in (Ren et al., 2025), we use the pretrained diffusion model with dual-conditional generation capabilities. We use the CASIA-OLHWDB (1.0-1.2) dataset (Liu et al., 2011) as the training set and the ICDAR-2013 competition database (Yin et al., 2013) as the test set. We adopt the DDPM sampler with 1000 sampling steps.

For evaluation, we train two classifiers for character categories and handwriting styles on the test set respectively, following the previous work (Ren et al., 2025; Dai et al., 2023). The classification accuracy of the synthesized samples is called the **content score** and the **style score**. Higher scores indicate that the synthesized samples are closer to the real target data.

Cross-condition interference. In an ideal scenario (*i.e.*, on a clean data manifold), the category and writing style are completely decoupled conditions. Therefore, applying a moderate gradient to one condition should not have a negative impact on the other. To this end, we use *only the gradient from category classifier* to guide the diffusion model, while observing any potential impact on the style score. We evaluate performance under varying guidance scales and the number of sampling time M is set to 3 in our ABMS method.

Evaluation results. As shown in Table 1, both the two methods can significantly boost the content score. However, even with a smaller guidance scale, DSG method based on plain DPS gradients still

Figure 1: The visualization comparison results, where different colors represent different strokes. The guidance scale is set as 0.1. It can be observed that, even without manifold deviation, the fonts generated by DSG tend to have **connected strokes**, regardless of the target writing style. On the other hand, our method is able to better preserve the style characteristics.

Table 1: Quantitative evaluation of conditional character generation under different guidance scales.

Method-Scale	No guidance	DSG(0.01)	DSG(0.1)	DSG(0.5)	Ours(0.01)	Ours(0.1)	Ours(0.5)
Content(\uparrow)	0.827	0.927	0.998	0.999	0.981	0.999	0.999
Style(\uparrow)	0.899	0.543	0.534	0.166	0.888	0.878	0.756

exerts a significant influence on style features. In contrast, our method shows substantial improvements in both quantitative and qualitative evaluations. Figure 1 demonstrates that at a guidance scale of 0.1, our proposed method basically maintains the writing style of the synthesized stroke trajectories, while DSG introduces pronounced stylistic distortions in calligraphic consistency.

It is also worth noting that as shown in Figure 2, the content guidance accurately corrects the trajectory structure of the generated characters, verifying the effectiveness of guidance method.

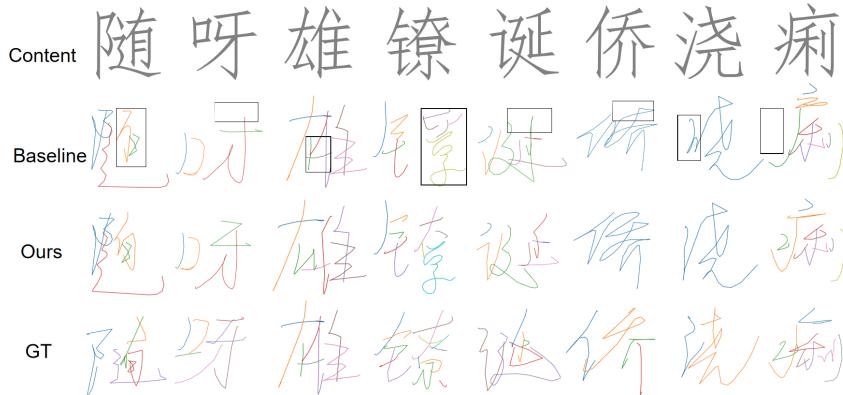


Figure 2: Qualitative result of content guidance. Compared to baseline model, the guidance we applied corrects the detailed strokes of the generated characters, making the character structures more accurate. The parts with structural errors are circled in a black box.

