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ABSTRACT

Adversarial learning is typically used to tackle cross-domain object detection,
which transfers a well-trained model from a source domain to a new target do-
main, assuming that extensive unlabeled training data from the new domain can
be easily obtained. However, such an assumption may not hold in many access-
constrained target scenarios such as biomedical applications. To this end, we
study the Few-Shot Domain Adaptation Object Detection (FSDAOD) problem,
where only a few labeled instances from the target domain are available, mak-
ing it difficult to comprehensively represent the target domain data distribution,
and causing the adversarial feature alignment using only a few instances hard
to transfer complete knowledge from source to target. Benefiting from the suc-
cess of prototype-based meta-learning in the few-shot learning community, we
propose an Instance-level Prototype learning Network (IPNet) for addressing the
FSDAOD problem. The IPNet first develops an Instance-level Prototypical Meta-
alignment (IPM) module, which fuses instances from both domains to learn the
domain-invariant prototypical representations, for boosting the adaptation model’s
discriminability between different classes. Then a Feature-level Spatial Atten-
tion Transfer (FSAT) module is further developed, which employs the instance-
level prototypes to discriminate various features’ salience in one domain to make
the model attend to foreground regions, then transfers such attention extraction
knowledge to the target images via adversarial learning. Extensive experiments
are conducted on several datasets with domain variances, including cross-weather
changes, cross-sensor differences, and cross-style variances, and results show the
consistent accuracy gains of the IPNet over state-of-the-art methods, e.g., 9.7%
mAP increase on Cityscapes-to-FoggyCityscapes setting and 3.0% mAP increase
on Sim10k-to-Cityscapes setting.

1 INTRODUCTION

The purpose of Domain Adaptive Object Detection (DAOD) (Chen et al., 2018; Inoue et al., 2018)
is to generalize a well-trained detection model from the source domain to a new target domain,
which is crucial in many real applications such as autonomous driving and surveillance that often
encounter severe train and test environment variations. The main challenge for DAOD is how to find
the discriminative spatial regions or object instances from both the train and test images, and reduce
the instance-level inter-domain distribution gap during the model adaptation process.

Generally, the typical solution to alleviate the train-test domain gap is to employ adversarial learning
methods (Ganin & Lempitsky, 2014; Long et al., 2018) that can align the source-to-target cross-
domain features. Several attempts (Chen et al., 2018; Deng et al., 2021; VS et al., 2021; Jiang et al.,
2022; Hsu et al., 2020; Zhu et al., 2019) have been made to leverage adversarial learning for tackling
the DAOD problem. The first one (Chen et al., 2018) is to align the high-level features extracted
by the backbone and instance-level features obtained from the region proposal module (Ren et al.,
2015). However, it is found that adversarially aligning the high-level backbone features may hurt
the detector’s discriminability (Chen et al., 2019; 2020). Hence D-adapt framework (Jiang et al.,
2022) decouples the adversarial adaptation process from the detector training stage, to separately
perform adaptation and detector learning. It should be noted that these DAOD methods (Saito et al.,
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2019; Hsu et al., 2020; Deng et al., 2021; VS et al., 2021; Jiang et al., 2022) all assume that the
target domain has a large number of unlabeled training samples, which is often difficult to guarantee
in many real applications such as biomedical scenarios. As a result, the study of DAOD given only
few-shot target samples becomes meaningful and urgent.

Source Instances

Few-shot Target Instances

Unlabeled Target Instances

(a) Without Adaptation (Few target instances)

(b) Adversarial Adaptation Alignment (c) IPM Alignment

Source Distribution

Biased Target Distribution

Target Distribution

Decision Boundary

Figure 1: Since few-shot target instances are dif-
ficult to represent the overall target domain dis-
tribution, performing adversarial alignment using
these few instances thus causes insufficient adap-
tation with between-class confusion for the target
domain data.

However, due to the limited representation ca-
pability of few-shot target samples, achieving
the above-mentioned Few-Shot Domain Adap-
tation Object Detection (FSDAOD) has two
more challenges than a typical DAOD task as
follows.

Few-shot worsens between-class confusion
in target domain: Between-class confusion
in the target domain, meaning that some in-
stances in one class are incorrectly classified
as another class, becomes worse for few-shot
scenario, as illustrated in Fig. 1(b). The rea-
sons include the insufficient representation ca-
pability for different classes in the target do-
main, and the model overfitting and adaptation
bias for the specific few-shot target samples in
the adversarial learning process. Therefore in
this work, we propose to fuse the limited num-
ber of target samples and plenty of source sam-
ples together to generate a set of discriminative
instance prototypes via meta-learning, which
helps to enhance the feature representation for
each class in the target domain to make within-
class features compact and inter-class features
faraway. These prototypes also help to achieve
better cross-domain feature alignment for the
same class when integrated with the adversarial adaptation process, as shown in Fig. 1(c).

Few-shot weakens foreground attention extraction in target domain: Extracting important fore-
ground regions and instances is important for achieving successful DAOD. However, even though
a well-trained source model has good foreground attention extraction capability, under the few-shot
scenario, it is still hard to transfer such capability from the source domain to the target domain. This
may become worse when target images are loosely annotated, where some very small or severely
occluded objects in one image may not be annotated, causing the learning of object semantics to
be ambiguous. Therefore in this work, we propose to bridge the source and target domain attention
extraction gap by leveraging the learned prototypes from fused domains as mentioned above, and
utilizing such prototypes to achieve cross-domain attention knowledge transfer.

