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Abstract

Predicting protein-ligand binding affinity is an essential part of computer-aided
drug design. However, generalisable and performant global binding affinity models
remain elusive, particularly in low data regimes. Despite the evolution of model
architectures, current benchmarks are not well-suited to probe the generalisability
of 3D binding affinity models. Furthermore, 3D global architectures such as GNNs
have not lived up to performance expectations. To investigate these issues, we
introduce a novel split of the PDBBind dataset, minimizing similarity leakage
between train and test sets and allowing for a fair and direct comparison between
various model architectures. On this low similarity split, we demonstrate that, in
general, 3D global models are superior to protein-specific local models in low
data regimes. We also demonstrate that the performance of GNNs benefits from
three novel contributions: supervised pre-training via quantum mechanical data,
unsupervised pre-training via small molecule diffusion, and explicitly modeling
hydrogen atoms in the input graph. We believe that this work introduces promising
new approaches to unlock the potential of GNN architectures for binding affinity
modelling.

1 Introduction

Computer-aided drug design relies on the accurate prediction of protein-ligand binding affinity to
achieve a therapeutic effect, ensuring selectivity against other proteins and avoiding off-target toxicity
[Kairys et al., 2019].

Apart from classical approaches for binding affinity prediction (usually docking methods which use a
combination of empirical molecular and statistical force fields [Jones et al., 1997, Eberhardt et al.,
2021]), a diverse array of machine learning (ML) strategies have been proposed in the last decade.
There has been increasing interest in developing ML models that use 3D data of protein-ligand
complexes as input. In principle, these models are the best suited for predicting binding affinity
since they should be able to capture fundamental interaction mechanisms such as hydrogen bonds
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or hydrophobic and ionic interactions between the protein and the ligand. Numerous types of 3D
ML models are presented in the literature. In Ballester and Mitchell [2010] and Wang et al. [2021],
the protein and ligand interactions were condensed into contact map features and used in tree-based
models (Random Forest) and convolutional neural networks (CNN). In Volkov et al. [2022], they
use a graph neural network (GNN) which uses the protein-ligand graph as input. They also propose
including interacting nodes in the graph to indicate known interactions between protein and ligand
atoms. Using GNNs as well, Zhang et al. [2023] add thresholds to the distance encoding to avoid
overfitting on small distance variations.

The majority of the literature indicates that it is not yet clear whether a specific model type consistently
achieves the best results [Durant et al., 2023]. Part of this ambiguity is due to the lack of consistent
benchmarks to evaluate the performance of the diverse array of models. The common dataset used
for benchmarking 3D binding affinity models is the PDBBind [Liu et al., 2015], a dataset of crystal
structures from the Protein Data Bank (PDB) with curated binding affinity measurements. Over the
last few years, many splits have been proposed for the PDBBind dataset to probe performance and
generalisation of different model types [Volkov et al., 2022, Durant et al., 2023, Li et al., 2024], but
each come with their own drawbacks.

Overall, the results indicate that simple models and baselines perform just as well as the more
complicated 3D models that use structural information [Durant et al., 2023]. This indicates that 3D
models are not learning generalizable information but only dataset biases, hence they have not yet
met their projected expectations [Volkov et al., 2022].

In this work we investigate the performance of binding affinity model families in a robust setting to
probe what they learn and how they generalise. We compare 3D global models to protein-specific
local models commonly used in real world drug discovery and also to baseline bias models. To
achieve this, we propose a new split of the PDBBind dataset based on protein and ligand similarity
and constructed to suit bechmarking the various model families fairly and consistently. We use the
new split and strong baselines to test multiple novel improvements to a plain 3D GNN model to push
the boundaries of binding affinity modelling using 3D GNNs.

We find that in low data regimes, 3D models significantly outperform protein-specific local models.
With more data for a specific protein, local models quickly catch up. We also investigate the effect of
hydrogen atoms on generalisability. As the structures in the PDBBind are not consistently prepared,
we use protein preparation software to prepare them consistently and include hydrogen atoms
explicitly in the GNN encoding. We again find that at low data regimes, including hydrogen atoms
explicitly is very important for generalisation. This advantage goes away with more data. Finally, we
propose two pre-training methods to improve global 3D model performance. We pre-train GNNs
on supervised quantum mechanical energy prediction and unsupervised small molecule diffusion.
We show that both result in improvements at low data regimes. As far as we are aware, this is the
first application of quantum mechanical pre-training and diffusion pre-training for binding affinity
prediction.