5.2 IMAGE INVERSE PROBLEMS

Implementation. In this part, we investigate three prevalent linear inverse problems of the form $y = Ax + \epsilon$, which including **image inpainting**, **super-resolution**, and **gaussian deblurring**. We evaluate our proposed method on two datasets: 1K images from FFHQ 256×256 (Karras et al., 2019) and ImageNet 256×256 validation dataset (Deng et al., 2009), using pre-trained diffusion models

sourced from (Chung et al., 2023; Dhariwal & Nichol, 2021). For comparison, we select several baseline methods: DPS (Chung et al., 2023), LGD (Song et al., 2023) and DSG (Yang et al., 2024). We adopt the experimental setup from DSG to generate noisy measurements. The loss function guiding the reconstruction process is defined as follows:

$$\mathcal{L}(x_0, y) = \|A\hat{x}_0(x_t) - y\|_2^2, \quad (13)$$

where y represents the noisy measurement, A represents the deterioration model and x_0 denotes the image we aim to reconstruct. For these tasks, we employ DDIM Song et al., 2021a sampler with 100 sampling steps.

For evaluation, as shown in Equation 13, this loss function essentially represents the pixel-wise difference between the generated image and the real ground-truth image after both undergo the same degradation process. We refer to this as the ‘**Distance**’ metric, which is used to evaluate the degree to which the guidance method adheres to the conditions. Additionally, we evaluated image quality metrics including PSNR, SSIM, LPIPS, and FID.

Evaluation results. The quantitative evaluation results for the tasks mentioned above are presented in Table 2. Notably, our method demonstrates consistent performance improvements over baselines across a range of evaluation metrics and task configurations. These results provide empirical support for the feasibility of our proposed modification.

More importantly, following the principle of *dual-focus evaluation*, we measure the performance curves of the Distance vs FID metrics under different guidance scales, as illustrated in Figure 3. Our method achieves a lower Distance while maintaining higher image quality. Due to space limitations, the results for the Gaussian Deblurring task are provided in the Appendix A.3 for reference.

For the case $M = 1$, the resulting curve is visually relatively similar to the initial DSG and is therefore omitted for clarity. It is noteworthy that as the number of sampling steps (see Equation 7) increases, the method exhibits relatively better performance, which aligns with the algorithm’s intuition. Moreover, we observe that the performance gain becomes evident once M reaches 3, and the marginal benefit gradually saturates as M is further increased.

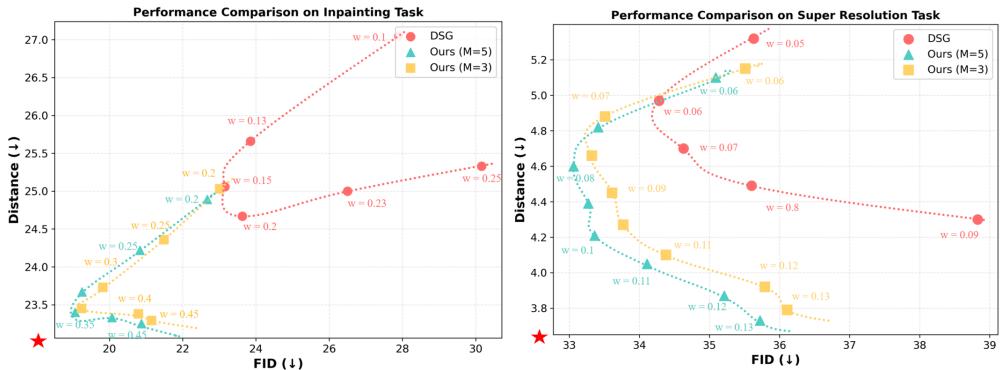


Figure 3: Performance curves of Distance Metric vs FID Metric. We select different guidance scales for each method to obtain performance trend curves. It can be clearly observed that our method achieves a better guidance effect and exhibits greater robustness to the selection of guidance scale.

Table 2: Quantitative image-quality evaluation on Imagnet under the linear inverse problem.

Methods	Inpainting				Super resolution				Gaussian deblurring			
	PSNR↑	SSIM↑	LPIPS↓	FID↓	PSNR↑	SSIM↑	LPIPS↓	FID↓	PSNR↑	SSIM↑	LPIPS↓	FID↓
DPS	27.56	0.825	0.251	30.57	22.07	0.633	0.317	41.36	18.78	0.387	0.523	52.13
LGD	27.78	0.824	0.242	28.65	22.23	0.631	0.305	39.85	19.52	0.452	0.501	50.42
DSG	28.67	0.877	0.176	23.63	23.74	0.696	0.291	34.28	22.64	0.644	0.335	45.27
Ours	29.23	0.889	0.154	19.25	23.80	0.697	0.290	33.06	22.65	0.645	0.321	41.65