In view of these, we propose an Instance-level Prototype learning Network (IPNet) for tackling the
FSDAOD task. Unlike traditional DAOD works that adopt adversarial adaptation only for achieving
source-to-target feature alignment, we revisit the FSDAOD problem and solve it from the perspective
of prototype-based meta-learning, a typical solution in FSL community. In particular, the IPNet
first develops a key Instance-level Prototypical Meta-alignment (IPM) module, which aims to meta-
learn a set of representative prototypes by fusing samples of both domains (source and target), and
enforces sample features of the same class but from different domains to be as close as possible for
feature alignment. This effectively reduces the cross-domain feature gap for the same class, and
meanwhile enhances the between-class discrimination in the target domain. Further, a Feature-level
Spatial Attention Transfer (FSAT) module is developed, which computes the semantic similarity
between each learned instance-level prototype and various proposal representations, to identify the
spatially discriminative foreground regions and transfer such attention knowledge from source to
target.

The main contributions of this paper can be summarized as follows:
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1) From a new angle of meta-learning, we investigate the source-to-target cross-domain knowledge
transfer under the few-shot scenario, and propose to embed the meta-learning into the typical
adversarial adaptation process to relieve the issue of adaptation overfitting to only a few specific
samples in the target domain.

2) We propose an IPNet framework to solve the FSDAOD. The IPNet consists of a developed IPM
module to enhance the between-class discrimination during the target domain adaptation process,
and a FSAT module to make the adapted model attend to the loosely distributed target objects in
the input image.

3) We conduct experiments on six open benchmarks including Cityscapes, FogyCityscapes,
Sim10k, PASCAL VOC, Clipart, and Udacity. The experimental results demonstrate that our
IPNet can bring consistent detection accuracy gains under the FSDAOD scenario, even outper-
forming the unsupervised DA (UDA) methods that can access a large number of target samples.

2 RELATED WORKS
2.1 DOMAIN ADAPTATION FOR OBJECT DETECTION (DAOD)
Generally, the domain adaptation methods for object detection task can be categorized into pixel-
level based (Russo et al., 2018; Kim et al., 2019) and feature-level based (Chen et al., 2018; Deng
et al., 2021; VS et al., 2021; Jiang et al., 2022; Hsu et al., 2020; Zhu et al., 2019). The former
first generates images or instances approximating target domain distribution using the well designed
generative model such as CycleGAN (Zhu et al., 2017), then retrains the source-only detector on
these synthesized instances. This kind of method usually imposes a heavy computational burden on
the final model adaptation. On the other hand, the feature-level adaptation employs the patch-level
or instance-level alignment by means of adversarial learning to reduce the inter-domain discrepancy
of features. For example, DA-Faster (Chen et al., 2018) is the first work that tackles the DAOD
problem. UMT (Deng et al., 2021) utilizes the consistency constraints between the teacher and stu-
dent models via knowledge distillation. MeGA (VS et al., 2021) introduces object class information
into the adaptation process. D-adapt (Jiang et al., 2022) decouples the adversarial adaptation from
the detector training process, to better adapt the localization task for DAOD. Considering that all
these works are based on adversarial learning or GRL module to achieve the cross-domain feature
alignment, we also follow the adversarial adaptation pipeline for solving Few-Shot Domain Adap-
tation Object Detection (FSDAOD), but found that only adversarial-based technique is difficult to
well adapt the detection model. This is mainly due to that only few-shot target instances cannot well
represent the overall target domain data distribution, which causes the adversarial learning easy to
be overfitting to the limited target domain data. Therefore, we embed the meta-learning that is a
successful solution to few-shot learning problem, into the typical adversarial adaptation process to
solve the FSDAOD task.

2.2 FEW-SHOT OBJECT DETECTION (FSOD)
Since there are very few cross-domain object detection works using only a few target samples, we
review the typical Few-Shot Object Detection (FSOD) works (Kang et al., 2019; Yang et al., 2020;
Fan et al., 2020; Sun et al., 2021; Qiao et al., 2021; Li et al., 2021) to help for solving our task.
FSDet (Kang et al., 2019) first tries to tackle the FSOD problem by re-scaling features from the
channel dimension. RepMet (Yang et al., 2020) effectively encodes negative proposals for knowl-
edge transfer from the query to support set. FSCE (Fan et al., 2020) aims to learn contrastive
object proposal encodings which facilitate the classification of instance objects. DeFRCN (Qiao
et al., 2021) develops a Gradient Decoupled Layer for multi-task decoupling. CME (Li et al., 2021)
designs a fully connection layer to decouple localization features for boosting few-shot detection
accuracy. We find that these FSOD works construct support and query sets to learn prototypes for
representing sample-scarce scenarios. Thus, we similarly develop a new instance-level prototypi-
cal meta-alignment module to construct more representative prototypes. Meanwhile, since this work
still follows the DA pipeline, the developed prototypical meta-alignment module is further integrated
with the adversarial adaptation to attain a state-of-the-art FSDAOD accuracy.

3 THE PROPOSED METHOD
The overall framework is illustrated in Fig. 2. For easy understanding, we first present the problem
formulation and the selected baseline model. Then we introduce the proposed IPNet framework and
its key modules. Finally, we give the overall loss function and few-shot domain adaptation strategy.
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Figure 2: The IPNet consists of an IPM module and a FSAT module to tackle the FSDAOD problem.
Given the source domain samples, the upper pre-training branch first trains a source-only detection
baseline. Next, the source and target samples are fused to construct the query set and support
set, which are first fed into the shared backbone followed by the IPM to meta-learn a set of class
prototypes, and the FSAT to achieve cross-domain attention transfer. In the inference stage, the IPM
and FSAT are removed and only the adapted Faster R-CNN is used for cross-domain detection.

3.1 PRELIMINARIES

Problem Definition. Suppose (xs
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i=1 are image annotation triplets from
the source domain s and target domain t, where ns and nt denote the source and target domain
sample number, and F and I denote the learned feature-level and instance-level representations of
a well-trained detector, respectively. Given a large number of annotated instances from the source
domain (xs

i , b
s
i , c

s
i )

ns

i=1 and very few instance objects from the target domain (xt
i, b

t
i, c

t
i)

nt

i=1, where
nt ≪ ns, the purpose of Instance-level Prototype learning Network (IPNet) is from extensive source
data and only a few target samples, to learn generalized representations F and I which can well
adapt to the target domain. Note that in our task, each image from the target domain often only
contains loose annotation information, meaning that only a part of instances in the whole image are
annotated.