2 Methods

In this section, we present an overview of our methods and benchmarks. We discuss the dataset,
structure preparation, model families benchmarked, and the new proposed split. We have made
the code, prepared structures, and splits in this work publicly available at https://github.com/
Exscientia/low-sim-pdbbind and https://zenodo.org/records/13772124.

2.1 PDBBind dataset

We choose the PDBBind dataset (release v20202) as our benchmarking data set [Liu et al., 2015].
The data consists of crystal structures of bound protein-ligand complexes deposited in the PDB with
curated binding affinity values (KI, KD or IC50). We use the protein-ligand subset of the general
set from PDBBind consisting of 19443 unique protein-ligand structures. The dataset is unbalanced.
Many proteins have binding affinities measured only against a single ligand (one structure), some

2As of 2024, there is a newer PDBBind release (v2021) available at https://www.pdbbind-plus.org.
cn/. We did not use it in this work, as access is restricted.
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have measurements for a few ligands (few structures), and very few have measurements against more
than 100 ligands.

It has been demonstrated, in both predictive and generative settings [Durant et al., 2023, Li et al., 2024,
Buttenschoen et al., 2023], that the splits routinely used in model benchmarking on PDBBind contain
data leakage. The similarity between proteins and ligands across training and test sets inflates metrics
for certain models or tasks and makes rigorously probing their performance and generalisability
difficult.

2.2 Structure preparation

We queried the PDB [wwPDB consortium, 2019] for biological assemblies of all the structures listed
in the PDBBind dataset. Due to the nature of structure-determining techniques, the structures contain
not only ligands of biological nature, but also residues of crystalization buffers or cryoprotectants.
Hydrogen atoms are also mostly missing.

To address both of these issues, each structure was prepared using CCDC software [Groom et al.,
2016], namely the Python API (v.3.0.16). Hydrogen atoms were added and the ligands listed
by PDBBind as biologically relevant were extracted into separate files. The remaining ligands of
non-biological nature along with water molecules were removed.

After preparation, 18310 structures out of the total 19443 remained (1133 failed).

2.3 Models

Next, we discuss the models used in this study. An overview is presented in Table 1. A full description
of the hyperparameters of the features and models is provided in the Supplementary Information.

Table 1: Overview of the different models used in this study. We indicate whether the models are
global or local and whether they use 3D information or not. We make use of two baseline models to
estimate dataset biases (Ligand-Bias and Molecular-Weight).

Model Name Global/Local 3D/non-3D Input
Single-Protein local non-3D ligand only
EGNN [Satorras et al., 2022] global 3D pocket + ligand
RF-Score [Ballester and Mitchell, 2010] global 3D pocket + ligand
OnionNet-2 [Wang et al., 2021] global 3D pocket + ligand

Ligand-Bias global non-3D ligand only
Molecular-Weight local non-3D ligand only

2.3.1 Model families

Before presenting the models used, we establish clear groups to classify them. There are numerous
ways to categorize binding affinity model types, but in this work we introduce a particular grouping
focused on two key aspects: the scope of application, global vs. local, and the type of data input,
non-3D vs. 3D.

We denote models intended for use on different protein targets by global models and ones intended
for use against a single protein target by local models. Local models are typically trained on ligand
activity data measured against a single protein. Binding affinity models can be further grouped
according to how ligands and proteins are represented. We denote models which do not use 3D
coordinates by non-3D models. These models often use ligand descriptors such as fingerprints to
encode ligands. If protein information is used, it is most commonly encoded with its amino acid
sequence. 3D models use the 3D coordinates of a ligand or a protein-ligand complex alongside
non-3D information.

