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Abstract

Much of Bayesian inference centers around the design of estimators for inverse
problems which are optimal assuming the data comes from a known prior. But
what do these optimality guarantees mean if the prior is unknown? In recent
years, algorithm unrolling has emerged as deep learning’s answer to this age-
old question: design a neural network whose layers can in principle simulate
iterations of inference algorithms and train on data generated by the unknown
prior. Despite its empirical success, however, it has remained unclear whether
this method can provably recover the performance of its optimal, prior-aware
counterparts.
In this work, we prove the first rigorous learning guarantees for neural networks
based on unrolling approximate message passing (AMP). For compressed
sensing, we prove that when trained on data drawn from a product prior,
the layers of the network approximately converge to the same denoisers used in
Bayes AMP. We also provide extensive numerical experiments for compressed
sensing and rank-one matrix estimation demonstrating the advantages of our
unrolled architecture – in addition to being able to obliviously adapt to general
priors, it exhibits improvements over Bayes AMP in more general settings of
low dimensions, non-Gaussian designs, and non-product priors.

1 Introduction

Inverse problems within engineering and the sciences [BBDM21, ST99, Vog02] have inspired
the development of a rich toolbox of algorithms for inferring unknown signals given noisy
measurements. For instance, a classic approach to solving sparse linear inverse problems is
to solve the LASSO using an iterative algorithm like ISTA [DDDM04] or FISTA [BT09]. While
these methods are easy to implement and remarkably performant, they are not designed to
exploit distributional information about the underlying signal, which often comes from domain
knowledge. In contrast, Bayesian methods like message passing and variational inference offer
a natural framework for designing estimators that incorporate this kind of information: the
algorithm designer crafts a prior for the signal, and the measurements they observe naturally
induce a posterior over what the underlying signal could have been.
∗Equal contribution
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Such an approach comes at a cost. On one hand, this method often comes with strong optimality
guarantees in the well-specified setting where the algorithm designer has access to the true prior
distribution of the data. In practice, however, this prior is not known a priori and hence must be
inferred, and any mismatch between the inferred prior and the true distribution will adversely
affect the performance of the estimator in ways that are poorly understood compared to what is
known in the well-specified setting [BCPS21, BHMS22, MS22].
In recent years, algorithm unrolling has emerged as a scalable solution for developing estimators
that can improve upon this practicality-performance tradeoff by learning from samples drawn
from the data distribution [GL10, MLE21, LTG+20, SWED23]. The idea is to craft a neural
network architecture, each of whose layers is expressive enough to implement one step of an
existing, hand-crafted iterative algorithm (e.g. ISTA). Then, instead of explicitly setting the
weights of the network so that it implements that algorithm, one trains the network on examples
of the inference problem at hand using stochastic gradient descent. Remarkably, the algorithm
that the network converges to tends to perform at least as well as (and often better than) the
hand-crafted algorithm being unrolled, e.g. in the number of layers and iterations necessary to
achieve a certain level of error.
Thus, at least empirically, algorithm unrolling seems to achieve the best of both worlds, marrying
the domain-aware power of classical iterative methods with the remarkable learning capabilities
of neural networks. From a theoretical perspective however, our understanding of its performance
is rather limited, as existing guarantees are centered around non-algorithmic aspects like
representational power and generalization bounds (see Section 1.1 for a detailed discussion).
In particular, the following fundamental learning question remains open:

Can an unrolled network trained with stochastic gradient descent provably obtain an estimator
competitive with the best prior-aware algorithms?

In this work, we give the first rigorous learning guarantees for this question, focusing on the
well-studied setting of compressed sensing (see Section 2.1 for definitions). In addition, we provide
the first empirical evidence in the affirmative for the problem of rank-one matrix estimation
(Section C.1).
Approximate message passing and unrolling. Consider the standard Bayesian setup where
we observe a noisy measurement 𝑦 of some signal 𝑥 , and would like to output an estimate 𝑥
minimizing 𝔼∥𝑥 − 𝑥 ∥2. Information-theoretically, the Bayes-optimal estimator for this task is the
posterior mean 𝔼[𝑥 | 𝑦], but in many settings of interest this estimator may not be computable
by a polynomial-time algorithm. Among computationally efficient estimators, for a wide variety
of such inference tasks it is conjectured [MW22b, CMW20, MW22a, BKM+19] that a certain
family of iterative algorithms called approximate message passing (AMP) is optimal. We give a
self-contained exposition of this method in Section 2. Roughly speaking, one can think of AMP
as a more advanced version of ISTA where the denoiser at each step can be tuned depending
on the prior, and additionally there is a crucial momentum term inspired by a correction from
statistical physics [TAP77]. AMP with the optimal tuning of the denoiser is called Bayes AMP.
Motivated by the appealing theoretical properties of AMP, in this work we investigate the training
dynamics of neural networks given by unrolling this algorithm. In place of the prior-dependent
denoisers 𝜂1, 𝜂2, . . ., we consider generic denoisers given by neural networks 𝑓1, 𝑓2, . . . and unroll
the iterations of AMP into layers of a neural network (see Section 2.2 for details). For the
theoretical results in this work, we focus on the setting where the only trainable parameters in
the network are the ones parametrizing the denoisers 𝑓ℓ .
Unrolled AMP architectures and variants thereof were originally proposed and empirically
investigated by Borgerding et al. [BS16, BSR17] and follow-ups [MMB17, MJC21, ITW19].
These works found that unrolled AMP can significantly outperform unrolled ISTA as well as a
version of AMP with soft threshholding denoisers in terms of convergence; i.e., the number of
layers needed to achieve a certain MSE.
Despite these compelling experimental results, to our knowledge, there is still little understanding
as to whether these networks can actually recover the performance of Bayes AMP. The main
theoretical result of this work is to give the first proof that unrolled AMP networks trained with
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gradient descent converge to the same denoisers as Bayes AMP and thus achieve mean squared
error which is conjectured to be optimal among all polynomial-time algorithms for compressed
sensing:
Theorem 1 (Informal, see Theorem 2). For compressed sensing with Gaussian sensing matrix, if the
prior on the signal is a product distribution with smooth, sub-Gaussian marginals, then an unrolled
network based on AMP which is trained with gradient descent on polynomially many samples will
converge in polynomially many iterations to an estimator which, in the infinite-dimensional limit,
achieves the same mean squared error as Bayes AMP.

Our proof is based on a novel synthesis of state evolution, the fundamental distributional recursion
driving analyses of AMP, together with neural tangent kernel (NTK) analysis of training dynamics
for overparametrized networks. Crucially, unlike in typical applications of NTK analysis, the
level of overparametrization needed in our network is dimension-independent even when the
second moment 𝔼𝑥∼𝑞 ∥𝑥 ∥2 scales with the dimension 𝑑. The central reason behind this is that
state evolution allows us to map the training dynamics of the network, which a priori lives in
𝐿2(ℝ𝑑 ), to training dynamics over the space of functions 𝐿2(ℝ), where the resulting learning
problem amounts to that of one-dimensional score estimation. As a result, our learning guarantee
only requires overparametrization scaling inverse polynomially in the target error.
Experiments.We complement these theoretical results with extensive numerical experiments.
Our main empirical contributions are as follows:

• We demonstrate that our theoretically motivated unrolled network learns the same optimal
denoisers as Bayes AMP, providing a practical alternative that achieves the same performance
but does not require explicit knowledge of the true signal prior.