432 5.3 MOLECULAR INVERSE DESIGN
433

434 **Implementation.** Inverse molecular design aims to generate 3D molecular structures that ex-
435 hibit desired quantum properties. Following the settings in EDM (Hoogeboom et al., 2022) and
436 EEGSDE (Bao et al., 2022), we adopt the QM9 (Ramakrishnan et al., 2014) dataset, which contains
437 $\sim 130k$ organic molecules with up to nine heavy atoms (C, N, O, F) and their corresponding quantum
438 properties. Six properties are selected: polarizability (α), dipole moment (μ), HOMO/LUMO
439 energies (ϵ_{HOMO} , ϵ_{LUMO}), HOMO-LUMO gap ($\Delta\epsilon$), and heat capacity at constant volume (C_v). All
440 experiments are conducted with the pre-trained EEGSDE model. More specifically, for each prop-
441 erty, two separate predictors are needed: (i) a time-dependent, noise-robust predictor $g_\phi(x_t, t)$ used
442 by EEGSDE to guide the diffusion process, and (ii) an evaluation predictor $\varphi_p(x_0)$, which has been
443 trained on clean data only used to assess the generated molecules. In Table 3, “L-bound” represents
444 the MAE error of the evaluation predictor on the test data.

445 The baseline conditional EDM (cEDM) receives the desired property as an additional input during
446 training to learn a conditional generative model without guidance. Based on EDM, EEGSDE incor-
447 porates an equivariant energy function $E(x_t, c, t) = s(g_\phi(x_t, t) - c)^2$ into the reverse-time SDE,
448 where s is a tunable scale and c is the desired quantum property. For EEGSDE, since g_ϕ must be
449 robust to noise, it is conditioned on both the perturbed coordinates x_t and the time step t . In contrast,
450 our training-free approach only requires a predictor defined on clean data ($t = 0$). However, *for a*
451 *fair comparison, we reuse the EEGSDE-trained g_ϕ , but freeze $t = 0$ when providing guidance.*

452
453 Table 3: Quantitative Evaluation of Molecular Property Prediction. MAE represents the numerical
454 discrepancy between the specific properties of generated molecules and the target conditions, while
455 MS denotes the molecular stability index.

Method	MAE (\downarrow)	MS (\uparrow)	Method	MAE (\downarrow)	MS (\uparrow)	Method	MAE (\downarrow)	MS (\uparrow)
C_v								
CEDM	1.0650	–	CEDM	1.1230	–	CEDM	2.7804	–
EEGSDE	0.9187	0.7836	EEGSDE	0.7518	0.8036	EEGSDE	2.4133	0.7954
DSG	0.8447	0.7654	DSG	0.7811	0.8001	DSG	2.1919	0.7863
Ours($M = 3$)	0.8348	0.7718	Ours($M = 3$)	0.7274	0.8059	Ours($M = 3$)	2.1001	0.7745
L-bound	0.0400	–	L-bound	0.0430	–	L-bound	0.0900	–
$\Delta\epsilon$								
ϵ_{HOMO}								
CEDM	0.6710	–	CEDM	0.3714	–	CEDM	0.6015	–
EEGSDE	0.4854	0.7572	EEGSDE	0.2997	0.7890	EEGSDE	0.4450	0.8000
DSG	0.4558	0.7890	DSG	0.2673	0.7854	DSG	0.3969	0.8081
Ours($M = 3$)	0.4182	0.7909	Ours($M = 3$)	0.2449	0.7872	Ours($M = 3$)	0.3778	0.8181
L-bound	0.0650	–	L-bound	0.0390	–	L-bound	0.0360	–
ϵ_{LUMO}								

471 For evaluation, we still adhere to the principle of *dual-focus evaluation*, assessing both the metric
472 of Molecular Property Deviation from Conditions (MAE) and the Molecular Stability (MS) metric.
473 More specifically, we observe that for each method, as the guidance scale increases, the MAE metric
474 gradually decreases, but this may be accompanied by a decline in the MS metric. Therefore, we first
475 reproduced the parameters of EEGSDE, and then adjusted the guidance scales of the DSG and
476 ABMS methods until their MS metrics either outperformed EEGSDE’s or differed by no more than
477 2% before comparing their MAE metrics.

