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ABSTRACT

Most recent work in goal oriented visual navigation resorts to large-scale ma-
chine learning in simulated environments. The main challenge lies in learning
compact representations generalizable to unseen environments and in learning
high-capacity perception modules capable of reasoning on high-dimensional in-
put. The latter is particularly difficult when the goal is not given as a category
(“ObjectNav”) but as an exemplar image (“ImageNav”), as the perception module
needs to learn a comparison strategy requiring to solve an underlying visual cor-
respondence problem. This has been shown to be difficult from reward alone or
with standard auxiliary tasks. We address this problem through a sequence of two
pretext tasks, which serve as a prior for what we argue is one of the main bottle-
neck in perception, extremely wide-baseline relative pose estimation and visibility
prediction in complex scenes. The first pretext task, cross-view completion is a
proxy for the underlying visual correspondence problem, while the second task
addresses goal detection and finding directly. We propose a new dual encoder
with a large-capacity binocular ViT model and show that correspondence solu-
tions naturally emerge from the training signals. Experiments show significant
improvements and SOTA performance on the two benchmarks, ImageNav and the
Instance-ImageNav variant, where camera intrinsics and height differ between ob-
servation and goal.

1 INTRODUCTION
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Figure 1: Navigation skills include de-
tecting navigable space, exits, and the
agent’s relative pose wrt. the goal. The
correspondence solutions required by pose
emerge from training with pretext tasks.

Goal oriented visual navigation is usually addressed
through large-scale training in simulation, followed by
sim2real transfer. While decision taking has not yet
been solved either, recent research provides evidence
that perception is a major bottleneck with several chal-
lenges: learning representations required for planning;
extracting 3D information, difficult when depth is not
available or not reliable; and, generalizing to unseen
environments, which is challenging given the limited
number of existing training environments.

The perception module of an agent needs to ad-
dress several skills, which include detecting naviga-
ble space and obstacles, detecting exits necessary for
long horizon planning, detecting goals and estimating
the agent’s relative pose with respect to them, see Fig-
ure 1. The detection of visual goals given by exem-
plars requires to solve a partial matching task, which
in essence is a wide-baseline visual correspondence
problem. They are classical in computer vision and at heart of methods in visual localization and
relative pose estimation (Humenberger et al., 2022; Revaud et al., 2019; Sarlin et al., 2020). We
argue that in navigation, however, they did not get the attention they deserve.
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Instead, robot perception is addressed through scene reconstruction, for instance with SLAM (Chap-
lot et al., 2020b; Lluvia et al., 2021; Thrun et al., 2005) or by putting the full burden of perception
on a visual encoder trained end-to-end from objectives like RL (Jaderberg et al., 2017; Zhu et al.,
2017) or imitation learning (Ding et al., 2019). The former does not address goal detection, which
needs to be outsourced to an external component. The latter, when trained on tasks like ImageNav,
attempts to solve the problem implicitly without direct supervision through weak learning signals.

Panoramic Mono-view

Figure 2: Panoramic vs.
mono-view input.

This has been shown to be difficult, witnessed by the wide usage
of more complex sensors for the ImageNav task compared to tasks
like ObjectNav, where the goal is specified through its category. For
several years, state-of-the art methods for ImageNav used panoramic
images consisting of 4 observed images taken at angles of 90° (see
Figure 2), which facilitates learning the underlying pose estimation
task from weak learning signals, but is restrictive in terms of robotic
applications. Only recently the field switched to mono-view input.

We propose a new method for goal oriented visual navigation, which
introduces a sequence of pretext tasks of directional learning and visual correspondence. We take
advantage of recent advances in unsupervised model pre-training for low-level scene understanding
and build on the work of Weinzaepfel et al. (2022), which proposes a type of multi-view pretext
task, namely cross-view completion, a 3D variant of masked image modeling. We show that the
underlying correspondence problem solved by this model is particularly relevant to the ImageNav
problem and adapt this model through a new dual-encoder model.

In recent work (Krantz et al., 2023), the same problem is addressed with explicit feature matching
combined with a modular map-based method. In contrast, our method does not rely on explicit cor-
respondence calculations, the entire agent is differentiable and the perception module is comprised
of a combination of a monocular and a binocular encoder. We do, however, show that correspon-
dence solutions emerge from pre-training through the cross-attention behavior, see Figure 4 in the
experimental section.

We present the following contributions: (i) We define a pretext task of extremely wide-baseline
relative pose estimation highly correlated with navigation and positioning cues from visual input.
We also introduce a new dataset tailored for navigation; (ii) We couple relative pose estimation
with the estimation of visibility, which we link to the specific capacity to decide whether to explore
or to exploit; (iii) We additionally perform self-supervised pre-training for cross-view completion
(“CroCo”) (Weinzaepfel et al., 2022) and show its impact; (iv) We show that correspondence solu-
tions emerge from pre-training with these tasks. (v) We propose a dual visual-encoder architecture
based on vision transformers and cross-attention, which we integrate into an end-to-end agent and,
as proof-of-concept, into a modular architecture; (vi) We obtain SOTA performance on two standard
benchmarks, ImageNav and Instance-ImageNav.

2 RELATED WORK

Visual navigation — navigation has been classically solved in robotics using mapping and plan-
ning (Burgard et al., 1998; Macenski et al., 2020; Marder-Eppstein et al., 2010), which requires
solutions for mapping and localization (Bresson et al., 2017; Labbé & Michaud, 2019; Thrun
et al., 2005), for planning (Konolige, 2000; Sethian, 1996) and for low-level control (Fox et al.,
1997; Rösmann et al., 2015). These methods depend on accurate sensor models, filtering, dynam-
ical models and optimization. End-to-end trained models directly map input to actions and are
typically trained with RL (Jaderberg et al., 2017; Mirowski et al., 2017; Zhu et al., 2017; Bono
et al., 2024) or imitation learning (Ding et al., 2019). They learn representations, either flat re-
current states or occupancy maps (Chaplot et al., 2020b), semantic maps (Chaplot et al., 2020a),
latent metric maps (Beeching et al., 2020b; Henriques & Vedaldi, 2018; Parisotto & Salakhutdi-
nov, 2018); topological maps (Beeching et al., 2020a; Chaplot et al., 2020c; Shah & Levine, 2022),
self-attention (Chen et al., 2022a; Du et al., 2021; Fang et al., 2019; Reed et al., 2022) or implicit
representations (Marza et al., 2023). Our method is end-to-end trained but adds pretext tasks for
perception.
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Goal-oriented navigation — In the easier ObjectNav setting, the goal is provided as a category and
a detector can encode object shapes in model parameters, trained explicitly for detection, e.g. with
semantic maps (Chaplot et al., 2020a), map-less object detectors (Savva et al., 2019) or image seg-
menters (Maksymets et al., 2021), or end-to-end through the navigation loss. ImageNav provides the
goal as an exemplar image and is a significantly harder task, requiring the perception model to learn
a matching strategy itself. Most work are based on end-to-end training (Zhu et al., 2017; Mezghani
et al., 2022; Majumdar et al., 2023), potentially supported through self-supervised losses (Majumdar
et al., 2022b). Modular approaches have also been proposed (Das et al., 2018a; Wu et al., 2022).
The very recently introduced Instance-ImageNav task requires to handle different camera intrinsics
and heights between observation and goal, which prior work does with explicit feature matching
(Krantz et al., 2023). We make it possible to address the ImageNav and Instance-ImageNav with
end-to-end methods in the challenging mono-view setting through new pretext tasks.

