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Figure 1: (a) MeshCoder can predict codes and reconstruct 41 categories of objects. (b) MeshCoder
takes in point clouds and produce part-segmented meshes by executing the predicted code in Blender.
For the dishwasher, we apply transparency to the foremost part to showcase the internal structure.

Abstract

Reconstructing 3D objects into editable programs is pivotal for applications like
reverse engineering and shape editing. However, existing methods often rely on
limited domain-specific languages (DSLs) and small-scale datasets, restricting
their ability to model complex geometries and structures. To address these chal-
lenges, we introduce MeshCoder, a novel framework that reconstructs complex
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3D objects from point clouds into editable Blender Python scripts. We develop
a comprehensive set of expressive Blender Python APIs capable of synthesizing
intricate geometries. Leveraging these APIs, we construct a large-scale paired
object-code dataset, where the code for each object is decomposed into distinct
semantic parts. Subsequently, we train a multimodal large language model (LLM)
that translates 3D point cloud into executable Blender Python scripts. Our ap-
proach not only achieves superior performance in shape-to-code reconstruction
tasks but also facilitates intuitive geometric and topological editing through conve-
nient code modifications. Furthermore, our code-based representation enhances
the reasoning capabilities of LLMs in 3D shape understanding tasks. Together,
these contributions establish MeshCoder as a powerful and flexible solution for
programmatic 3D shape reconstruction and understanding. Project homepage:
https://daibingquan.github.io/MeshCoder,

1 Introduction

Inferring shape programs from 3D observations is of great importance for reverse engineering, shape
editing, and 3D structure understanding. Prior work [1} 12} 3] has explored this problem by defining
Domain-Specific Languages (DSLs) to model geometric and structural properties of objects and
training neural networks to map 3D observations to shape programs. However, existing methods
struggle to generalize to objects with complex geometry and structure. Two key limitations underlie
this gap. First, existing DSLs are constrained to modeling simple primitives (e.g., cubes, spheres,
cylinders) and cannot represent real-world objects with intricate parts. Second, training shape-to-code
inference models demands large-scale paired datasets of 3D objects and their corresponding code,
while such datasets are scarce. Prior work often relies on datasets with limited categories, geometric
complexity and part count.

To address these challenges, we introduce MeshCoder, a novel framework for generating Blender
Python scripts that reconstruct complex 3D objects into their constituent parts. First, we design a set of
expressive Blender Python APIs that are capable of synthesizing intricate geometries beyond simple
primitives. For instance, our APIs can create complex shapes by translating a 2D section curve along
a specified trajectory, bridging section curves of different shapes, adding bevels or applying Boolean
operations on basic shapes, repeating a basic shape in one dimension or two dimensions. With these
concise yet powerful Blender Python APIs, we can model highly complex shapes, addressing the
limitations of prior DSLs.

Second, we present a novel pipeline to construct a large-scale paired object-code dataset. We begin
by synthesizing diverse object parts using our APIs with parametrically sampled parameters, yielding
a part-level dataset. A part-to-code inference model is then trained on this dataset to predict code
for individual parts. Next, we employ this model to construct a holistic object-code dataset. We
use Infinigen-Indoor [4] to generate a dataset of objects, and each object is decomposed into its
constituent parts. We use the part-to-code inference model to predict code for each part of an object,
and then carefully design rules to concatenate code of all parts to obtain code of the object. This
process yields a dataset of approximately 1 million objects spanning 41 categories, with objects
up to more than 100 parts. Finally, we train a multimodal large language model (LLM) on this
dataset to infer code from 3D objects. We use point clouds as 3D shape representations due to their
ease of acquisition, and use a triplane-based tokenizer to transform the input point cloud to a set
of fixed-length tokens. These tokens are fed into the LLM to generate Blender Python scripts that
replicate input geometries in distinct semantic parts.

We evaluate our approach against existing shape-to-code methods, with experimental results and
quantitative metrics demonstrating that our framework significantly outperforms prior work. Fur-
thermore, by representing shapes as executable code, our method facilitates intuitive geometric and
topological editing through simple code modifications. This capability enables precise alterations to
object geometry and mesh topology, enhancing flexibility in downstream applications. Additionally,
we conduct experiments on shape structural and geometric understanding tasks, revealing that our
code-based representation improves the reasoning capabilities of large language models (LLMs)
when interpreting 3D shapes. In summary, our contributions are outlined as follows:
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* We have developed a comprehensive set of Blender Python APIs, facilitating the modeling
of intricate geometries. This enhanced API suite empowers the procedural generation of
complex 3D structures, effectively addressing the limitations of traditional domain-specific
languages (DSLs) in representing detailed and varied shapes.

* We propose a pipeline to construct a large-scale paired object-code dataset. Using the dataset
we constructed, we can train an shape-to-code inference model.

* We trained MeshCoder, an Object-to-Code inference framework that generates Blender
Python scripts to reconstruct 3D meshes from point clouds in a structured and editable
manner. Our model encodes 3D shapes into part-level code, simplifying mesh editing and
enhancing LLMs’ understanding of 3D objects.
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from bpy_lib import *
#.... (code ignored) create_curve(name="‘seat_11’, control_points=[[-0.0,
# object name: chair -0.05, -0.22], .., [-0.0, -0.05, -0.22]],
# part_1: leg handle_type=[0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, O,
create_primitive(name='leg_1", 0, 1, 1, o, 0])
primitive_type='cylinder', location=[-0.19, -0.25, fill_grid(name='seat_11', thickness=0.0796)
0.21], scale=[0.03, 0.03, 0.25], rotation=[0.31, bevel(name="seat_11', width=0.04, segments=1)
0.23, -0.61, 0.7]) o
#.... # part_14: back decoration
# part_5: leg decoration create_primitive(name='back decoration_14',
create_primitive(name='leg decoration_5', primitive_type='cube', location=[-0.0, 0.45, -
primitive_type='cylinder', location=[-0.16, -0.22, |0.25], scale=[0.15, 0.05, 0.03], rotation=[0.0, -
-0.0], scale=[0.03, 0.03, 0.21], rotation=[0.24, 0.0, -1.0, 0.06])
0.07, -0.02, -0.97]) bevel(name='back decoration_14', width=0.21,
Hos segments=2)

# part_11: seat

Figure 2: Overview of MeshCoder. The input point cloud is first encoded into shape tokens via a
shape tokenizer. These tokens are then fed into a large language model (LLM), which autoregressively
generates executable code representing part-based 3D structures. The decoded code specifies object’s
name, part identities and names, enabling interpretable and modular reconstruction.

2 Related Work

Shape programs. Shape programs provide a structured and interpretable framework for representing
3D geometry by utilizing domain-specific languages to describe the generative processes of shapes.
Early work such as ShapeAssembly [J5] introduced explicit shape programs that capture the hier-
archical and part-based organization of objects. Subsequent methods, including ShapeCoder [6],
PLAD [2]], and ShapeLib [7]], progressively improved program abstraction, learning efficiency, and
scalability with large language models. Other approaches, such as those proposed by Liang [3]]
and Tian et al. [1]], incorporate differentiable rendering or neuro-symbolic reasoning to enhance
program inference and execution. While these methods exhibit strong generalization capabilities in
composing simple geometric elements like boxes and cylinders, they often struggle to model complex
part geometries or generate artist-grade quad meshes, which restricts their application in high-fidelity
asset creation. In addition, a range of methods in CAD program generation [8 9} [10} [11} [12} [13]] have
explored synthesizing code representations for individual CAD parts. However, these approaches
are limited to isolated component generation and lack the capability to model complete multi-part
objects with coherent structural relationships.

Part-based Representation. Part-based representations have proven highly valuable in 3D shape
analysis and synthesis. Some approaches [14} [15} [16} (17, [18L 19} 20, 21} 22, 23] take a generative
approach, assembling objects by combining predefined or learned parts into complete 3D structures.
Other methods [24, 25| 26} 277, 28| 29, 130, 31}, 32} [33} [34} 135] focus on segmenting 3D objects



into individual parts, enabling more modular and flexible manipulation of shapes. For instance,
SAMPart3D [24] introduces a scalable zero-shot 3D part segmentation framework that segments any
3D object into semantic parts at multiple granularities without requiring predefined part label sets as
text prompts. PartSLIP [28]] explores low-shot part segmentation of 3D point clouds by leveraging
a pretrained image-language model, GLIP, transferring rich knowledge from 2D to 3D through
GLIP-based part detection on point cloud rendering and a novel 2D-to-3D label lifting algorithm.
SATR [26] performs zero-shot 3D shape segmentation via text descriptions by using a zero-shot
2D object detector, inferring 3D segmentation from multi-view 2D bounding box predictions by
exploiting the topological properties of the underlying surface. Despite these advancements in part
segmentation and reconstruction, these methods do not translate segmented parts into executable
code representations, limiting their integration into code-driven design workflows.

3 Methodology

As shown in Figure[2] we aim to train an object-to-code inference model that takes in a point cloud of
an object, and then predict the Blender python scripts of each part of the object. When executing
the python scripts in Blender, we can obtain the same object in separated parts. To train such an
object-to-code inference model, we need a dataset of paired objects and the corresponding codes. To
obtain such a dataset, we first train a part-to-code inference model that predicts code for a single part
on our synthetic dataset of paired parts and the corresponding codes. Then, given a dataset of objects
separated in different parts, we use the trained part-to-code inference model to predict code for every
part of an object. Finally, we concatenate the codes of every part of the object and obtain the code of
the object. Now, we have a dataset of paired objects and the corresponding codes, and are ready to
train the object-to-code inference model.

We explain the key steps described above in details in the following sections. First, we explain
how to synthesize a dataset of paired parts and the corresponding codes in Section[3.1] Then, we
describe the training procedure of the part-to-code inference model in Section[3.2] Next, we use the
part-to-code inference model to obtain the code of an entire object in Section [3.3] Finally, we train
the object-to-code inference model in Section[3.4]

3.1 Part Dataset

We aim to generate a dataset of paired part shapes and codes. To do so, we implement probabilistic
programs to generate Blender Python scripts, and obtain the corresponding shape by executing
the code in Blender. We carefully design these probabilistic programs and ensure that the shapes
generated are within the range [—1,1]. There are several types of shapes that we generate, as
illustrated in Figure [3] We explain them in the following paragraphs.

Primitive. Primitives are a set of fundamental geometric shapes, consistent with those defined
in Blender. Specifically, we consider five basic shapes: cube, cylinder, UV sphere, cone, and
torus. Each primitive is parameterized by three attributes: location (location € R3), rotation
(rotation € H), and scale (scale € R?), where H denotes the space of unit quaternions. The
location specifies the shape’s position in 3D space, rotation defines its orientation via quaternions,
and scale determines the shape’s size along its local axes. Examples of Primitives can be found in
the first row of Figure

Translation. Translation is defined as the geometry obtained by sweeping a 2D cross-sectional
shape along a 3D trajectory curve, which is equivalent to Sweep in CAD. As illustrated in the
second row of Figure [3] during this translation process, the tangent direction of the 3D trajectory
remains perpendicular to the 2D shape, and the size of the section shape can change along the 3D
trajectory.For a more detailed explanation, please refer to[A.T} To implement this, we first define a
2D shape using a set of control points (i.e., spatial coordinates), and then specify a 3D trajectory
curve in a similar manner. Specifically, our experiments consider five types of cross-sectional shapes:
rectangles, circles, circular arcs, polygons, and Bézier curves. For the trajectories, we define six
forms: straight lines, polylines, circles, circular arcs, rectangles, and Bézier curves. Notably, this
method also allows a 2D shape to rotate around an axis to form a solid of revolution, making it
suitable for modeling objects such as bottles and plates.



create_primitive(name="cylinder', primitive_type="cylinder’,
location=[0.21, -0.0, 0.27], scale=[0.19, ©.19, ©.94], rotation=[0.65,
0.64, 0.31, -0.27])

Primitive

create_curve(name='closed_curve', control_points=[[6.07, ©.13, @8.0], [-
0.14, 0.06, 0.0], [-0.15, -0.09, ©.0], [0.05, -0.12, 0.0]],
handle_type=[0, @, @, @, 8, 0, 0, 8], closed=True, center='POINT')
create_curve(name='translation’, profile_name='closed_curve',
control_points=[[-0.97, ©.08, -0.08], [0.05, 0.01, 0.0], [0.96, -0.13,
0.08]], points_radius=[1.0, 1.8, 1.0],handle_type=[1, 1, 1, 1, 1,
1],thickness=0.0, fill_caps='end')

create_curve(name=[ “curve_1°, ‘curve_2’, ‘curve 3’, ‘curve_4’, ‘curve_5°],
g control_points=[[[-0.94, ©.83, 0.24], ... , [0.96, 6.02, -0.07]1],

Brldge points_radius=[1, 1, 1, 1], closed=True)

LOOp bridge_edge_loops(name='Bridgeloop', profile_name=['curve_1', 'curve_2',
"curve_3', 'curve_4', 'curve_5'], number_cuts=4, smoothness=@.63,
interpolation="SURFACE', fill_caps="both")
create_primitive(name='Bool', primitive_type='cube’, location=[-0.08, @.0,
-0.0], scale=[0.76, ©.38, 1.8], rotation=[0.5, -8.5, 0.5, -0.5])

Boolean create_primitive(name='Bool2', primitive_type='cube', location=[0.59, -
0.0, 0.0], scale=[0.56, 6.32, 0.4], rotation=[0.5, -0.5, 8.5, -0.5])
boolean_operation(namel='Bool’, name2='Bool2', operation='DIFFERENCE")
create_primitive(name='cube', primitive_type='cube', location=[6.17, -
0.09, -8.38], scale=[0.0106, ©.0099, 1.0045], rotation=[6.68, -0.49, -

Array 0.36, -0.78], apply=True)

array_ld(name='cube', fit_type='FIXED_COUNT', count=6,
constant_offset=[-08.072, 0.032, 0.12])

Figure 3: Visualization of basic geometric shape types and their corresponding code. For each shape
category, the code shown corresponds to the first example.

Bridge loop. Although the Translation method is capable of generating certain complex objects,
it remains constrained in several ways. For instance, in the Translation operation, the 2D cross-
sectional shape is always orthogonal to the tangent direction of the trajectory. Moreover, the section
shape is allowed to change only in scale, without any deformation in its geometry. To address this
limitation, we introduce an alternative method for constructing geometries, namely the Bridge Loop.
This geometry is constructed by first generating a sequence of 2D shapes and then connecting their
corresponding vertices to form a continuous 3D geometry, which is equivalent to Loft in CAD. Some
cases can be seen in the third row of Figure[3] The Bridge Loop approach enables the creation of
more complex geometries compared to those achievable via Translation alone. For a more detailed
explanation, please refer to[A.T]

Boolean. Boolean geometries refer to geometries formed by applying Boolean operations—namely
union, intersection, and difference—to two or more of the fundamental shape categories defined in
Section[3.1] The union operation enables the construction of complex composite geometries, while
the difference operation is used to generate geometries with holes or indentations. We can see some
examples and their corresponding codes in the fourth row of Figure 3]

Array. When a particular type of primitive geometry appears repeatedly in a regular pattern, we do
not invoke the construction function for each primitive individually, as this would result in lengthy
code. Instead, we employ an Array method to construct the entire structure collectively. Specifically,
we define two types of Arrays: 1D Arrays, where a geometry is repeatedly instantiated along a curve,
and 2D Arrays, where repetition occurs across a plane. Cases of this type can be seen in the last row
of Figure[3]

It is important to note that when designing our functions, the function parameters include two
types: array-based parameters and individual parameters. During dataset construction, we select the
parameter format based on the most suitable fit for the object: individual parameters are used for
simpler parts, while array-based parameters are adopted when a part contains multiple similar shapes.
For instance, the translation example in Figure 3uses individual parameters, whereas the bridge loop
example employs array-based parameters.