• We observe that introducing auxiliary trainable parameters along with learnable denoisers
further improves performance over AMP in low-dimensional settings (where the asymptotic
optimality of Bayes AMP does not apply) and when the sensing matrix is non-Gaussian, both
in well-conditioned and ill-conditioned settings.

• We introduce rank-one matrix estimation as a new “model organism” for probing the properties
of unrolled networks. To our knowledge, despite its prominence in the theoretical literature
on AMP, rank-one matrix estimation has not yet been studied in the context of algorithm
unrolling.

The general approach of unrolling with learned denoisers is lesser utilized in the algorithm
unrolling literature, which instead largely emphasizes learning auxiliary parameters around
domain-specific entities – e.g. measurement matrices or sparse coding dictionaries – while fixing
denoisers typically to a soft thresholding function. Our results indicate that learned denoisers
can in fact capture distributional priors and are composable with these domain-specific learned
parameters, providing a valuable addition to the algorithmic toolkit for practitioners of both
AMP and unrolling.

1.1 Related work

We provide an extensive review of prior work in the appendix. Here we discuss the works most
directly related to ours.
Theory for unrolling ISTA. The existing theory for algorithm unrolling almost exclusively focuses
on unrolled ISTA (often called LISTA) and compressed sensing. Unlike the present work, they
do not consider a Bayesian setting: the signal 𝑥 is a deterministic sparse vector, and the goal
is to converge to 𝑥 . Instead of proving learning guarantees, most of them are representational
in nature, arguing that under certain settings of the weights in LISTA, the estimator computed
by the network can be more iteration-efficient than vanilla ISTA [MB16, CLWY18, XWG+16,
LC19, CLWY21]. The works of [SARE23, SBR23, BRS22] proved generalization bounds for
unrolled networks; these are statistical rather than computational in nature. Finally, recent work
of [SPP+23] studied optimization aspects of LISTA, and their main theorem, motivated by the
NTK literature [LZB20, LZB22] from a different perspective than ours, was an upper bound on
the Hessian of the empirical risk of an unrolled ISTA network in a neighborhood around random
initialization.
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Unrolled AMP. Borgerding et al. [BS16, BSR17] were the first to propose unrolling AMP for
compressed sensing. In contrast to the architecture we consider, they primarily considered
fixed soft-thresholding denoisers 𝜂st(·; 𝜆), in addition to simple parametric families of denoisers
like 5-wise linear functions and splines. For these parametric denoisers, on simple priors like
Bernoulli-Gaussian they found that the learned network could approach the performance of
the “oracle” estimator that knows the support of the underlying signal — see the Appendix for
further discussion.
Other learning-based approaches. Here we further motivate the setting we consider by
contrasting with other possible approaches to learning optimal inference algorithms from data.
Perhaps the most obvious would be to simply try to directly learn an approximation to the density
function for the prior, e.g. via kernel density estimation or some other non-parametric method.
In the product-prior setting in which we prove our results, this is indeed a viable approach
in theory. But in practice, unlike algorithm unrolling, this will not scale gracefully to general
high-dimensional distributions [GMOV19].
A more scalable approach might training a diffusion model on the data distribution [HD05].
The learned score network could then be used to approximately implement Bayes AMP. Our
method is roughly a special case of this: whereas little is known about provable score estimation
in general [SCK23, GKL24, CKS24], our theoretical results demonstrate that layerwise training
of unrolled networks is a viable, provably correct way to implicitly estimate the score of the data
distribution. Furthermore, unrolling accommodates additional trainable parameters to improve
robustness to real-world deviations from the stylized models studied in theory.
Finally, we mention the recent theoretical work of [IS24], which shows that semidefinite programs
can simulate AMP. While this is not a learning result, it has a similar motivation of reproducing
the performance guarantees of AMP using a more robust suite of algorithmic tools.
Other theory for unrolling. [MW23] established sample complexity bounds for learning
graphical models via diffusion models by unrolling the variational inference algorithms used for
score estimation into a ResNet and bounding the number of parameters needed for the network
to express these algorithms. Similarly, [Mei24] showed that the popular U-Net architecture can
simulate message-passing algorithms. These works can be interpreted as giving representational
guarantees for algorithm unrolling, whereas in contrast, the focus of our work is on proving
learning guarantees.

2 Preliminaries on Bayes AMP and unrolling
Here we give an overview of the Bayes AMP algorithm in the compressed sensing setting. We
refer the reader to Appendix C for a full treatment of the rank-one matrix estimation setting. For
convenience, when it is clear from context, we use Bayes AMP to refer to the general algorithm
used in either setting.

2.1 Compressed sensing

In compressed sensing, we are given noisy linear measurements 𝑦 ∈ ℝ𝑚 obtained from an
unknown signal 𝑥 ∈ ℝ𝑑 via the observation process

𝑦 = 𝐴𝑥 + 𝜍, (1)
where 𝐴 ∈ ℝ𝑚×𝑑 and 𝜍 ∈ ℝ𝑚 is a random noise vector with i.i.d. entries drawn from the
distribution N(0, 𝜎2). Throughout, we assume that 𝑥 ∼ 𝑝x for product prior 𝑝x ≜ 𝑝⊗𝑑 , where 𝑝 is
some distribution over ℝ. The compressed sensing problem aims to recover the unknown signal 𝑥
with estimate 𝑥 such that the mean squared error (MSE) 1

𝑑
𝔼∥𝑥 −𝑥 ∥2 is minimal. Throughout this

work we focus on the proportional asymptotic setting where we implicitly work with a sequence
of such compressed sensing problems indexed by dimension 𝑑, where 𝑑 and𝑚 =𝑚(𝑑) jointly
tend to infinity and𝑚(𝑑)/𝑑 → 𝛿 for absolute constant 𝛿 > 0.
[DMM09] proposed the following approximate message passing (AMP) algorithm for estimating
𝑥 given 𝐴,𝑦. The algorithm starts with 𝑥0 = 0 and 𝑣0 = 𝑦 and proceeds by

𝑥ℓ+1 = 𝑓ℓ (𝐴⊤𝑣ℓ + 𝑥ℓ ) (2)

𝑣ℓ = 𝑦 −𝐴𝑥ℓ +
1
𝛿
𝑣ℓ−1⟨𝑓 ′ℓ−1(𝐴⊤𝑣ℓ−1 + 𝑥ℓ−1)⟩. (3)
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where 𝑓ℓ : ℝ→ ℝ is a scalar denoiser applied entrywise, 𝑓 ′
ℓ−1 is also applied entrywise, and ⟨·⟩denotes an entrywise average. The last term in Eq. (3) is commonly referred to as the Onsager

term. Importantly, the AMP iterates asymptotically satisfy a distributional recursion called state
evolution [BM11]. Suppose the entries of 𝐴 are given by 𝐴𝑖 𝑗 ∼ N(0, 1/𝑚). Define the state
evolution parameters (𝜏ℓ ) via the scalar recursion

𝜏2ℓ+1 = 𝜎2 + 1
𝛿
𝔼[(𝑓ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑿 )2] with 𝜏0 = 𝜎2 + 1

𝛿
𝔼[𝑿2] ,

where 𝑿 ∼ 𝑝 and 𝒁 ∼ N(0, 1). Then it is known that as 𝑑 → ∞, the empirical distribution
over entries of 𝐴⊤𝑣ℓ + 𝑥ℓ converges in a certain sense to the one-dimensional distribution over
𝑿 + 𝜏ℓ𝒁 [BM11]. While updates of AMP can be run with any choice of differentiable 𝑓ℓ , there
is an asymptotically optimal choice that depends on the underlying prior 𝑝x, and the resulting
optimal algorithm is called Bayes AMP. In particular, let 𝜏∗20 = 𝜎2 + 1