Pretext tasks in CV and navigation — widely used in NLP and CV, pretext tasks aim at learning
representations followed by fine-tuning for particular tasks (Devlin et al., 2019; Yuan et al., 2021).
In navigation or robotics, known forms are depth prediction (Das et al., 2018b;a; Mirowski et al.,
2017), contrastive self-supervised learning (SSL) (Majumdar et al., 2022b) or privileged informa-
tion from the simulator like object categories (Pashevich et al., 2021), goal directions (Marza et al.,
2022), exploration (Ye et al., 2021) or visual correspondences in visuomotor policy (Florence et al.,
2020; Sax et al., 2019; Hong et al., 2023). Supervised learning requires in-domain data collection
that makes extension beyond the training environment and task difficult. Alternatives come from
SSL (Wang et al., 2022; Xie et al., 2022). Recent pre-trained visual encoders, like DINO (Caron
et al., 2021) and masked autoencoders (MAE) (He et al., 2022), have been used in (Yadav et al.,
2022) and (Yadav et al., 2023), respectively. Once pre-trained, the encoder is often frozen before
passing into a policy learning module. To be effective across a range of real-world robotic tasks, Ra-
dosavovic et al. (2022) diversified the image sources when pre-training. Mezghani et al. (2022) favor
nearby frames to have similar visual representations.

Pose — Relative Pose Estimation (RPE) has been intensively studied in CV (Kendall et al., 2015;
Kim & Ko, 2022; Xu et al., 2022). It evolved from feature matching and correspondences (Mur-
Artal et al., 2015; Tang et al., 2023) to end-to-end training (Li et al., 2021; Mousavian et al., 2017)
or transfer from large-scale classification (Melekhov et al., 2017) and finetuning after pre-training
on geometric tasks (Weinzaepfel et al., 2022). Existing solutions revise various components of the
regression pipeline (Jin et al., 2021), discretize the distribution over poses (Chen et al., 2021), etc.

Conventional RPE was developed for rather small camera displacements and assumes high visual
overlap between images. Wide-baseline RPE refers to a challenging scenario of large view-point
changes and occlusions, on which not all conventional methods work well (Jin et al., 2021). Even
more challenging, navigation requires what we call Extremely wide-baseline RPE and Visibility, as
an agent may be located in different or cluttered places and therefore may have small or no visual
overlap at all. It also requires detecting overlap / visibility, which we perform in this work.

3 LEARNING PERCEPTION FOR GOAL ORIENTED VISUAL NAVIGATION

We target image-goal navigation in 3D environments (ImageNav and Instance-ImageNav), where an
agent is asked to navigate from a starting location to a visual goal (Figure 1). The agent receives at
each timestep t a single image observation xt∈R3×H×W and a goal image x∗∈R3×H×W , both of
size 112×112. The agent can select one action from the action set A ={MOVE FORWARD 0.25m,
TURN LEFT 10◦, TURN RIGHT 10◦, and STOP}. Navigation is considered successful if the STOP
action is selected when the agent is within 1m of the goal position in terms of geodesic distance. For
Instance-ImageNav, two additional actions are LOOK UP and LOOK DOWN.

Our objective is to learn a perception module which predicts a latent representation given an obser-
vation and goal. We conjecture that this requires the following three perception skills:

S1 — Low-level geometric perception of the 3D structure of the scene, which includes the de-
tection of navigable space, obstacles, walls and exits, key elements for planning.

S2 — Perception of semantic categories is not only required in tasks where object categories
are given as goals, which is not the case in the more challenging tasks we target, but is also
an additional powerful intermediate cue for other required skills, like geometric perception.
Detecting navigable space, for instance, is highly correlated with categories like Floor, Wall.
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Figure 3: We address correspondence problems in image goal navigation, which we address through
two pretext tasks: ➀ cross-view completion (Weinzaepfel et al., 2022), which reconstructs a masked
image from a reference image, and ➁ relative pose and visibility estimation. They are learned
by a binocular ViT b and combined with a monocular encoder m taking only observations, forming
“DEBiT”. Outputs are provided to a recurrent policy, maintaining memory ht and predicting actions
at. Encoder m and policy are trained with RL ➂, the high-capacity model b is frozen but adapted.

S3 — Specific object detection and relative pose estimation under large viewpoint changes (“ex-
tremely wide baseline”) is more difficult than the detection of known object classes and re-
quires to solve a visual correspondence problem, potentially helped by semantic cues.

In end-to-end approaches, these skills have been traditionally learned directly from reward or with
IL, potentially supported by additional tasks like monocular depth prediction (Das et al., 2018b;a;
Mirowski et al., 2017), contrastive self-supervised learning (Majumdar et al., 2022b) or privileged
information from the simulator. We argue for a more holistic approach and propose a dual visual
encoder combined with a multi-step pre-training strategy. Dubbed “DEBiT” = Dual Encoder Binoc-
ular Transformer, it consists of a binocular model b(xt,x

∗), which targets skill S3, goal detection
and goal pose estimation, and a monocular model m(xt), which targets skills S1 and S2 not related
to the goal x∗ — see Figure 1. The two encoders produce embeddings ebt and emt , respectively,
which are integrated into a recurrent policy,

ebt = g(b(xt,x
∗)) // skill S3 - goal direction

emt = m(xt) // skills S1, S2

ht = f(ht−1, e
b
t , e

m
t , l(at−1)) // recurrent state update (agent mem)

p(at) = π(ht), // policy

(1)

where g is a fully connected layer, l is an embedding function, and f is the update function of a GRU
(Cho et al., 2014); for clarity we have omitted the equations of gating functions. The monocular
encoder m(xt) takes over the navigation skills not related to the goal, we therefore kept it reasonably
small and propose a half-width ResNet-18 architecture (He et al., 2016), which is trained from
scratch and from reward.