478 **Evaluation Results.** As shown in Table 3, under the condition of comparable molecular stability
479 (MS), our method achieves superior MAE metrics across six distinct conditional molecular inverse
480 design tasks. This further demonstrates that our method can provide more accurate conditional guid-
481 ance compared to existing methods. It can be observed that tasks conditioned on precise numerical
482 values exhibit significantly degraded performance when guidance is absent, corroborating the neces-
483 sity of explicit guidance mechanisms. Moreover, we emphasize that our framework only requires a
484 property predictor defined on clean data; for fair comparison, we reused the noise-robust predictor
485 trained by EEGSDE, which may partially limit the achievable performance.

486
487

5.4 SCALING UP TEXT STYLE GUIDANCE

488
489
490
491
492
493

To thoroughly validate the generalizability of our method, We conduct experiments on diffusion model of **larger scale** and **distinct training strategy**. Specifically, we perform text-style guidance task and adopt Stable Diffusion 3.5 (Rombach et al., 2022; Esser et al., 2024) as the generative diffusion prior, which is a *“flow matching”* Lipman et al., 2022; Liu et al., 2022 based model and receives a piece of text description as input. We adopt the method proposed in (Liu et al., 2025) to enable SDE sampling. We apply the style loss for guidance, which is defined as:

494

$$\mathcal{L}(\hat{x}_0(x_t), x_{in}) = \|E(\hat{x}_0(x_t)) - E(x_{in})\|_2^F, \quad (14)$$

495
496
497
498
499
500
501
502

where x_{in} is the style reference image, E represents the Gram matrix of the third feature map extracted from the CLIP image encoder (Radford et al., 2021), and $\|\cdot\|_2^F$ denotes the Frobenius norm. The size of the generated images is 512×512. Figures 4 presents the visual results of our method with $M = 3$ compared to the baseline method. As can be seen, our method also achieves satisfying performance on flow matching based models and produces clearer and much higher image quality while ensuring adherence to the conditional guidance. This is because more accurate guidance gradients enable the generation process to satisfy the conditions as much as possible while not undermining the prior diffusion capabilities.

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Figure 4: Qualitative result of Text-style guidance, the text input is “A corgi wearing a wizard hat”. Our method generates much clearer and higher quality results than the baseline method across all the target style.

6 CONCLUSION & DISCUSSION

In this paper, we propose a simple plug-and-play strategy ABMS to improve the existing DPS-based guidance methods and a dual-focus evaluation paradigm to offer a more discerning assessment of guidance methodologies. To mitigate the giant estimation error when calculating the guidance gradient, we demonstrate that the strategy of performing an additional denoising step with Monte-Carlo sampling can reduce the variance interference, effectively improves the performance.

Limitation and future work. Although the proposed method has demonstrated its efficacy in integrating and enhancing existing approaches, constrained by computational resources, we have yet to systematically investigate whether further increasing the number of reverse diffusion steps or the sampling budget yields additional gains across diverse scenarios. Additionally, how the proposed methodology can be adapted to paradigms that enable very few-step generation is also an open question. These will be exciting directions for future work.