𝛿
𝔼[𝑿2], and define

𝑓 ∗ℓ = 𝔼[𝑿 |𝑿 + 𝜏∗ℓ 𝒁 = ·] and 𝜏∗2ℓ+1 = 𝜎2 + 1
𝛿
𝔼[

(
𝑓 ∗ℓ (𝑿 + 𝜏∗ℓ 𝒁 ) − 𝑿

)2], (4)

where 𝑿 ∼ 𝑝 and 𝒁 ∼ N(0, 1). Then setting 𝑓ℓ = 𝑓 ∗ℓ for all ℓ in Eqs. (2) and (3) yields BayesAMP.
In the asymptotic limit, i.e. as 𝑚,𝑑 → ∞, Bayes AMP has strong theoretical properties.
In the setting above, it is conjectured to obtain the optimal MSE over all polynomial-time
algorithms [BKM+19] and has been proven to be optimal over a quite general class of algorithms
known as general first-order methods (GFOMs) [CMW20, MW22b].
In practice, however, Bayes AMP is subtly nontrivial to implement. For starters, one must know 𝑝
to construct 𝑓 ∗ℓ . Furthermore, using the exact recursion in Eq. (4) can often lead the algorithmto diverge in finite dimensions. One instead estimates the state evolution parameters from the
previous iterates, i.e. replacing 𝜏2ℓ with 1𝑚 ∥𝑣ℓ ∥22, which is typically enough to stabilize Bayes AMP.The fact that this is a valid estimate follows by state evolution, which ensures that in the infinite
dimensional limit, the entries of 𝑣ℓ are distributed according to N(0, 𝜏2ℓ ) [BM11].

2.2 Unrolling Bayes AMP

The aforementioned challenges in realizing the conjectured optimality of Bayes AMP in practice
motivate the need for a robust method that does not require knowledge of the prior distribution
𝑝x. We consider replacing each scalar denoiser 𝑓ℓ in Eq. (2) or (22) with a multilayer perceptron
(MLP) that learns the “right” denoiser function to use at each iteration of AMP. As we will see, a
prudent training approach is enough to provably ensure that our unrolled network learns the
optimal denoiser at each layer, effectively recovering Bayes AMP even without explicit knowledge
of the prior.
Architecture. Suppose we are given training data {(𝑦𝑖 , 𝑥𝑖)}𝑁

𝑖=1 generated according to Eq. (1)
with 𝑥𝑖 ∼ 𝑝x for all 𝑖. Let 𝐿 denote the number of layers in our unrolled network, and let F
denote a family of MLPs with fixed architecture (i.e. fixed depth and width) constrained to a
two-dimensional input and one-dimensional output. For each ℓ ∈ [0, 𝐿 − 1], initialize an MLP
𝑓ℓ : ℝ2 → ℝ chosen from F . Set 𝑥0 = 0𝑑 ∈ ℝ𝑑 and �̂�0 = 𝑦𝑖 ∈ ℝ𝑚, for a given training input 𝑦𝑖 .
Then for each layer ℓ ∈ [0, 𝐿 − 1], our network computes the forward pass

𝑥ℓ+1 = 𝑓ℓ (𝐴⊤�̂�ℓ + 𝑥ℓ ;𝜏ℓ ) and �̂�ℓ+1 = 𝑦 −𝐴𝑥ℓ+1 +
1
𝛿
�̂�ℓ ⟨𝜕1 𝑓ℓ (𝐴⊤�̂�ℓ + 𝑥ℓ ;𝜏ℓ )⟩ , (5)

where 𝜏ℓ = ∥�̂�ℓ ∥2/
√
𝑚 and 𝜕1 denotes differentiation with respect to the first input parameter.

The notation 𝑓ℓ ( · ;𝜏ℓ ) denotes applying the scalar function 𝑓ℓ ( · , 𝜏ℓ ) entrywise. We emphasize
that 𝑓ℓ is tied to 𝜕1 𝑓ℓ ; that is, we are taking the derivative of the MLP to compute the Onsager
term. We refer to our unrolled architecture as an LDNet (Learned Denoising Network).
Training. Naïvely, one might consider training the 𝐿-layer network end-to-end on the mean
squared errors of the network estimates – i.e., either with loss function L𝐶𝑆 = 1

𝑁

∑𝑁
𝑖=1

1
𝑑
∥𝑥𝑖

𝐿
−𝑥𝑖 ∥22

for compressed sensing or L𝑀𝐸 = 1
𝑁

∑𝑁
𝑖=1

1
𝑑
∥𝑥𝑖

𝐿
𝑥𝑖⊤
𝐿
− 𝑥𝑖𝑥𝑖⊤∥2

𝐹
for rank-one matrix estimation.
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However, as we observed empirically (echoed by findings in [MMB17]), such an approach gets
trapped in suboptimal local assignments of denoising functions.
Instead, we employ layerwise training, where we iteratively train the ℓ-th denoiser 𝑓ℓ on the mean
squared error loss for the layer-ℓ estimate. If Ψ denotes an LDNet with 𝐿 layers, let Ψ[0 : ℓ]
denote the subnetwork that consists only of the first ℓ + 1 layers of Ψ, with denoiser 𝑓ℓ at layer ℓ
for 0 ≤ ℓ ≤ 𝐿 − 1. Then our training procedure follows Algorithm 1. Note we initialize the ℓ-th
denoiser weights with the previous learned denoiser before training – while this is not relevant
to our theoretical results in Section 3, empirically, we find that this initialization is necessary
to avoid being trapped in suboptimal regions of parameters. Likewise, we include an optional
finetuning step that further reduces approximation error in the learned denoisers but is not
needed for our theory results.

Algorithm 1: Layerwise Training
Input: Training data D, LDNet Ψ

1 for ℓ = 0 to ℓ = 𝐿 − 1 do
2 if ℓ > 0 then
3 Initialize 𝑓ℓ ← 𝑓ℓ−1;
4 Freeze learnable weights in 𝑓𝑘 for 𝑘 < ℓ;
5 Train Ψ[0 : ℓ] on D;

// Optional finetuning step
6 Unfreeze learnable weights in 𝑓𝑘 for 𝑘 < ℓ and train Ψ[0 : ℓ] on D;
Output: Fully trained Ψ

The proof of optimality of Bayes AMP among all implementations of AMP for the problems we
consider, as given in [CMW20, MW22b], strongly motivates our training method: assuming we
have learned optimal denoisers up to layer ℓ − 1, one can show that the minimum mean squared
error at layer ℓ is achieved by the denoiser used in Bayes AMP. This gives a heuristic sense for
how layerwise training facilitates learning optimal denoisers, and this intuition is validated in
both our theory and experiments.

3 Provably learning Bayes AMP

We now provide theoretical guarantees that our unrolled denoising network can learn Bayes-
optimal denoisers when trained in a layerwise fashion. Consider any prior 𝑝x = 𝑝⊗𝑑 for which 𝑝
satisfies the following assumption. The product prior setting is quite standard and widely studied
within the theory literature on AMP (e.g. [BM11, DAM16]).
Assumption 1. Given 𝜏 ≥ 0, let 𝑝 (·;𝜏) denote the density of the convolution 𝑝 ★ N(0, 𝜏2). We
assume that:
1. 𝑝 is 𝑅-sub-Gaussian with 𝔼𝑿∼𝑝 [𝑿 ] = 0.
2. The score function 𝜕1𝑝 (·;𝜏) is 𝐵-Lipschitz for all 𝜏 ≥ 𝜎2, where 𝜎2 is the variance of the entries

of 𝜍 in Eq. (1).