The binocular visual encoder b(xt,x
∗) decomposes into a Siamese monocular encoder E applied to

each image individually and a binocular decoder D combining both encoder E outputs, expressed as

ebt = g(b(xt,x
∗)) = g(D(E(xt), E(x∗))). (2)

DEBiT is implemented as a ViT with self-attention layers in both E and D and with cross-attention
layers in the decoder D. D can naturally represent the correspondence problems between image
patches through the attention distribution, as we will experimentally show in Section 4. For more
details we refer to (Weinzaepfel et al., 2022) and to Appendix A.1.

Training the large-capacity binocular encoder entirely from scratch through reward in navigation is
difficult. The underlying geometric correspondence problem is complex and can’t be handled by
the weak learning signal, in particular since the navigation policy needs to jointly learn multiple
perception skills, plus some form of internal mapping as well as planning. Training perception
separately through losses highly correlated to the perception skills we identified above, in particular
S3, proved to be a key design choice — see Figure 3: we pre-train the binocular model b with the
CroCo pretext task requiring reasoning on low-level geometry (Section 3.1) and then finetune it on
a novel pretext task dedicated to ImageNav (Section 3.2).

4



Published as a conference paper at ICLR 2024

3.1 CROSS-VIEW COMPLETION

Recently, Weinzaepfel et al. (2022) introduced Cross-View Completion (CroCo), a potent pre-
training task trained from a large amount of heterogeneous data and which captures the ability to
perceive low-level geometric cues highly relevant to vision downstream tasks. It is an extension
of masked image modeling (He et al., 2022) processing pairs of images (x,x′), which correspond
to two different views of the same scene with important overlap. The images are split into sets of
non-overlapping patches p = {pi}i=1...N , and p′ = {p′i}i=1...N , respectively. The first input image
x is partially masked, and the set of non-masked patches is denoted p̃. The pretext task requires the
reconstruction of the masked content p\p̃ from the visible content in the second image, therefore
during pre-training we replace the final FC layer g by a patch-wise reconstruction layer denoted r,

p̂ = r(b(p̃,p′)) = r(D(E(p), E(p′))). (3)

Training minimizes the MSE loss:

L (x,x′) =
1

|p\p̃|
∑

pi∈p\p̃
∥p̂i − pi∥2 . (4)

CroCo is applicable to monocular and binocular downstream problems, competitive performance
was shown for monocular depth estimation, optical flow and RPE (Weinzaepfel et al., 2022).

Model and Data — We use the publicly available1 code from Weinzaepfel et al. (2022). We re-
trained the model ourselves and also explored smaller, more robot-friendly variants. Pre-training
data consists of 1.8 million image pairs rendered with the Habitat simulator.

3.2 RELATIVE POSE AND VISIBILITY ESTIMATION IN NAVIGATION

Once the binocular encoder b is pre-trained with CroCo, we finetune it on a second pretext task,
relative pose estimation and visibility (RPEV) for navigation settings. While for navigation purposes
only a 2D vector t is relevant, which encodes the direction and distance from the agent to the goal,
we train the prediction of the full classical relative pose estimation (RPE) problem, which also
includes a 3× 3 matrix R representing the relative rotation of the camera capturing the goal image
w.r.t. the current agent orientation. While not useful for navigation, it can potentially add useful
learning signals.

Visibility — Classically, accurate pose estimation assumes that two images (observation and target)
share a sufficiently large part of the visual content, with the overlap providing cues sufficient to
estimate the translation and rotation components from one image to the other. This assumption was
also satisfied in (Weinzaepfel et al., 2022), but it is, by far, not a valid assumption in navigation.
The agent is initially placed far from the goal location and is required to explore the scene, in which
case the RPE task cannot be solved through geometry and correspondence, as no scene points are
shared between the two images. Recent work has shown that regularities in scene layouts can be
exploited to predict distributions over unseen object positions with some success (Ramakrishnan
et al., 2022), but this has been reported for object categories and it is unsure whether similar results
can be achieved for image exemplars.

For this reason, we added a visibility measure to our training data, which addresses two issues: (i) it
ensures feasibility of RPE and excludes image pairs with insufficient correspondence from training
the translation and rotation pose components. We do, however, train the pose components even for
low amounts of overlap and treat low visibility as an extreme case (“extremely wide baseline”);
(ii) it provides an additional feature to the agent, as visibility is a strong prior in both positive
and negative cases. High visibility indicates closeness to the goal, which can be exploited directly
through directional information t provided by the same model, captured in the embedding ebt . Low
visibility suggests to explore the scene and rather move away from the current position.

Compared to alternatives like frustrum overlap (Balntas et al., 2018), we define visibility v∈[0, 1] as
the proportion of patches p′

i of the goal image x′ which are visible in the observed image x. Note,
that this definition is not symmetric, and exchanging the two images alters the visibility value.

The RPEV model — we predict the two RPE components, translation t∈R3 and rotation matrix
R∈R3×3, as well as visibility v, from an additional head h (which is actually composed of three

1
https://github.com/naver/croco
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individual heads) attached to the binocular encoder, taking the embedding eb as input,
(t,R, v) = h(eb) = h(b(x,x∗)), (5)

where x is the observed image and x∗ is the goal image. To ensure that R is a valid rotation matrix,
we use orthogonal Procrustes normalization from the Roma library (Brégier, 2021).

After CroCo pre-training, we finetune the model with the following loss:

LRPEV =
∑

i

[
|vi − v∗i |+ 1v∗

i >τ

{
|ti − t∗i |+ |Ri −R∗

i |
}]

, (6)

where i indexes image pairs, t∗i ,R
∗
i , v

∗
i denote ground truth values, 1. is the binary indicator func-

tion, |.| denotes the L1 loss and τ is a threshold which switches off RPE supervision in the case of
insufficient visibility.

Dataset — We collect a dataset tailored to perception in ImageNav by sampling random views from
scenes in the Gibson (Xia et al., 2018), MP3D (Chang et al., 2018) and HM3D (Ramakrishnan
et al., 2021) datasets. We respect the standard train/val scenes split of each dataset. We sample two
points uniformly on the navigable area and query the simulator for the shortest path from one to
the other. To balance the difficulty of the dataset, we split this path into 5 parts corresponding to
increasing thresholds on geodesic distance (“in reach” ≤ 1m, “very close” ≤ 1.5m, “close” ≤ 2m,
“approaching” ≤ 4m, and “far” > 4m), sample 10 intermediate positions and orientations along the
path in each part, from which images are captured. We compute the fractions of pixels from the
goal image visible from any of the ones captured along the path using depth frames which are then
discarded. This process is repeated until 100 trajectories per scene are sampled, yielding a total of
near 68.8M image pairs with position, orientation and visibility labels, representing 140GB of data.