540 7 ETHICS STATEMENT.
541542 This paper focuses on the research of general artificial intelligence technology, specifically the gen-
543 erative diffusion models, and does not involve ethic issues.
544545 8 REPRODUCIBILITY STATEMENT.
546547 For a fair comparison, all the experiments mentioned strictly follow the framework, data, and pre-
548 trained diffusion models from existing articles, with corresponding references provided in the main
549 text. Additionally, our codes are available at <https://anonymous.4open.science/r/ABMS-225E>.
550552 REFERENCES
553554 Brian DO Anderson. Reverse-time diffusion equation models. *Stochastic Processes and their Ap-*
555 *plications*, 12(3):313–326, 1982.
556557 Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum, Jonas
558 Geiping, and Tom Goldstein. Universal guidance for diffusion models. *CVPR*, 2023.
559560 Fan Bao, Min Zhao, Zhongkai Hao, Peiyao Li, Chongxuan Li, and Jun Zhu. Equivariant energy-
561 guided sde for inverse molecular design. *arXiv preprint arXiv:2209.15408*, 2022.
562563 Gabriel Cardoso, Yazid Janati El Idrissi, Sylvain Le Corff, and Eric Moulines. Monte carlo guided
564 diffusion for bayesian linear inverse problems. *arXiv preprint arXiv:2308.07983*, 2023.
565566 Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models for
567 inverse problems using manifold constraints. *NeurIPS*, 2022.
568569 Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
570 posterior sampling for general noisy inverse problems. *ICLR*, 2023.
571572 Gang Dai, Yifan Zhang, Qingfeng Wang, Qing Du, Zhuliang Yu, Zhuoman Liu, and Shuangping
573 Huang. Disentangling writer and character styles for handwriting generation. *CVPR*, 2023.
574575 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
576 hierarchical image database. *CVPR*, 2009.
577578 Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin
579 loss for deep face recognition. *CVPR*, 2019.
580581 Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis. *NeurIPS*, 2021.
582583 Zehao Dou and Yang Song. Diffusion posterior sampling for linear inverse problem solving: A
584 filtering perspective. *ICLR*, 2024.
585586 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
587 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
588 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
2024.
589590 Berthy T Feng, Jamie Smith, Michael Rubinstein, Huiwen Chang, Katherine L Bouman, and
591 William T Freeman. Score-based diffusion models as principled priors for inverse imaging.
592 *CVPR*, 2023.
593594 Yutong He, Naoki Murata, Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Dongjun Kim, Wei-
595 Hsiang Liao, Yuki Mitsufuji, J Zico Kolter, Ruslan Salakhutdinov, et al. Manifold preserving
596 guided diffusion. *arXiv preprint arXiv:2311.16424*, 2023.
597598 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint*
599 *arXiv:2207.12598*, 2022.
600

594 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *NeurIPS*,
 595 2020.

596

597 Emiel Hoogeboom, Víctor García Satorras, Clément Vignac, and Max Welling. Equivariant diffu-
 598 sion for molecule generation in 3d. In *International conference on machine learning*, pp. 8867–
 599 8887. PMLR, 2022.

600

601 Yazid Janati, Badr Moufad, Alain Durmus, Eric Moulines, and Jimmy Olsson. Divide-and-conquer
 602 posterior sampling for denoising diffusion priors. *Advances in Neural Information Processing
 603 Systems*, 2024.

604

605 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 606 adversarial networks. *CVPR*, 2019.

607

608 Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
 609 models. *Advances in Neural Information Processing Systems*, 35:23593–23606, 2022.

610

611 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 612 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

613

614 Cheng-Lin Liu, Fei Yin, Da-Han Wang, and Qiu-Feng Wang. Casia online and offline chinese
 615 handwriting databases. *Icdar*, 2011.

616

617 Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan,
 618 Di Zhang, and Wanli Ouyang. Flow-grpo: Training flow matching models via online rl. *arXiv
 619 preprint arXiv:2505.05470*, 2025.

620

621 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 622 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

623

624 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
 625 ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in neural
 626 information processing systems*, 35:5775–5787, 2022.

627

628 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
 629 solver for guided sampling of diffusion probabilistic models. *Machine Intelligence Research*, pp.
 630 1–22, 2025.

631

632 Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
 633 Repaint: Inpainting using denoising diffusion probabilistic models. *CVPR*, 2022.

634

635 Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan Yang,
 636 Yandong Li, Tommi Jaakkola, Xuhui Jia, et al. Scaling inference time compute for diffusion
 637 models. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 2523–
 638 2534, 2025.

639

640 Morteza Mardani, Jiaming Song, Jan Kautz, and Arash Vahdat. A variational perspective on solving
 641 inverse problems with diffusion models. *arXiv preprint arXiv:2305.04391*, 2023.

642

643 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 644 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 645 models from natural language supervision. *ICML*, 2021.

646

647 Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
 648 chemistry structures and properties of 134 kilo molecules. *Scientific data*, 1(1):1–7, 2014.

649

650 Min-Si Ren, Yan-Ming Zhang, and Yi Chen. Decoupling layout from glyph in online chinese hand-
 651 writing generation. *ICLR*, 2025.

652

653 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 654 resolution image synthesis with latent diffusion models. *CVPR*, 2022.

655

656 Jascha Sohl-Dickstein, Eric A Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
 657 vised learning using nonequilibrium thermodynamics. *arXiv preprint arXiv:1503.03585*, 2015.

648 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *ICLR*,
 649 2021a.