Both assumptions are relatively mild and hold for a large class of distributions. For example, the
sub-Gaussianity holds for any distribution with bounded support (see Section 2.5 in [Ver18])
and the Lipschitzness of the score function is a consequence of regularizing properties of heat
flow (see e.g. Lemma 4 in [MS23].
Our main guarantee (see Theorem 2 below) is that under Assumption 1, a suitable unrolled
architecture trained with SGD on examples of compressed sensing tasks can compete with Bayes
AMP. In Section 3.1, we define the training objective and architecture, describe how our bounds
will depend on the underlying prior 𝑝, and formally state our main result. The full proof is
provided in Appendix B.
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3.1 Proof preliminaries and theorem statement

To prove our learning guarantee, we start by proving that the error in using the learned denoiser
in one unrolled layer is small. Denote the sequence generated by the learned denoiser 𝑓 by 𝑥ℓ
and �̂�ℓ . The Onsager term in AMP ensures that for any iteration ℓ , the distribution of 𝐴⊤�̂�ℓ + 𝑥ℓ
asymptotically behaves as if every coordinate is i.i.d. as 𝑑 →∞ for any ℓ (Lemma 1). Therefore,
it suffices to learn the denoiser for any fixed coordinate.2 Without loss of generality we consider
the first coordinate and try to learn the denoiser function by minimizing the following objective:

min
𝑔

𝔼
[
(𝑔(𝐴⊤1 �̂�ℓ + 𝑥

(1)
ℓ
) − 𝑥 (1) )2

]
, (6)

where 𝐴⊤𝑗 denotes the 𝑗 th row of 𝐴⊤ and 𝑥 ( 𝑗 ) denotes the 𝑗 th coordinate of the vector 𝑥 . As the
learning and generalization guarantee is identical for all ℓ , we will occasionally drop ℓ from the
subscript when the context is clear.

Denoiser complexity. To quantify the complexity of learning Bayes AMP in terms of the
underlying prior 𝑝, we will work with the following notion of the complexity of a class of scalar
functions from [AZLL19], which we will apply to the denoisers that arise in Bayes AMP:
Definition 1 (Scalar function complexity [AZLL19]). Let𝐶 > 0 be some sufficiently large absolute
constant (e.g. 104). Given any smooth function 𝜙 : ℝ → ℝ and a parameter 𝛼 > 0, we define
complexity of 𝜙 at scale 𝛼 as follows. Suppose 𝜙 admits a power series expansion 𝜙 (𝑧) = ∑∞

𝑖=0 𝑐𝑖𝑧
𝑖 .

Then

ℭ𝜀 (𝜙, 𝛼) ≜
∞∑︁
𝑖=0

(
1 + (log(1/𝜀)/𝑖)𝑖/2

)
· (𝐶𝛼)𝑖 |𝑐𝑖 | and ℭ𝑠 (𝜙, 𝛼) ≜ 𝐶

∞∑︁
𝑖=0
(𝑖 + 1)1.75𝛼𝑖 |𝑐𝑖 |.

Given a class of scalar functions F , we define the complexity of F at scale 𝛼 by ℭ𝜀 (F , 𝛼) =
sup𝜙∈F ℭ𝜀 (𝜙, 𝛼) (and similarly ℭ𝑠 (F , 𝛼) = sup𝜙∈F ℭ𝑠 (𝜙, 𝛼)).

Intuitively, ℭ𝜀 (F , 𝛼) and ℭ𝑠 (F , 𝛼) both captures how much functions in function class F
can be approximated using a low-degree polynomial. For any function 𝜙 and any 𝛼 , the
above complexities are related by ℭ𝑠 (𝜙, 𝛼) ≤ ℭ𝜀 (𝜙, 𝛼) ≤ ℭ𝑠 (𝜙,𝑂 (𝛼)) × poly(1/𝜀) because
(𝐶

√︁
log(1/𝜀)/

√
𝑖)𝑖 ≤ 𝑒𝑂 (log 1/𝜀 ) = poly(1/𝜀) for all 𝑖. We provide more intuition on how ℭ𝜀 (𝜙, 𝛼)

and ℭ𝑠 (𝜙, 𝛼) scales with 𝜀, 𝛼 , under mild assumptions on 𝜙 in Section B.5.

Main result. We can now formally state the main theoretical guarantee of this work, namely that
layerwise training of LDNet results in performance matching that of Bayes AMP for compressed
sensing:
Theorem 2. Suppose the prior distribution 𝑝 satisfies Assumption 1. Then, for every 𝜀2 ∈ (0, 1)
and 𝜀1 ∈ (0, 1/ℭ𝑠 (F , 𝑅(log 1/𝜀2)3/2)), there exists

𝑀0 = poly(ℭ𝜀1 (𝑓 ∗, 𝑅(log 1/𝜀2)3/2), 1/𝜀1) and 𝑁0 = poly(𝐿ℭ𝑠 (𝑓 ∗, 𝑅(log 1/𝜀2)3/2), 1/𝜀1)
such that the following holds.

Let 𝐿 be any positive integer. Consider an LDNet of depth 𝐿 with MLP denoisers 𝑓ℓ given by the
MLP architecture in Eq. (8) with𝑚 ≥ 𝑀0 neurons. Suppose the network is trained by running
gradient descent from random initialization with step size 𝜂 = Θ̃(1/(𝜀1𝑚)) on 𝑛 ≥ 𝑁0 samples of
the form (𝑦𝑖 , 𝑥𝑖), where each training example is generated by independently sampling Gaussian
matrix 𝐴 with entries i.i.d. from N(0, 1/𝑚), sampling 𝑥𝑖 ∼ 𝑝x = 𝑝⊗𝑑 , and forming 𝑦𝑖 = 𝐴𝑥𝑖 + 𝜍 for
𝜍 ∼ N(0, 𝜎2 · Id).
2In our experiments, we learn the denoiser using all coordinates, but in our theoretical result, we focus

on learning using only a single coordinate. The latter is less sample-efficient but more convenient for our
proof. It should be possible to prove a guarantee for the later, but it is more cumbersome as we need to prove
that the samples obtained by different coordinates are close to being i.i.d. for some notion of closeness,
and then generalize the result of [AZLL19] to allow for such samples.

7



After 𝑇 = Θ̃(ℭ𝑠 (𝑓 ∗ℓ , 𝑅(log 1/𝜀2)3/2)2/𝜀21) steps of gradient descent, with high probability the
activations (𝑥𝐿, �̂�𝐿) and denoiser 𝑓𝐿 at the output layer of the LDNet (see (5)) satisfy

𝔼𝑥,𝐴

[1
𝑑
∥ 𝑓𝐿 (𝐴⊤�̂�𝐿 + 𝑥𝐿;𝜏𝐿) − 𝑥 ∥2

]
≲ MSEAMP(𝐿) +

(𝑅2𝐵2
𝛿𝜎7

)𝐿+1
(𝜀1 + 𝜀2) + 𝑜𝑑 (1) ,

where MSEAMP(𝐿) ≜ 𝔼𝑥,𝐴

[ 1
𝑑
∥ 𝑓 ∗

𝐿
(𝐴⊤𝑣𝐿 + 𝑥𝐿;𝜏𝐿) − 𝑥 ∥2

]
is the error achieved by running 𝐿 steps

of Bayes AMP.