Training for navigation — We train the parameters of the recurrent policy (f, π) and the monocular
encoder m jointly from scratch with PPO (Schulman et al., 2017) with a reward definition in the lines
of the one proposed by Chattopadhyay et al. (2021) for PointGoal, rt = K·1success−∆Geo

t −λ, where
K=10, ∆Geo

t is the increase in geodesic distance to the goal, and slack cost λ=0.01 encourages
efficiency. The binocular encoder is trained in two different variants:

- Frozen — we freeze the parameters of the binocular encoder b after the two step pre-training
phases (CroCo + RPEV), and then only finetune the FC layer g in equation (1). Faster to train,
we will use this configuration for most ablations and analyses in the experimental section.

- Adapted — we freeze b as above, but add adapter layers as in AdaptFormers (Chen et al.,
2022b), which are trained with RL jointly with the policy (f, π) and m. In the next section we
will show that this leads to significant performance improvements.

4 EXPERIMENTAL RESULTS

Experimental setup — We evaluate on both ImageNav, where the goal is a random view taken by
the camera of the agent, and the more recent Instance-ImageNav (Krantz et al., 2022), where the
goal depicts a specific object viewed from a different camera. The major parts of the experiments,
ablations and analyses are performed on ImageNav in the classical setting, as in (Majumdar et al.,
2022b; Mezghani et al., 2022). Unless stated otherwise, we trained the models for 200M steps on
an A100 GPU. As in prior work, for ImageNav we report performance on the 14 Gibson-val scenes
and thus use it as a test set, using the unseen episodes provided by Mezghani et al. (2022). For
Instance-ImageNav we follow the protocol in (Krantz et al., 2023).

Metrics — RPE is evaluated over the pairs with visibility over τ in the percentage of correct poses
for given thresholds on distance and angle, e.g. 1 meter and 10°. Visibility is evaluated over all pairs
by its accuracy at ±0.05, i.e., the percentage of prediction within a 0.05 margin of the ground-truth
value. Navigation performance is evaluated by success rate (SR), i.e., fraction of episodes terminated
within a distance of <1m to the goal by the agent calling the STOP action, and SPL (Anderson et al.,
2018), i.e., SR weighted by the optimality of the path, SPL = 1

N

∑N
i=1 Si

ℓ∗i
max(ℓi,ℓ∗i )

, where Si be a
binary success indicator in episode i, ℓi is the agent path length and ℓ∗i the GT path length.

Baselines — we compare with the state-of-the-art methods on this task, including several variants of
Siamese Encoders, which encode the xt and x∗ separately, used by a trained policy, typically a re-
current one. First introduced by Zhu et al. (2017), they were updated by including augmented mem-
ory (Mezghani et al., 2022) and powerful ViT based architectures and self-supervised pre-training
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Table 1: Image-Nav: impact of model capacity of the binocular encoder on RPEV and nav. perf.
(CroCo+RPEV, 200M steps of RL, frozen, no adapters). L=layers, H=heads, d=embedd.dim.

Variant Encoder Decoder #params Monoc % correct poses Vis-acc Nav. perf.
L H d L H d (binoc) 1m&10° 2m&20° (%) SR (%) SPL (%)

DEBiT-L (“Large”), no adapters 12 12 768 8 16 512 120M hwRN18 97.5 98.9 94.0 82.0 59.6
DEBiT-B (“Base”), no adapters 12 6 384 8 16 512 55M hwRN18 92.5 96.8 89.3 83.0 55.6
DEBiT-S (“Small”), no adapters 12 6 384 2 8 256 24M hwRN18 82.7 93.5 81.6 79.6 52.1
DEBiT-T (“Tiny”), no adapters 8 6 384 2 8 256 17M hwRN18 80.3 92.4 80.6 79.3 50.0

Table 2: ImageNav: impact of pre-training strategies: we ablate CroCo and RPEV pre-training.
All results on 100M steps of RL only, frozen, no adapters. Left: training performance curves (SR)
for DEBiT-B, best viewed in color. Right: ablated test results.
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Variant Pre-train % corr. poses Vis-acc Nav. perf.
CroCo RPEV 1m&10° 2m&20° (%) SR SPL

DEBiT-L, no adapters ✗ ✗ n/a n/a n/a 7.0 4.4
DEBiT-L, no adapters ✓ ✗ n/a n/a n/a 60.2 33.1
DEBiT-L, no adapters ✗ ✓ 40.1 66.7 58.3 11.8 9.9
DEBiT-L, no adapters ✓ ✓ 97.5 98.9 94.0 82.0 54.8
DEBiT-B, no adapters ✗ ✗ n/a n/a n/a 6.8 4.0
DEBiT-B, no adapters ✓ ✗ n/a n/a n/a 65.7 37.3
DEBiT-B, no adapters ✗ ✓ 39.7 66.4 58.8 23.6 17.4
DEBiT-B, no adapters ✓ ✓ 92.5 96.8 89.3 81.2 53.0

(Majumdar et al., 2022b; 2023; Yadav et al., 2023). We also compare to the feature-matching based
method presented in (Krantz et al., 2023), which holds the current SOTA on Instance-ImageNav.

Impact of model capacity — we explore variations in model capacity distributed over the encoder
E and the decoder D of the binocular visual encoder b (the monocular part m is unchanged) and
introduce four different model sizes in Table 1: DEBiT-L (“Large”), DEBiT-B (“Base”), DEBiT-S
(“Small”) and DEBiT-T (“Tiny”), where DEBiT-L corresponds to the architecture in (Weinzaepfel
et al., 2022). Performance generally improves with more model capacity.

Impact of pre-training strategies — Table 2 gives results comparing different pre-training strate-
gies for the two largest variants, DEBiT-L and DEBIT-B. Directly training the binocular encoder b
from scratch did not lead to exploitable results, reward as a learning signal is too weak. CroCo pre-
training is essential, directly training on RPEV led to low performance. CroCo pre-training alone is
not optimal, RPEV adds a significant boost to the gain provided by self-supervised objective alone.
The curves in Table 2 (left) shows the evolution of navigation performance (SR) during training,
indicating the significant gain and head start the two pretext tasks provide.

Aligning architecture design choices with learning signals — visual encoders for end-to-end
trained solutions in the literature for ImageNav are typically based on Siamese networks, where the
inputs xt and x∗ are encoded separately, the respective embeddings are passed to current policies.
This late fusion approach allows to train the models from weak reward signals, as the individual
encoders learn high-level representations which are compared later in the pipeline. We claim that
image comparisons of higher quality can be obtained through early fusion, where images are com-
pared close to input on patch-level. We argue that this leads to a finer visual perception, where
correspondence information is encoded in the representation in a more direct way, and provides a
more useful signal to the policy. Our experiments shown in Table 3 corroborate this claim: we
compare with a widely used Siamese architecture based on half-width ResNet-18 visual encoders
taken from (Zhu et al., 2017) and reused in (Mezghani et al., 2022). DEBiT outperforms them when
pre-trained with both pretext tasks, as CroCo pre-training allows correspondence on patch level to
emerge (see further below), which leads to accurate pose estimates. Training DEBiT from reward
alone is difficult. On the other hand, adding RPEV pre-training to the Siamese architecture is not
helpful, the architecture based on late embedding-level fusion cannot exploit this signal.