650

651 Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mardani, Ming-Yu Liu, Jan Kautz, Yongxin
 652 Chen, and Arash Vahdat. Loss-guided diffusion models for plug-and-play controllable generation.
 653 *ICML*, 2023.

654 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 655 *NeurIPS*, 32, 2019.

656

657 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 658 Poole. Score-based generative modeling through stochastic differential equations. *ICLR*, 2021b.

659 Bram Wallace, Akash Gokul, Stefano Ermon, and Nikhil Naik. End-to-end diffusion latent opti-
 660 mization improves classifier guidance. *ICCV*, 2023.

661

662 Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion
 663 null-space model. *arXiv preprint arXiv:2212.00490*, 2022.

664 Yilun Xu, Mingyang Deng, Xiang Cheng, Yonglong Tian, Ziming Liu, and Tommi Jaakkola. Restart
 665 sampling for improving generative processes. *Advances in Neural Information Processing Sys-
 666 tems*, 36:76806–76838, 2023.

667

668 Lingxiao Yang, Shutong Ding, Yifan Cai, Jingyi Yu, Jingya Wang, and Ye Shi. Guidance with
 669 spherical gaussian constraint for conditional diffusion. *ICML*, 2024.

670 Fei Yin, Qiu-Feng Wang, Xu-Yao Zhang, and Cheng-Lin Liu. Icdar 2013 chinese handwriting
 671 recognition competition. *Icdar*, 2013.

672

673 Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and Jian Zhang. Freedom: Training-free
 674 energy-guided conditional diffusion model. *ICCV*, 2023.

675 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 676 diffusion models. *ICCV*, 2023.

677

678 Tao Zhang, Jia-Shu Pan, Ruiqi Feng, and Tailin Wu T-scend. Test-time scalable mcts-enhanced
 679 diffusion model. *arXiv preprint arXiv:2502.01989*, 2025.

680

681 Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezhang Cao, Bihan Wen, Radu Timofte, and Luc
 682 Van Gool. Denoising diffusion models for plug-and-play image restoration. *CVPR*, 2023.

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A APPENDIX**
703704 **A.1 ADDITIONAL PROOF**
705706 **Lemma 1** (Jensen Gap Upper Bound). *Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be a continuously differentiable function
707 with L -Lipschitz gradient, i.e.,*

708
$$\|\nabla f(u) - \nabla f(v)\| \leq L\|u - v\| \quad \forall u, v \in \mathbb{R}^d. \quad (15)$$

709

710 *Then for any random variable X with finite second moment, the Jensen gap satisfies:*
711

712
$$\delta_f(x) := f(\mathbb{E}[X|x]) - \mathbb{E}[f(X|x)] \leq \frac{L}{2} \text{Tr}(\text{Cov}[X|x]). \quad (16)$$

713

714 *Proof.* We proceed by Taylor expansion and the Lipschitz gradient property.
715716 **Step 1: Second-order Taylor expansion.** Expanding f around $\mathbb{E}[X|x]$ with remainder term:
717

718
$$\begin{aligned} f(X) &= f(\mathbb{E}[X|x]) + \nabla f(\mathbb{E}[X|x])^\top (X - \mathbb{E}[X|x]) \\ &\quad + \int_0^1 (1-s)(X - \mathbb{E}[X|x])^\top \nabla^2 f(\mathbb{E}[X|x] + s(X - \mathbb{E}[X|x]))(X - \mathbb{E}[X|x]) ds. \end{aligned} \quad (17)$$

719
720
721
722

723 **Step 2: Taking conditional expectation.** Taking $\mathbb{E}[\cdot|x]$ on both sides of equation 17:
724

725
$$\begin{aligned} \mathbb{E}[f(X)|x] &= f(\mathbb{E}[X|x]) + \nabla f(\mathbb{E}[X|x])^\top \mathbb{E}[X - \mathbb{E}[X|x]|x] \\ &\quad + \mathbb{E} \left[\int_0^1 (1-s)(X - \mathbb{E}[X|x])^\top \nabla^2 f(\cdot)(X - \mathbb{E}[X|x]) ds \middle| x \right]. \end{aligned} \quad (18)$$