Baseline Introduction. Following previous DAOD works (Chen et al., 2018; Deng et al., 2021; VS
et al., 2021; Jiang et al., 2022; Hsu et al., 2020; Zhu et al., 2019), we use the Faster R-CNN as the
baseline detector, which is a typical two-stage detection framework where instance-level features
can be effectively encoded via Region-of-Interest (RoI) module. The overall loss function of Faster
R-CNN can be written as follows:

Ldet = Lrpn
cls + Lrpn

reg + Lroi
cls + Lroi

reg, (1)

where Lrpn
cls and Lrpn

reg denote the classification and bounding box regression loss of Region Pro-
posal Network (RPN), while Lroi

cls and Lroi
reg are the instance-level classification and regression loss

calculated by RoI head. We employ Eq. 1 to pre-train the model on the source domain.

3.2 THE PROPOSED IPNET FRAMEWORK

The proposed IPNet framework consists of an Instance-level Prototypical Meta-alignment (IPM)
module and a Feature-level Spatial Attention Transfer (FSAT) module, which work together to tackle
the few-shot cross-domain object detection problem.

3.2.1 INSTANCE-LEVEL PROTOTYPICAL META-ALIGNMENT MODULE

The goal of instance-level domain alignment is to make the learned instance features domain-
invariant and meanwhile discriminative for different target categories. Unfortunately, under the
few-shot target domain setting, it is hard to align inter-domain features using traditional adversarial
learning methods (Chen et al., 2018; Saito et al., 2019) as explained before. Here we also validate
this by the comparison experiment results of SWDA (Saito et al., 2019) under different domain
adaptation settings as in Table 1.

Considering this, we endeavor to solve the FSDAOD problem from the Few-Shot Object Detection
(FSOD) view. To be specific, the source domain instances are regarded as the base classes while
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the few-shot target samples are considered as the novel classes. Through this, the typical few-shot
learning approach such as TFA method (Wang et al., 2020) for solving FSOD can be applied to
handle the FSDAOD problem. The preliminary experimental results are shown in Table 1, and
results show a significant cross-domain performance drop when the meta-learning based FSOD
method is directly used to solve the FSDAOD problem. Such performance degradation is mainly
due to that these FSOD methods assume similar train and test data distribution. However, in the
DAOD setting, the training and test sets often present a substantial domain gap.

To address this, we design the Instance-level Prototypical Meta-alignment (IPM) module, by
learning multiple prototypes from fused domains with the aid of meta-learning, to strengthen the
model’s representation capability for the few-shot target domain. In particular, given the input set
(xs

i , b
s
i , c

s
i )

ns

i=1 and (xt
i, b

t
i, c

t
i)

nt

i=1 from different domains, the first step is to build sub-tasks for meta-
learning. Suppose that a N -way K-shot task set is adopted, we first randomly sample N classes
among all cs classes (If cs contains only one class, background is considered as an extra class).
Then we construct a fusion set U consisting of NK source domain and NK target domain im-
ages. For both domains, K instances from different images of each class are randomly sampled
using the given annotations. If the number of given instances is smaller than K, we simply dupli-
cate target images and their annotations to satisfy the required instance number. Through this, the
number of images from the source and target domains in the fusion set U keeps a balance. If back-
ground regions are needed, we get samples from proposals with low confidence scores and suitable
sizes, generated by the RPN module of the source pre-trained Faster R-CNN. For each of N cate-
gories, 2K samples are randomly divided into support set

(
xS
i , b

S
i , c

S
i

) (
cSi = 1· · ·N

)
and query

set
(
xQ
i , b

Q
i , c

Q
i

)(
cQi = 1· · ·N

)
with K images each as follows:

{(xS
i , b

S
i , c)} ∪ {(xQ

i , b
Q
i , c)} = {(xs

i , b
s
i , c)|xs

i ∈ U} ∪ {(xt
i, b

t
i, c)|xt

i ∈ U}(c = 1 · · ·N). (2)

Based on the obtained support and query sets, we calculate class prototypes using annotated in-
stances in the support set. The feature extractor and RoI module of the detection model are used
to generate instance features, which are flattened and fed into a new fully-connected (FC) layer for
feature embedding. Then the averaging strategy as in ProtoNet (Snell et al., 2017) is employed to
calculate support class prototypes. The prototype of the jth class is thus formulated as follows:

Pj =
1

K

∑
cSi =j

w(I(xS
i , b

S
i )), (3)

where w(·) is the FC layer for the feature embedding. Then we calculate the semantic similarity
between the embedded features of query instances and support prototypes as follows:

Cos(w(I(xQ
i , b

Q
i )), Pj) =

Pj · w(I(xQ
i , b

Q
i ))

∥Pj∥ × ∥w(I(xQ
i , b

Q
i ))∥

. (4)

In order to enhance the between-class discrimination meanwhile keep within-class compactness be-
tween query instances, we introduce a triplet loss used for training on all pairs of query instances
within a mini-batch. The triplet loss reduces the intra-class divergence between the prototype and
its positive instances, and increases the inter-class distance between the prototype and negative in-
stances, formulated as follows:

Lp =
∑
x∈B

ReLU(Cos(w(I(xQ
j , b

Q
j )), Pc

Q
i
)− Cos(w(I(xQ

i , b
Q
i )), Pc

Q
i
) + α), (5)

where B denotes a mini-batch of query images, and α is the margin constant. For an input pair, we
use ReLU to ensure that the distance of samples belonging to the same class is minimized while
that of samples from different classes is maximized. Through enhancing the model between-class
discriminability in the target domain, the triplet loss also helps to alleviate the cross-domain feature
discrepancies for the same class.