In an additional experiment we verified whether this difference is explained by the presence of a
cross-attention layer easing the computation of correspondences. We designed a hybrid architecture,
dubbed (c) in Table 3, which combines convolutional Siamese encoders, implemented as a shared
hwResNet18, with a Tiny cross-attention (CA) module with 2 layers, 4 heads and 256 dimensions.
Performance is lukewarm, it did not manage to capture the cues provided by the pretext tasks.
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Table 3: ImageNav: aligning architecture design choices with learning signals: when both are
trained from scratch on navigation reward alone, the Siamese visual encoder (Mezghani et al., 2022;
Zhu et al., 2017) performs better than our DEBiT architecture. However, DEBiT shines with self-
supervised pre-training and fine-tuning, and learning signals which enable learning the correspon-
dence problem solved by the encoder-decoder structure of the binocular stream. RPEV pre-trained
models have been added a monocular encoder. Frozen, no adapters.

6

SA
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SA
CA

CNN
CNN

[ ]
cat

[ ]
cat

CNN

CNN

CNN
CNN

[ ]
cat

(a)	Siamese (b)	Siamese	+	m

SA
CA

[ ]
cat

CNN

CNN
CNN

(c)	CNN+TinyT (d)	DEBiT (Ours)

Visual encoder Pre-train #parms SR SPL
(a) Siamese hwRN18∗ No 4.1M 10.1 9.6
(b) Siamese hwRN18∗+m RPEV 8.3M 8.0 7.7
(c) hwRN18+Cross-Att+m No 10M 7.4 4.7
(c) hwRN18+Cross-Att+m RPEV 10M 7.4 7.2
(d) DEBiT-B (Ours), no adapters No 60M 6.8 4.0
(d) DEBiT-B (Ours), no adapters CroCo+RPEV 60M 83.0 55.6
∗ Baseline in (Mezghani et al., 2022), inspired by (Zhu et al., 2017)

Table 4: ImageNav: comparisons with prior work: we gain +12p in SR, +12p in SPL by using
RL-trained adapters of the DEBiT encoder. ANS models+weights are from (Chaplot et al., 2020b).

Method #steps SR(%) SPL(%) Pretrained weights
Siam. hwRN18 180M 10.1 9.6 None, from scratch
Siam. hwRN18 2 500M - 8.01 None, from scratch
Mem. Aug. (Mezghani et al., 2022)3 500M - 9.01 Finetuned
ZSEL (Al-Halah et al., 2022) 500M 29.21 21.61 Obs.&policy frozen, goal from scratch
ZSON (Majumdar et al., 2022a) 500M 36.91 28.01 Obs. finetuned, goal frozen (CLIP)
VC1-ViT-L (Majumdar et al., 2023) 500M 81.61 - Finetuned
OVRL (Yadav et al., 2022) 500M 54.21 27.01 Finetuned
OVRL-v2 (Yadav et al., 2023) 500M 82.01 58.71 Finetuned
ANS (Chaplot et al., 2020b) + DEBiT-L 32.0 15.0 Modular architecture + our frozen encoder
Ours (DEBiT-B), no adapters 200M 83.0 55.6 Frozen
Ours (DEBiT-L), no adapters 200M 82.0 59.6 Frozen
Ours (DEBiT-L) + adapters 200M 94.0 71.7 Frozen + adapted
1Perf. from orig. papers; 2 Mono-view ablation of baseline in Table III of (Mezghani et al., 2022);
3 Retrained in mono-view settings, see Table 1 of (Al-Halah et al., 2022)

ImageNav, comparison with prior work — Table 4 compares the proposed model with prior
work. DEBiT largely outperforms the competing methods, including the memory augmented
model (Mezghani et al., 2022), but also models on large-capacity ViTs like the “Visual Cortex”
model VC1 (Majumdar et al., 2023) and OVRL2 (Yadav et al., 2023). Both have been pre-trained
with masked image encoding, but in a monocular frame-by-frame basis and perform late fusion of
observation and goal features, which we argue does not ease learning geometric comparisons.

Adapters — adding adapters to DEBIT gains additional 12p of success rate and 12p of SPL, as can
be seen in Table 4. For ImageNav, it is unlikely that this is explained by improvement of the pose
estimation performance through RL finetuning. We conjecture, that the adapters allow to pass richer
information through the embedding ebt from the DEBiT to the policy.

Table 5: Instance-ImageNav: adapters enable speci-
fying goal images with different camera intrinsics and
heights compared to the obs. Performance reported on
val, max/avg over the last 5 checkpoints.
Method #steps — SR (%) — — SPL (%) —

max avg max avg
(Krantz et al., 2022) 3500M 5.5 n/a 2.3 n/a
(Krantz et al., 2023) n/a 56.1 n/a 23.3 n/a
Ours(DEBiT-L)+adapters 200M 61.1 59.3 33.5 32.4

The Instance-ImageNav task — In Ta-
ble 5 we compare with the state-of-
the-art in the Instance-ImageNav task,
where the goal can be taken with ar-
bitrary camera intrinsics (in particular
FOV) and from any camera height, not
necessarily the height it is installed on
the agent. We trained the agent for a to-
tal of 200M steps, 100M of which were
done one the ImageNav task followed by
100M on Instance-ImageNav. As CroCo and RPEV pre-training have been done in ImageNav set-
tings (equal intrinsics), adapting DEBiT to this OOD situation was a key design choice, and with-
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Figure 4: Emergence of correspondence from pre-training: visualization of the decoder cross-
attention of the finetuned DEBiT-L model for example image pairs. We show attention of the last
layer averaged over heads. Top: different scenes and poses. Bottom: image pairs taken from a
single trajectory, varying distance to the goal, showcasing robustness to scale changes.

Figure 5: RPEV performance, DEBiT-L during expert episodes: pink star = goal; segments
point to the predicted goal, color encodes visibility prediction v and GT v∗: true negatives (TN)
(v∗<τ, v<τ ), TP (v∗>τ, v>τ ) , FP (v∗<τ, v>τ ), FN (v∗>τ, v<τ ) — rare, not seen. Pose and
visibility (and thresholds!) are used for visualization only, the policy receives a latent embedding.

out adapters performance was actually unexploitable. Non-Siamese adapters (different for obs and
goal) gained around 1p of SR compared to Siamese ones. We outperform the current SOTA method
(Krantz et al., 2023) and show that this task can also be addressed without feature matching.