2.3.2 Single-Protein local models

To compare to standard practices in the drug discovery community and in real world projects [Lo et al.,
2018], we benchmark the performance of Single-Protein local models built from ligand-based features
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and trained on binding activity data measured against a single protein. Analogous to established
workflows [Jiang et al., 2021, Deng et al., 2023], we use classical ML models (Random Forest
[Breiman, 2001], XGBoost [Chen and Guestrin, 2016], CatBoost [Prokhorenkova et al., 2018],
Support Vector Machine [Cortes, 1995]) combined with a selection of fingerprints (ECFP, FCFP,
atom pairs, topological torsion) and molecular descriptors for features. More details on features and
models are listed in the Supplementary Information.

2.3.3 EGNN models

We use the EGNN [Satorras et al., 2022] model3 as the base architecture for our 3D global models.
We use the implementation in the PHYSICSML python package Exscientia [2024b]. As in previous
work, we extract the protein pocket by selecting protein atoms within 5Å of any ligand atom. The
graph is constructed from the pocket and ligand atoms as nodes and a 5Å cut-off is used to define the
edges. We use one-hot encoded atomic numbers as node features and no edge features.

Pre-Trained EGNNs In this benchmark, we use a few different versions of the EGNN model.
In addition to the basic model, we use two pre-trained versions. The first model, called EGNN-
QM, is trained on ANI1ccx, a dataset of 500k small molecules with quantum mechanical energies
computed at the ccsd(t) level. The knowledge learned from quantum mechanical interactions and
internal energies should in principle better inform binding affinity prediction. The second model,
EGNN-DIFF, is trained as a small molecule diffusion model on the QM9 dataset (as described in
Hoogeboom et al. [2022]). By pre-training on diffusing stable QM9 molecules, the model will have
learned to distinguish between low and high energy conformations. In principle, this should allow it
to better understand binding affinity interactions.

To transfer these models to the PDBBind dataset, we use a two stage procedure. First, we freeze the
backbone and add a new randomly initialised pooling head and train until convergence. Then, we
unfreeze the backbone and train all parameters at a lower learning rate until convergence.

Information about both pre-training strategies and transfer learning is available in the Supplementary
Information.

Hydrogens Previous works modelling binding affinity via GNNs have chosen to omit hydrogen
atoms from the input graph (Li et al. [2021], Volkov et al. [2022]). Since hydrogen atoms contribute
significantly to binding via hydrogen bonds, we wanted to assess the effect of including hydrogen
atoms as nodes in the graph. We benchmark the models with no hydrogen atoms (None), with only
the polar hydrogen atoms (Polar), and with all hydrogens (Explicit).

Single-Graph vs. Multi-Graph Finally, to probe whether the models learn to identify the interac-
tions from the protein-ligand pose, we also train models on the pockets and ligands as separate graphs.
We use the same backbone to generate embeddings for both and then combine these embeddings in a
pooling head to make the final prediction. Practically, this removes any edges between protein and
ligand nodes in the graph. We refer to these models, which treat proteins and ligands as separate
graphs, as Multi-Graph models. On the other hand, the conventional models that operate on the
interacting pose are referred to as Single-Graph models.

2.3.4 RF-Score and OnionNet-2

We include in our analysis two additional 3D global models, RF-Score and OnionNet-2. We select
those models due to their performance on other splits of the PDBBind dataset as indicated in the study
by Durant et al. [2023]. Specifically, RF-Score was one of the top performer on the CASF-2016 split
while the OnionNet-2 model was superior on the 2019-Holdout and Peptides-Holdout sets relative to
other models tested.

3Although not included in this work, we also benchmarked more advanced 3D models such as MACE (Batatia
et al. [2023]), Allegro (Musaelian et al. [2022]), and NequIP Batzner et al. [2022]). However, we saw very poor
performance. These models are top performers for large high quality datasets like quantum mechanincal energy
prediction. We hypothesise that the reason for poor performance in this context is due to the large number of
parameters and complex interactions which are more susceptible to overfitting on a biased dataset like PDBBind.
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2.3.5 Baseline models

Ligand-Bias model To probe the ligand dataset bias in the benchmarking splits, we follow the
work of Durant et al. [2023] and design a Ligand-Bias global model. This model is trained on the
identical data used to train the global models (binding affinity measurements of ligands against
different proteins), but only uses ligand-based features as input (analogous to Single-Protein models;
see 2.3.2). Effectively, this mixes binding affinity values of compounds measured against different
proteins to probe the amount of dataset bias available in ligand information alone.