3.2.2 FEATURE-LEVEL SPATIAL ATTENTION TRANSFER (FSAT) MODULE

As mentioned before, to make the source-domain model well attend to the foreground regions in the
target domain, we develop the FSAT module to decouple generated feature maps into foreground
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and background parts with the learned class prototype, and make the model focus more on the
foreground during the adaptation process.

In particular, we first sample the support and query sets as in the IPM module 3.2.1. In
an N -way K-shot sub-task (N is set to the total number of categories), K support images(
xS
i , b

S
i , c

S
i

) (
cSi = 1· · ·N

)
and K query images

(
xQ
i , b

Q
i , c

Q
i

)(
cQi = 1· · ·N

)
are selected from

each class. In order to align the channel number between the learned prototypes and feature maps to
be enhanced, global average pooling is used to obtain embeddings of all support instances from the
features aligned by IPM. Then these extracted embeddings are averaged in each of N support classes
to obtain class prototypes, which are concatenated to get a prototype-level matrix P ∈ tN×C .

After getting the matrix P ∈ tN×C , a patch-wise similarity matrix S ∈ tN×H×W is computed
between feature maps F = F (x) ∈ tH×W×C and P, with each item indicating the probability of
each pixel of the feature map belonging to a foreground object. The similarity matrix is computed
as follows,

Si,j,k =
Pi,: · Fj,k,:

∥Pi,:∥ × ∥Fj,k,:∥
, (6)

where Pi,: denotes the ith class prototype. Then a foreground spatial attention Afg ∈ f1×H×W

can be obtained by channel-wise maximum of S. The foreground feature Ffg ∈ tH×W×C can
be acquired by multiplying Afg with each channel of F. The background feature Fbg is simply
obtained by subtracting Ffg from F.

Finally, a domain discriminator is employed to perform the cross-domain alignment for the decou-
pled foreground and background representations respectively as follows:

Lfg = − 1

HW

W∑
w=1

H∑
h=1

(1−D(Ffg)wh)
γ log(D(Ffg)wh)

− 1

HW

W∑
w=1

H∑
h=1

D(Ffg)
γ
whlog((1−D(Ffg)wh)),

(7)

where D denotes the domain discriminator, γ is the focal loss parameter, and Lfg denotes the fore-
ground domain discrimination loss, and the Lbg can be easily calculated by feeding the background
features Fbg into Eq. 7.

3.3 THE OVERALL OBJECTIVE AND ADAPTATION STRATEGY

Overall Objective. The overall objective of the proposed IPNet can be formulated as follows:

L = Ls
det + Lp + Lfg + Lbg, (8)

where Ls
det denotes the original detection loss calculated on the source domain images.

Few-shot Adaptation Strategy. IPNet contains three training steps: source pre-training, instance-
level prototypical few-shot alignment, and feature-level spatial attention transfer. 1) Source pre-
training: In this step, the detector is pre-trained on labeled source data (xs

i , b
s
i , c

s
i )

ns

i=1, and
learns knowledge that is useful for source image detection. 2) Instance-level prototypical meta-
alignment (Section 3.2.1): We fuse training images from both domains and split them into support
and query sets to build the training sub-tasks, and train the detector with the triplet loss in Eq. 5. 3)
Feature-level prototypical spatial attention transfer (Section 3.2.2): Based on the learned class
prototypes above, we perform the domain alignment of dense representations for the foreground and
background regions using Eq. 7.

4 EXPERIMENTS

4.1 DATASETS AND SCENARIOS

Datasets. The following six datasets are used to conduct cross-domain object detection experiments:
Cityscapes (Cordts et al., 2016), FoggyCityscapes (Sakaridis et al., 2018), SIM10K (Johnson-
Roberson et al., 2017), Udacity (Udacity, 2018), Pascal VOC (Everingham et al., 2010) and Clipart
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Table 1: Results for the cross-weather scenario (Cityscapes to FoggyCityscapes). Unsupervised
domain adaptation (UDA) denotes the traditional setting where all unlabeled images from the target
domain are available. In the few-shot supervised setting (FDA), only a few loosely annotated target
images are used for training. Few-shot UDA provides the same number of target images as that in
FDA but with no annotations. We report the mean value and standard deviations of the mAP over
three runs.

Setting Backbone person rider car truck bus train mcycle bicycle mAP

F-RCNN Source-only VGG16 25.1 32.7 31.0 12.5 23.9 9.1 23.7 29.1 23.4
ResNet101 33.8 34.8 39.6 18.6 27.9 6.3 18.2 25.5 25.6

DA-Faster (CVPR’18)

UDA

VGG16 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.7
SWDA (CVPR’19) VGG16 36.2 35.3 43.5 30.0 29.9 42.3 32.6 24.5 34.3
CADA (ECCV’20) VGG16 41.9 38.7 56.7 22.6 41.5 36.8 24.6 35.5 36.0
UMT (CVPR’21) VGG16 56.5 37.3 48.6 30.4 33.0 46.7 46.8 34.1 41.7
MeGA (CVPR’21) VGG16 25.4 52.4 49.0 37.7 46.9 34.5 39.0 49.2 41.8
D-adapt (ICLR’22) VGG16 44.3 48.1 54.6 28.6 34.4 28.5 33.8 41.1 39.2

CADA (ECCV’20) ResNet101 41.5 43.6 57.1 29.4 44.9 39.7 29.0 36.1 40.2
D-adapt (ICLR’22) ResNet101 42.8 48.4 56.8 31.5 42.8 37.4 35.2 42.4 42.2
SWDA (CVPR’19) FUDA VGG16 28.0±1.5 39.9±0.9 40.5±2.3 23.8±2.3 35.9±2.2 20.9±7.0 24.0±0.8 31.7±2.7 30.6±1.8