Observe that the level of overparametrization in terms of number of samples 𝑛 and number
of hidden neurons𝑚 needed in Theorem 2 is dimension-free, unlike in typical NTK analyses.
This happens because state evolution effectively allows us to convert the learning problem in 𝑑
dimensions to a learning problem in 1 dimension: we can effectively assume that the entries
of 𝐴⊤𝑣ℓ + 𝑥ℓ converge in an appropriate sense to the distribution of 𝑿 + 𝜏ℓ𝒁 for 𝑿 ∼ 𝑝 and
𝒁 ∼ N (0, 1).
This ensures that the learning objective effectively reduces to minimizing 𝔼[(𝑓ℓ (𝑿 + 𝜏ℓ𝒁 ) −𝑿 )2]
over a parametrized family of denoisers 𝑓ℓ . The latter objective is often referred to as the
score matching objective (in one dimension), which is minimized by the Bayes-optimal denoiser
𝑓 ∗ℓ = 𝔼[𝑿 |𝑿 + 𝜏ℓ𝒁 = ·] at each layer ℓ . A key component in the proof of Theorem 2 is thus to
show that gradient descent can learn this optimal denoiser given one-dimensional training data
of the form (𝑿 + 𝜏ℓ𝒁 ,𝑿 ).
As we will show, the runtime for gradient descent is largely dictated by the extent to which
these denoisers can be polynomially approximated. A priori, one might expect that if degree-𝑠
polynomials are needed, then the runtime of the algorithm must scale as 𝑑𝑂 (𝑠 ) . This would be
prohibitively expensive if 𝑠 is increasing in the dimension 𝑑. Fortunately however, because we
are able to reduce to one-dimensional training dynamics, we ultimately achieve much more
favorable scaling in 𝑑.

4 Experiments

We now empirically demonstrate the performance of our proposed architecture and training
scheme for unrolling Bayes AMP in a variety of statistical settings. Throughout these experiments,
we are motivated by the following questions: a) Can our method empirically match the
performance of Bayes AMP in settings where the latter is conjectured to be computationally
optimal? b) In these settings, does our network learn the optimal denoisers? c) Are there settings
where our methods offer a performance advantage over AMP?

4.1 Compressed sensing

Implementation details.We set𝑚 = 250, 𝑑 = 500 and fix a random Gaussian sensing matrix
𝐴 ∈ ℝ250×500. We consider two choices of prior for our experiments: Bernoulli-Gaussian and
ℤ2 (i.e. uniform over {1,−1}𝑛). For our unrolled architecture, the family F of learned MLP
denoisers was restricted to three hidden layers, each with 70 neurons and GELU activations. This
particular architectural choice was the most convenient for our experiments, but our experimental
findings are not particularly sensitive to this. We randomly generated a train and validation
dataset {𝑦𝑖 , 𝑥𝑖 }𝑁

𝑖=1 with 𝑁 = 215 samples by sampling from the prior and using Eq. (1). We train
layerwise with finetuning as in Algorithm 1.
For each prior, we also implemented Bayes AMP using the corresponding optimal denoiser. As
an additional “semi-prior-aware” baseline, we replace the MLP denoisers in LDNet with “guided
denoisers” that have the same functional form as the optimal denoisers but contain trainable
parameters; see Appendix E for more details on the precise functional forms used. By convention,
we report performance results for all methods by the normalized mean squared error (NMSE)
∥𝑥 − 𝑥 ∥22/∥𝑥 ∥22.
Bernoulli-Gaussian prior. Here, each entry of 𝑥 is independently drawn from a standard normal
distribution and set to 0 with probability 1 − 𝜀; i.e., 𝑝x = 𝑝⊗𝑑 where 𝑝 (𝑥) = 𝜀 N(0, 1;𝑥) +
(1 − 𝜀) 𝛿 (𝑥), where 𝛿 denotes the Dirac delta at 𝑥 = 0. To match the setting considered in the
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Figure 1: LDNet for Compressed Sensing. On the left, we plot the NMSE (in dB) obtained by LDNet and
Bayes AMP baselines on the Bernoulli-Gaussian prior. On the right, we plot NMSE (not in dB) achieved
on the ℤ2 prior. LDNet (along with the guided denoisers) achieves virtually identical performance to the
conjectured computationally optimal Bayes AMP.

prior work of Borgerding et al. [BSR17], we set the masking probability to be 𝜀 = 0.1 and the
measurement noise to be 𝜎2 = 2 · 10−5.
We plot the NMSE that our unrolled network and baselines achieve in decibels (dB); that is,
10 log10 (NMSE), in Figure 1. LDNet almost perfectly matches the NMSE of Bayes AMP at each
layer/iteration. Over 15 layers, our network converges to an NMSE of −44.9313 dB, as compared
to Bayes AMP converging to −45.3280 dB. As the scale is logarithmic, the difference in error
achieved is negligible.
ℤ2 prior. Here each entry of 𝑥 is chosen from {−1, 1} with probability 12 ; i.e., 𝑝x = 𝑝⊗𝑑 for
𝑝 (𝑥) = 1

2𝛿−1(𝑥)+
1
2𝛿+1(𝑥). To examine a higher noise regime and to ensure Bayes AMP converged

within a reasonable number of iterations, we set the measurement noise to be 𝜎2 = 0.075. Figure 1
demonstrates that LDNet again recovers Bayes AMP at every iteration, even slightly outperforming
by layer 15, achieving an NMSE of 0.4267 (an improvement of 1.28%).
LDNet denoisers. From Figure 2 we can observe qualitatively that the learned MLP denoisers
recover the functional form for the optimal denoiser at each iteration, as our theory suggests.
Interestingly, although the denoisers were trained relative to a fixed sensing matrix, they appear
to learn the Bayes AMP denoiser that is measurement-independent, and in Appendix D.3 we
show that the performance of these learned denoisers actually transfers to other randomly drawn
sensing matrices 𝐴.

Figure 2: Learned Denoisers for Compressed Sensing. We plot layerwise denoising functions learned by
LDNet on the Bernoulli-Gaussian and ℤ2 priors relative to their optimal denoisers over a range of inputs in
(−2, 2). The state evolution input 𝜏ℓ to each denoiser is set to be its empirical estimate.
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4.2 Beyond Bayes AMP performance

Much of the algorithm unrolling literature focuses on learning auxiliary parameters while using
fixed denoisers, as opposed to learning the denoisers themselves. In particular, unrolled methods
like LISTA [GL10] and LAMP [BSR17] reparameterize 𝐴⊤ in Eqs. (2) and (3) as a new learnable
matrix 𝐵, which results in faster convergence than classical, learning-free counterparts like ISTA
and AMP.
This does not necessarily contradict Bayes AMP’s conjectured optimality for compressed sensing,
which only applies in the 𝑑 → ∞ limit. In the context of our unrolling method, we posit that
learning the matrix 𝐵 can be thought of as learning finite dimensional corrections to the Bayes
AMP iterations. In Appendix D.1, we demonstrate that the lower the signal dimensionality, the
larger the performance improvement of LDNet with learned matrix 𝐵 over Bayes AMP.
Finite dimensionality is not the only deviation in design from where Bayes AMP is (conjectured)
optimal. In fact we can consider non-Gaussian designs of the measurement matrix 𝐴, and we
show in D.1 that LDNet outperforms Bayes AMP in both well-conditioned and ill-conditioned
settings. Furthermore, we can relax the assumption that the signal is drawn for a product prior
and extend LDNet to accommodate non-product priors. In D.2, we demonstrate LDNet to surpass
Bayes AMP in a non-separable mixture-of-gaussians prior.