Molecular-Weight model The molecular weight of a compound tends to be a strong predictor of
its binding affinity, with larger compounds generally exhibiting stronger affinity [Olsson et al., 2008].
Within the context of drug discovery, it is particularly important to avoid building binding affinity
models that strongly make use of the molecular weight property, as larger drug candidates have a
higher probability of failure [Hopkins et al., 2014]. In this study, we employ a Molecular-Weight
model that uses the molecular weight of the ligand as its sole input as a baseline. We use the same
architectures and training data as for the Single-Protein local models.

2.4 Splitting

To build a robust benchmark and effectively probe model generalisation, we propose a new split of
PDBBind based on protein and ligand similarity, which we call the Low-Sim split. Although many
splits have been proposed, we believe that none achieve our goal of probing generalisation. Close
inspection of the proposed splits [Volkov et al., 2022, Durant et al., 2023, Li et al., 2024] shows
non-negligible levels of similarity between train and test set, with all splits sharing some proteins
(UniProts) across sets. Table 2 shows the amount of UniProt overlap in previously proposed splits.
Furthermore, the splits were not constructed to benchmark the variety of model families available
(local vs. global, 3D vs. non-3D).

Table 2: Overview of UniProt overlap in previously proposed splits. The numbers denote the
number of unique overlapping UniProts, overlapping test structures (out of total test structures), and
overlapping train structures (out of total train structures).

Split name # UniProts overlap # train overlap # test overlap
Post 2019 set [Volkov et al., 2022] 262 5520 / 16561 1004 / 1467
CASF 2016 [Volkov et al., 2022] 67 3944 / 16561 281 / 282
Zero-Ligand-Bias [Durant et al., 2023] 170 3724 / 17605 287 / 360
LeakProof PDBBind [Li et al., 2024] 172 1735 / 12923 3526 / 4751
Low-Sim (Ours) 0 0 / 11022 0 / 1857

Case-Study-Proteins We design our newly proposed dataset splits such that we can compare
between global and local models. This comparison is particularly relevant given that local Single-
Protein models are still widely used in drug discovery projects, owing to their robustness, cost-
effectiveness, and trainability on smaller datasets. To obtain a direct and fair comparison to these
local models, we select eight proteins from the PDBBind dataset which have more than 100 datapoints
as our case study. The threshold of 100 points per protein is to allow enough data to train local
models. In total, the Case-Study-Proteins consists of 1857 structures. These proteins will be used
to benchmark the generalisability of global models and also to train local models for each specific
protein.

Similarity filtering We apply two similarity filtering steps to the remaining structures in the
PDBBind dataset to create a subset that is dissimilar to the Case-Study-Proteins set. We call this
reduced dataset Other-Proteins.

To account for protein similarity, we compute the similarity to the Case-Study-Proteins using FoldSeek
[van Kempen et al., 2024], which uses 3D structural and residue information to efficiently compute a
similarity score [0, 1] between two protein structures. To probe the generalisability of the models, we
filter out any structures which have more than 0.5 similarity to the Case-Study-Proteins structures.
Additionally, we compute the tanimoto similarity between the Case-Study-Proteins ligands and the
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Table 3: Case-Study-Proteins

UniProt HGNC Number of structures
P00734 F2 170
P56817 BACE1 343
P24941 CDK2 248
O60885 BRD4 199
P00918 CA2 425
P07900 HSP90AA1 172
Q9H2K2 TNKS2 113
P00760 N/A (Bovine) 187

Dataset # structures
PDBBind 19443
PDBBind prepared 18310

Low-Sim 12879
- Case-Study-Proteins 1857
- Other-Proteins 11022

Figure 1: Schematic of Low-Sim benchmarking splits used in this study. Global models are trained
on both train sets from the Case-Study-Proteins and the Other-Proteins. Local models are individually
built for each of the eight proteins in the Case-Study-Proteins split. They require a minimum set of
already available ligands for a specific protein for training, thus can only be created for the 5%, 30%,
80% splits and use only data from the Case-Study-Proteins split. Note that bars are not to scale with
number of samples.

ligands of the remaining structures. We filter out any structures with ligands with more than 0.5
tanimoto similarity. A total of 5431 similar structures are removed and leaves 11022 structures in the
Other-Proteins set.