FAFRCNN (CVPR’19) (1-shot)

FDA

VGG16 27.9±0.6 37.8±0.6 42.3±0.7 20.1±0.5 31.9±1.1 13.1±1.5 24.9±1.3 30.6±0.9 28.6±0.5
PICA (WACV’22) (1-shot) VGG16 28.3±2.2 41.3±0.3 43.0±0.4 23.8±2.2 38.1±1.5 24.3±0.8 25.4±1.4 33.7±0.4 32.2±0.8
TFA (ICML’20) (1-shot) ResNet101 35.8±0.1 50.6±0.1 36.1±0.0 25.1±0.3 35.8±0.9 18.2±0.0 41.0±1.4 44.7±0.1 35.9±0.1
IPNet (1-shot) VGG16 39.4±0.1 49.6±0.4 52.4±0.1 32.9±1.0 47.3±0.8 30.5±1.9 38.2±1.2 45.7±0.4 41.9±0.2
IPNet (1-shot) ResNet101 46.7±0.9 59.9±0.4 53.2±0.2 42.8±1.0 54.0±2.0 59.9±1.5 47.3±1.8 58.9±0.4 52.8±0.4
IPNet (3-shot) ResNet101 47.3±0.1 59.3±0.1 53.4±0.1 42.6±0.9 55.9±3.0 60.7±1.4 47.5±1.2 59.4±0.1 53.2±0.1
IPNet (5-shot) ResNet101 47.6±0.4 60.1±0.1 53.3±0.1 42.1±1.5 59.1±0.3 60.3±0.5 49.7±0.8 59.8±0.4 54.2±0.2

Table 2: Results for fake-to-real scenario.

Setting Backbone mAP

F-RCNN Source-only VGG16 34.6
ResNet101 41.8

DA-Faster (CVPR’18)

UDA

VGG16 38.9
SWDA (CVPR’19) VGG16 40.1
CADA (ECCV’20) VGG16 49.0
UMT (CVPR’21) VGG16 43.1
MeGA (CVPR’21) VGG16 44.8
D-adapt (ICLR’22) VGG16 50.3
CADA (ECCV’20) ResNet101 51.2
D-adapt (ICLR’22) ResNet101 53.2
FAFRCNN (CVPR’19) (24-shot)

FDA

VGG16 39.8±0.6
PICA (WACV’22) (24-shot) VGG16 42.1±0.7
IPNet (24-shot) VGG16 45.1±0.7
IPNet (5-shot) ResNet101 43.3±0.3
IPNet (8-shot) ResNet101 44.9±0.7
IPNet (24-shot) ResNet101 46.5±0.5
IPNet (1/64 target images) ResNet101 55.8±0.5

Table 3: Results for cross-camera scenario.

Setting Backbone mAP

F-RCNN Source-only VGG16 43.1
ResNet101 44.5

SWDA (CVPR’19) UDA VGG16 51.9
FAFRCNN (CVPR’19) (24-shot)

FDA

VGG16 50.6±0.6
PICA (WACV’22) (24-shot) VGG16 52.4±0.1
IPNet (24-shot) VGG16 52.8±0.1
IPNet (5-shot) ResNet101 52.4±0.7
IPNet (8-shot) ResNet101 53.0±0.8
IPNet (24-shot) ResNet101 53.5±0.5

(Inoue et al., 2018). The Cityscapes contains 2,975 training images and 500 validation images with
8 object categories. FoggyCityscapes is a synthetic dataset generated from Cityscapes with three
different levels of fog (0.005, 0.01, 0.02). We choose the level of 0.02 in our experiments. SIM10K
consists of 10K images rendered by the game engine and has 58,701 car annotations. The Udacity
self-driving dataset (Udacity for short) contains more than 20,000 frames collected from driving cars
in California. In our experiments, we choose the ‘car’ category from the 4 different categories. The
Pascal VOC covers 20 categories of common real-world objects and 16551 images, while Clipart
contains 1000 comic images with the same 20 categories as Pascal VOC.
Our Scenarios. To compare with UDA and FDA methods, we establish the following four cross-
domain scenarios: 1) cross-weather scenario from Cityscapes to FoggyCityscapes, 2) fake-to-real
scenario from SIM10K to Cityscapes, 3) cross-sensor scenario from Udacity to Cityscapes, and
4) cross-style scenario from Pascal VOC to Clipart. In the first scenario, there are domain shifts
from normal to extreme weather. The second scenario denotes a fake-to-real adaptation case. The
third scenario denotes the sensor adaptation between different cameras. The first three scenarios are
important for autonomous driving, where only a few target data can be obtained due to the expensive
cost of data collection. In the last scenario, the domain gap between two datasets is greater than that
of the other three scenarios.

4.2 IMPLEMENTATION DETAILS

In the first three scenarios, all images are rescaled by setting the shorter side of each image to 600
pixels while keeping the aspect ratios unchanged. In the last scenario, we utilize CycleGAN (Zhu
et al., 2017) to perform source-to-target translation due to the large domain shift. We use Faster
R-CNN as the base detection model, and VGG16 and ResNet101 as the backbone network. Three
rounds of experiments are conducted for each scenario. In each round, we randomly sample different
few-shot target images and annotations. The training process is given in Section 3.3.
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Table 4: Results for cross-style scenario. Due to space limitation, we only report mean mAP over
three rounds.