After designing the five fundamental types of template functions described above, we perform
probabilistic random sampling over these functions and their parameters to generate a series of
function code snippets. For each sampled code snippet y, we execute it to obtain the corresponding
mesh M. In this way, we construct a dataset of paired code y and mesh M.



3.2 Part-to-code Inference Model

After constructing the dataset of paired code y and mesh M, we sample a point cloud z € RV*3
from each mesh M, where N is the number of points in the point cloud. We train a part-to-code
inference model h that takes in a point cloud @ and predict the corresponding code y. The inference
model consists of two modules: The shape tokenizer model and a fintuned LLM. The tokenizer model
takes in the point cloud  and outputs a set of fixed length tokens z € RE*P, where L is the number
of shape tokens and D is the dimension of each token. We set D to the same dimension as the word
embeddings in the LLM. Thereafter, the LLM takes in the shape tokens z and then predict y, the
code of the point cloud . We train the shape tokenizer model and finetune the LLM at the same
time using the cross-entropy loss for the prediction of the next token in the shape code y. We use
Llama-3.2-1B as the base LLM and finetune it using LoRA.
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Figure 4: Architecture of the shape tokenizer. We first project the point cloud into the triplane and
obtain triplane features. The triplane features are patchified and reshaped into a 1D sequence, and
fed into transformer blocks to obtain triplane tokens. Finally, we use a set of learnable tokens to
aggregate information from triplane tokens via cross-attention.

The shape tokenizer model. We explain the detailed structure of the shape tokenizer model. As
shown in Figure 4, the shape tokenizer model transforms a point cloud € RV >3 to a set of fixed
length tokens z € RL*P_ We first project the point cloud « to a triplane and obtain triplane feature
u € R3IXHXWXD1 \where H, W are the height and width of the planes, and D, is the dimension of
the triplane feature. The coordinates of each point is fed to a shared MLP and a feature of dimension
D, is obtained. We project each point’s feature to the three perpendicular planes according to the
point’s position. Features projected to the same pixel are aggregated by max-pooling. Pixels that do
not correspond to any point are filled with zeros. After obtaining the triplane feature u, we patchify it
and reshape it into a 1D sequence v € RG-H/FW/F)xD1 wwhere f is the patch size. We then feed
the sequence v to a set of transformer blocks and outputs v’ € R(3-H/f-W/f)xD1_ Next, to compress
the number of tokens fed into the LLM, we use a learnable set of tokens w € RX*P2 to aggregate
information from v’ using cross attention:

CrossAttn(Transformer(w), v’, v'), (1)

where Transformer denotes a transformer block, CrossAttn(Q, K, V') denotes a cross attention block,
and @, K,V are query, key, value, respectively. By feeding w to a set of these cross attention blocks,
we obtain tokens w’ € RY*P2 that contain information about the point cloud «. Finally, we use an
MLP to transform the dimension of w’ from D, to D and obtain shape tokens z € REXD  where D
is the dimension of the word embeddings in the LLM. Now, the shape tokens z can be readily fed to
the LLM and predict the code corresponding to the point cloud «.

3.3 Assemble Parts to Objects

After training the part-to-code inference model h, we can use it to obtain the code of an object. Given
a dataset of objects, in which each object O is separated into its constituent parts O = {g;|i =
1,2,--+, M}, where g; is the i-th part of object O, and M is the number of parts of the object O.
We also assume that each part g; has its semantic label. We can use the part-to-code inference model
h to obtain the code of each part. Specifically, we first normalize each part g; to the cube [—1,1]?
according to its minimum bounding box and obtain the shape ¢}. Then we use the part-to-code
inference model h to obtain its code y; = h(q;). We then implement algorithms to transform
the relevant numerical parameters in the code y; to the original location, scale, and pose of g
and obtain the code y; of the original shape g;. Finally, we concatenate the codes of all parts of



the object, add semantic information to the code for each part, and obtain the code of the object
y = {y;|i = 1,2,---, M}. When concatenating the code, we sort each part based on its spatial
position. Specifically, we assign an index to each part following a spatial order from bottom to top,
left to right, and front to back. An overview of this pipeline is illustrated in Figure[5] During code
inference, the part point cloud g; is first transformed into a canonical space using a rotation matrix R,
translation matrix T', and scaling factor s, resulting in g/. The trained part-to-code inference model
h generates the code y, of g.. y. is then transformed back to the original pose and scale using the
inverse of R, T, and s, and we obtain the code y; of g;.
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Figure 5: Pipeline of object-level code dataset construction using the part-to-code inference model.
For each part point cloud g;, the code inference module independently predicts its corresponding
code y;. All part codes y; are then concatenated to form the complete object code. We also add
meaningful semantic information to the object code following the template shown in the figure. The
complete code of the example chair is shown in Figure E}

3.4 Object-to-code Inference Model

After obtaining the code y of each object O in the dataset, we can use them to train an object-to-code
inference model. Our object-to-code inference model has the same structure as the part-to-code
inference model described in Section[3.2] We initialize the weights of the object-to-code inference
model as the weights of the trained part-to-code inference model, and use the same training method
in Section [3.2]to train the object-to-code inference model. It is worth noting semantic information in
the ground-truth code of objects enables the object-to-code inference model to learn the semantic
structure of objects, and facilitate 3D shape understanding.

4 Experiment

4.1 Datasets

4.1.1 Synthetic Part Dataset

To facilitate the training of our part-to-inference model, we first constructed a synthetic part dataset.
Specifically, we utilized functions from our basic shape code library, randomly sampling their
parameters based on manually defined distributions to generate paired data of synthetic parts and
corresponding code. This process yielded 1.5 million point cloud—code pairs for primitive shapes, 3
million for Translation-based parts, 1.5 million for Bridge Loop structures, 1.5 million for Boolean
operations, and 2.4 million for Array-based constructions. In total, our constructed part dataset
comprises around 10 million point cloud—code pairs. We partitioned the dataset into 70% for training,
15% for validation, and 15% for testing.



4.1.2 Object Dataset

We trained our model on the Infinigen Indoor [4] dataset. Infinigen Indoor is a procedural framework
for generating synthetic 3D indoor objects, where each generated instance is automatically composed
by its corresponding parts. We have made extensive modifications to the original Infinigen codebase to
enable it to produce both individual components and their complete assemblies. Using this framework,
we constructed a synthetic dataset comprising 41 common object categories, generating 1 million
object-code pairs in total. We partitioned the dataset into training, validation, and test sets, following
the same split strategy as the Synthetic Part Dataset. For more details, please refer to the[A.T]

4.2 Implementation Details

We conduct training and evaluation on the Infinigen Indoor datasets [36]. For the part-to-code
reconstruction model, we adopt the AdamW optimizer and train it for 20 epochs on NVIDIA A100
GPUs with a batch size of 512, and a learning rate of 10~*. We evaluate the model at every epoch and
select the checkpoint with the lowest L, Chamfer Distance (CD) loss. Then we initialize the weights
of the object-to-code reconstruction model with the weights of the trained part-to-code reconstruction
model, and train the model on Infinigen Indoor dataset for 10 epochs, with a batch size of 256, and a
learning rate of 10~%. The checkpoint with the lowest CD loss is selected. For additional training
details and the parameter settings of the models, please refer to [A.3]and [A.2]

4.3 Reconstruction Performance

For reconstruction performance, we compare our method with two representative shape-to-code
baselines, Shape2Prog [1]] and PLAD [2]|. Figure[6]illustrates visualization comparisons of results.
We adopt IoU and Lo CD as our evaluation metrics. Specifically, we voxelize the model’s predicted
outputs into 32 grids and compute the IoU between the predicted and ground truth voxel grids.
In parallel, we sample point clouds from both the predicted outputs and the ground truth, and
calculate the Chamfer Distance between the two point clouds. Regarding the number of points and
normalization, please refer to the appendix In Table |1} we present reconstruction metrics for
some specific object categories as well as the overall performance across the entire dataset. It can
be observed that our method consistently outperforms the baselines in both IoU and CD metrics.
Complete results for all categories in each dataset are provided in [A.4] We conducted a series of
ablation studies to evaluate the impact of various components within our model. For comprehensive
details on these experiments, please refer to [A.4]

Table 1: Quantitative comparison of reconstruction performance between MeshCoder and baselines.

Method | CD(x1072)] | ToU (%) 1

| Lamp Chair Sofa TableDining Toilet ~ All | Lamp Chair Sofa TableDining Toilet — All
Shape2Prog | 25.44 130 2.14 1.03 751  6.01 | 16.96 49.68 65.29 71.26 51.14 45.03
PLAD 140 226 1.52 5.52 230  1.87 | 69.58 4093 81.33 58.43 62.61 67.62

MeshCoder | 0.004 0.060 0.027 0.024 0.022 0.063 | 86.23 81.87 93.81 88.14 89.10 86.75

4.4 Shape Editing

MeshCoder facilitates the transformation of 3D shapes into high-level, human-readable code repre-
sentations, significantly enhancing the interpretability and editability of complex geometries. This
capability enables intuitive and precise modifications through code-based interventions. Our shape
editing encompasses two primary categories: geometric editing and topological editing. As illustrated
in Figure[7] geometric editing can be performed by adjusting function calls or modifying specific
parameters within the generated code. For instance, we can adjust the parameters of the code to
convert a square tabletop into a larger circular one. Additionally, topological editing, which is
illustrated in Figure[§]such as adjusting mesh resolution, can be achieved by modifying designated
parameters within the code, allowing for control over the mesh’s complexity and surface detail. This
code-centric approach streamlines the process of modifying 3D models, making it more accessible
and efficient for applications requiring iterative design and customization. Additionally, it empowers
users to adjust the model resolution according to their desired balance between storage requirements
and mesh quality. For additional results and details, please refer to in the appendix.
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Figure 6: Qualitative comparison of reconstruction performance between MeshCoder and baselines.
MeshCoder can accurately reconstruct objects with intricate parts and complex structures.
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Figure 7: Parameter modification in the code conveniently to alter the geometric shape. Left: Change
tabletop from square to circular. Right: Make the bathtub shallower.

4.5 Shape Undertanding
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5 Limitations

Although our method achieves significant advancements in category diversity, geometric complexity,
and reconstruction accuracy compared to existing approaches, it primarily targets human-made
objects. The applicability of code-based representations to organic forms, such as animals and
humans, remains underdeveloped. We reserve this as a direction for future research.

6 Conclusion

In this work, we present MeshCoder, a comprehensive framework that translates 3D point cloud
data into editable Blender Python scripts, enabling detailed reconstruction and intuitive editing of
complex 3D objects. By developing a robust set of Blender Python APIs, we facilitate the modeling of
intricate geometries. Leveraging these APIs, we constructed a large-scale dataset pairing 3D objects
with their corresponding code representations, decomposed into semantic parts. Subsequently, we
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Figure 8: Mesh resolution adjustment by modifying the resolution parameters in the code. The figure
depicts results with progressively increasing resolution from left to right.

trained a multimodal large language model (LLM) capable of generating executable Blender scripts
from point cloud inputs. Our approach not only achieves superior performance in shape-to-code
reconstruction tasks but also enhances the reasoning capabilities of LLMs in 3D shape understanding.
By representing shapes as structured code, MeshCoder offers a flexible and powerful solution for
programmatic 3D shape reconstruction and editing, paving the way for advanced applications in
reverse engineering, design, and analysis.

7 Acknowledgement

This work is funded by the Shenzhen Science and Technology Project (Grants
JCYJ20220818101001004 and KJZD20240903103210014), the National Key R&D Pro-
gram of China (Grant 2022ZD0160201), Shanghai Artificial Intelligence Laboratory, and in part by
the HKU Startup Fund.

References

[1] Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T. Freeman, Joshua B.
Tenenbaum, and Jiajun Wu. Learning to infer and execute 3d shape programs. In International
Conference on Learning Representations, 2019.

[2] R Kenny Jones, Homer Walke, and Daniel Ritchie. Plad: Learning to infer shape programs with
pseudo-labels and approximate distributions. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9871-9880, 2022.

[3] Yichao Liang. Learning to infer 3d shape programs with differentiable renderer. arXiv preprint
arXiv:2206.12675, 2022.

[4] Alexander Raistrick, Lingjie Mei, Karhan Kayan, David Yan, Yiming Zuo, Beining Han,
Hongyu Wen, Meenal Parakh, Stamatis Alexandropoulos, Lahav Lipson, Zeyu Ma, and Jia Deng.
Infinigen indoors: Photorealistic indoor scenes using procedural generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
21783-21794, June 2024.

[5] R Kenny Jones, Theresa Barton, Xianghao Xu, Kai Wang, Ellen Jiang, Paul Guerrero, Niloy J
Mitra, and Daniel Ritchie. Shapeassembly: Learning to generate programs for 3d shape structure
synthesis. ACM Transactions on Graphics (TOG), 39(6):1-20, 2020.

[6] R Kenny Jones, Paul Guerrero, Niloy J Mitra, and Daniel Ritchie. Shapecoder: Discovering
abstractions for visual programs from unstructured primitives. ACM Transactions on Graphics
(TOG), 42(4):1-17, 2023.

[7] R Kenny Jones, Paul Guerrero, Niloy J Mitra, and Daniel Ritchie. Shapelib: designing
a library of procedural 3d shape abstractions with large language models. arXiv preprint
arXiv:2502.08884, 2025.

[8] Pradeep Kumar Jayaraman, J. Lambourne, Nishkrit Desai, Karl D. D. Willis, Aditya
Sanghi, and Nigel Morris. Solidgen: An autoregressive model for direct b-rep synthe-
sis. ArXiv, abs/2203.13944, 2022. URL https://api.semanticscholar.org/CorpusID:
247761924,

10


https://api.semanticscholar.org/CorpusID:247761924
https://api.semanticscholar.org/CorpusID:247761924

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Mohammad Sadil Khan, Elona Dupont, Sk Aziz Ali, Kseniya Cherenkova, Anis Kacem, and
Djamila Aouada. Cad-signet: Cad language inference from point clouds using layer-wise sketch
instance guided attention. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4713-4722, June 2024.

Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network for computer-
aided design models. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV),
pages 6752-6762, 2021. doi: 10.1109/ICCV48922.2021.00670.

Jingwei Xu, Zibo Zhao, Chenyu Wang, Wen Liu, Yi Ma, and Shenghua Gao. Cad-mllm:
Unifying multimodality-conditioned cad generation with mllm, 2024.

Xiang Xu, Pradeep Kumar Jayaraman, Joseph G Lambourne, Karl DD Willis, and Yasutaka
Furukawa. Hierarchical neural coding for controllable cad model generation. In International
Conference on Machine Learning, pages 38443-38461, 2023.

Jianyu Wu, Yizhou Wang, Xiangyu Yue, Xinzhu Ma, Jingyang Guo, Dongzhan Zhou, Wanli
Ouyang, and Shixiang Tang. Cmt: A cascade mar with topology predictor for multimodal
conditional cad generation, 2025.

Juil Koo, Seungwoo Yoo, Minh Hieu Nguyen, and Minhyuk Sung. Salad: Part-level latent diffu-
sion for 3d shape generation and manipulation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 14441-14451, 2023.

Anran Liu, Cheng Lin, Yuan Liu, Xiaoxiao Long, Zhiyang Dou, Hao-Xiang Guo, Ping Luo,
and Wenping Wang. Part123: part-aware 3d reconstruction from a single-view image. In ACM
SIGGRAPH 2024 Conference Papers, pages 1-12, 2024.

Minghao Chen, Roman Shapovalov, Iro Laina, Tom Monnier, Jianyuan Wang, David Novotny,
and Andrea Vedaldi. Partgen: Part-level 3d generation and reconstruction with multi-view
diffusion models. arXiv preprint arXiv:2412.18608, 2024.