5 Outlook

In this work we gave the first proof that unrolled denoising networks can compete with optimal
prior-aware algorithms simply via gradient-based training on data. Our proof used a novel
synthesis of state evolution with NTK theory, and notably, the level of overparametrization
needed for our result to hold is independent of the dimension, unlike existing results in the NTK
literature. One important consequence of these results is that a one-dimensional score function
is learnable with gradient descent, for which only representational, as opposed to algorithm,
results existed previously in the literature [MW23].
We supplemented our theory with extensive numerical experiments, confirming that LDNet can
recover Bayes AMP performance and Bayes-optimal denoisers without knowledge of the signal
prior. Moreover, for various settings where Bayes AMP is not conjectured to perform optimally –
e.g. inference in low dimensions, non-Gaussian designs, and non-product priors – we demonstrate
that LDNet outperforms Bayes AMP. We thus establish unrolling denoisers as a powerful, practical
addition to the algorithmic toolkit for Bayesian inverse problems.
One limitation is that our theoretical results are currently limited to the product prior setting.
The non-product setting is difficult because even though state evolution is known here [BMN20],
proving an unrolled network converges to the right denoisers essentially amounts to proving
that one can learn the score functions of a general data distribution. Additionally, it is subtle to
define the right architecture, as the denoisers are no longer scalar, and a generic feedforward
architecture would be difficult to prove rigorous guarantees for (and to scale in practice).
In addition, our theoretical results do not immediately extend to the rank-one matrix estimation
setting. While closeness in denoising error implies closeness in the state evolution parameter 𝜏 for
compressed sensing, this is not immediate for rank-one matrix estimation, where multiple choices
for parameters 𝜇 and 𝜏 lead to the same denoising error. This is reflected in Figure 4, where the
learned denoisers at early iterations achieve the same MSE as the Bayes optimal denoisers, but
the functional forms are completely different. We leave the extension of our compressed sensing
results to rank-one matrix estimation as an open question.
Finally, while our experiments suggest that including auxiliary trainable parameters like the “B
matrix” offers significant performance advantages once one departs from the asymptotic, Gaussian
design setting in which Bayes AMP is believed to be optimal, these are not yet supported by
theory. It is an intriguing open question whether one can use some of the insights from the
aforementioned representational results for ISTA to rigorously characterize the “non-asymptotic
corrections” that these extra learnable parameters are imposing.
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A Further related work

Theory for unrolling ISTA. The existing theory for algorithm unrolling almost exclusively
focuses on unrolled ISTA (often called LISTA) and compressed sensing. The focus of these works
is rather different from ours. For starters, they do not work in a Bayesian setting: the signal 𝑥 is
a deterministic vector assumed to have some level of sparsity, and the goal is to converge to 𝑥 . As
mentioned above, these results do not prove convergence guarantees for the learning algorithm.
Instead, most of them argue that under certain settings of the weights in the LISTA architecture
(and variants), the resulting estimator computed by the network can be more iteration-efficient
than vanilla ISTA [MB16, CLWY18, XWG+16, LC19, CLWY21].
For example, [MB16] showed that if each layer performs a proximal splitting step with respect
to a Gram matrix which admits a factorization with certain nice properties, then the iterates
computed by each layer converge to 𝑥 at an accelerated rate. [CLWY18] showed that if the
learned weights are such that the activations converge to the ground truth vector, then they have
to have a certain structure; under a specialized LISTA architecture that imposes this structure,
they prove there is a setting of weights for which the iterates converge at a linear rate. [XWG+16]
showed a similar result for iterative hard thresholding and argued that the learned parameters
can potentially reduce the RIP constant of the sensing matrix and thus speed up convergence.
[LC19] identified a certain tied parametrization of the weights for LISTA that can also achieve
linear convergence with fewer trainable parameters (see also the follow-up [CLWY21]).
Apart from these works, the works of [SARE23, SBR23, BRS22] proved generalization bounds
for unrolled networks. These guarantees pertain to questions of sample complexity for empirical
risk minimization, instead of computational complexity of learning these networks via gradient
descent, and are thus orthogonal to the thrust of our work.
Finally, recent work of [SPP+23] studied optimization aspects of LISTA, and their main theorem
was a bound on the Hessian of the empirical risk of an unrolled ISTA network in a neighborhood
around random initialization. Under the unproven condition that the associated NTK at
initialization is sufficiently well-conditioned, this would imply that the empirical risk satisfies
a modified Polyak-Lojasiewicz inequality around initialization and thus the network would
converge exponentially quickly to the empirical risk minimizer. While we also draw upon tools
from the NTK theory, our focus is not just on optimizing the empirical loss, but on proving that
the learned network generalizes to achieve mean squared error competitive with the theoretically
optimal prior-aware algorithm, AMP. In addition, our results our end-to-end and apply to unrolled
AMP instead of unrolled LISTA.

Learned AMP. Borgerding et al. [BS16, BSR17] were the first to propose unrolling AMP for
compressed sensing. In contrast to the architecture we consider, they primarily considered fixed
soft-thresholding denoisers 𝜂st(·; 𝜆) with trainable parameter 𝜆 and trainable weight matrices
playing the role of 𝐴⊤ in the AMP update (see Eqs. (2) and (3)). They found empirically that
their unrolled network outperforms AMP with soft-thresholding denoisers. They also considered
unrolling vector AMP, a more powerful version of AMP, and showed that even when the sensing
matrix is ill-conditioned, the network essentially matches the performance of vector AMP. They
also considered some simple parametric families of denoisers like 5-wise linear functions and
splines and found that they could approach the performance of the “oracle” estimator that knows
the support of the underlying signal.

Comparison to LDAMP [MMB17]. Among the various direct follow-ups to [BS16, BSR17],
e.g. [ITW19, MJC21, MMB17], the most relevant to ours is the follow-up work of [MMB17]
extended this to denoisers given by convolutional neural networks of nontrivial depth (roughly
20 layers). They experimentally demonstrated that these networks performed quite well on
compressive image recovery tasks. Using a proof technique of [MMB16] and under a certain
monotonicity assumption on the score functions of the data distribution, they showed that Bayes
AMP is Bayes optimal (see Lemma 1 therein).
While the fact that they employ a generic architectures for the denoiser step in AMP and
demonstrate the effectiveness of the resulting unrolled architecture is closely related to the
spirit of the present work, there are important differences. We note that their theoretical result
does not not explain how unrolled AMP, when trained on data with gradient descent, learns to
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compete with Bayes AMP, only that in certain situations, optimally tuning the denoisers in AMP
can achieve Bayes optimality. Furthermore, the monotonicity assumption they make is restrictive
(e.g. it does not even apply to the two-point prior given by the uniform distribution over {±1}).
Furthermore, in general Bayes AMP need not be Bayes optimal, i.e. in situations where there is a
computational-statistical gap [BPW18].
On the experimental side, our focus was on synthetic setups instead of image recovery, with an
emphasis on probing which aspects of the problem setup and which trainable parameters allow
unrolled AMP to outperform Bayes AMP.