Setting Backbone aero bcycle bird boat bottle bus car cat chair cow table dog hrs bike prsn plnt sheep sofa train tv mAP

F-RCNN Source-only

ResNet101

35.6 52.5 24.3 23.0 20.0 43.9 32.8 10.7 30.6 11.7 13.8 6.0 36.8 45.9 48.7 41.9 16.5 7.3 22.9 32.0 27.8

DA-Faster

UDA

15.0 34.6 12.4 11.9 19.8 21.1 23.2 3.1 22.1 26.3 10.6 10.0 19.6 39.4 34.6 29.3 1.0 17.1 19.7 24.8 19.8
SWDA 26.2 48.5 32.6 33.7 38.5 54.3 37.1 18.6 34.8 58.3 17.0 12.5 33.8 65.5 61.6 52.0 9.3 24.9 54.1 49.1 38.1
HTCN 33.6 58.9 34.0 23.4 45.6 57.0 39.8 12.0 39.7 51.3 21.1 20.1 39.1 72.8 63.0 43.1 19.3 30.1 50.2 51.8 40.3
UMT 39.6 59.1 32.4 35.0 45.1 61.9 48.4 7.5 46.0 67.6 21.4 29.5 48.2 75.9 70.5 56.7 25.9 28.9 39.4 43.6 44.1
D-adapt 49.3 63.8 40.1 34.4 49.5 87.3 51.2 33.3 47.5 59.1 27.9 22.4 42.3 73.9 68.2 49.1 24.9 35.1 58.9 64.6 49.1
IPNet (1-shot)

FDA
34.5 59.0 37.2 32.0 40.1 64.1 41.0 19.6 45.4 48.4 36.2 29.0 34.1 76.6 67.3 45.1 24.5 36.0 46.0 43.9 43.0

IPNet (3-shot) 46.9 68.3 33.4 34.3 43.4 64.1 48.0 30.1 47.4 56.7 31.0 33.6 43.7 80.8 67.8 46.0 28.2 39.8 60.4 57.5 48.0
IPNet (5-shot) 44.6 71.0 37.4 38.9 42.4 74.6 48.0 34.8 51.5 67.0 31.6 36.7 47.4 94.2 69.3 44.6 29.6 36.5 52.5 66.9 51.0

For source pre-training, we train the basic Faster R-CNN model using stochastic gradient descent
with a momentum of 0.9 in all scenarios. We adopt a learning rate of 0.005 for VGG16 backbone
and 0.02 for ResNet101 backbone. The IPM adopts 5-way-5-shot setting in the first scenario, 2-
way-5-shot in the second and third scenarios, and 8-way-5-shot in the last scenario. The FSAT
adopts 8-way-5-shot setting in the first scenario, 2-way-5-shot in the second and third scenarios, and
20-way-5-shot in the last scenario. Our implementation is built upon Detectron2 (Wu et al., 2019).
Codes will be available soon.

4.3 EXPERIMENTAL RESULTS

We compare our method with state-of-the-art methods on UDA task including DA-Faster (Chen
et al., 2018), SWDA (Saito et al., 2019), CADA (Hsu et al., 2020), UMT (Deng et al., 2021), MeGA
(VS et al., 2021), D-adapt (Jiang et al., 2022) and FDA task including FAFRCNN (Wang et al.,
2019), PICA (Zhong et al., 2022). We also implement FSOD method such as TFA (Wang et al.,
2020) under the FSDAOD setting.

Results for cross-weather scenario. We first show results on cross-weather scenario using the
Cityscapes dataset as the source domain and FoggyCityscapes as the target domain. In this scenario,
k-shot means that k images from each class with 1 bounding box annotation are randomly sampled.
Table 1 shows that the IPNet outperforms the state-of-the-art FDA methods by 9.7% on mAP under
the same 1-shot setting. When only a few images are available on the target domain, UDA methods
will face significant performance drop. For example, D-adapt (Jiang et al., 2022) obtains a relatively
high accuracy of 42.2% under the UDA setting, while SWDA (Saito et al., 2019) only achieves
30.6% mAP under the few-shot UDA setting. As a comparison, our IPNet even outperforms many
UDA methods by a large margin.

Results for fake-to-real scenario. We use SIM10K as the source domain and Cityscapes as the
target domain. Following previous works (Wang et al., 2019; Zhong et al., 2022), we sample 8
images from the target domain and randomly annotate 3 car objects per image as the 24-shot setting.
Further, we report the mAP of target validation set on car category. Extra experiments for 5/8-shot
(5/8 target images and one annotation each) and 1/64 target images (44 images with full annotation)
are conducted to show the effectiveness of the IPNet. Table 2 shows that the IPNet outperforms all
FDA methods and achieves significant accuracy improvement.

Results for cross-sensor scenario. We perform adaptation from Udacity to Cityscapes and report
results in Table 3. In this scenario, the FDA setting for the target domain is the same as that in the
second scenario. Results illustrate that the cross-domain detection accuracy of IPNet is higher than
previous UDA and FDA methods.

Results for cross-style scenario. In this scenario, the source-to-target domain gap is large. For the
target domain dataset Clipart, we randomly sample k bounding boxes per class as k-shot setting.
One image may contain multiple annotated instances belonging to the same class. We have 52
images for 3-shot setting and 82 images for 5-shot setting. Note that previous FDA works have not
conducted experiments in this scenario. As shown in Table 4, under the 5-shot setting, our IPNet
outperforms the state-of-the-art UDA method by 1.9% when using about 8% target images and 3%
target annotations.

4.4 ABLATION STUDIES

Comparisons between prototypical-based and adversarial-based alignment. Table 5 shows the
comparison results between the proposed method and other adversarial-based methods (Chen et al.,
2018; Saito et al., 2019). First, the IPM performs much better than the corresponding instance-level
and feature-level adversarial adaptation methods. Compared with adversarial adaptation methods
that fail to model the overall target data distribution, our IPM leverages the domain-fused prototypes
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Table 5: Comparison between IPM,
FSAT and other adversarial learning
methods.

Modules mAP

Source-only 25.6
Adversarial-instance 33.8 ± 0.0
IPM 47.2 ± 0.8
IPM+Adversarial-feature 50.0 ± 0.5
IPM+FSAT 52.8 ± 0.4
IPM+FSAT (0.5 threshold) 49.1 ± 0.4

Table 6: Ablation study of the IPM and FSAT modules.