Yuhang Huang, SHilong Zou, Xinwang Liu, and Kai Xu. Part-aware shape generation with
latent 3d diffusion of neural voxel fields. arXiv preprint arXiv:2405.00998, 2024.

Lin Gao, Jie Yang, Tong Wu, Yu-Jie Yuan, Hongbo Fu, Yu-Kun Lai, and Hao Zhang. Sdm-net:
Deep generative network for structured deformable mesh. ACM Transactions on Graphics
(TOG), 38(6):1-15, 2019.

Zhijie Wu, Xiang Wang, Di Lin, Dani Lischinski, Daniel Cohen-Or, and Hui Huang. Sagnet:
Structure-aware generative network for 3d-shape modeling. ACM Transactions on Graphics
(TOG), 38(4):1-14, 2019.

Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy Mitra, and Leonidas J
Guibas. Structurenet: Hierarchical graph networks for 3d shape generation. arXiv preprint
arXiv:1908.00575, 2019.

Rundi Wu, Yixin Zhuang, Kai Xu, Hao Zhang, and Baoquan Chen. Pg-net: A generative part
seq2seq network for 3d shapes. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 829—-838, 2020.

George Kiyohiro Nakayama, Mikaela Angelina Uy, Jiahui Huang, Shi-Min Hu, Ke Li, and
Leonidas Guibas. Difffacto: Controllable part-based 3d point cloud generation with cross
diffusion. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 14257-14267, 2023.

Dmitry Petrov, Matheus Gadelha, Radomir Méch, and Evangelos Kalogerakis. Anise: Assembly-
based neural implicit surface reconstruction. IEEE Transactions on Visualization and Computer
Graphics, 2023.

Yunhan Yang, Yukun Huang, Yuan-Chen Guo, Liangjun Lu, Xiaoyang Wu, Edmund Y Lam,
Yan-Pei Cao, and Xihui Liu. Sampart3d: Segment any part in 3d objects. arXiv preprint
arXiv:2411.07184, 2024.

11



[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 16259-16268,
2021.

Ahmed Abdelreheem, Ivan Skorokhodov, Maks Ovsjanikov, and Peter Wonka. Satr: Zero-shot
semantic segmentation of 3d shapes. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 15166-15179, 2023.

Zongji Wang and Feng Lu. Voxsegnet: Volumetric cnns for semantic part segmentation of 3d
shapes. IEEE transactions on visualization and computer graphics, 26(9):2919-2930, 2019.

Minghua Liu, Yinhao Zhu, Hong Cai, Shizhong Han, Zhan Ling, Fatih Porikli, and Hao Su.
Partslip: Low-shot part segmentation for 3d point clouds via pretrained image-language models.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
21736-21746, 2023.

Yuchen Zhou, Jiayuan Gu, Xuanlin Li, Minghua Liu, Yunhao Fang, and Hao Su. Partslip++:
Enhancing low-shot 3d part segmentation via multi-view instance segmentation and maximum
likelihood estimation. arXiv preprint arXiv:2312.03015, 2023.

Yuheng Xue, Nenglun Chen, Jun Liu, and Wenyun Sun. Zerops: High-quality cross-modal
knowledge transfer for zero-shot 3d part segmentation. arXiv preprint arXiv:2311.14262, 2023.

Ardian Umam, Cheng-Kun Yang, Min-Hung Chen, Jen-Hui Chuang, and Yen-Yu Lin. Partdistill:
3d shape part segmentation by vision-language model distillation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3470-3479, 2024.

George Tang, William Zhao, Logan Ford, David Benhaim, and Paul Zhang. Segment any
mesh: Zero-shot mesh part segmentation via lifting segment anything 2 to 3d. arXiv preprint
arXiv:2408.13679, 2024.

Anh Thai, Weiyao Wang, Hao Tang, Stefan Stojanov, James M Rehg, and Matt Feiszli. 3 x
2: 3d object part segmentation by 2d semantic correspondences. In European Conference on
Computer Vision, pages 149-166. Springer, 2024.

Ziming Zhong, Yanyu Xu, Jing Li, Jiale Xu, Zhengxin Li, Chaohui Yu, and Shenghua Gao.
Meshsegmenter: Zero-shot mesh semantic segmentation via texture synthesis. In European
Conference on Computer Vision, pages 182—199. Springer, 2024.

Xiangyang Zhu, Renrui Zhang, Bowei He, Ziyu Guo, Ziyao Zeng, Zipeng Qin, Shanghang
Zhang, and Peng Gao. Pointclip v2: Prompting clip and gpt for powerful 3d open-world
learning. In Proceedings of the IEEE/CVF international conference on computer vision, pages
2639-2650, 2023.

Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and
Hao Su. PartNet: A large-scale benchmark for fine-grained and hierarchical part-level 3D object
understanding. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

Tencent Hunyuan3D Team. Hunyuan3d 2.0: Scaling diffusion models for high resolution
textured 3d assets generation, 2025.

Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng Wang, Bowen Zhang, Dong Chen,
Xin Tong, and Jiaolong Yang. Structured 3d latents for scalable and versatile 3d generation.
arXiv preprint arXiv:2412.01506, 2024.

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Lud-
wig Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of
annotated 3d objects. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 13142-13153,2022. URL https://api.semanticscholar.org/CorpusID:
254685588.

12


https://api.semanticscholar.org/CorpusID:254685588
https://api.semanticscholar.org/CorpusID:254685588

[40] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
ArXiv, abs/2305.18290, 2023. URL https://api.semanticscholar.org/CorpusID:
258959321,

[41] Qihao Zhu Runxin Xu Junxiao Song Mingchuan Zhang Y.K. Li Y. Wu Daya Guo Zhihong Shao,
Peiyi Wang. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models, 2024. URL https://arxiv.org/abs/2402.03300.

[42] Ruowen Zhao, Junliang Ye, Zhengyi Wang, Guangce Liu, Yiwen Chen, Yikai Wang, and Jun
Zhu. Deepmesh: Auto-regressive artist-mesh creation with reinforcement learning. arXiv
preprint arXiv:2503.15265, 2025.

13


https://api.semanticscholar.org/CorpusID:258959321
https://api.semanticscholar.org/CorpusID:258959321
https://arxiv.org/abs/2402.03300

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Yes, they can reflect the paper’s contributions and scope.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We do discuss the limitations of the work.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We have discussed them in our paper.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We have elaborated on our work in detail in our paper.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Yes, we will provide open access to the data and code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We specify all the training and test details in the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Yes, we mentioned some limitations and indicators.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes, we mentioned that in our paper.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We obey the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We mentioned the real-world impact of the work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: We declare that what we are using is a public dataset.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have done that.
Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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14.

15.

16.

Answer: [Yes]
Justification: We will make our data public.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:
Justification: We did not conduct such experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: We did it on open data, there are no potential dangers.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
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Justification: LLM is part of our model, and we’ve fine-tuned it.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix of MeshCoder: LLM-Powered Structured Mesh Code
Generation from Point Clouds

A.1 Datasets

A.1.1 The principles of Translation and Bridge Loop

Translation ' Bridge Loop

Figure 10: A schematic illustration of the principles of Translation and Bridge Loop. In the Translation
module, the wireframe of the resulting mesh is shown as a cross-sectional circle is translated along a
yellow trajectory. In the Bridge Loop module, the wireframe of the mesh is constructed by connecting
the vertices of two 2D shapes.

As illustrated in the figure[I0] in the Translation operation, a 2D cross-sectional shape (a circle in this
example) and a 3D trajectory curve must first be defined. The Translation process generates a mesh
by sweeping the 2D shape along the 3D trajectory. During this sweep, the cross-section remains
perpendicular to the tangent direction of the trajectory at all times, and only uniform scaling (either
enlargement or reduction) of the cross-section is permitted.

In contrast, the Bridge Loop operation begins with two predefined 2D shapes. By connecting the
corresponding vertices of these two shapes, a mesh can be constructed. This method places no
constraints on the types of 2D shapes used—meaning the two shapes can differ, such as a circle
and a irregular closed shape in this example. Moreover, it imposes no restrictions on the relative
orientations of the shapes. As a result, Bridge Loop overcomes the limitations of Translation, which
requires the cross-section to align with the trajectory’s tangent direction. This enables Bridge Loop
to generate more complex geometries that Translation cannot produce.

A.1.2 Part datasets

create_curve(name='seat_9', control_points=[..],
. . handle_type=[0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, ..])
Fill Grid fill grid(name='seat_9', thickness=0.0471)
bevel(name="seat_9', width=0.02, segments=1)

create spoon('spoon',z depth=0.17,thickness=0.011

,X_anchors=[0.18, .., 0.46],y _anchors=[0.02, ..,
Sp()on 0.01],z_anchors=[0.0, ..,

0.03],location=[..],rotation=[..],scale=[..])

create_fork('fork',x_tip=0.18,thickness=0.014,n_c
uts=3.0,x_anchors=[..], y_anchors=[..],
z_anchors=[..], location=[..], rotation=[..],
scale=[..])

Fork

Figure 11: The Fill Grid type, Spoon type and Fork type in basic shape code library

For certain shapes that are difficult to represent using the method we defined in Section 3.1} we
introduce three additional categories: the Fill Grid type, Spoon type and Fork type. As illustrated
in the Figure[TT} For the Fill Grid type, we first construct a closed 3D shape (as opposed to the
2D cross-sectional shape used in Translation), fill it to form a surface, and then extrude it along its
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normal direction to generate the final mesh. For the Spoon and Fork type, we draw inspiration from
the implementation in Infinigen Indoor [4] and design dedicated procedural functions tailored for
their generation.

We present two core functions from our codebase: the complete implementation for creating primitives
(Figure[22)) and the complete implementation for creating curves (Figure 23). The full codebase can
be found in the supplementary materials.

More examples of parts and their corresponding complete code implementations are provided in

Figures[12] [T3] [T4] [T3] and[T6]

A/\N=l |\ ® |

! import bpy ; { mport bpy
| from math import radians, pi ; i from math inport radians, pi
1 from bpy_lib import * {1 from bpy_lib import *

| delete_all() ! delete_al1()

create_primitive(name='cube’, primitive_type='cube’, location=[0.27, .23, -0.0], scale=[1.e, .2,
@.04], rotation=[.71, 0.0, .71, -6.0])
vel(names'cube’, width=e.13, segments=5)

create_primitive(name='cone’, primitive_type='cone', location=[-0.26, ©.02, 6.18], scale=[6.64,

{ 04, 0.58], rotation=[o., "-0.26, -0.14, 0.83])

Figure 12: Examples of Primitive and complete code. And the code corresponds to the first two
objects shown in the figure.

¢ import bpy H { import bpy i
i from math import radians, pi ! | from math import radians, pi !
1 from bpy_lib import * ! | from bpy_lib import * '
! delete_all() | | delete_all() H
: : P :
i create_curve(name="curve’, control_points=[[0.0, 0.0, 0.0], [0.42, ©.0, ©.0], [0.89, | | create_curve(name='curve', control_points=[[e.8, .0, 62 e] [a,e, o:5, e.0], [0.35, 1.9, 0.0], [1.02, !
| .47, 0.e], [0.71, ©.88, 0.0]], handle_type=[e, 3, 9, o, ©, @]) ' | L3, 0.e], [1.62, 0.84, 0.0]], handle_type=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], closed=True) :
! bezier_rotation(name='rotation', profile_name='curve', location=[8.31, .62, ©.0], 1| | create_curve(name='translation’, profile_name='curve' centrol pmnts [[-0.51, -8.23, -0.95], [-0.51, |
| rotation=[0.7, 0.0, -0.7, 0.0], thickness=0.06) | | 6.3, -0.95]], points_radius=[1.0, 1.0], handle_type=[o, 1, 1, 0], thickness=5.0, Fill_caps=-both') |

Figure 13: Examples of Translation and complete code. And the code corresponds to the first two
objects shown in the figure.

1 I L A P

/ { import bpy
| from math import radians, pi
i from bpy_lib import *

" S
from math import radians, pi
from bpy_lib import *

i delete_all() delete_all()
} cresta_prinitive(nane='Sool', prinitive_type="cylinder; location=[-0.03, 0.64, -0.01],

i scale=fo.4s5, 0.45, 0.9], rotati 0.7, 0.71)

| create_primitive(name="Bool2" S Jax a0 aonere’s, T6CHETORLI S0¥A0), 798 AT
! scale=[6.54, 0.54, 0.54], rotati 1, 0.7, 0.71)

! boolean_operation(namel='8ool", namez='Bool2’, operation='DIFFERENCE')

create_primitive(name='Bool’, primitive_type='cube’, location=[0.e5, .01, -0.05], scale=[e.95,
@.5, 6.57], rotation=[0.06, -0.68, -0.64, -0.73])

create_prinitive(name='Bool2', primitive_type='cube’, location=[6.16, .62, 0.16], scale=[e.61,
@.45, 0.5], rotation=[0.66, -0.68, -0.04, -0.73])

boolean_operation(namel='Bool’, name2='Bool2’, operation='DIFFERENCE')

Figure 14: Examples of Boolean and complete code. And the code corresponds to the first two
objects shown in the figure.

Taking the Primitive type as an example, we describe how to use functions from the basic shape
code library to generate a synthetic part dataset. We begin by randomly selecting the type of primitive
to generate (e.g., cube, cylinder, etc.). Next, for each axis, we independently uniform sample
a value z from the range [—2, 2|, and then set the corresponding scale as 10%. To determine the
orientation of the shape, we uniformly sample a direction from a unit sphere and a roll angle from
a uniform distribution. Once the orientation is fixed, we scale the shape uniformly along all three
axes based on the size of its bounding box. Specifically, we ensure that the longest edge of the
bounding box lies within the range [1, 2]. Finally, we assign the shape a random position within the
3D space such that the entire shape remains within the [—1, 1] bounds. For other shape types beyond
Primitive, we follow a similar approach by randomly assigning values to the relevant parameters.
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Yokt A K 1.