Integration into a modular architecture — as a proof of concept, we integrate DEBiT into the
modular exploration method ANS (Chaplot et al., 2020b), which is composed of a high-level policy
predicting waypoints, and a low-level navigation policy. We adapted it to ImageNav by adding the
encoder b as perception module switching between (1) nav. towards the predicted goal with the local
policy or (2) exploration, otherwise, see Appendix A.5. Table 4 gives a non-comparable number,
as we did not retrain ANS and took publicly available parameters. The lower performance is also
explained by the direct usage of pose and visibility estimates, whereas the e2e trained models benefit
from the richer latent embeddings from the visual encoders. This is confirmed by an ablation study
where the e2e trained agent only receives pose and visibility, reaching only 20% SR in training.

Visualization of attention — in Figure 4 we visualize averaged attention of the last cross-attention
layer of a DEBiT-L model. Correspondence solutions naturally emerge without explicit supervision
of correspondence solutions. We show a variety of different pairs and poses in the top row, and a
single trajectory varying goal distances in the bottom row, indicating robustness to scale changes.

Visualization of RPEV performance — Figure 5 illustrates pose and visibility estimation perfor-
mance on several expert trajectories — DEBiT reliably detects the goal and provides orientations
toward it. Let’s recall that this information is passed to the policy indirectly through latent embed-
dings, the RPEV head is discarded after pre-training.

5 CONCLUSION

We have introduced pretext tasks and a dual visual encoder for ImageNav and Instance-ImageNav
navigation, which provide rich geometric information and we show that this makes solutions of
correspondence problems emerge without explicit supervision. We integrate the method into an
end-to-end trained agent, which outperforms competing methods and obtains SOTA performance
on both benchmarks. We also showcase the integration into a modular navigation pipeline. Future
work will use the encoder for visual odometry, extend pre-trained to pairs with different camera
intrinsics and/or different backgrounds, and integrate the method into a real robotics platform.
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Reproducibility — for the sake of reproducibility, in the case of acceptance, we will provide the
source code for training and evaluation based on the public Habitat baselines codebase and links for
downloading final trained model weights (CroCo + RPEV + PPO). For training, we will provide in-
structions for setting up the codebase, including installing external dependencies, pre-trained models
and pre-selected hyperparameter configuration. For the evaluation, the code will include evaluation
metrics directly comparable to the paper’s results.

Ethics statement — we welcome the potentially high interest for society in having autonomous
agents capable of various tasks like guiding customers in shopping centers, museums, hospitals and
offices, or delivering parcels.

Our introduced perception modules and pretext tasks are a new step into this general direction,
as they allow to improve the navigation capabilities of autonomous agents. Of course, like most
scientific work in the STEM sector, this might lead to some negative societal impacts, which our
work shares with most robotics applications: military robots (used in wrong hands), surveillance
etc. Our direct work itself was carried out in simulation and as such is unlikely to have produced
unethical results, except the impact of large-scale training on CO2 output.
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Guillaume Bresson, Zayed Alsayed, Li Yu, and Sébastien Glaser. Simultaneous localization and
mapping: A survey of current trends in autonomous driving. IEEE Transactions on Intelligent
Vehicles, 2017. 2

Wolfram Burgard, Armin B Cremers, Dieter Fox, Dirk Hähnel, Gerhard Lakemeyer, Dirk Schulz,
Walter Steiner, and Sebastian Thrun. The interactive museum tour-guide robot. In Aaai/iaai, pp.
11–18, 1998. 2

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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Mathieu Labbé and François Michaud. RTAB-Map as an open-source lidar and visual simultaneous
localization and mapping library for large-scale and long-term online operation. Journal of Field
Robotics, 36(2):416–446, 2019. 2

Ke Li, Shijie Wang, Xiang Zhang, Yifan Xu, Weijian Xu, and Zhuowen Tu. Pose recognition with
cascade transformers. In CVPR, 2021. 3

Iker Lluvia, Elena Lazkano, and Ander Ansuategi. Active Mapping and Robot Exploration: A
Survey. Sensors, 21(7):2445, 2021. 2

Steve Macenski, Francisco Martı́n, Ruffin White, and Jonatan Ginés Clavero. The marathon 2: A
navigation system. In IROS, 2020. 2

Arjun Majumdar, Gunjan Aggarwal, Bhavika Devnani, Judy Hoffman, and Dhruv Batra. ZSON:
zero-shot object-goal navigation using multimodal goal embeddings. In NeurIPS, 2022a. 8

Arjun Majumdar, Gunnar A. Sigurdsson, Robinson Piramuthu, Jesse Thomason, Dhruv Batra, and
Gaurav S. Sukhatme. SSL enables learning from sparse rewards in image-goal navigation. In
ICML, 2022b. 3, 4, 6, 7, 15

Arjun Majumdar, Karmesh Yadav, Sergio Arnaud, Yecheng Jason Ma, Claire Chen, Sneha Silwal,
Aryan Jain, Vincent-Pierre Berges, Pieter Abbeel, Jitendra Malik, Dhruv Batra, Yixin Lin, Olek-
sandr Maksymets, Aravind Rajeswaran, and Franziska Meier. Where are we in the search for an
artificial visual cortex for embodied intelligence? In arXiv:2303.18240, 2023. 3, 7, 8

Oleksandr Maksymets, Vincent Cartillier, Aaron Gokaslan, Erik Wijmans, Wojciech Galuba, Stefan
Lee, and Dhruv Batra. THDA: treasure hunt data augmentation for semantic navigation. In ICCV,
2021. 3

Eitan Marder-Eppstein, Eric Berger, Tully Foote, Brian Gerkey, and Kurt Konolige. The office
marathon: Robust navigation in an indoor office environment. In ICRA, 2010. 2

Pierre Marza, Laetitia Matignon, Olivier Simonin, and Christian Wolf. Teaching agents how to map:
Spatial reasoning for multi-object navigation. In IROS, 2022. 3

Pierre Marza, Laetitia Matignon, Olivier Simonin, and Christian Wolf. Multi-Object Navigation
with dynamically learned neural implicit representations. In ICCV, 2023. 2

Iaroslav Melekhov, Juha Ylioinas, Juho Kannala, and Esa Rahtu. Relative camera pose estimation
using convolutional neural networks. In ACIVS, 2017. 3

12



Published as a conference paper at ICLR 2024

L. Mezghani, S. Sukhbaatar, T. Lavril, O. Maksymets, D. Batra, P. Bojanowski, and K. Alahari.
Memory-augmented reinforcement learning for image-goal navigation. In IROS, 2022. 3, 6, 7, 8,
15

Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andy Ballard, Andrea Banino, Misha
Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, Dharshan Kumaran, and Raia Hadsell.
Learning to navigate in complex environments. In ICLR, 2017. 2, 3, 4

Arsalan Mousavian, Dragomir Anguelov, John Flynn, and Jana Kosecka. 3d bounding box estima-
tion using deep learning and geometry. In CVPR, pp. 5632–5640, 2017. 3

Raul Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. ORB-SLAM: A versatile and accurate
monocular SLAM system. IEEE Trans. Robotics, 31(5):1147–1163, 2015. 3

Emilio Parisotto and Ruslan Salakhutdinov. Neural map: Structured memory for deep reinforcement
learning. In ICLR, 2018. 2

A. Pashevich, C. Schmid, and C. Sun. Episodic transformer for vision-and-language navigation. In
ICCV, 2021. 3

Ilija Radosavovic, Tete Xiao, Stephen James, Pieter Abbeel, Jitendra Malik, and Trevor Darrell.
Real-world robot learning with masked visual pre-training. In Conference on Robot Learning
(CoRL), volume 205, pp. 416–426, 2022. 3

Santhosh Kumar Ramakrishnan, Aaron Gokaslan, Erik Wijmans, Oleksandr Maksymets, Alexan-
der Clegg, John M Turner, Eric Undersander, Wojciech Galuba, Andrew Westbury, Angel X
Chang, Manolis Savva, Yili Zhao, and Dhruv Batra. Habitat-matterport 3d dataset (HM3d): 1000
large-scale 3d environments for embodied AI. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2021. 6

Santhosh Kumar Ramakrishnan, Devendra Singh Chaplot, Ziad Al-Halah, Jitendra Malik, and Kris-
ten Grauman. PONI: Potential Functions for ObjectGoal Navigation with Interaction-free Learn-
ing. In CVPR, 2022. 5, 16

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom
Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell,
Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas. A Generalist Agent. TMLR, 2022. 2

Jerome Revaud, Cesar De Souza, Martin Humenberger, and Philippe Weinzaepfel. R2D2: Reliable
and Repeatable Detector and Descriptor. In NeurIPS, 2019. 1
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A APPENDIX

All networks have been implemented in PyTorch, below we provide details of the binocular encoder
b, the monocular encoder m, and the recurrent policy composed of a dynamics mapping f and the
prediction head π.

A.1 THE BINOCULAR ENCODER b

DEBiT’s binocular encoder b follows the architecture in (Weinzaepfel et al., 2022), and the “Large”
version DEBiT-L is equivalent to (Weinzaepfel et al., 2022), corresponding to the code available
at https://github.com/naver/croco: the encoder E is a ViT-Base model, i.e., composed of
L = 12 self-attention blocks with H = 12 heads each and the embedding dimension d = 768. The
decoder D is composed of L = 8 cross-attention blocks with H = 16 heads each and an embedding
dimension d = 512. We will not detail the encoder part further, as it is very similar to a standard
(monocular) ViT. Concerning the cross-attention blocks used in the decoder part, they are composed
of the following layers:

• A self-attention layer is applied to the features corresponding to the current view (poten-
tially already enriched by features from the goal view in previous blocks), with pre-norm
(LayerNorm) and skip-connection.

• The resulting features are used as queries on the goal view features (used as keys and values,
optionally also pre-normalized) in a cross-attention layer, with skip-connection.

• A 2-layers perceptron with dimensions d = 2048 and back to d = 512 independently
projects the features of each patch, with pre-norm, GELU activation and skip-connection.

Full details on these cross-attention blocks are available in (Weinzaepfel et al., 2022). Smaller
DEBiT versions differ in the number of layers, heads and the embedding sizes, see Table 1.

A.2 THE PROJECTION g

The decoder blocks are followed by a single patch-wise linear layer d, which can also be seen as a
1 × 1 convolution on the features of all patches in 2D. It projects them from dimension 512 to 64,
before flattening them to a 3136-dim vector (given images of size 112 × 112 and patches of size
16× 16).

A.3 AUXILIARY HEADS h FOR RPEV

For the second phase of pre-training, the result of the flattened projection g of size 3136 is ReLU-
activated and fed to a common 1024-dim linear layer, before being dispatched to 3 independent
output layers for the predictions of relative camera translation t and rotation R, as well as goal
visibility from current view v:

• The translation head directly outputs a 3D vector in the coordinate frame of the current
view.

• The rotation head outputs a 9D vector which is reshaped as a 3 × 3 matrix, constrained to
be a valid rotation matrix (using orthogonal Procrustes normalization) with a small regu-
larization term added to the loss.

• The goal visibility head linearly outputs a single value with no activation constraining it to
be between 0 and 1.

A.4 THE MONOCULAR ENCODER m

The monocular encoder is a half-width ResNet-18 as frequently used in prior work on visual naviga-
tion (Mezghani et al., 2022; Majumdar et al., 2022b). It is very similar to a standard ResNet-18 (He
et al., 2016), only differing in 3 ways:

1. Instead of using 64, 128, 256 and 512 channels in the 4 layers (of 2 basic blocks each), the
half-width ResNet-18 uses 32, 64, 128, and 256 channels.
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2. All BatchNorm2D layers are replaced by GroupNorm layers with 16 groups each.

3. The final (global pooling + linear layer) is replaced by a small “Compression” module
which consist in: a 3x3 convolution (with padding) reducing the number of channels from
256 to 128, followed by a LayerNorm and a ReLU activation, whose result is flattened
and fed to a linear layer to produce a 512-dim flat embedding of the current (monocular)
view.

A.5 THE RECURRENT POLICY (f, π)

The policy relies on a single-layer GRU as our recurrent state encoder. The 3 flat features vectors
produced by the binocular, monocular, and previous action encoders are concatenated and fed to the
GRU, whose output ht is passed to 2 linear heads that respectively generates a softmax distribution
over the action space (Actor head), and an evaluation of current state (Critic head). This agent is
structurally similar to the agent from (Ramakrishnan et al., 2022; Wijmans et al., 2019), which is
used for the related point-goal navigation task, and achieves 100% PointGoal success on the Gibson
dataset (Xia et al., 2018), but with different input modalities (RGB + ImageGoal instead of RGB-D
+ PointGoal).

A.6 THE ANS ADAPTATION TO ImageGoal

Figure 6 shows our adaptation of Active Neural SLAM (Chaplot et al., 2020b) to the ImageGoal task.
The new components are shown in orange. They include the target image, the binocular encoder b as
additional perception module, and a module switching between (1) navigation towards the predicted
goal with the local policy and (2) exploration using the global+local policy, otherwise. Switching
is done by thresholding the visibility prediction vt with a threshold T , whose influence we tested in
sensibility study below.