Triplet loss CE loss Fg align Bg align mAP

Source-only 25.6

IPM
✓ 47.2 ± 0.8

✓ 44.9 ± 0.5
✓ ✓ 47.5 ± 1.6

IPM+FSAT
✓ ✓ ✓ 52.4 ± 0.1
✓ ✓ ✓ 48.5 ± 0.1
✓ ✓ ✓ ✓ 52.6 ± 0.2

to enhance the model discriminability. Second, we also design a naive baseline, namely, a threshold
of 0.5 is used to decouple the foreground and background features from the normalized feature
map. By comparing IPM+FSAT (0.5 threshold) and IPM+FSAT in Table 5, it can be concluded
that the learned prototype from IPM is effective in decoupling the foreground features from feature
representations.

Study of IPM and FSAT. Table 6 shows the effectiveness of the designed triplet loss and back-
ground alignment in IPM and FSAT. It can be seen that the triplet loss has better performance than
CE loss, due to that the triplet loss considers relations between different query samples to enhance
the compactness of query features from the same class, while the CE loss only focuses on relations
between query samples and support prototypes, ignoring the model discriminability for different
classes’ query samples. It is also shown that simultaneously aligning the decoupled foreground and
background features is the most effective way, demonstrating the importance of both background
and foreground features for domain adaptation.

Source Only (25.6% mAP) IPM (47.7% mAP)

Figure 3: The tSNE results. Different colors
denote different classes, and the class number
1, 4, 7, and 2, 5, 8 represent the source classes
and target classes, respectively.

IPM (46.3% mAP) IPM+FSAT (51.0% mAP)

Figure 4: Visualization of the learned spa-
tial attention features before and after apply-
ing FSAT module.

Instance feature visualization. We visualize the instance features learned for cross-weather sce-
nario (Cityscapes to FoggyCityscapes) using t-SNE (Maaten & Hinton, 2008). The visualization
demonstrates that our IPM module can enhance the discriminability of different classes’ features
from the target domain.
Spatial attention visualization. In Fig. 4, we visualize the high-level dense representations of the
backbone learned from cross-style scenario (VOC to Clipart), to show the learned spatial attention
by FSAT module. It is seen that after doing attention transfer, the model can attend more to the
important foreground instances. For more visualization results, please see Figs. 5-9 in Section A

5 CONCLUSION

This work reveals that when only a few target samples are available, traditional adversarial learning-
based alignment methods cannot work well, and thus inspires us to propose an Instance-level Pro-
totype learning Network (IPNet) for tackling the few-shot DAOD problem. The proposed IPNet
consists of an Instance-level Prototypical Meta-alignment (IPM) module to enhance the target do-
main between-class discriminability, and a Feature-level Spatial Attention Transfer (FSAT) module
to make the adapted model attend to important foreground areas for target image detection. Ex-
periments are conducted on six common cross-domain detection benchmarks and detection results
show the consistent superiority of the proposed IPNet over state-of-the-art methods under different
few-shot cross-domain scenarios.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Chaoqi Chen, Zebiao Zheng, Xinghao Ding, Yue Huang, and Qi Dou. Harmonizing transferability
and discriminability for adapting object detectors. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 8869–8878, 2020.

Xinyang Chen, Sinan Wang, Mingsheng Long, and Jianmin Wang. Transferability vs. discriminabil-
ity: Batch spectral penalization for adversarial domain adaptation. In International Conference
on Machine Learning, pp. 1081–1090, 2019.

Yuhua Chen, Wen Li, Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Domain adaptive faster
r-cnn for object detection in the wild. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3339–3348, 2018.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schie. The cityscapes dataset for semantic urban
scene understanding. In CVPR, pp. 3213–3223, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

Jinhong Deng, Wen Li, Yuhua Chen, and Lixin Duan. Unbiased mean teacher for cross-domain
object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 4091–4101, 2021.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. IJCV, 88(2):303–338, 2010.

Qi Fan, Wei Zhuo, Chi-Keung Tang, and Yu-Wing Tai. Few-shot object detection with attention-rpn
and multi-relation detector. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4013–4022, 2020.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
International Conference on Machine Learning, 2014.

K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask r-cnn. In International Conference on Com-
puter Vision, 2017.

Cheng-Chun Hsu, Yi-Hsuan Tsai, Yen-Yu Lin, and Ming-Hsuan Yang. Every pixel matters: Center-
aware feature alignment for domain adaptive object detector. In European Conference on Com-
puter Vision, pp. 733–748, 2020.

Naoto Inoue, Ryosuke Furuta, Toshihiko Yamasaki, and Kiyoharu Aizawa. Cross-domain weakly-
supervised object detection through progressive domain adaptation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 5001–5009, 2018.

Junguang Jiang, Baixu Chen, Jianmin Wang, and Mingsheng Long. Decoupled adaptation for cross-
domain object detection. In ICLR, 2022.

Matthew Johnson-Roberson, Charles Barto, Rounak Mehta, Sharath Nittur Sridhar, Karl Rosaen,
and Ram Vasudevan. Driving in the matrix: Can virtual worlds replace human-generated anno-
tations for real world tasks? In IEEE International Conference on Robotics and Automation, pp.
746–753, 2017.

Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi Feng, and Trevor Darrell. Few-shot object
detection via feature reweighting. In ICCV, 2019.

Taekyung Kim, Minki Jeong, Seunghyeon Kim, Seokeon Choi, and Changick Kim. Diversify and
match: A domain adaptive representation learning paradigm for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12456–12465, 2019.

Bohao Li, Boyu Yang, Chang Liu, Feng Liu, Rongrong Ji, and Qixiang Ye. Beyond max-margin:
Class margin equilibrium for few-shot object detection. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 7363–7372, 2021.