.
! import by : }
! from math inport radians, pi : : inport bpy H
! from bpy_Lib import * | i From matn import radians, pi :

! H | from bpy_lib import 1
| delete_all() o i
H ! | delete_all()
reate_curve(name=['loop_1', 'loop_2', 'loop_3'], control_points=[[[0.29, 0.58, 0.43], [0.02, 0.59, 0.43], [-0.25, 0.6, 0.43], | i
0.19, 0.431, [-0.41, -0.14, 0.43], [-6.42, -0.4, 6431, [-0.26, -0.58, 0.43], [-6.01, -0.59, 0.431, [0.25, -0.59, 0.43], | | create_circle(name=['Circle_1', 'Circle_2', 'Circle_3', 'Circle_a'],
1 oz, 0., Tousn, <017, 0., [o.62, 0.7, 0831, [M0.29, 058, 0.47), [o.62, €59, 0.47], [0.35, 0.6 0.47], [} locatione[[0.57, -e.2, -0.55], "[-0.14, “0.18, -0.45], {o.08, -8.2, 0.37],
471, [~ 0.47], [0.23, -0.59, 0.47], ! ! [0.83, -0.24, 0.82]], rotation=[[0.52, -0.53, -0.47, ©.47], [0.73, -0.16, - H

) -0.231, 7, -0.23] ; 0.65], [0.72, .18, 0.17, 0.65], [0.59, -0.45, -0.4, 0.53]],
[-0.01, -0.34, -0.23], [0.07, -0.34, | 0.232, 0.136, 0.195], [0.27, 0.242, 0.195], [6.222, 0.192, 0.195],
iy le_ty) 3, 3, 3], closed=True) | 0.143, 0.195]1)
(nar T eﬂge pro- loop_2']1, [ loop_1', 'loop_3']], number_cuts=[@, 15], d,e,loops(neme- BridgeLoop', profile name=['Circle 1', 'Circle 2',
profile_shape_factor=[e, 0.12], interpolations'SURFACE', flip_normals=False) |l iCircles’, 'Circle d'], number_cuts=s, smoothness=.5
Er)dgelono Seq_name= [ edge i, ‘edge 2'], weld_thresholdsie-s) | | profile_shape_factor=0.0, interpolation='PATH', Fill_caps="both") H
id H

el
| bevel(name=" Brsdgemop \idth=0.0578, segnents=2)

Figure 15: Examples of Bridge Loop and complete code. And the code corresponds to the first two
objects shown in the figure.

il .
i =2 =

! 1 import bpy
| from math import radians, pi

| from bpy_lib import *

1 import bpy
| from math import radians, pi
| from bpy_lib import *

delete_all() | delete_all()
create_primitive(name='cube’, primitive_type='cube’, location=[6.93, -0.66, |

i | create_primitive(name='cube’, primitive_type='cube’', location=[0.674, -8.465, ©.36], scale=[0.2631, ©.0446, 0.0364],
} -6.76], scale=[6.0186, 0.3599, ©.6181], rotation=[e.65, 0.43, -0.18, - i 3

-e. see 0.397], apply=True)
', primitive_type='cube’, location=[0.118, 0.069, -0.244], scale=[0.0338, 0.9979, 0.0364],

0.87], apply=True)
| array_1d(name='cube’, fit_type='FIXED_COUNT', count=16, constant_offset=[-
6.125, 0.624, 0.042])

{ | array_td(nasamrcubar,

IXED_COUNT', count=5, constant_offset=[-0.3496, 6.2463, -8.2173])
| array_1d(name='cube_2', fit. *FIXED_COUNT', count=5, constant_offset=[-0.6717, -8.6271, 6.0852])
| join_obj(name="grid’, seq_name=['cube’, 'cube_2'], weld_threshold=e.0ee12)
| bevel(*grid", width=0.015, segnents=1)

Figure 16: Examples of Array and complete code. And the code corresponds to the first two objects
shown in the figure.

A.1.3 Object datasets

For assembling part codes into a complete program, we provide a full example containing the
complete code, as shown in Figure Regarding the ordering strategy used when assembling parts
into a complete object, we adopt a consistent spatial heuristic to determine part sequence. Specifically,
parts are arranged from bottom to top, left to right, and front to back. To implement this, we divide
the 3D space into a 32 x 32 x 32 grid and assign each part a characteristic grid cell that serves as the
basis for sorting. The characteristic grid cell of a part is defined as follows: among all grid cells that
the part occupies, we first select the one with the smallest z-coordinate. If multiple candidates share
the same z-value, we choose the one with the smallest z-coordinate. If a tie still exists, we select the
one with the smallest y-coordinate. Parts are then sorted based on the lexicographic order of these
characteristic grid cells, which determines their final sequence within the object.

It is important to note that for each object, the prerequisite for successfully constructing its corre-
sponding code lies in the ability of our part-to-code inference model to accurately infer all of its
individual parts. We consider a part to be successfully inferred if the Chamfer Distance (CD) between
the predicted point cloud and the ground truth is below 5 x 10~3. Therefore, when constructing the
object-code pairs dataset, we only include objects for which all constituent parts meet this criterion.
Objects with any part failing to meet this standard are discarded. As a result, the number of success-
fully constructed object-code pairs is smaller than the total number of objects in the original Infinigen
dataset. In fact, the original Infinigen dataset we use contains 1.57 million object instances, from
which we successfully construct 1 million shape-code pairs. For training and evaluation, we split the
full Infinigen dataset into 70% for training, 15% for testing, and 15% for validation. Accordingly,
MESHCODER is trained only on the subset of the shape-code pairs that fall within the training portion
of the Infinigen dataset. In contrast, the baseline models are trained on the full set of objects in the
training split of the original Infinigen dataset. Importantly, all evaluation results for our method and
the baselines are reported on the same test set, i.e., the testing split of the complete Infinigen dataset.
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create_polygon(name='hexagon_1', sides=6, radius=e.e3)
create_curve(name='leg 1', profile_name='hexagon_1', control_points=[[-0.41, 0.45, -
0.93], [-0.41, -0.46, -0.93]], points_radius=[1.6, 1.], handle_type=[1, 1, 1, 1],

create_polygon(name='hexagon_2', sides=6, radius=e.es)
create_curve(name='leg_2', profile_name='hexagon_2', control_points=[[-0.41, ©.45,

Y1, Y2, V3. Va. Vs
ittt ittt ittt ittt ittt import bpy
| create_polygon(name="hexagon’, sides=6, radius=6.66) 5 from math import radians, pi
| create_curve(name="translation’, profile_name='hexagon', ! from bpy_lib import *+

Y1 | control_points=[[0.0, 0.0, -1.0], [-0.0, 1.6]], points_radius=[1.0, |
| 1.0], handle_type=[1, 1, 1, 1], thicknes , fill_caps='both') ! delete_all()

# object name: simple desk
y # part_1: leg
! create_polygon(name="hexagon', sides=6, radius=0.06) !
| create_curve(name="translation’, profile name="hexagon’, :

Y2 ! control_points=[[e.e, ©.e, -1.e], [-6.0, 0.6, 1.8]], points_radius=[1.0,1 9 B 2 g
! 1.0], handle_type=[1, 1, 1, 1], thickness=e.e, fill_caps='both') i thickness=0.0, fill caps='both')
“““““““““““““““““““““““““““““““““““““““““““““““““““ - # part_2: leg

transform
[ create_polygon(name='hexagon®, sides=6, radius=e.66) and concat

| create_curve(name='translation', profile_name='hexagon',

Y3 | control_points=[[6.6, 6.6, -1.0], [-6.8, 6.6, 1.6]], points_radius=[1., |
;

[ create_polygon(name='hexagon’, sides=6, radius=6.66)

| create_curve(name='translation’, profile_name='hexagon’,
-1.e], [-e.e, @.e, 1.0]], points_radius=[1.0,
1], thickness=6.6, fill_caps='both’

Y4 | control_points=[[e.0, 6.6,
1 1.e], handle_type=[1, 1, 1

{ create_primitive(name='cube’, primitive_type='cube', location=[-8.0, - |
Vs ! 6.0, -0.0], scale=[1.0, 0.49, ©.01], rotation=[0.71, 0.0, i

0.93], [-0.41, -0.46, 0.93]], points_radius=[1.0, 1.8], handle_type=[1, 1, 1, 1],
thickness=e.e, fill_caps='both')

# part_3: leg
create_polygon(name='hexagon_3', sides=6, radius=e.e3)

create_curve(name='leg 3', profile_name='hexagon_3', control_points=[[0.41, ©.45, -
0.93], [0.41, -0.46, -0.93]], points_radius=[1.0, 1.6], handle_type=[1, 1, 1, 1],
thickness=6.0, fill_caps='both')

# part_a: leg
create_polygon(name='hexagon_4', sides=6, radius=e.es)
create_curve(name='leg 4', profile_name='hexagon_4', control_points=[[0.41, ©.45,
0.93], [0.41, -0.46, ©.93]], points_radius=[1.0, 1.0], handle_type=[1, 1, 1, 1],
thickness=e.0, fill_caps='both')

# part_5: tabletop
create_primitive(name='tabletop_5', primitive_type='cube’, location=[e.8, ©.45, -
.0], scale=[1.e, 0.49, 0.01], rotation=[e.5, -8.5, -8.5, -8.5])

Figure 17: A complete code example of converting part codes into a full object program.
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Figure 18: Detailed configuration of the shape tokenizer.

A.2 Model architecture

We explain the detailed structure of the shape tokenizer. As illustrated in the Figure [T8] we first
project the input point cloud of shape R™*? onto three orthogonal planes to obtain tri-plane features
with shape R3*256x256X32 \yith a patch size set to 16 x 16, these tri-plane features are encoded
into tokens and fed into Transformer blocks, where the resulting representation is mapped to v and
used as the key and value (K, V') inputs. Meanwhile, a set of learnable tokens with shape R128x1024
are used as queries in a self and cross attention module. After passing through 12 layers of self and
cross attention, we obtain output tokens of shape R128%1024 which are then projected to the final

representation of shape R!28%2048 yia an MLP.
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A.3 More training details

For the part-to-code reconstruction model, we adopt the AdamW optimizer and train it for 20 epochs
on 64 NVIDIA A100 GPUs for about a week with a batch size of 512, and a learning rate of 104,
We evaluate the model at every epoch and select the checkpoint with the lowest L, Chamfer Distance
(CD) loss. Then we initialize the weights of the object-to-code reconstruction model with the weights
of the trained part-to-code reconstruction model, and train the model on Infinigen Indoor dataset for
10 epochs, with a batch size of 256, and a learning rate of 10~%. It is trained on 64 NVIDIA A100
GPUs for about 2 days. The checkpoint with the lowest CD loss is selected.

To further enhance the robustness and generalization ability of the object-to-code inference model,
we apply data augmentation techniques. Specifically, we perform random rotation and scaling on the
objects. Additionally, during training, we randomly sample the number of points in each point cloud
within the range of 4096 to 16384, and add Gaussian noise to further perturb the input. MeshCoder is
trained and evaluated on a unified dataset that aggregates all object categories.

A.4 Complete experiment result of Shape Reconstruction

For MeshCoder, during inference, each object is represented by a point cloud containing 16,384
points. Given the input point cloud, the object-to-code inference model is able to predict the
corresponding Blender Python script code. The resulting code is then executed to generate a
corresponding mesh. We uniformly sample 100,000 points from the generated mesh and compute the
Chamfer Distance (CD) to the input point cloud using the Lo norm.

Given two point sets P and @, each of size 100,000, the L, Chamfer Distance is defined as:
CD(P,Q) = — > min |z - y3 + + > min |y — 3.
’ |P| & veQ ] i ?

To evaluate IoU, we voxelize both the ground-truth mesh and the predicted mesh into grids of
resolution 322, and compute the voxel-based Intersection-over-Union (IoU) as:

Vorea N Vel

IoU =
|Vpred U Vgt

)

where Vyreq and Vg, denote the sets of occupied voxels in the predicted and ground-truth voxel grids,
respectively.

For baseline methods, which take voxel grids as input and output voxel grids, we first voxelize the
ground-truth mesh into a 322 grid and feed it into the baseline models. The predicted voxel grid is
then compared to the input voxelized ground truth to compute IoU. Additionally, we extract a mesh
from the predicted voxel grid using the Marching Cubes algorithm and uniformly sample 100,000
points from the resulting mesh surface. These sampled points, along with the ground-truth point
cloud, are then both uniformly scaled to fit within the [—1, 1]* volume. Finally, the Chamfer Distance
is computed between the two normalized point clouds using the Ly norm.

It’s noticed that for each object category, we independently train the baseline models, according to
their official code, resulting in category-specific checkpoints. These models are then evaluated on the
corresponding test sets for each category.

The quantitative comparison of reconstruction metrics between MeshCoder and baseline methods
across all object categories is summarized in Table[2]and Table[3] Some additional examples of object
reconstruction results and their complete code can be referred to Figure 24] 25| 26]

In addition to evaluating our object-to-code inference model, we also perform a quantitative assess-
ment of our part-to-code inference model. Specifically, for each category described in Section[3.1}
we construct a test set consisting of 10,000 samples. We evaluate the model’s performance using
the CD and voxel IoU metrics on these test sets. The results, shown in Table El], demonstrate strong
performance across all categories, with low CD values and high IoU scores, indicating that our
part-to-code inference model is highly effective in generating accurate code representations for
individual parts.
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Table 2: Comparison of reconstruction metrics across all categories. Chamfer Distance (CD) and IoU
is shown in percentage (%).

Category L2 CD(x10~2) Voxel IoU (%)
MeshCoder PLAD  Shape2prog | MeshCoder PLAD  Shape2prog

ArmChair 0.04 2.31 4.44 94.33 78.79 62.74
BarChair 0.03 2.23 2.55 88.73 74.96 58.23
Bathtub 0.09 1.22 2.45 78.70 74.50 42.94
BeverageFridge 0.22 1.12 12.63 88.03 82.13 39.13
Bottle 0.01 1.08 6.34 88.65 65.58 40.24
Bowl 0.02 1.43 6.29 89.93 60.02 25.60
CeilingClassicLamp 0.02 1.98 3.94 96.13 76.01 59.07
CeilingLight 0.03 3.46 1.32 65.83 40.61 44.97
CellShelf 0.01 1.93 9.40 94.67 59.02 22.30
Chair 0.06 2.26 1.30 81.87 40.93 49.68
Chopsticks 0.03 1.38 21.06 82.24 55.68 11.25
Cup 0.06 1.40 7.35 85.96 62.03 29.47
DeskLamp 0.02 1.76 8.77 80.28 64.31 25.35
Dishwasher 0.13 1.44 3.01 88.37 84.44 46.69
FloorLamp 0.00 2.13 22.97 85.96 66.89 17.16
Fork 0.14 0.34 8.40 58.86 89.28 11.03
Hardware 0.01 0.62 8.45 89.87 83.96 23.56
Jar 0.03 0.76 1.39 79.12 69.67 41.51
Lamp 0.00 1.40 25.44 86.23 69.58 16.96
LargeShelf 0.02 0.82 5.15 88.08 60.70 16.81
Lid 0.05 1.83 2.39 73.22 63.47 50.11
LiteDoor 0.03 1.36 5.75 94.75 36.91 18.71
LouverDoor 0.07 1.40 16.17 89.46 37.43 20.94
Microwave 0.07 1.44 11.04 91.72 55.65 49.38
OfficeChair 0.03 1.44 2.63 78.41 55.65 46.91
PanelDoor 0.04 1.31 6.50 94.60 37.18 20.94
Plate 0.04 0.96 1.07 72.70 70.72 60.05
SidetableDesk 0.01 0.67 4.50 93.23 91.75 35.75
SimpleBookcase 0.03 1.78 2.89 92.14 65.14 33.79
SimpleDesk 0.01 2.12 25.39 88.68 93.80 45.79
Sofa 0.03 1.52 2.14 93.81 81.33 65.29
Spoon 0.67 0.37 4.09 74.00 87.04 18.92
TableCocktail 0.02 2.59 5.93 88.47 60.49 25.19
TableDining 0.02 5.52 1.03 88.14 58.43 71.26
Toilet 0.02 2.30 7.51 89.10 62.61 51.14
TriangleShelf 0.01 2.30 12.61 88.75 62.61 30.59
TV 0.04 1.53 3.41 87.80 72.69 34.14
TVStand 0.01 0.78 13.50 91.26 73.78 22.57
Vase 0.30 0.73 19.10 72.26 89.95 60.94
Window 0.14 0.59 3.73 87.36 84.21 64.64
Wineglass 0.06 0.98 6.83 88.36 73.96 28.56
All (Avg.) \ 0.06 1.87 6.00 | 86.75 67.62 45.03

A.4.1 Ablation Study

We conduct four ablation studies to evaluate the impact of key design choices in our framework.

Triplane Resolution and the Number of Learnable Tokens. The first ablation investigates the
effect of varying the resolution of the triplane representation and the number of learnable tokens. As
shown in Table[5] we observe that increasing both the triplane resolution and the number of learnable
tokens consistently improves the performance of the object-to-code inference model. This suggests
that a finer-grained spatial encoding and a richer set of token representations enable the model to
better capture the underlying 3D structure of objects.
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Table 3: Comparison of standard deviation of reconstruction metrics across all categories.