Goal Image
b

D
E
E

v
t +

Figure 6: Active Neural SLAM + DEBiT-L/b — we use the binocular encoder b only of the DEBiT
architecture. Figure is reproduced from (Chaplot et al., 2020b), with additional parts from our
adaptation to ImageGoal drawn in orange.

A.7 COMPUTATIONAL COMPLEXITY

Below we report computational complexity of the training pipeline in terms of processed frames per
second (fps) on a single NVIDIA A100 GPU. This includes forward and backward passes as well as
the overhead of running simulation in 12 parallel Habitat environments. Note, that on a real robot
only forward pass over the visual encoder and policy is required.

In terms of complexity of the correspondences themselves, it is the complexity of attention, which
is quadratic in terms of tokens (which are patches) and linear in the embedding dimension, number
of heads and number of layers. We have input images of size 112 × 112 and patch size of 16 × 16
which gives 7× 7 = 49 patches per image.
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Model FPS
DEBiT-L 92
DEBiT-B 156
DEBIT-S 192
DEBIT-T 225

Table 6: Time complexity for different DEBiT models.

A.8 THE INSTANCE-IMAGENAV BENCHMARK

Instance-ImageNav task has been trained and tested on the Habitat-Matterport3D (HM3D) Seman-
tics v0.2 dataset that was provided for the Habitat Navigation Challenge (Habitat, 2023). The
dataset contains 216 different scenes; the train/val/test split is 145/36/35. Our model was trained
on the 145 training scenes, we reported results for the 36 validation scenes. The remaining 35 test
scenes are used by organizers internally; they are not publicly available.

A.9 VISUALIZATION OF CORRESPONDENCES

The visualization in Figure 4 is simple: we have examined the last cross-attention layers, with
attention summed over all heads, and looked at individual attention values. We have then picked
the highest N attention values in this matrix and displayed their corresponding query-key pairs, i.e.,
drawing a line between the corresponding patches.

A.10 THE HWRN18+CROSS-ATT ARCHITECTURE

The architecture of the binocular encoder for variant “hwRN18+Cross-Att” used in Table 3 of the
main paper is given as follows:

RGB
· · · × 3× 112× 112

ImgGoal
· · · × 3× 112× 112

hwRN18

hwRN18

shared
weights

RGB spa feats
· · · × 256× 4× 4

Goal spa feats
· · · × 256× 4× 4

RGB flat feats
· · · × 16× 256

Goal flat feats
· · · × 16× 256

self-Attn
nheads = 4

X-Attn
nheads = 4

q

k/v

Feed fwd
dhid = 512

Transformer Layer
×nlayers = 2

Binoc. feats
· · · × 16× 256

In the sake of clarity, normalization and skip-connections in the transformer decoder are not repre-
sented on the Figure. Contrary to standard ViTs, patch size is 1 (because ResNet already reduced the
input image size), no positional embeddings are added to the tokens, and no class tokens are used.

A.11 ABLATIONS AND SENSITIVITY ANALYSIS OF τ IN RPEV

Controlling τ — Our RPEV model is trained to predict the visibility as well as the relative pose
only on image pairs with visibility above τ = 0.2. We now propose ablations on the RPEV model
where we remove the visibility predictions, as well as where we vary τ to 0.1 and 0.4. Results are
reported in Table 7. We report the visibility accuracy (predicted visibility in the range of 0.05 from
the ground-truth) as well as the percentages of correctly predicted poses within two error thresholds
(1m&10°and 2m&20°) computed over pairs with different visibility overlap τ ′. Overall, the per-
formance is close for all models. When a model is trained for a larger τ than used for evaluation
(τ > τ ′), the performance is a bit worse given that the visibility might be too low compared to
what have been seen during training, explaining the 2 or 3% lower values for the model trained with
τ = 0.4.

Summary: τ controls the threshold during training, τ ′ controls the threshold in evaluation.

Removing visibility altogether — If a pure RPE model were trained, i.e. RPEV without visibility,
the model could be pretrained only on image pairs with overlap, i.e. visibility > 0. Indeed, it
would be impossible for a model to predict a relative pose without any relevant information when
the visibility is zero. On the other hand, when extracting features with this model for navigation,
many input pairs would have no overlap, i.e., visibility, setup that would not have been seen during
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the pre-training. To avoid this out-of-distribution setting, we believe it is important to also pretrain
on pairs without overlap during RPEV, explaining why we include it in all experiments.

To verify that predicting visibility does not harm the RPE performance, we have trained a relative
pose estimation model that is trained only on pairs with visibility above the threshold τ , but without
any visibility prediction or supervision. These results are provided in Table 7, first line, the impact
is negligible.

Table 7: Ablations on RPEV. We measure the impact of having the visibility and of varying τ , the
threshold on the visibility to decide whether to use a given pair as training and report the visibility
accuracy as well as the percentages at correct poses at two thresholds, for 3 different visibility
thresholds τ ′ of minimum visibility between pairs. The impact of these variants is overall limited.

Visibility % correct poses
Head Vis-acc τ ′ = 0.2 τ ′ = 0.3 τ ′ = 0.4

(%) 1m&10° 2m&20° 1m&10° 2m&20° 1m&10° 2m&20°

RPE (τ = 0.2) ✗ - 92.4 96.8 93.5 97.4 93.5 97.5
RPEV (τ = 0.2) ✓ 89.3 92.4 96.8 93.6 97.4 93.7 97.6
RPEV (τ = 0.1) ✓ 90.0 92.5 96.9 93.3 97.3 92.9 97.4
RPEV (τ = 0.4) ✓ 87.7 89.6 95.6 92.7 97.1 93.5 97.5

A.12 LIMITATIONS

Higher image resolutions than 112×112 could boost the goal recognition. On Instance-ImageNav,
pre-training could sample image pairs with different camera intrinsics, as this is currently only
learned through RL.

A.13 VIDEO

This appendix is accompanied by an additional video showing and explaining rollouts of the
agents.

18


	Introduction
	Related Work
	Learning perception for goal oriented visual navigation
	Cross-view completion
	Relative pose and visibility estimation in navigation

	Experimental results
	Conclusion
	Appendix
	The binocular encoder b
	The projection g
	Auxiliary heads h for RPEV
	The monocular encoder m
	The recurrent policy (f,)
	The ANS adaptation to ImageGoal
	Computational complexity
	The Instance-ImageNav Benchmark
	Visualization of correspondences
	The hwRN18+Cross-Att architecture
	Ablations and sensitivity analysis of  in RPEV
	Limitations
	Video