10



Under review as a conference paper at ICLR 2023

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
domain adaptation. In Advances in Neural Information Processing Systems, pp. 1640–1650, 2018.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 2008.

Limeng Qiao, Yuxuan Zhao, Zhiyuan Li, Xi Qiu, Jianan Wu, and Chi Zhang. Defrcn: Decou-
pled faster r-cnn for few-shot object detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8681–8690, 2021.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: towards real-time object
detection with region proposal networks. In International Conference on Neural Information
Processing Systems, pp. 91–99, 2015.

Paolo Russo, Fabio M Carlucci, Tatiana Tommasi, and Barbara Caputo. From source to target
and back: symmetric bi-directional adaptive gan. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 8099–8108, 2018.

Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada, and Kate Saenko. Strong-weak distribution align-
ment for adaptive object detection. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 6956–6965, 2019.

Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Semantic foggy scene understanding with
synthetic data. IJCV, 126(9):973–992, 2018.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
NeurIPS, 2017.

Bo Sun, Banghuai Li, Shengcai Cai, Ye Yuan, and Chi Zhang. Fsce: Few-shot object detection via
contrastive proposal encoding. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 7352–7362, 2021.

Udacity. Udacity annotated driving data. 2018. URL https://github.com/udacity/
self-driving-car.

Vibashan VS, Vikram Gupta, Poojan Oza, Vishwanath A Sindagi, and Vishal M Patel. Mega-cda:
Memory guided attention for category-aware unsupervised domain adaptive object detection. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4516–
4526, 2021.

Tao Wang, Xiaopeng Zhang, Li Yuan, and Jiashi Feng. Few-shot adaptive faster r-cnn. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7173–7182,
2019.

Xin Wang, Thomas E. Huang, Trevor Darrell, Joseph E. Gonzalez, and Fisher Yu. Frustratingly
simple few-shot object detection. In Proceedings of the 37th International Conference on Machine
Learning, pp. 9919–9928, 2020.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron2, 2019.

Yukuan Yang, Fangyu Wei, Miaojing Shi, and Guoqi Li. Restoring negative information in few-shot
object detection. In NeurIPS, 2020.

Chaoliang Zhong, Jie Wang, Cheng Feng, Ying Zhang, Jun Sun, and Yasuto Yokota. Pica: Point-
wise instance and centroid alignment based few-shot domain adaptive object detection with loose
annotations. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 2329–2338, 2022.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pp. 2223–2232, 2017.

Xinge Zhu, Jiangmiao Pang, Ceyuan Yang, Jianping Shi, and Dahua Lin. Adapting object detectors
via selective cross-domain alignment. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 687–696, 2019.

11

https://github.com/udacity/self-driving-car
https://github.com/udacity/self-driving-car
https://github.com/facebookresearch/detectron2


Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 MORE DETAILS OF THE BASELINE MODEL

Network architecture. Following previous Domain Adaptation Object Detection (DAOD)
works (Chen et al., 2018; Deng et al., 2021; VS et al., 2021; Jiang et al., 2022; Hsu et al., 2020;
Zhu et al., 2019), we use the backbone of ResNet101 and VGG16 as the feature extraction. The first
two blocks are frozen during the training phase. Also, we employ the RoI Align (He et al., 2017)
as the RoI module in Faster R-CNN baseline with a pooled spatial resolution of 7 × 7. Domain
discriminator consists of three convolution layers, where each layer employ a kernel size of 3 × 3
and stride of 1. Channel numbers of the three convolution layers are 1024, 256, and 1, respectively.
Focal loss with Sigmoid activation function is employed as the loss of domain discriminator.

Training details. Our model is trained on 2 NVIDIA V-100 GPUs. To stabilize the training process,
we apply the warm-up strategy in the early stage of the training phase. The source-only model is
trained based on an Imagenet (Deng et al., 2009) pre-trained backbone. As for data augmentations,
random flip is applied for all training processes and multi-scale training is used for Pascal VOC to
Clipart scenario.

IPM 

(46.6% mAP)

Source-only 

(28.9% mAP)

Class set 1 Class set 2 Class set 3

Figure 5: More tSNE visualization: we visualize the tSNE results before and after applying IPM
module. Each class set contains five randomly selected classes. Class number 1,5,9,13,17 and
2,6,10,14,18 represent the source classes and target classes, respectively.

IPM 

IPM+FSAT

Image

Figure 6: More features visualization: we visualize the learned spatial attention before and after
applying FSAT module.
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A.2 QUALITATIVE ANALYSIS

tSNE and attention map results. We have visualized the tSNE results of instance-level features
learned by the source-only model and our IPNet, respectively. In this part, we give more tSNE
visualization results for Pascal VOC to Clipart cross-domain scenario. As illustrated in Fig. 5, these
visualization results demonstrate that our IPM module can largely boost the model discriminability
for the target domain instances, enhancing the cross-domain detection accuracy under the few-shot
setting.

Besides, In Fig. 6, we show more attention maps to verify the effectiveness of the learned spa-
tial attention features by the designed FSAT. These visualized attention maps show our FSAT can
successfully transfer the spatial attention to the foreground regions of the whole image.

Detection results. Furthermore, we show some visual detection results for adapting the detector
under the cross-weather, fake-to-real and cross-style scenarios in Figs. 7-9. Compared with the
baseline model trained only using source domain data, our IPNet can detect more instance objects
only using few-shot loosely-annotated images from the target domain.

Source-only

Ours

Annotation

Figure 7: Detection results of adapting the source-only model from Cityscapes to FoggyCityscapes.

Source-only

Ours

Annotation

Figure 8: Detection results of adapting the source-only model from SIM10K to Cityscapes.
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Source-only

Ours

Annotation

Figure 9: Detection results of adapting the source-only model from PASCAL VOC to Clipart.
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