Category CD IoU

MeshCoder PLAD Shape2prog | MeshCoder PLAD Shape2prog
ArmChair 151 x1073  9.35x107% 151 x1072 | 462x1072 648x 1072 528 x 1072
BarChair 1.82x 1074 1.18x 1072 9.90x 1073 | 819x 1072 1.00 x 10!  8.30 x 102
Bathtub 6.93x107%  1.02x1072 670 x107% | 1.31x 107! 191 x10"'  8.57 x 1072
BeverageFridge 484 %1073 281 x1073 3.44x1072 | 1.13x 107! 623 x 1072  6.64 x 1072
Bottle 7.56 x107°  6.80 x 1072 6.00 x 1072 | 1.13x107* 7.05x 1072  6.90 x 1072
Bowl 483x107° 513x107% 878x107% | 811x1072 6.24x 1072  2.35x 1072
CeilingClassicLamp | 7.33x 1077  7.66 x 107  9.86 x10~* | 3.39x107% 296 x 1073  3.82 x 102
CeilingLight 1.79x 1076 3.90x 1073 444 x 1072 | 3.10x 1072  5.08x 1072  6.93 x 1072
CellShelf 3.37x107°  1.94x1072 6.95x107% | 9.65x 1072 1.34x 107! 9.45x 1072
Lamp 220x107°  9.05x107%  2.74x 107! | 1.56 x 107! 6.87x 1072 1.18 x 107!
Chair 1.09 x 1073 1.04x 1072  4.52x 1073 | 1.05x 107!  9.17x1072  6.72 x 1072
Chopsticks 3.64x 1073  1.31x1072 1.85x10°! | 1.87x 107! 1.00x10"' 1.01 x 107!
Cup 159 x 1073 579%x 1073  3.60x1072 | 9.84x1072 6.80x 1072  6.98 x 1072
DeskLamp 7.62x 107 860x1073 455x 1072 | 1.30x 107! 721 x1072  6.01 x 1072
Dishwasher 9.66 x 1073 269 x1073 239x 1072 | 1.27x 107" 4.74x1072 8.82x 1072
FloorLamp 1.23x 107 2.09x 1072 254 x 107! | 1.68 x 107! 4.92x1072 1.12x 107!
Fork 881 x 1073 214x1073 857x1072 | 214 x107' 1.25x10"'  6.55 x 1072
Hardware 220 x 107*  3.07x 1073 448 x 1072 | 1.21 x 107"  1.02x 107" 1.34 x 107!
Jar 1.40x 1074 244 %1073  6.11x107% | 1.44x10°" 6.31x 1072 898 x 102
LargeShelf 1.79x 107*  4.65x 1073  5.12x1072 | 1.53x 107 867 x 1072  7.09 x 1072
Lid 889 x10™* 1.09x1072 1.95x1072 | 1.55x 10! 1.22x107' 1.23x 107!
LiteDoor 579 x 1073 4.39x 1073 288 x 1072 | 144 x 107!  6.32x1072  9.69 x 1072
LouverDoor 467 x 1073  4.84x107% 923x107% | 1.65x 107"  6.82x 1072 1.53 x 107!
Microwave 3.92x 1073 243 x1072 3.15x107% | 7.26x 1072 1.34x10"' 1.65 x 107!
OfficeChair 1.72x107%  7.35x 1073  295x1072 | 897 x 1072 1.06x 10!  1.05x 107!
PanelDoor 9.05 x 1073 4.79x 1073  3.74x 1072 | 1.50 x 10~! 717 x 1072 1.09 x 10!
Plate 1.73x107*  6.40x 1073 578 x 1073 | 1.70 x 10~!  1.29x 10!  1.74 x 107!
SidetableDesk 511x107°  3.52x 1073 537x1072 | 9.64x 1072 583x 1072 1.23x 107!
SimpleBookcase 3.66 x 1072 6.54x 1073  7.01x 1072 | 1.08 x 107!  9.62x 1072  6.06 x 1072
SimpleDesk 429%x107°  990x 1072 1.72x 107! | 1.68x 107! 643 x 1072  8.00 x 1072
Sofa 1.35x107% 578 x 1073  6.99x107% | 6.61x10"2 7.32x10"2 6.37x 1072
Spoon 564x1072  1.63x1073  459x1072 | 226 x 107 826 x 1072  9.81 x 1072
TableCocktail 203x107* 285x1072 3.10x1072 | 1.09x 107! 211x10"' 8.68 x 1072
TableDining 3.31x107%  7.18x1072 6.16x 1072 | 1.55 x 107! 1.64x 1071  9.41 x 1072
Toilet 1.09 x 107% 844 x 1073  1.99x 1072 | 4.22x1072 524x1072  5.41 x 1072
TriangleShelf 3.60 x 107 9.30x 1073  947x 1072 | 1.03x 107! 6.63x1072 1.08 x 107!
TV 6.25 x 107*  1.74x 1073  1.02x 1072 | 1.66 x 10-* 2.84x 1072 6.68 x 102
TVStand 259 x107°  1.45x 1073  5.63x 1072 | 1.31x 107! 948 x 1072  5.92 x 1072
Vase 9.97x 1072 344 x 1072 1.05x 107! | 2.68 x 107* 248 x 1072  4.00 x 1072
Window 9.57x107% 351x1073% 6.61x1072 | 1.81x107! 1.14x10"' 1.88x 107!
Wineglass 140 x 1072 3.12x 1073 386 x 1072 | 1.04x 107! 539x 1072  6.99 x 1072
All (Std.) | 292x107% 249x1072 7.23x1072 | 1.25x10"! 1.94x107! 1.92x 107}

Initialization from Part-to-Code Checkpoint. The second ablation study evaluates whether
initializing the object-to-code model with the pre-trained checkpoint of the part-to-code inference
model yields performance improvements. Table [6] demonstrates that such initialization leads to
noticeably better results. This improvement may be attributed to the part-to-code model’s ability to
learn robust 3D geometric representations and syntactic grammar structures from the diverse part-level
dataset. These learned features likely provide transferable knowledge that facilitates generalization
during the object-level inference process, thereby improving the effectiveness of the model.

Using Learnable Tokens as Queries. The third ablation study explores the role of learnable tokens
when used as queries for the LLM. In our default setup, learnable tokens are used as input queries
to the LLM, whereas in the alternative setup, the triplane-encoded features are passed through an
MLP and directly fed into the LLM. As reported in Table[7} the learnable-token-as-query strategy
achieves superior performance. We hypothesize that this advantage arises for two reasons: (1) the
learnable tokens are capable of aggregating global information across the entire input, unlike the
direct feature approach where each patch predominantly captures localized information, and (2) the
learnable tokens can adaptively organize the input representation in a layout that is more aligned with
the LLM’s internal understanding and processing patterns.
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Table 4: Quantitative evaluation of the part-to-code inference model across different part categories.
CD is reported in 1072, and IoU is reported in percentage.

Category CD (x1072) IoU (%)

Primitive 0.18 94.81
Boolean 0.03 96.13
Array 0.70 78.90
Bridge Loop 0.14 89.16
Translation 0.17 83.45

Table 5: Ablation study on triplane resolution and the number of learnable tokens in MeshCoder. We
report L2 Chamfer Distance (x10~%) and IoU (%).

Triplane Resolution | Token Number | L2 CD (x10~%) | IoU (%)

256 128 6.32 86.75
256 64 7.72 85.11
256 32 7.05 85.02
128 128 6.55 86.62
64 128 6.51 86.05
32 128 6.88 84.56

Ablate triplane. To investigate the effectiveness of different point cloud encoding methods, we
conducted an ablation study focusing on the triplane encoding strategy. Specifically, we compared
it with the point cloud encoding approach from Hunyuan3D [37]: each input point is treated as an
independent token, and its information is directly transferred to learnable tokens via cross-attention,
bypassing the triplane intermediate representation. The experimental results are presented in the
table, which demonstrate that the tri-plane encoding method achieves superior performance on the
target task.

A.5 Complete experiment result of Shape Editing

We additionally present two examples of shape editing along with their complete code implementa-
tions. In Figure[27] we modify the thickness of the chair legs and armrests by adjusting the scale
parameter. In Figure 28] we change the mesh resolution of a plate by modifying the resolution
parameter.

A.6 Complete experiment result of Shape Understanding

When presented with a 3D point cloud of an object as input, MeshCoder can infer the corresponding
code for the object. Upon execution of this code in Blender, the geometry of the object can be
obtained. Notably, the comments within the code encompass a variety of semantically rich cues, such
as the object’s identity and the specifics of each component. The primary aim of this experiment is to
highlight that our model can assist existing large language models, like GPT-4, in understanding the
structure of 3D objects. We provide the inferred code to GPT-4 with the implementation details and
functional descriptions of the functions used in the reconstruction code. Then, we input the object’s
reconstruction code itself and then inquire about the geometry or structure of the object, as showed in
Figure[T9] Figure 20]and Figure 21} GPT - 4 is able to generate relevant responses based on the code.
More importantly, we found that this code-based representation has unique advantages over visual
inputs like multi-view images. For instance, code enables the LLM to understand complex internal
structures and provide precise dimensional measurements, which are very difficult to ascertain
from images alone. Our further experiments demonstrate that code and multi-view images are
complementary; providing both to the LLM leads to a higher accuracy than using either input in
isolation. This demonstrates that our model possesses capabilities in understanding the geometry and
structure of 3D objects and can aid large - scale models such as GPT in addressing such questions.
However, our model does have limitations. Currently, the code inferred by our model solely contains
geometric information of the object and does not include the color or texture information that images
provide. As a result, it is unable to answer questions pertaining to color.
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Table 6: Ablation study on whether to initialize object-to-code model from the part-to-code check-
point.

Initialization Strategy \ L2CD (x107%) \ ToU (%)

From Scratch 8.62 85.16
From Part-to-Code Checkpoint 6.32 86.75

Table 7: Ablation study on whether to use learnable tokens as queries in the transformer.

Query Type | L2CD (x10™*) | IoU (%)
MLP Projection Only 9.88 84.12
Learnable Tokens (Ours) 6.32 86.75

A.7 More comparative experiments

To demonstrate our model’s ability to generalize beyond the Infinigen dataset, we have conducted
reconstruction experiments using non-Infinigen data. Specifically, we leveraged Trellis[38], a cur-
rently popular generative model that takes single images as input and outputs corresponding meshes,
to create our experimental data. We collected images of three categories (chairs, shelves, and bottles)
from online sources, with 10 images collected for each category. These images were input into Trellis
to generate meshes, from which we sampled point clouds to serve as input for MeshCoder. To further
demonstrate that our model does not merely memorize the training data, we selected examples from
our training dataset that have the smallest CD loss with the point clouds generated by Trellis. All
metric results are presented in Table [9]

This experiment shows that our model maintains satisfactory performance on non-Infinigen data,
demonstrating its generalization capability. Additionally, we argue that the model does not merely
memorize Infinigen-specific structures. If it did, the metrics of our model’s predictions are unlikely
to outperform those of the dataset matches, which represent the closest possible examples from the
training set. However, we found that the reconstruction results are suboptimal when attempting
to reconstruct objects from categories not present in the training dataset. To further strengthen
generalization in future work, we plan to expand to more extensive and diverse datasets such as
Objaverse[39], and incorporate reinforcement learning techniques (DPO[40]], GRPO[41]]) into our
training pipeline, like DeepMesh[42], to boost the model’s ability to handle broader data distributions.

Moreover, to investigate how varying point cloud densities affect reconstruction quality, we designed
experiments with three different point cloud quantities, where the number of input points for our
trained MeshCoder was set to 4096, 8192, and 16384 respectively to observe its reconstruction
metrics across four representative categories: bottles, cell shelves, chairs, and sofas. The metric
results are shown in Table [T0] Notably, we observe a clear trend: as the number of input points
increases, the reconstruction quality consistently improves.
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Table 8: Ablation study on triplane

Encoding approach Strategy | L2 CD (x10™%) | IoU (%)

Treat point-cloud as token

Triplane

8.96
6.32

85.17
86.75

Table 9: Metrics of different methods on non-Infinigen data.

Method

Chairs

Shelves

Bottles

CD Loss ({)

IoU (1)

CD Loss ()

IoU(1) CDULoss()) IoU(1)

PLAD
Shape2Prog
Dataset Matches
MeshCoder

0.09

0.03

0.25
0.005

0.13
0.46
0.11
0.52

0.12
0.06
0.08

0.01

0.16
0.06
0.17
1 0.61

0.21

0.25

0.08
0.0015

0.22
0.40
0.41
0.78

Note: "Dataset Matches" represent examples from the training set with minimal CD loss to Trellis-generated
point clouds.

Table 10: Reconstruction metrics under different point cloud quantities

Number of Points

CD Loss ()

ToU (T)

4096
8192
16384

0.000404
0.000396
0.000325

0.8707
0.8718
0.8907

[ import bpy
from math import radians, pi
from bpy_lib import =

delete_all()

# object name: dishwasher
# part_1: body
create_primitive(...)

# part_2: body
create_primitive(...)

# part_3: bedy
create_primitive(...)

# part_t: door
create_primitive(...)

# part_5: bedy
create_primitive(...)

# part_6: quadrilateral rack
create_ci.
create_rectangle(...)
array_1d(...

# part_7: quadrilateral rack
create_circle(...)
create_rectangle(...)
array_1d(...)

# part_8: rack
create_primitive(...)
array_2d(...)

# part_9: rack

create_primitive(...)
array_2d(...)

# part_10: rack
create_primitive(...)
array_3d(...

# part_11: handle
create_primitive(name="handle_11
'y primitive_type="cube’,
location=[0.46, 0.39, -0.34],
scale=[0.02, 0.02, 0.02],
rotation=[0.0, -0.0, -0.71,
0.711)

# part_12: handle
create_primitive(name="handle_12
', primitive_type='cube’,
location=[0.49, 0.39, -0.0],
scale=[0.36, 0.02, 0.01],
rotation=[0.0, 6.7, -0.0, 0.711)

# part_13: handle
create_primitive(name="handle_13
', primitive_type='cube’,
location=[0.46, 0.39, 0.34],
scale=[0.02, 0.02, 0.02],
rotatien=[0.0, -0.0, -0.71,
0.711)

# part_14: heater
create_primitive(...)

G

X

6 (o

| bar.andthereisalsoa heater (heater_14")modeled

|mmisnunqedzi9“

" i |

[ Doesit have a rack inside? f

\ code,is a dishwasher

=

Yes, the object. if Th d if
‘parts explicitly labeled as racks, including quadslateral racks
(frame_§", ‘frame_7") and several cylinderracks

| Ceytinder_§ cytinder 9, ‘cylinder_10).

‘ Whatis the shape of the handie? ‘ ]

( Thehandleis composedofthree cubes ( handle 11",
“handle 12", handle_13") forming a bar like structure.
“handle_12 islonger and thinner comparedto "hande_11"
and handle_13", suggzstinga shapesimilar to a horizontal

| barwith two support ends.