Low-Sim 0%, 5%, 30%, 80% We aim to examine the change in model performance as the amount
of data increases, from low data regimes (when binding affinity values are available for approximately
0 to 30 ligands for a specific protein) in comparison to a medium data scenario where increasingly
more data is available.

We use the Low-Sim split (1875 Case-Study-Proteins structures and 11022 Other-Proteins structures)
to construct the benchmarking splits as follows. We stratify the Case-Study-Proteins data by protein
and split the structures by tanimoto ligand similarity4 with increasing fraction of training data, 5%,
30%, 80%. At each percentage, we generate three folds with a different starting seed ligand for the
similarity splits. Local models (Single-Protein and Molecular-Weight) are trained on these splits
for each protein individually. For the global models (RF-Score, OnionNet-2, EGNN, Ligand-Bias
baseline), we further augment the train sets of these splits with the Other-Proteins. Additionally, we
construct the 0% split where all Case-Study-Proteins are in the test set and only the Other-Proteins are
in the train set. This is to probe generalisation to completely new proteins. The final benchmarking
splits are shown schematically in Figure 1. In absolute numbers, those splits correspond to the
following number of training samples per protein: 11±5 (5%), 69±30 (30%), 185±83 (80%).

4We note that tanimoto splits are harder than scaffold splits since scaffold which technically are distinct can
still have high tanimoto similarity.
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Figure 2: Overall and stratified performance at increasing train data fraction for different model
families. In the low data regime, global 3D models outperform local models. Left: The error
bars denote the standard deviation across the three test folds. Right: The boxplots represent the
performance distribution over the eight proteins in the Case-Study-Proteins set.

2.4.1 Training and validation

For each split (0%, 5%, 30%, and 80%), we perform a cross-validation split of (random 80:20 split)
for model selection. The models are then retrained on the combined train and validation set and the
performance is measured on the test set.

For deep learning models (EGNN architectures), we additionally use a random 80:20 split of the train
set for early stopping.

2.4.2 Metrics

Typically, binding affinity models are assessed using the Pearson correlation coefficient, which
measures the correlation between predicted and actual binding affinity values. However, this doesn’t
measure the absolute predictive performance, which is crucial in real-world drug discovery for
optimising multi-parameter objectives. Therefore, here we focus on the absolute R2 metric for
benchmarking performance, while also providing root mean squared error and Pearson correlation
results in the Supplementary Information.

On the Low-Sim test sets, we compute the metrics in two different ways. The overall performance
refers to metrics computed on the predicted and actual binding affinity values across all eight proteins.
Mixing predictions of all the different protein-ligand pairs is the common approach when reporting
results on the PDBBind dataset [Meli et al., 2022]. We also report the performance stratified by
protein, where metrics are calculated individually for each protein.

3 Results

We now present the results of the benchmarking. First, we present the results and comparisons across
model families. We follow this with more detailed analyses of the 3D EGNN models.

3.1 Model family comparisons

The results reveal a clear advantage for global 3D models over local models in low data regimes. As
seen in Figure 2, the global 3D models (EGNN, pre-trained EGNN, and RF-Score) have moderate
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Figure 3: Effect of number of training data points on performance. Each point represents a protein
from the eight case-study proteins. The global models show a clear advantage at low data regimes.

generalisation even with 0% protein-specific training data and outperform the Single-Protein model
at lower train data fractions (5% and 30%). With enough data (80%), most models plateau at similar
performance (EGNN, pre-trained EGNN, RF-Score, Single-Protein). We hypothesise that this is
due to the difficulty of the tanimoto similarity splits. At low data levels, the local models not only
have very little data to learn from but also a train set which is very dissimilar to the test ligands.
In drug discovery settings where generalisation is important, this benchmark clearly highlights the
importance of global models.

Notably, the pre-trained EGNN models outperform all other models and baselines when considering
the overall performance (Figure 2, left). See Section 3.2 for a detailed analysis of their performance.

One thing to note is the relatively good performance of the Ligand-Bias model (red bar in Figure 2).
Although not as good as the global 3D models, the Ligand-Bias model is able to generalise to
the unseen proteins. We hypothesise that this is due to the model picking up on functional group
importance in the ligands, given that a lot of binders rely on generic functional groups.