B Proof of main theorem

B.1 State evolution and learner function

The following result shows that we can characterize the behavior of the AMP iterates 𝑥ℓ in the
limit as 𝑑 →∞.
Lemma 1 (Asymptotic characterization of AMP iterates [BM11]). Let 𝐴 ∈ ℝ𝑚×𝑑 be a sensing
matrix with i.i.d. entries 𝐴𝑖 𝑗 ∼ N(0, 1/𝑚). Assume 𝑚/𝑑 → 𝛿 ∈ (0,∞). Consider a sequence
of vectors {𝑥 (𝑑), 𝜂 (𝑑)} indexed by dimension whose empirical distribution converges weakly to
probability measures 𝑝𝑥 and 𝑝𝜂 on ℝ with bounded moments. Then, for any pseudo-Lipschitz
function 𝜓 : ℝ𝑡 → ℝ and all ℓ ≥ 0, almost surely

lim
𝑑→∞

1
𝑑

𝑑∑︁
𝑖=1

𝜓 (𝑥 (𝑖 )
ℓ
, 𝑥 (𝑖 ) ) = 𝔼[𝜓 (𝑓ℓ (𝑿 + 𝜏ℓ𝒁 ),𝑿 )]

lim
𝑑→∞

1
𝑑

𝑑∑︁
𝑖=1

𝜓 (𝑥 (𝑖 ) − (𝐴⊤𝑖 𝑣ℓ + 𝑥
(𝑖 )
ℓ
), 𝑥 (𝑖 ) ) = 𝔼[𝜓 (𝜏ℓ𝒁 ,𝑿 )] .

where 𝑿 ∼ 𝑝𝑥 and 𝒁 ∼ N (0, 1). The state evolution parameters 𝜏0, 𝜏1, . . . are recursively defined
as follows

𝜏20 = 𝜎2 + 1
𝛿
𝔼𝑿∼𝑝𝑥 [𝑿2]

𝜏2ℓ+1 = 𝜎2 + 1
𝛿
𝔼𝑿∼𝑝𝑥 ,𝒁∼N (0,1) [(𝑓 (𝑿 + 𝜏ℓ𝒁 ) − 𝑿 )2] .

(7)

Observe that to minimize the variance 𝜏2ℓ at each iteration, the optimal choice of denoiser 𝑓ℓ is
𝑓 ∗ℓ (𝑥) = 𝔼[𝑿 | 𝑿 + 𝜏ℓ𝒁 = 𝑥].

B.2 Learning guarantee for a single layer of unrolling

Here we prove a learning result for one layer of unrolled AMP, which we later extend to give an
end-to-end learning result for training the full unrolled network.

Learner function. We parametrize the scalar denoiser in a given layer of our unrolled AMP
architecture as a one-hidden-layer ReLU network in the following form: letting 𝑤 [𝑡 ]

𝑗
denote the

weight of the 𝑗 th neuron after 𝑡 steps gradient descent, we consider

𝑓 (𝑥 ;𝜃𝑡 ) =
𝑚∑︁
𝑗=1

𝑎 𝑗ReLU(𝑤 [𝑡 ]𝑗
𝑥 + 𝑏 𝑗 ) , (8)

We initialize the entries of weights 𝑤 [0]
𝑗
and biases 𝑏 [0]

𝑗
to be i.i.d. from N (0, 1/𝑚) and entries

of 𝑎 [0]
𝑗
to be i.i.d. from N (0, 𝜀𝑎) for some fixed 𝜀𝑎 ∈ (0, 1]. We only train the weights 𝑤 𝑗 of

hidden layers to simplify the analysis and freeze the bias term 𝑏 𝑗 and output layer weights 𝑎 𝑗
at initialization. To update the weights at time 𝑡 , we take one step of online gradient descent
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with respect to the loss in Eq. (6) with step size 𝜂 on a fresh sample (𝑥,𝑦,𝐴);3 here we use the
learned denoisers from the previous layers to compute 𝑥ℓ and �̂�ℓ .
We begin by proving the following claim that training a layer of the unrolled network on gradient
descent from random initialization will converge to a denoiser that is competitive with the
optimal denoiser under the objective in Eq. (6).
Lemma 2 (Learning the denoiser within 𝐿2 error). For every ℓ , assume every coordinate of
�̂�ℓ and 𝑥ℓ are sub-Gaussian random variables with constant 𝑅. Then, for every 𝜀2 ∈ (0, 1) and
𝜀1 ∈ (0, 1/ℭ𝑠 (F , 𝑅(log 1/𝜀2)3/2)), there exists

𝑀0 = poly(ℭ𝜀1 (𝑓 ∗ℓ , 𝑅(log 1/𝜀2)3/2), 1/𝜀1) and 𝑁0 = poly(ℭ𝑠 (𝑓 ∗ℓ , 𝑅(log 1/𝜀2)3/2), 1/𝜀1)
such that for every𝑚 ≥ 𝑀0 and 𝑛 ≥ 𝑁0, choosing learning rate 𝜂 = Θ̃(1/(𝜀1𝑚)) and running
gradient descent from random initialization for 𝑇 = Θ̃(ℭ𝜀 (𝜙, 𝑅(log 1/𝜀2)3/2)2𝑝2/𝜀21), with high
probability,

𝔼𝑥,𝑦,𝐴

[
(𝑓ℓ (𝐴⊤1 �̂�ℓ + 𝑥

(1)
ℓ
;𝜃𝑇 ) − 𝑥 (1) )2

]
≤ min

𝑔∈F
𝔼
[
(𝑔(𝐴⊤1 �̂�ℓ + 𝑥

(1)
ℓ
) − 𝑥 (1) )2

]
+ 𝜀1 + 𝜀2 .

This is a consequence of the following result on training neural networks in the NTK regime:
Lemma 3 (Theorem 1 of [AZLL19]4). Consider a target function 𝐹 ∗ : ℝ𝑑 → ℝ of the following
form

𝐹 ∗(𝑥) =
𝑝∑︁
𝑖=1

𝑎∗𝑖 𝜙𝑖 (⟨𝑤∗𝑖,1, 𝑥⟩)⟨𝑤∗𝑖,2, 𝑥⟩

where each 𝜙 : ℝ → ℝ is infinite-order smooth and weights satisfy ∥𝑤∗
𝑖,1∥, ∥𝑤∗𝑖,2∥ ≤ 1 and

|𝑎∗𝑖 | ≤ 1. Additionally, assume that ∥𝑥 ∥ ≤ 𝐵. Then, for every 𝜀 ∈ (0, 1/(𝑝ℭ𝜀 (𝜙, 𝐵))), there exists
𝑀0 = poly(ℭ𝜀 (𝜙, 𝐵), 1/𝜀) and 𝑁0 = poly(ℭ𝜀 (𝜙, 𝐵), 1/𝜀) such that for every𝑚 ≥ 𝑀0 and 𝑛 ≥ 𝑁0,
choosing learning rate 𝜂 = Θ̃(1/(𝜀𝑚)) and running gradient descent from random initialization
for 𝑇 = Θ̃(ℭ𝜀 (𝜙, 𝐵)2𝑝2/𝜀2), with high probability,

𝔼[(𝑁 (𝑥 ;𝜃𝑇 ) − 𝑦)2] ≤ inf
𝑔∈F

𝔼[(𝑔(𝑥) − 𝑦)2] + 𝜀.

Additionally, the absolute value of the neural network is bounded by |𝑁 (𝑥 ;𝜃𝑡 ) | ≲ Θ̃(ℭ𝜀 (𝜙, 𝐵)) for
all 𝑥 with ∥𝑥 ∥ ≤ 𝐵 for all 𝑡 .