-

Can you summarize the shapeand componentparts of this object? (7]

/The objectis a dishwasher, consistng ofamainbody >

| formed by several cube primitives (body_I”, bady 2",
“body_3, body_5', and doer_# ). The dishracks mnside
. : Tt I

i for i
elements. These racksinchude quadkilateral frames
(frame 6, “frame_T') and cylinder rods (‘cylinder 8,
“cylinder_9', "cylinder_10") which typically hold the

| dishes. Th iy i

| similarly aspart of themain body. Overall the objectis

Ly P
such as a door, racksfor dishes, ahandle foropening and |
2 heaterfor drying. /

Figure 19: Experiments on how GPT-40 can understand shape through given dishwasher code.
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import bpy | What's the shape of the leg? | @

from math import radians, pi  # part_15: chair base
from bpy_lib import = create_curve(name="curve_15', SRR P
control_points=[[0.0, 0.0, 0.0], ( created
delete_all() [-0.0, 0.025, 0.0], [-0.044, @ “ereate_primitive” finction with the primitive type "'cylinder”.
0.025, 0,01, [-0.044 ' This means the legs are cylindrical y
# object name: office chair @ 0]], handle_types= 1,
# part_1: wheel 1, 1, 1], closed= True) ‘I)u-ihildlli[hlv-wh-*’.‘lfn.huwm-ly’l [@
create_primitive(names 'wheel_1' ,hevel(u. - J
primitive_type="cylinder", create_curve(...) The chair has wheels. They are labeled as ‘part_1°, ‘part 2", h
location= 5 K
bevel(names='wheel_1°, ...) # part_16: chair base J “pait_3 o “part 1. Each whel s createdusog the
create_curve(names"curve_16', cuwato: primtive] fauction wit) s pimsivs s foylidar:
# part_2: wheel control_points=[[0.0, ©.2, ¢.0], | Thero aro 4 wheels. Answer: Yos y
create_primitive(...) [0.0, 0.025, 0.0), [-0.044, P —
8025, 0.00, [-0.04t, 0.0, | Are there any strtchers between the legs? | 7
# part_3: wheel 0.0]], handle_type=[1, 1, 1, 1,
create_primitive( 1,1, 1, 1], closedsTrue) =
bevel(...) bevel(...) / h
create_curve(...) fumiture (like legs of a chair). In the code, there is no.
# part_4: wheel ‘mention of stretchers explicitly connecting the legs.
create_primitive(...) # part_17: leg Although parts such as *chair base_13',*chair base_14",
create_primitive(...) “chair base_15", and " chll'hn 16" could serve as a
# part_5: wheel cap @ f the chair, there is no.
create_rectangle(...) # part_18: leg mmmm—nmrh-.mm
create_arc_by_3Dpoints(...) create_primitive(...) \\Mmmuwehnmmmﬂo y
v
# part_6: wheel axle # part_19: seat
create_primitive(...) create_circle(name=['Circle_0_1
9', 'Circle_1.19',
# part_7: wheel cap ‘Circle_2_19', 'Circle_3_19',
create_rectangle(...) “Circle_4_19', 'Circle_5.19',
create_arc_by_3Dpoints(...) ‘Circle_6_19', 'Circle_7_19
‘Circle_8_19'), location=[...])
# part_8: wheel axle bridge_ edge loops(names.,.)
create_primitive(...) join_obj(name="seat_19°,
seq_name=. .
# part_9: wheel axle weld_ threshold-...)
create_primitive(...) add_simple_deform_modifier(name
='seat_19', angles...,
# part_10: wheel cap origin=..., rotation=...)
create_rectangle(...) create_curve(name="curve_19',
create_arc_by_30Dpoints(...) control_points=

points_radiuss=. ..,
# part_11: wheel cap handle_type=...)
create_rectangle(...) add_curve_modifier_to_object(na
create_arc_by_30points(...) me="seat_19',
curve_name="curve_19",
# part_12: wheel axle origin= , rotation=.
create_primitive(...) axiss'POS_Z')

# part_13: chair base
create_curve(...)
bevel(...)
create_curve(.

# part_14: chair base
create_curve(name="curve_14’
control_points=[[0.0, 0.0, 0. ﬂ]
[o.0, -0.025, 0.0], [e 044, -
0.025, 0.0], [0.044, 0.0, 0.0]]
handle_type=[1, 1, 1, 1, 1, 1,
1, 1], closed=True)

bevel(...)

create_curve(...)

Figure 20: Experiments on how GPT-40 can understand shape through given office chair code.
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import bpy location=[0.2, 0.0, @.0], ‘What is this object? ]
from math import radians, pi scale=[0.46, 0.22, 0.005], S
from bpy_lib import = rotation=[0.5, -0.5, -0.5, - -

0.51) | The objest is described as a cell shelf, which is likely a
delete_all() @ u it desiy items in indivi

# part_6: attach gadget The "cell” termi suggests
# object name: cell shelf create prx‘Mitivc(name-‘attach  of multiple internal divisions 10 create smaller storage
# part_1: side board gadget_i | sections.
create_primitive(names'side primitive, types'cube’, <
board_1', primitive_type='cube',location=[-8.22, 0.43, -0.45], . .
location=[0.0, 0.0, -0.48], scale=[0.01, 0.01, 0.001], ‘What is the shape of the cell shelf? @
scale=[0.46, ©.22, 0.02], rotation=[0.5, 0.5, 0.5, 0.5]) - v
rotation=[0.0, -06.71, -0.71, -
0.0]) # part_7: attach gadget 4

create, IJI'JMJUVQ(MME='3U“" | The shape of the cell shelf is a rectangular cabinet with
# part_2: bottom board gadget_ ( i |
create_primitive(name="bottom pnm]tlve type="cube’, by the following components from the code: Two side
board_2', primitive_type='cube',location=[-0.22, 0.43, 0.45], Toards ("part_I" and "part_4°) form the left and right
locations[0.0, -0.48, -0.0),  scale=[0.01, 0.01, 0.001], walls of the shelf. Bottom board ('part_2'}is the lower
scale=[0.5, 0.22, 0.02], rotation=[0.5, 0.5, ©.5, 0.5]) Inmi-l-ﬁun.'lbpbuzd(pn_ﬂ)nlhw
rotation=[0.5, 0.5, -0.5, 0.5]) section. Vertical division board (‘pnu)

# part_8: top board mﬂ.”vmﬂym
# part_3: vertical division create_primitive(names='top Horizontal division board ('part_* s).aa.mu
board board_8', primitive_type='cube’, @, subdivisions within the interior. Attach gadgets ('part_6'
create_primitive(name="'vertical location=[0.0, 0.48, -0.0],  and "part_7") seem 10 be small elements for connecting or
division board_3', scale=[0.5, 0.22, 0.0?] | securing the boards together.\ninThe overall strueture of |
primitive_type="cube', rutatmn-[ﬂ 5, -0.5, 0.5, 0.5])

location=[0.0, 0.9, 0.0], y
scale=[0.46, 0.22, 0.005], ’,
rotation=[0.0, -0.71, 0.71, -
e.e

[ et it fanctionatiy? |
# part_s4: side board B
create_primitive(name="'side
board_4', primitive_type='cube’,
location=[0.0, 0.0, 0.48],
scale=[0.46, 0.22, 0.02],
rotation=[0.0, -0.71, -0.71, -
0.0])

m«ummwmwwmmiﬁngmm
storage: medbv and borizontal division boards

gadgets (pant 6" and "part_7") appear to coutribute to the
structural integrity or assembly of the cell shelf,

‘ensuring the divisions and boards remain securely

connected Compact Design: The size and scale of the

# part_5: horizontal division
board
create_primitive(name='horizont
al division board_ 5',
primitive_types='cube’,

storage sysiems, or as a modular organizer. The argeted

Figure 21: Experiments on how GPT-40 can understand shape through given cell shelf code.
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C

ate primitive object

def create_primitive(name, primitive_type="cube", location=None, scale=None, rotation=None, rotation_mode='QUATERNION', apply=False,
x_subdivisions=None, y_subdivisions=None, use_minimum_face=USE_MINIMUM_FACE, average_edge_length=AVERAGE_EDGE_LENGTH, resolution=None):

if primitive_type=="uv_sphere":
if not use_minimum_face:
if average_edge_length !=None:
res=int(2%pi//average_edge_length)
segments, ring_count=res, res
else:
segments, ring_count=resolution[@], resolution[1]
getattr(bpy.ops.mesh, f'primitive_{primitive_type}_add")(segments=segments,ring_count=ring_count)
primitive = bpy.context.object
primitive.name = name
else:
getattr(bpy.ops.mesh, f"primitive_{primitive_type}_add")()
primitive = bpy.context.object
primitive.name = name

if primitive_type in ["cylinder”,"cone"]:
if not use_minimum_face:

if average_edge_length !=None:
res_1=int(2*pi//average_edge_length)
vertices=res_1
res_2=int(2//average_edge_length)

else:
vertices,res_2=resolution[@], resolution[1]

getattr(bpy.ops.mesh, f"primitive_{primitive_type}_add")(vertices=vertices)

primitive = bpy.context.object

primitive.name = name

if primitive_type:
primitive=subdivide_primitive(name,[res_2],['Z'])

else:
primitive=split_cone_z(name,res_2)

else:
getattr(bpy.ops.mesh, f'primitive_{primitive_type}_add")()
primitive = bpy.context.object
primitive.name = name

if primitive_type
if not use_minimum_face:
if average_edge_length !=None:
res_l=int(2*pi//average_edge_length)
nt(@.5*%pi//average_edge_length)

else:
res_1, res_2=resolution[@], resolution[1]
getattr(bpy.ops.mesh, f"primitive_{primitive_type}_add")(major_segments=res_1,minor_segments=res_2)
primitive = bpy.context.object
primitive.name = name
else:
getattr(bpy.ops.mesh, f'primitive_{primitive_type}_add")()
primitive = bpy.context.object
primitive.name = name

if primitive_type=="cube":
if not use_minimum_face:
if average_edge_length !=None:
res=int(2//average_edge_length)
if res>1:
resolution=[res,res,res]
else:
pass
getattr(bpy.ops.mesh, f'primitive_{primitive_type}_add")()
primitive = bpy.context.object
primitive.name = name
primitive=subdivide primitive(name,resolution,['X','Y","Z'])
else:
getattr(bpy.ops.mesh, f'primitive_{primitive_type}_add")()
primitive = bpy.context.object
primitive.name = name

if primitive_type=="grid":
getattr(bpy.ops.mesh, f"primitive_{primitive_type}_add")(x_subdivisions=x_subdivisions,y_subdivisions=y_subdivisions)
primitive = bpy.context.object
primitive.name = name

if location:
primitive.location = location
if scale:
primitive.scale = scale
if rotation:
if rotation_mode=='XYZ':
primitive.rotation_euler = [angle * pi for angle in rotation]
elif rotation_mode=='QUATERNION' :
primitive.rotation_mode = 'QUATERNION'
primitive.rotation_quaternion = rotation
elif rotation_mode=='MATRIX':
mat = np.eye(4)
rotation = np.array(rotation).reshape([3,3])
mat[: 3] = rotation
bpy. context.view_layer.update()
world_matrix = torch.tensor(bpy.data.objects[name].matrix_world)
scale_now = world_matrix.norm(dim=8)[:3]
scale_matrix = torch.eye(4)
scale_matrix[@,8],scale_matrix[1,1],scale_matrix[2,2] =scale_now[@],scale_now[1],scale_now[2]
scale_matrix_inv = scale_matrix.clone()
for i in range(3):
if scale_matrix_inv[i,i]>le-10:
scale_matrix_inv[i,i]=1.8 / scale_matrix_inv[i,i]
mat = scale_matrix_inv@torch.tensor(mat,dtype=torch.float32)@scale_matrix
mat = mathutils.Matrix(np.array(mat))
bpy.data.objects[name].matrix_world = bpy.data.objects[name].matrix_world@mat

if apply:
bpy.ops.object.transform_apply(location=True, rotation=True, scale=True)

return primitive

Figure 22: Implementation of the function for creating primitives
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Creates a translational object of a line trajectory
def create_curve(name, profile_name=None,control_points=[],points_radius=[],handle_type=[],closed=False, center="POINT",thickness=None,
fill_caps="none",flip_normals=False, bevel_width=None, bevel_segments=8,use_minimum_face=USE_MINIMUM_FACE, average_edge_length=AVERAGE_EDGE_LENGTH, resolution=24,
volumn_origin=True):
if isinstance(name, str):
type_dict={0:"AUTO", 1

"VECTOR", 2:"ALIGNED", 3:"FREE"}
control_points = np.array(control_points).tolist()
control_points_tmp = copy.deepcopy(control_points)
num_handle_co = handle_type.count(3)

num_control_points = len(control_points) - num_handle_co

curveData = bpy.data.curves.new(name, type='CURVE')

curveData.dimensions = '3D'

bezierspline = curveData.splines.new('BEZIER')
bezierSpline.bezier_points.add(num_control_points - 1)
bezierSpline.use_cyclic_u = closed

for i in range(num_control_points):
bezier_point = bezierSpline.bezier_points[i]
bezier_point.handle_left_type = type_dict[handle_type[2*i]]
if type_dict[handle_type[2*i]]=="FREE":
bezier_point.handle_left = control_points.pop(@)
bezier_point.co = control_points.pop(8)
bezier_point.handle_right_type = type_dict[handle_type[2*i+1]]
if type_dict[handle_type[2*i+1]]=="FREE":
bezier_point.handle_right = control_points.pop(@)
bezier_point.radius = points_radius[i] if len(points_radius)!=e else 1.0

assert len(control_points
if use_minimum_face:
use_resolution = 12
elif not average_edge_length is None
for i in range(len(bezierSpline.bezier_points) - 1):
pl = bezierspline.bezier_points[i].co
p2 = bezierSpline.bezier_points[i + 1].co
total_length += (p2 - pl).length
use_resolution = total_length/average_edge_length

"cannot create curve"

if resolution:
use_resolution = resolution
curveData.resolution_u = use_resolution

curveOB = bpy.data.objects.new(name, curveData)

if profile_name != None:
curveData.bevel_mode = "OBJECT"
curveData.splines[0].use_smooth = False
scn = bpy.context.scene.collection
scn.objects. Link(curveos)

if bevel_width!=None:
bevel(name=name, width=bevel width, segments=bevel_segments)
curveData = bpy.data.objects[name].data
curveData.bevel_mode = 'OBJECT'

curveData.bevel_object = bpy.data.objects[profile_name]
if fill_caps=="bot
curveData.use_fill_caps = True
else:
curveData.use_fill_caps = False

if use_minimum_face:
use_resolution = 24
elif not average_edge_length is None
for i in range(len(bezierspline.bezier_points) - 1):
pl = bezierspline.bezier_points[i].co
p2 = bezierspline.bezier_points[i + 1].co
total_length += (p2 - pl).length
use_resolution = total_length/average_edge_length

if resolution:
use_resolution = resolution

curveData.resolution_u = use_resolution

bpy.context.view_layer.objects.active = bpy.data.objects[name]
bpy.ops.object.mode_set(mode = 'OBIECT')
bpy.data.objects[name].select_set(True)
bpy.ops.object.convert(target="MESH')
bpy.data.objects. remove(bpy.data.objects[profile_name], do_unlink=True)
if volumn_origin:

bpy.ops.object.origin_set(type='ORIGIN_CENTER_OF_VOLUME', center='MEDIAN')

if fill_caps in ["start”,"end"]:
make_caps (name, fill_caps)

if flip_normals:

recalculate_normals(name, inside=True)
else:

recalculate_normals(name, inside=False)

if thickness>le-10:
solidify(name, thickness)

weld(name,le-5)

return curveoB
else:
scn = bpy.context.scene.collection
scn.objects. Link(curveoB)
if center=="MEDIAN":
bpy.data.objects[name].select_set(True)
bpy.ops.object.origin_set(type='ORIGIN_GEOMETRY', center='MEDIAN')
points=np.array(control_points_tmp)
return {"name":name, "points":points, "handle_type":handle_type, "closed":closed, "center":center}

elif profile_name==None:
if isinstance(profile_name, str)
profile_name = [profile_name]*len(name)
if len(points_radius) != @ and (isinstance(points_radius[e], float) or isinstance(points_radius[e], int))
points_radius = [points_radius]*len(name)
elif len(points_radius) ==
points_radius = [[]] * len(name)
if isinstance(handle_type[e], int):
handle_type = [handle_type]*len(name)
if isinstance(closed, bool):
closed = [closed]*len(name)
if isinstance(center, str)
center = [center]*len(name)
for i in range(len(name)):
create_curve(name=name[i], control_points=control_points[i], points_radius=points_radius[i], handle_type=handle_type[i], closed=closed[i],
center=center[i], thickness=thickness, fill_caps=fill_caps, flip_normals=flip_normals, resolution=resolution)
points = np.array(copy.deepcopy(control_points))
return {"name":name, "points":points, "handle_type":handle_type, "closed":closed, "center":center}