726
727
728
729

730 The second term vanishes since $\mathbb{E}[X - \mathbb{E}[X|x]|x] = 0$. Thus:
731

732
$$\delta_f(x) = f(\mathbb{E}[X|x]) - \mathbb{E}[f(X)|x] = -\mathbb{E} \left[\int_0^1 (1-s)(X - \mathbb{E}[X|x])^\top \nabla^2 f(\cdot)(X - \mathbb{E}[X|x]) ds \middle| x \right]. \quad (19)$$

733
734

735 **Step 3: Bounding the Hessian norm.** The L -Lipschitz gradient property implies that for any
736 $u, v \in \mathbb{R}^d$:

737
$$\|\nabla f(u) - \nabla f(v)\| \leq L\|u - v\|. \quad (20)$$

738 This ensures that the Hessian (in the sense of weak derivatives) satisfies the spectral bound:
739

740
$$\|\nabla^2 f(u)\| \leq L, \quad (21)$$

741 where $\|\cdot\|$ denotes the operator norm (largest eigenvalue).
742743 **Step 4: Upper bounding the quadratic form.** For any vector $v \in \mathbb{R}^d$:

744
$$\begin{aligned} v^\top \nabla^2 f(u)v &\leq \|\nabla^2 f(u)\| \|v\|^2 \\ &\leq L\|v\|^2. \end{aligned} \quad (22)$$

745
746
747

748 Therefore:
749

750
$$(X - \mathbb{E}[X|x])^\top \nabla^2 f(\cdot)(X - \mathbb{E}[X|x]) \leq L\|X - \mathbb{E}[X|x]\|^2. \quad (23)$$

751

752 **Step 5: Taking expectation.** Applying conditional expectation:
753

754
$$\begin{aligned} \mathbb{E} \left[(X - \mathbb{E}[X|x])^\top \nabla^2 f(\cdot)(X - \mathbb{E}[X|x]) \middle| x \right] &\leq L \mathbb{E} \left[\|X - \mathbb{E}[X|x]\|^2 \middle| x \right] \\ &= L \text{Tr}(\text{Cov}[X|x]). \end{aligned} \quad (24)$$

755

756 **Step 6: Final bound.** Substituting back into equation 19:

$$\begin{aligned}
 758 \quad |\delta_f(x)| &\leq \mathbb{E} \left[\int_0^1 (1-s)L\|X - \mathbb{E}[X|x]\|^2 ds \middle| x \right] \\
 759 \quad &= L \operatorname{Tr}(\operatorname{Cov}[X|x]) \int_0^1 (1-s) ds \\
 760 \quad &= \frac{L}{2} \operatorname{Tr}(\operatorname{Cov}[X|x]). \tag{25}
 \end{aligned}$$

761 This completes the proof. \square

766 A.2 SAMPLING TIME OVERHEAD ANALYSIS

768 In practical applications, as shown in the experiment section we have found that a small number
 769 of Monte-Carlo sampling times already yields satisfactory results. To save computational time, we
 770 notice that computing the gradients with respect to multiple samples x_{t-1} can be parallelized. We
 771 generally can choose the largest possible number of samples to ensure parallelization. In this case,
 772 Table 4 reports the number of diffusion-model denoising iterations completed per second under
 773 different values of M for the image inverse problem.

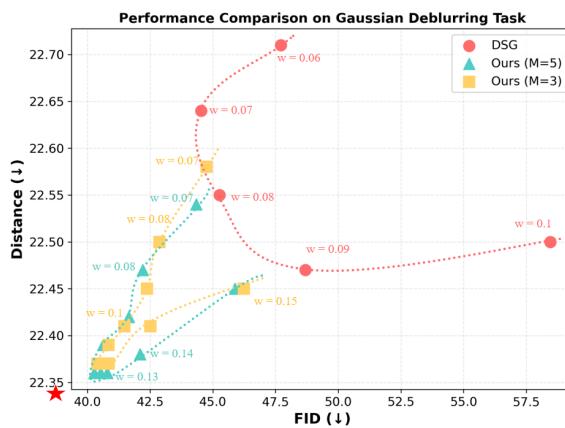
774 In addition, a variety of acceleration techniques have been developed to speed up sampling in diffusion
 775 models (Song et al., 2021a; Lu et al., 2022; 2025; Lipman et al., 2022). Among them, DDIM
 776 and flow matching approaches can introduce stochasticity at every sampling step, we have therefore
 777 verified experimentally that our method remains compatible with these strategies, rendering the
 778 resulting computational overhead entirely acceptable.