It is also interesting to note that, as seen in Figure 3, the performance of the global 3D models is
relatively consistent with the level of training data (improving slightly) whereas the Single-Protein
local model suffers greatly at low data, dramatically improving with increasing amounts of training
data.

3.2 Improvements to EGNNs

We now present a detailed analysis of the global 3D EGNN models.

3.2.1 Pre-Training

First, we look at the effect of pre-training on model performance. As Figure 4 shows, pre-training
significantly improves model performance. Quantum mechanical pre-training provides the largest
advantage followed closely by diffusion pre-training. As expected, the advantages are more noticeable
at low levels of training data, gradually fading out as more training data is added. To our knowledge,
this is the first application of using pre-trained models for 3D binding affinity prediction.

3.2.2 Hydrogens

Next, we assess the effect of including hydrogen atoms on model performance. To our knowledge,
in all previously published work, hydrogen atoms were ignored in the structures. It was not clear if
this occurred due to better model performance on the benchmarks or due to knowledge of the poorly
prepared PDBBind structures. As described in section 2.2, we noticed that the structures in PDBBind
did not have consistent hydrogen preparation and used CCDC software to add them consistently.
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Figure 4: Effect of the EGNN additions proposed in this study on model performance. The overall
performance across all eight proteins in the Case-Study-Proteins set is reported. The error bars denote
the standard deviation across the three test folds. In the 0% split case, there is a only a single test fold.
Due to the non-deterministic nature of training, variation in performance is due to training the same
EGNN model three times. Pre-training: Quantum mechanical pre-training provides the greatest
advantage, followed closely by diffusion pre-training. Hydrogens: Including explicit hydrogens
is very important at low data levels. Interacting pose: No consistent pattern when comparing
single-graph versus multi-graph.

As can be seen in Figure 4, hydrogens are very import at low data levels for generalisation. With more
data, their effect becomes negligible. This is very important to keep in-mind for building models that
generalise to new proteins and novel ligand chemical space.

3.2.3 Single-Graph vs. Multi-Graph

Finally, we look at the effect of the interacting pose on performance. In the default architecture
(single-graph), the ligand and pocket are given to the model as a single 3D graph. In the multi-graph
architecture, the ligand and the protein are first encoded with separate graphs. In theory, we expect
the single-graph to outperform the multi-graph architecture.

As we can see in Figure 4, using the pose information (single-graph model) does not necessarily
improve the model performance. This could either be due to the model being able to infer the
interactions without the exact pose or not properly learning the interactions in the first place (and so
we do not notice its effect). Either way, since these models outperform the Ligand-Bias model, they
must be using the protein information in some way. Further investigation is required to understand
what the models are learning.

4 Discussion

In this paper, we demonstrate that for binding affinity prediction on new proteins and chemical spaces,
global 3D models outperform local models on the PDBBind dataset. Furthermore, we show that
explicit hydrogen atoms in the structures and novel pre-training strategies using quantum mechanical
data and diffusion modelling provide performance improvements in low data regimes for GNNs.

There are limitations to the above benchmark. This work focuses on the PDBBind dataset, a dataset
comprising only crystal structures. We explicitly chose to do so to eliminate any sources of noise or
error from computationally generated structures and poses. However, this has two drawbacks. First,
the structures and chemical space of ligands in the dataset are not representative of the distribution of
ligands in a real-world drug discovery projects. The relatively good performance of the Ligand-Bias
model indicates the lack of diversity in the ligand distribution. Second, since crystal structures can
only be obtained for binding ligands, this benchmark does not probe the performance of models for
non-binding ligands. This is important for virtual high throughput screens where many ligands might
not be binders.
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In light of these limitations, it is crucial to replicate a similar analysis on additional datasets, ideally
resembling real-world drug discovery datasets. If insights from this study are confirmed with more
datasets, this research could represent a significant stride towards developing more universally
applicable 3D binding affinity models that leverage pre-training strategies.
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Supplemental Information

A Single-Protein hyperparameters

We used classical architectures and features for the Single-Protein models. All the models and
features below can be found in the python package MOLFLUX (Exscientia [2024a]).