Figure 23: Implementation of the function for creating curves
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inport bpy.
from natn import racians, pi
#rom bpy_lib import

cetete_s110)

# object nane: sofa
# part i leg

Srcle 1, radius=.02, center=HEDIAN')
"leg_1', profile name='circle 1, control_points=[[-0.61, -0.25, 8.57], [-0.61, -0.51, 8.57], [-0.61, -0.38, 0.371], points_radius=[1.9, 0.79, 0.4], handle_type=[1, 1, 1, 1, 1, 1], thickness=0.0,

ircle 2, radius=0.02, center='HEDIAN')
"leg 2", profile names'circle 2', control_points=[[6.61, -0.25, 0.37], [0.61, -6.38, 8.37]], points_radius=[1.6, 6.41], handle_types[1, 1, 1, 1], thickness=0.8, Fill_caps="both')

Srcle 3', radius=e.02, center='HEDIAN'
“leg 3", profile_nam , control_points=([-8.52, -6.29, -9.24], [-6.52, -0.36, -0.24]], points_radius=[1.0, 0.4], handle_type=[1, 1, 1, 1], thickness=0.0, Fill_caps="both’)

create_curve(nans

# part_¢
Criaecirerana
crest_curve(nam

circlea’, radius-s.02, center='HEDIAN'
Lega, profile namescircls 4', control_pointss[[-6.52, -0.29, 0.24], [-0.52, -0.35, 0.2¢]], points_racius=[1.6, 0.41], handle_types[2, 1, 1, 1], thicknsss=e.0, Fill_caps='soth’)

# part_s:
creste_quad(name=‘qusd_1_5', 'qusd_2_5', 'quad_35', 'quad_4_5'], control_points=[[[-1.862, 0.325, 8.45], [-0.99, -0.298, 0.454], [-0.844, -0.352, .454], [-0.87, 0.296, 0.451]], [[-1.002, 0.325, 0.1e8], [-0.99,
Fbepir s s el e O s et i e e ot o st s bl et ool e o s
“0.352, [-0.823, 0.324, -6.4681]])

Lo, profile_nanes['quad_1S', 'quad_25°, ‘quad 35, ‘quad_4_5'], number_cuts=is, smoothness=a.73, intarpolations’SURFACE', fill caps='both’)

bevel(ranesTarm 5+, idthia.os, segnentoos)

# part._6:

Craate_auso(mane-[quad 16", “auad quricsiers el conrolelntenllfo o7, 0.3, 008, [0.00%, 10361, 0,051, (0,008 0,357, 0.48ol, (0865, 0.29% 016l [[0.055, 032, e, [owsen, co.sen,

0.143), [0.862, -0.352, o uz], ocaeh, &.208, 5.10011, TL6-3, b.337, “oaseh, T EEA B o e i o T S A i R e
352, 4111)

bridge ¢ ane=['quad_1_6", 'quad_2_6", "quad_3_6', "quad_3_'], number_cuts=ls, smoothness=p.73, interpolations’SURFACE', Fill caps='both’)

bevel(nans

# part_7: leg
create, nr:]e(m

- I e

# part_8: leg
cresta_circla(nan

\.__,1 / create_curve(nane

# part_9: back_board
(name="back_board_9", prinitive_types'cube’, locations[0.0, -0.03, -8.37], scale=[0.57, 8.27, 0.1], rotation=[0.6, ©.9, 0.8, 1.2])
ck_board 9", nidthes.27, segnents=d)

circle_7’, radius=s.02, center'HEDIAN')
26 7", profile_nanes'circle 7', control_pointss[[0.92, -0.25, -0.24], [0.92, -0.36, -0.24]], points_racius=[1.8, 0.41], handle types[1, 1, 1, 1], thickness=0.e, fill capss'both')

ircle 8, radius=.02, center='HEDIAN')
eg 5", profile_nane'circle s’ control_points=[[0.52, -2.25, 0.24], [6.52, -0.35, 0.24]], points_radius=[1.0, 0.41], handle_type=[1, 1, 1, 11, thickness=0.9, Fill_caps="both')

bevel(name:

# parc_o; sofa board
bevel(nams

" sofa board 10", primitive_types'cube’, locations[-0.9, -6.26, 0.1], scale=[0.57, 0.37, 0.64], rotations[0.9, 6.6, 0.71, 0.71])
sets board 0., videnco.25, segmentensy

# part_a1: cushion
create_prinitive(nanes’cushion_11', prinitive_types’cubs’, locations[-0.59, -0.69, -0.01], scales[6.45, ©.3, 0.14], rotations[s.5, -0.5, 0.5, 8.5])
bevel(nane="cushion_11', width=5.23, segnents=5)

£ farn s i
ve(name="cushion_12', primitive_type='cube’, location=[6.6, -6.69, -0.61], scale=[8.45, 0.3, 8.14], rotations[0.5, -0.5, 0.5, 0.5])
cushion_12', width=e.2%, segnents=d

Sevel(rem

# part_13: cushion
imitive(nane= cushion 13, prinitive_types'cuse’, locations[6.59, -0.09, -0.01], scales[6.45, .3, 0.14], rotation=[6.5, -6.5, 0.5, 8.5])
cushion_13', widthoa.28, segments=d

# part_14: cusnion

e(nana cusbion 16", primitive_ypes’cylinder’, docations(-9.59, 0.9, -0.14], scales(9.1, 0.8, 0.1, rotations(o. 47, 0,56, 0.47, -9.52])
cushion_14', widtheo.s2, segments=

bevel(name

# part_15: cushion
creste curve(amesl curve 115", deurie 215', curve 35' lcurve s 15! tcurve 5,15, control polnta={[[0.312, 8.243, -9.1511, 0311, 0161, -0.164], [0.511, 0.125, -0.1341, [0.311, 0,188, 0.1isl], (o261,
6.329, -0.161], [0.28, 0.177, -5.189], [0.279, 0.043, -0.123], [0.28, 0.188, -0.11]], [[e.001, 6.377, -0.16], [0.001, 6.174, -0.225], [ 0.085, -0.117], [-0.001, ©.138, -0.658]], [[-0.279, 0.33, -0.161]
e e e e e e el T Mo

o, o, 6], closed=True)

bridge_tdge_Looph(names cushion 15, profils_names['curve i iS', 'curve 215, ‘curve 3_i15', ‘curved 1S, ‘curve 5_15'], number_cutssd, smeothness=a.sé, interpolations’SURFACE, Fill_ca

1,2, 4, 11, handle_tyeese,

botn')

# part_1s: cushion
creste | (namescushion 16, prinitive_types’cylinder’, location=[0.59, 0.19, -0.14], scales[0.19, 0.0, 6.31], rotstions[0.45, -0.5¢, -0.42, 0.54])
bevel(hamer-cushion 16", widtheo.5, segnentart)

Figure 24: An example of sofa. The input is a point cloud of a sofa, and the figure shows the code
inferred by the object-to-code inference model, as well as the resulting mesh generated by executing
the inferred code.

import bpy
from math import radians, pi
from bpy_lib import *

delete_all()

# object name: bathtub
# part_1: bathtub
create_curve(name=['curve_1_1', 'curve_2_1', 'curve_3_1', 'curve 4_1', 'curve_5_1', 'curve_6_1', 'curve_7_1', 'curve 8_1'],
control_points=[[[e.6, ©.38, -0.51], [e.e, @.38, -0.51], [-0.6, .38, -0.51], [-0.97, 0.38, -0.51], [-0.97, €.38, @.0], [-0.97,
0.38, ©.51], [-0.6, ©.38, 0.51], [e.0, 0.38, ©.51], [e.6, ©.38, ©.51], [0.97, ©.38, ©.51], [0.97, €.38, @.0], [0.97, 0.38, -0.51]],
[[e.59, ©.32, -0.5], [e.0, ©.32, -0.5], [-0.59, €.32, -0.5], [-0.96, ©.32, -0.5], [-0.96, 0.32, @.e], [-0.96, 0.32, 0.5], [-0.59,
©.32, 0.5], [e.0, .32, 0.5], [0.59, ©.32, ©.5], [0.95, ©.32, ©.5], [0.96, 0.32, 0.0], [0.96, ©.32, -0.5]], [[0.57, 0.04, -0.48],
[e.e, e.04, -0.48], [-0.57, @.04, -0.48], [-0.92, 0.04, -0.48], [-0.92, ©.04, 0.0], [-0.92, 0.04, 0.48], [-0.57, 0.e4, ©.48], [e.0,
©.04, 0.48], [0.57, ©.04, 0.48], [0.92, 0.04, 0.48], [0.92, 0.04, 0.0], [0.92, 0.04, -0.48]], [[0.53, -0.04, -0.45], [-0.0, -0.04,
-0.45], [-0.53, -0.04, -0.45], [-0.86, -0.04, -0.45], [-0.86, -0.04, 0.0], [-0.86, -0.04, 0.45], [-0.53, -0.04, 0.45], [-0.0, -0.04,
©.45], [0.53, -0.04, 0.45], [0.86, -0.04, 0.45], [0.86, -0.04, 0.0], [0.86, -0.04, -0.45]], [[0.48, -0.1, -0.41], [-0.0, -0.1, -
0.41], [-0.48, -0.1, -0.41], [-0.78, -0.1, -0.41], [-0.78, -0.1, 0.0], [-0.78, -0.1, 0.41], [-0.48, -0.1, 0.41], [-0.0, -0.1, 0.41],
[e.48, -0.1, 0.41], [0.78, -0.1, 0.41], [0.78, -0.1, .0], [0.78, -0.1, -0.41]], [[0.41, -0.15, -0.35], [-0.0, -0.15, -8.35], [-
.41, -e.15, -0.35], [-e.67, -0.15, -8.35], [-0.67, -0.15, @.0], [-0.67, -0.15, ©.35], [-0.41, -0.15, ©.35], [-0.0, -0©.15, ©.35],
— [e.41, -0.15, 0.35], [6.67, -6.15, 0.35], [6.67, -6.15, @.0], [0.67, -6.15, -0.35]], [[e.32, -.19, -0.27], [-0.6, -0.19, -0.27],
[-e.32, -e.19, -0.27], [-0.52, -0.19, -0.27], [-0.52, -0.19, 0.6], [-0.52, -0.19, 0.27], [-0.32, -6.19, 0.27], [-6.0, -0.19, 0.27],
[e.32, -e.19, @.27], [6.52, -6.19, 0.27], [6.52, -6.19, @.0], [6.52, -6.19, -0.27]], [[e.13, -e.23, -e.11], [-0.6, -0.23, -0.11],
[-e.13, -e.23, -e.11], [-e.21, -0.23, -0.11], [-0.21, -0.23, @.e], [-0.21, -0.23, @.11], [-0.13, -0.23, 0.11], [-0.0, -0.23, 0.11],
[e.13, -e.23, e.11], [e.21, -6.23, @.11], [e.21, -6.23, @.e], [e.21, -0.23, -0.11]]], handle_type=[3, 3, 3, 3, 3, 3, 3, 3],
closed=True)
bridge_edge_loops(name='BridgeLoop_1', profile_name=['curve_1_1', 'curve 2 1', 'curve_3_1', 'curve_4_1', 'curve_5_1', ‘curve_6_1',
‘curve_7_1', 'curve_8_1'], number_cuts=4, interpolation='SURFACE', fill caps='end')
create_primitive(name='bathtub_1', primitive_type='cube', location=[0.e, 0.8, @.8], scale=[1.e, ©.55, ©.32], rotation=[e.e, ©.o,
0.71, 0.71])
boolean_operation(namel='bathtub_1', name2='BridgelLoop_1', operation='DIFFERENCE', solver_mode='FAST')

# part_2: drain plug

create_primitive(name='drain plug_2', primitive_type='cylinder', location=[-8.82, -0.26, 0.01], scale=[0.02, ©.02, ©.003],

rotation=[@.71, ©.71, -0.8, 0.0])
Figure 25: An example of bathtub. The input is a point cloud of a bathtub, and the figure shows
the code inferred by the object-to-code inference model, as well as the resulting mesh generated by
executing the inferred code.
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import bpy
from math
bpy_]

mport radians, pi
import +

delete_all()
# object name: toilet

op_11', 'loop_2_1'], control_points=[[[0.209, -0.595, @.45], [0.0, -0.5%5, 0.492], [-0.209, -0.595, 8.43], [-0.293, -0.595, 0.307], [-0.292, -6.59, 0.058], [-0.292, -6.53, -0.091], [-0.157, -0.59,
S5, -0.226], [0.158, -0.591, -8.226], [0.292, -0.591, -0.692], [6.292, -8.591, 0.958], [0.291, -0.595, 0.307]], [[e.181, -0.997, 0.463], [-0.6e1, -0.997, 0.464], [-0.175, -0.997, 0.465], [-0.269, -
, <10, 8.054], [-0.272, -1.0, -0.096], [-0.154, 1.0, -0.222], [0.6, -1.8, -0.222], [8.154, -1.601, -0.222], [0.272, -1.001, -8.096], [0.27, -1.601, 6.054], [0.271, -1.001, 0.363]1]
13,3, 3, 3, 3, 3, 3, 31, closed=True)
bridge_edge_loops(name='stand_1', profile_nam

“loop_1_1°, "loop_2.1'], number_cuts=16, smoothness=l., profile_shape _factor=o.14, flip_normals=False)

# part_2: tube

create_curve(name=['loop_1 2", 'loop_2.2', 'loop 3 2'], control_points=[[[-6.332, -8.107, 0.776], [0.063, -6.107, 0.774], [0.338, -0.167, 0.773], [0.395, -0.121, ©.372], [8.3%4, -0.121, ©.116], [6.393, -8.127, -0.888],

Do eoe. Al sl 8t eenl LEa S0n eSS S0l SaNI AR Gl danl Teoe. S0 Ball Il Gl Al ek 8 Sk S0l T80, 4

0,355 24, amn, sl (o v, —wim, aaasl, (Baiy, wam, AuE, Ledn, gim, win, [eai, A, S [Ges, s, e, Dam, cem o, | e,

6.255], [0.091, -0.613, 6.255], [6.0%9, -8.513, 8.255], 513, 027, (0.8, 0,62, 8.066], (0116, -0.62, 0.005), [9.065, 0.6, -0.054], [-0.001, -0.62, -9.053], [-0.067, -

e oCb e 00071, (07118, 9 61%, $1658); |25 1118, ~GiEi%; 9.1301]1s hATATA. yReSED, 55 5 55 Tmotiseiol, cloteal
edg i e

3,
Pz, dewp sl [loap_itry losp.5 2 11, mmber_tutsile, 131, smeothmes

Y ., profile_shape_factor=[o, ©.17], interpolation

SURFACE",

e, e el e, Tedge 2 2], wedd Shrestoldete-)
)

# part_3: back
create_curve(nar P18, oop ay'], control pointas(l-0.561, -0.068, 1341, (0.6, -0.067, 1.34], [o.501, -0.062, 1.1, [0.667, -0.063, o.ta], [0.67, 0,063, 0.246], [0.687, -0.064, -0.067], [o.204, -0.063, -
S ISR Torey iobts 513981, [-o15557 5.6, ~6.3001y 1-6:666 ~0.067], [-6.666, -0.063, 0.245], [-0.665, -0.068, 0.588]1, [[-0.14, -0.947, 0.471], [-0.004, -0.543, 0.471], [0.132, -6.944, 6.471], [6.176, -
Croasy 0 25el, Toa7es <0908, 01700 [0k 0,508, 8.0081, 13,075, ~b.o0h, -5.0601, [-5.00%, 5500 L8.6081, L0001,
[_ rue)