780 **Table 4: The inference time cost for different M .**

DPS/DSG	ABMS($M = 1$)	ABMS($M = 2$)	ABMS($M = 3$)	ABMS($M = 4$)	ABMS($M = 5$)
4.8 iter/s	2.5 iter/s	2.1 iter/s	1.7 iter/s	1.5 iter/s	1.3 iter/s

785 A.3 ADDITIONAL EXPERIMENT RESULTS

787 In this section, we present some additional experimental results. Figure 5 displays the experimental
 788 results for the Gaussian deblurring task discussed in the main text. We also provide the visualization
 789 of the linear inverse problems as shown in Figure 6. It can be observed that our improved strategy
 790 exhibits fewer artifacts and enhances the image quality.



807 **Figure 5: Performance curves of Distance Metric vs FID Metric on Gaussian Deblurring task.**

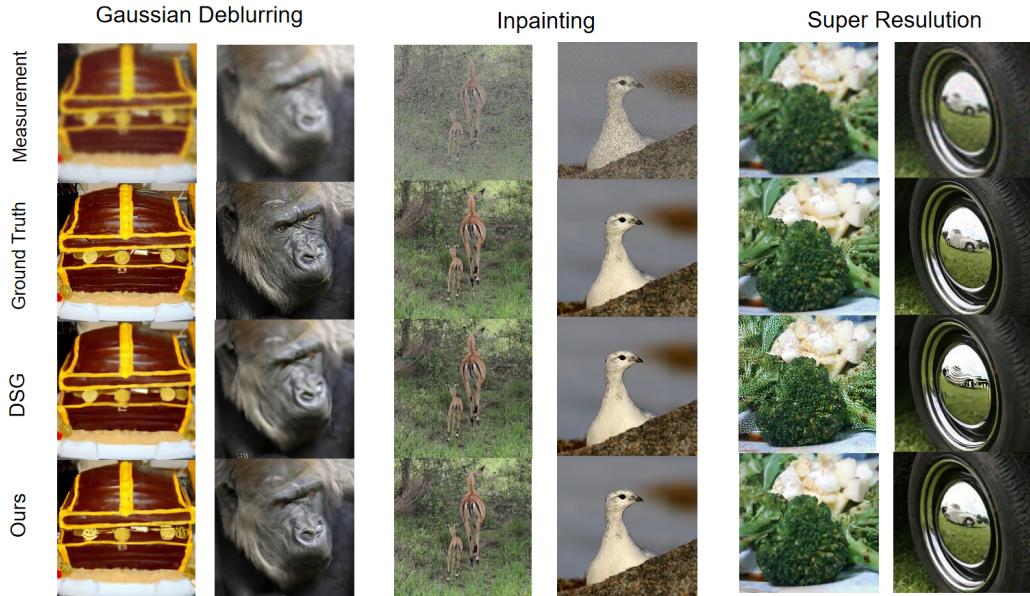
808 We also evaluate our proposed methods on another nonlinear task: **FaceID guidance**. We utilize the
 809 pre-trained diffusion model from CelebA-HQ 256×256, provided by Freedom (Yu et al., 2023). We

810 pick 1000 samples from the FFHQ test set (Karras et al., 2019) as the reference images. To guide
 811 the process for an input reference image I , we apply the FaceID loss, which is defined as:
 812

$$\mathcal{L}(\hat{x}_0(x_t), I) = CE(E(\hat{x}_0(x_t)), E(I)), \quad (26)$$

814 where $E(\cdot)$ denotes the face recognition network (Deng et al., 2019) and CE represents the Cross-
 815 Entropy Loss. We employ the DDIM sampler with 100 sampling steps.
 816

817 Figures 7 presents the visual results of our method compared to other approaches. As can be seen,
 818 our method produces clearer details and higher image quality while ensuring adherence to the
 819 conditional guidance.
 820



842 Figure 6: Qualitative result of linear inverse problems. Compared to existing methods, our improve-
 843 ments slightly enhance the image quality.
 844

862 Figure 7: Qualitative result of FaceID guidance. Compared with existing methods, our improved
 863 approach generates more smooth results and is less likely to produce incoherent regions.
 864