Table 4: Single-Protein models

Model Name hyperparameters
Random Forest n_estimators = 500

XGBoost
learning_rate = 0.2

subsample = 1
max_depth = 6

CatBoost random_state = 0

Support Vector Regressor kernel = rbf

Table 5: Single-Protein features

Feature name Comments
Molecular Weight

Molecular descriptors (MD)

xLogP, aromatic ring count
molecular weight, num acceptors
num donors, rotatable bonds, tpsa

All descriptors were normalised
by the train set mean and variance

ECFP circular 2048 fingerprints

FCFP

Topological torsion

ECFP + MD

FCFP + MD

Topological torsion + MD

B EGNN models

We used the following hyperparameters for the EGNN models.

Table 6: Single-Protein models

Hyperparameter Value

num_layers 5
c_hidden 128
num_rbf 8
pool_type sum
Activation SiLU
Loss MSELoss
Optimizer AdamW, LR= 5× 10−4

Scheduler ReduceLROnPlateau
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C Pre-training EGNN models

C.1 Quantum mechanical energy

The EGNN-QM model was pre-trained on the ccsd(t) energy of the ANI1ccx dataset. This is a dataset
of roughly 500k small molecules. As is common in the domain of neural network potentials, the
model was trained to predict the interaction energy (the total energy minus the self atomic energies of
the atoms). The final root mean squared error of the model was 4kcal/mol.

C.2 Small molecule diffusion

The EGNN-DIFF model was trained to generate small molecules from the QM9 dataset (small
molecule with up to 9 heavy atoms). This was carried out as described in the original work by
Hoogeboom et al. [2022].

For use in a predictive setting, the coordinate updates in the diffusion model were turned off and a
predictive pooling head was added.

C.3 Transfer learning

We match the backbones of the pre-trained models to freshly initialized models (the pooling heads
are not matched, they remain randomly initialized). The backbone is then trained until convergence
using early stopping at a learning rate or 5 × 10−4. The backbone is then unfrozen and the entire
model is fine-tuned at a lower learning rate 1× 10−4.

C.4 Training resources

Each EGNN model training takes ∼6 hours on a single A10 GPU.

D Metrics

Below are the explicit equations for the metrics used in the benchmarks

Pearson Correlation Coefficient =
∑

i(xi − x̄)(yi − ȳ)√∑
i(xi − x̄)2

√∑
j(yj − ȳ)2

R2 = 1−
∑

i(xi − yi)
2∑

j(yj − ȳ)2

E Additional plots
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Figure 5: Overall and stratified performance at increasing train data fraction for different model
families. In the low data regime, global 3D models outperform local models. Left: The error bars
denote the standard deviation across the 3 test folds. Right: The boxplots represent the performance
distribution over the eight proteins in the Case-Study-Proteins set.

Figure 6: Effect of number of training data points on performance. Each point represents a protein
from the 8 case-study proteins. The global models show a clear advantage at low data regimes.
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Figure 7: Effect of the EGNN additions proposed in this study on model performance. The overall
performance across all eight proteins in the Case-Study-Proteins set is reported. The error bars
denote the standard deviation across the 3 test folds. Pre-training: Quantum mechanical pre-training
provides the greatest advantage, followed closely by diffusion pre-training. Hydrogens: Including
explicit hydrogens is very important at low data levels. Interacting pose: No consistent pattern
becomes apparent when comparing single-graph versus multi-graph.

Figure 8: Overall and stratified performance at increasing train data fraction for different model
families. In the low data regime, global 3D models outperform local models. Left: The error bars
denote the standard deviation across the 3 test folds. Right: The boxplots represent the performance
distribution over the eight proteins in the Case-Study-Proteins set.
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Figure 9: Effect of number of training data points on performance. Each point represents a protein
from the 8 case-study proteins. The global models show a clear advantage at low data regimes.

Figure 10: Effect of the EGNN additions proposed in this study on model performance. The overall
performance across all eight proteins in the Case-Study-Proteins set is reported. The error bars
denote the standard deviation across the 3 test folds. Pre-training: Quantum mechanical pre-training
provides the greatest advantage, followed closely by diffusion pre-training. Hydrogens: Including
explicit hydrogens is very important at low data levels. Interacting pose: No consistent pattern
becomes apparent when comparing single-graph versus multi-graph.
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