‘0.547, -0.04], [-0.184, -0.547, ©.083], [-8.184, -0.547, 6.173], (-0.1s4, -6.547, 0.29411],

rofile nme-l loop 3.3, "loup_2.3'], mmber_cuteni3, smothessxl; profile shap foctorea.1a, dnterpolation SUTACE', £511_cape= both)

oma 3T contret.p [0.457, -0.955, 0.246], [0.289, -6.441, 0.245], [0.097, -5.572, 0. 6], Looss, o5 72, 6,241, [-0.289, -o.445, 6.248], [-0.456, -0.869, .246]], [[8.335, -
6.073, -0.884], [0.212, re 2, o604l 0. o71, -6 on o SheLs 0,076, 0570, 10 000, 5.k, 6008, o.aus], L0300, s0rdhes S0 ORALIN, manche rmenihs o 6, de ba Tl 6 6r T, AT croneiteie)
corrective_smooth(name=[ '1o0p_3_3", *100p_4_
bridge_edge_loops(names‘back 3, Dreﬁ]e nane=[ *Loos.
boolean_operation(namels'back 3,

il 5 s i s, T Ao Tl
ridgeLoop. 23", operations'DIFFERENCE", solver_mod )

# part_a: tank
create_prinicive(nanes tank 4", prinitive types'cuoe’, locations[0.0, 0.14, -0.71, scale=[9.35, 0.23, 0.15], ratations[0.9, 0.9, 0.0, 1.0])
bevel (name="tank_4', width=5.29, segnents=2)

# part_5: cover

creste_curve(nam , control_points=[[-8.375, 0.977, 8.393], [-8.9, 0.577, 0.393], [0.375, 8.577, 0.393], [0.523, 0.687, 0.155], [0.523, 0.377, -0.899], [0.523, 0.118, -0.312], [8.322, 0.017, -0.334], [0.322, -
e o i) oo sta, 8076, o aTT, -0 305, 6007, 0,300, L0580, 01146, 65121 16,525, 0377, 5. 0901, 1-0.575 .87, 615811, hanchetypetlos 3v 3, By 0y drts e hs ke 2O b 1o ShovadiTro
Coa st ioin 3 6, ool it (1 600, 400 @Al Eo som, oSl 1957, L eel, 6081, (00h, 0.1k, S, IRSm, G, Dutiel, 185 Gl Jpoul, T, 322”0001, -0.4241, [0.322, -

e.051, -0.5: 322, “e.051, -9.5], [-0.322, 0.641, -0.424], [-0.523, 0,142, -0.361], [-6.523, o.401, -6.128], [-6.523, 0.721, 0. 12611, handletyps
bridge_edge_loops(nane="cover.5°, profile na et Vogpn.ar], HIL capee-botht mumbar <vtasc)

3,33, 4,1, 1, 1, 1, 1, 9, 3, 3], closedsTrue)

create_curve(nams control_ 362, -0.059, 0.907], [-0.0, -0.859, 0.997], [-0.362, -0.659, 0.907], [-0.523, -0.059,

Torsa Toross, omamcl [0/, 5,550, 5 4551. o525, 6.0, 05201, 0505, 0 000y b.21sL. [o-5an,0.050) O ML, fo.srs, T0.030, 653811, handie sy np byt de s i, doer

cresce curvetnanes loop 2.6, contrelpoincaslle 72, 0,050, 0751, [0, 0,055, 0,731, Le.27a, e.055, 073, [39h, 0059, o.awrl, Lo ssn, o055, 0,341, 10,561, 9055, *-0l123], [-6.202, -0.055, -0.2481, [-
055, -0207], 0,301, 0,059, o T, co-esd, o.ais], foisar, oless, 1), (9039, -0l653, 0L447)), handle tyhen(3, 3, 3, 3, 3, 3,3, 3), closedsTrie)

bridge_edge. Loopa (natms " seat. ", protile nameel loo *loop_2_6°], fill_cap

SoLidiTy ranen:vest 65 thicknessco.od)

e, o, ez, 00, el [0, 0.0, o),
3,73,

nber_cuts=0)

# part_
Pt OO

cap_7', prinitive types'cube’, location=[-6.0, 8.41, -8.7], scale

6.41, 0.2, 0.04], rotation=[6.0, 0.9, 8.71, 0.71])

# part_g: button
create_primitive(name="button 8", primitive_type

cylinder', locations[0.9, 0.43, -6.7], scale=[0.04, 0.04, 0.62], rotation=[0.54, 0.5, -6.45, 0.45])

Figure 26: An example of toilet. The input is a point cloud of a toilet, and the figure shows the code
inferred by the object-to-code inference model, as well as the resulting mesh generated by executing
the inferred code.
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import bpy
sl Seeriirene, pi
From bpy_lib import
delete_all()

# object name: chair

# part_1: leg
create_prinitive(name="leg 1", priitive type='cube’, ocation=[-6.44, -0.46, 8.37], scalo NN, rotstion-[o.5, 6.51, -6.51, -6.45])
bevel( leg 1, width=5.12, segnents=s)

# part_2.
create_priitive(name='leg_:

, primitive_type='cube’, location=[-8.31, -0.46, -0.46], scale=[0.53, 6.5, 6.65], rotatiol

0.51, -0.5, -0.49, 0.51])

# part_3: leg
ey primitive(name='leg_:

, primitive_types'cube’, locations[e.31, -0.46, -0.46], scale=[0.53, 0.65, 0.05], rotation=[0.51, -0.5, -0.49, ©.51])

# part_4: leg
create_primitive(name='leg

» primitive_type='cube’, locations=[0.44, -0.45, ©.37], scal

0.53, 0.65, 0.05], rotation=[0.5, 0.51, -0.51, -0.49])

8 # part_s: leg decoration
create_prinitiva(nane="lag decoration.s', prxm)t)ve type='cube’, location=[-0.37, -0.35, -0.05], scale=[0.42, .85, 0.05], rotation=[0.76, 6.01, ©.65, -0.01])
bevel( g decoration 5, widt segnents=1)
# part_6: leg decoration
creste_prinitive(nane= leg decorstion.¢', prinitive types’cube’, locations[0.57, -0.35, -9.05], scalex(0.42, 0.05, 0,651, rotationslo.6s, -0.01, 076, 0.011)
bevel(name="leg decoration_6', wi segments=6)
# part_7: seat
create_curve(name="seat_7", control_points=[[6.0, 0.3, -0.51], [-0.35, 0.03, -0.51], [-0.47, 0.05, ©.21], [-0.43, .03, 0.41], [0.0, 0.03, 0.5], [0.49, 0.03, 0.41], [0.47, 0.05, 0.21], [6.35, e.03, -
e.51], [0.0, .03, -0.51]], handle_type=[0.6, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.9, 6.0, 0.0, 0.0, 0.0, 0.0, 1.5, 1.0, 0.9, 0.0])
FilLgrid(ame= seat 7, thickness=a.1662)
bevel(name="seat_7', width=0.05, segments=
# part_
create_circle(name="circle 8", radius=9.86, center='MEDIAN'
create_curve(name="arn_8", profile name='circle 8', control_points=[[-0.33, 0.64, -0.46], [-0.39, 0.64, -0.2], [-0.46, 1.02, -0.05], [-0.45, 8.64, 0.21], [-6.45, 0.1, 0.31]], points_radius=[1.9, 1.0,
1.6], handle_type=[e, 3, 3, 1, 1, 0], thickness=6.061, fill_caps='both')
# part_o:
create_primitive(name="back_9', primitive type='cube’, location=[-0.31, 0.54, -0.46], scale=[6.45, 6.64, 8.64], rotation=[0.5, 0.51, -0.51, -0.451)
# part_10: back
create_primitive(name='back_10', primitive_type='cube', location=[0.31, 0.54, -0.46], scale=[0.45, ©.04, 0.84], rotation=[0.5, 0.51, 0.51, 0.49])
circle_11', radius=0.06, center='MEDIAN')
_11° profile_name='circle 11°, mcmumm [[n 33, 6.64, -0.45], [0.39, 0.64, -0.21], [0.45, 1.01, -0.05], [0.47, 0.62, 0.23], [0.47, 0.09, 0.32]], points_radius=[1.0, 1.0,
A1, Sendis breatn. 5. % L 1. Wi, ERideacn 08l Fiiie
# part_12: back decoration
create_curve(name="back decoration_12', control_points o8 oS, [958, ocn, 051l [o0, 0.62, oo sn, [0.35, e.62, -0.51], [0.35, 0.8, -0.51], [6.35, 0.99, -0.51], [0.01, 0.99, -
e.51], [-8.35, 0.99, -0.51], [-0.35, 0.8, -0.51]], hanaletype-[ee .0, 1.0, 1.0, 0.0, 0.9, 1.0, 1.0, 0.6, 6.0, 1.0, 6.6, 8.6, 1.9, 1.9, 0.0, 0.0])
Fi11_grid(name="back decoration 12', thickness=e.886)
bevel(name="back decoration 12', width=6.84, segments=10)
import bpy
e
from bpy_Lib impor
delete_all()
# object name: chair
# part_1: le
create_primitive(nane=-Leg 1", primitive type='cute’, locstion-[-0.44, -6.45, 0.7], scale-[BIESINRUBGIIRIRE], rotstion-[o.5, 0.51, -0.51, -0.43])
bevel(name=" dth=s.12, segnents=8)
# part_2: leg
create_primitive(name='leg 2', primitive_type='cube', location=[-0.31, -0.46, -0.46], scale=[0.53, 6.68, 6.68], rotation=[0.51, -0.5, -0.49, 0.51])
# part_3: leg
create pr)mxt)ve(name- leg_3', primitive_types'cube’, location=[0.31, -0.45, -0.45], scale=[0.53, 8.05, 6.65], rotation=[0.51, -0.5, -0.49, 0.51])
# part_a: 1
Cronte printive(nane="1eg_4", primitive_types'cube’, locations[0.44, -0.45, 0.57], scale-[BES3 BTGB OME], rotations[0.5, 0.51, -0.51, -0.451)
# part_5: leg decoration
creste_primitive(nane= leg decorstion.s, prinitive types-cube’, location=[0.57, -0.35, -0.05], scale=[0.42, 0.65, 9.5, rotation=[0.76, 0.01, 0.5, -0.01])
bevel(na g decoration 5', width=0.13, segments=1)
o # part_6: leg decoration

Create-primitiva(nunes 1eg decorstion 6, printtive_typ
bevel(name="leg decoration_6', width=p.15, segment:

cube', location=[0.37, -8.35, -6.05], scale=[6.42, 0.65, 0.65], rotatior

0.65, -0.01, 0.76, 0.01])

# part_7: seat

creste_curve(nane="sest.7!, control pointe={l0.0, 0.03, -0.51], [-0.35, .63, -0.511, [-0.47, o. e n], [ 0.4, 0.03, 0.61], [a o, 6.3, 0.5], [0.49, 0.03, 0.41], [0.47, 0.05, 8.21], [6.35, 0.03, -
0.51], [6.0, .03, -0.51]], handle_type=[0.6, 0.8, 1.0, 1.6, 0.6, 0.0, 0.0, .0, 0.0, 0.9, 0.9, 1.0, 0.0, 6.9

Fi11_grid(name="seat 7', thickness=0.1042)

bevel(name="seat 7", width=0.05, segments=1)

# part_8: arm
tetrcle 8', raciuseil, centers"NEDINL')

18", profile_name='circle_8', control. pu)nt (e zs, .64, -0.46], [-0.39, 0.64, -0.2], [-0.46, 1.02, -0.06], [-0.46, 0.64, 0.21], [-0.46, 0.1, 0.31]], points.
101, handle_typee(o, 3, 3, 1y 3, B, thickneseso.001, Fi1l capse:bot

_radius=[1.e, 1.0,

# part_9: back
:reits_pr)mxt)ve(nime-'In(k s, primitive_typs

cube’, location=[-0.31, 0.54, -0.46], scale=[6.45, 0.4, 0.84], rotatior

[o.5, 0.51, -0.51, -0.45])

# pa back
fraste pr—smxtsve(n:me— back_10', primitive_type='cube’, locatio

©.31, ©.54, -0.46], scale=[0.45, 0.04, 0.04], rotatior

[e.5, @.51, 0.51, 0.49])

# part_11: arm

.68, center='MEDIAN'
create_curve(name='arm_11°, profile_name='circle_11', control_points= [[e 33, 0.64, -0.46], [0.39, 0.64, -0.21], [0.46, 1.01, -0.05], [0.47, 0.62, 0.23], [0.47, ©.09, 0.32]1, points_radius=[1.0, 1.9,
1., handle_type=[e, 3, 3, 1, 1, o], thickness=8.e01, fill caps=

# part_12: back decoration
create_curve(name="back decoration_12', control_points=[[-0.35, 0.8, -8.51], [-0.35, 0.62, -0.51], [e.01, 0.62, -0.51], [0.35, 0.62, -0.51], [0.35, 0.5, -0.51], [0.35, 0.99, -0.51], [0.01, 0.99, -
o.51l, [-0.35, 0.35, -0.5u), [0.35, o, -0.5i]], handle typer(e.0, 0.0, 116, 1.0, 0.0, .0, 1.3, L., .0, 00, 19,10, 0.0, 0.9, 1.0, 1.9, 0.9, 0.0

11 grid(name="back decoration_12', thicknes

Sevel (amer-pack decoration 13- widthed.os, segmentas

Figure 27: By modifying the scale parameters of the 1eg and arm parts, we adjust their thickness.
The highlighted sections indicate the changes made.
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import bpy
s from math import radians, pi
E from bpy_lib import *

\  delete_all()

# object name: plate

# part_1: plate

create_curve(name="'curve_1', resolution=3, control_points=[[e.0, ©.e, ©.e], [e.75, @.6, 0.0], [0.86, ©.13, ©.e], [0.99, 6.2,
0.0]], handle_type=[e, 1, 1, 0, ©, 8, 0, 0])

bezier_rotation(name='plate_1', resolution=3, profile name='curve_1', location=[6.6, -0.69, ©.0], rotation=[e.54, -0.55, -8.46,
-6.44], thickness=8.032)

import bpy
from math import radians, pi
from bpy_lib import *

delete_all()

| # object name: plate
-~ )Y 4 # part_1: plate

5 ’ create_curve(name='curve_1', resolution=6, control_points=[[e.e, ©.0, ©.0], [0.75, @.0, 0.0], [0.86, ©.13, 0.0], [0.99, 6.2,
©.0]1, handle_type=[e, 1, 1, @, ©, 6, ©, 6])
bezier_rotation(name='plate_1', resolution=6, profile_name='curve_1', location=[8.0, -0.89, ©.0], rotation=[0.54, -0.55, -8.46
-6.44], thickness=0.032)

import bpy
- from math import radians, pi
from bpy_lib import *

\  delete_all()

# object name: plate

# part_1: plate

create_curve(name='curve_1', resolution=3, control_points=[[.0, ©.0, ©.0], [0.75, 6.0, 0.6], [0.86, ©.13, 0.0], [0.99, 6.2,
©.0]1, handle_type=[e, 1, 1, @, ©, 6, 0, €])

bezier_rotation(name='plate_1', resolution=12, profile_name='curve_1', location=[0.e, -0.69, ©.8], rotation=[0.54, -8.55, -0.46
-8.44], thickness=6.032)

Figure 28: By modifying the resolution parameter, we change its resolution. The highlighted
sections indicate the changes made.
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