Proof of Lemma 2. As the distribution over �̂�ℓ is 𝑅-sub-Gaussian, for a fixed 𝐴, we have |𝐴⊤𝑖 �̂�ℓ | ≤
𝑅∥𝐴𝑖 ∥

√︁
log(1/𝜀2) with probability at least 1 − 𝜀2. Additionally, because of 𝐴𝑖 𝑗 ∼ N (0, Id/𝑚),

we have ∥𝐴𝑖 ∥ ≲ log(1/𝜀2) with probability at least 1 − 𝜀2. Combining both bounds, we have
|𝐴⊤𝑖 �̂�ℓ | ≲ 𝑅(log(1/𝜀2))3/2. Similarly, using sub-Gaussianity of 𝑥ℓ , we have |𝑥 (𝑖 )ℓ

| ≲ 𝑅
√︁
log(1/𝜀2).

This gives us that |𝐴⊤𝑖 �̂�ℓ + 𝑥
(𝑖 )
ℓ
| ≲ 𝑅(log(1/𝜀2))3/2 with probability at least 1 − 𝜀2.

By only considering samples satisfying |𝐴⊤𝑖 �̂�ℓ + 𝑥
(𝑖 )
ℓ
| ≲ 𝑅(log(1/𝜀2))3/2,5 we can apply Lemma 3

to obtain a neural network that achieves 𝜀1 error.
3In our experiments, we keep the measurement matrix 𝐴 fixed and only sample fresh (𝑥,𝑦) pairs, but

in our theoretical result, we assume that gradient descent uses fresh samples (𝑥,𝑦,𝐴) to avoid technical
difficulties regarding dependencies between the errors at different layers of unrolled architecture. We
expect that with more work, one can extend the proof to fixed 𝐴.
4Here we state the result in terms of gradient descent instead of stochastic gradient descent as in [AZLL19]

However, the same proof of [AZLL19] goes through upon slightly modifying Lemma B.4 therein. In Lemma
B.4, we can write ∥𝑊𝑡+1 −𝑊 ∗∥2𝐹 = ∥𝑊𝑡 − 𝜂∇𝐿𝐹 (Z,𝑊𝑡 ) −𝑊 ∗∥2𝐹 and therefore, getting the equality of
2𝜂⟨𝑊𝑡 −𝑊 ∗,∇𝐿𝐹 (Z,𝑊𝑡 )⟩ = (∥𝑊𝑡 −𝑊 ∗∥2𝐹 − ∥𝑊𝑡+1 −𝑊 ∗∥2𝐹 )/2𝜂 + (𝜂/2)∥∇𝐿𝐹 (Z,𝑊𝑡 )∥2𝐹 and using this
equality in Eq.(B.7) of [AZLL19]. The rest of the proof remains the same.
5The reason we can do this is that this condition fails to hold only with probability at most 𝜀2, and

whenever it fails to hold,we can output 0 and pay an additional 𝜀2 ·𝔼[𝑥2]. Alternatively, we could also modify
the learner network to implement the indicator of |𝐴⊤

𝑖
�̂�ℓ + 𝑥ℓ𝑖 | ≲ 𝑅(log(1/𝜀2))3/2 using an appropriate

linear combination of ReLU activations without learnable parameters.
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Next, we relate the error in Lemma 2, which is for predicting the first coordinate of the signal
given the noisy estimate provided by the previous layer of the unrolled network, to the optimal
error for predicting a sample from the univariate prior 𝑝 given a Gaussian corruption. This will
follow by state evolution.
Lemma 4. Let 𝑓ℓ (·, 𝜃𝑡 ) be the learned neural network using gradient descent after 𝑡 timesteps such
that the conditions of Lemma 2 satisfies. Then, with high probability, we have

lim
𝑑→∞

𝔼𝑥,𝐴

[1
𝑑
∥ 𝑓ℓ (𝐴⊤�̂�ℓ + 𝑥ℓ , 𝜃𝑇 ) − 𝑥 ∥2

]
≤ 𝔼[(𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑿 )2] + 𝜀1 + 𝜀2 .

Additionally, the following statement holds with high probability:

𝔼[(𝑓ℓ (𝑿 + 𝜏ℓ𝒁 , 𝜃𝑇 ) − 𝑿 )2] ≤ 𝔼[(𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑿 )2] + 𝜀1 + 𝜀2 .

Proof. Observe that𝐴⊤𝑗 �̂�ℓ +𝑥
( 𝑗 )
ℓ
follows the same distribution for all 𝑗 . Therefore, using Lemma 2,

we obtain that
𝔼𝑥,𝐴

[
(𝑓ℓ (𝐴⊤𝑗 �̂�ℓ + 𝑥

( 𝑗 )
ℓ

, 𝜃𝑇 ) − 𝑥 ( 𝑗 ) )2
]
≤ min

𝑔
𝔼
[
(𝑔(𝐴⊤𝑗 �̂�ℓ + 𝑥

( 𝑗 )
ℓ
) − 𝑥 ( 𝑗 ) )2

]
+ 𝜀1 + 𝜀2.

As the distribution of 𝐴⊤𝑗 �̂�ℓ + 𝑥
( 𝑗 )
ℓ
is the same for all 𝑗 ∈ [𝑑], we use the same learned denoiser

for all the coordinates. Therefore, we can rewrite the above equation as

1
𝑑

𝑇∑︁
𝑖=1

𝔼𝑥,𝐴

[
∥ 𝑓 (𝐴⊤�̂�ℓ + 𝑥ℓ , 𝜃𝑇 ) − 𝑥 ∥2

]
≤ min

𝑔

1
𝑑
𝔼
[
∥𝑔(𝐴⊤�̂�ℓ + 𝑥ℓ ) − 𝑥 ∥2

]
+ 𝜀1 + 𝜀2.

Now, we want to use state evolution as 𝑑 → ∞. Note that as 𝑑 → ∞, using Lemma 1 with 𝜓
function as 𝜓 (𝑎, 𝑏) = (𝑎 − 𝑏)2, we have

lim
𝑑→∞

1
𝑑
∥𝑔(𝐴⊤�̂�ℓ + 𝑥ℓ ) − 𝑥 ∥2 = 𝔼[(𝑔(𝑿 + 𝜏ℓ𝒁 ) − 𝑿 )2]

for any function 𝑔 ∈ F . As the quantity inside expectation converges to 𝔼[(𝑔(𝑿 + 𝜏ℓ𝒁 ) − 𝑿 )2],
using monotone convergence theorem, we have

lim
𝑑→∞

min
𝑔

𝔼[1
𝑑
∥𝑔(𝐴⊤�̂�ℓ + 𝑥ℓ ) − 𝑥 ∥2] = min

𝑔
lim
𝑑→∞

𝔼[1
𝑑
∥𝑔(𝐴⊤�̂�ℓ + 𝑥ℓ ) − 𝑥 ∥2]

= min
𝑔

𝔼[(𝑔(𝑿 + 𝜏ℓ𝒁 ) − 𝑿 )2] .

Using this result and applying limits on both sides of Lemma 2, we obtain

lim
𝑑→∞

𝔼𝑥,𝐴

[1
𝑑
∥ 𝑓ℓ (𝐴⊤�̂�ℓ + 𝑥ℓ , 𝜃𝑇 ) − 𝑥 ∥2

]
≤ min

𝑔
𝔼[(𝑔(𝑿 + 𝜏ℓ𝒁 ) − 𝑿 )2] + 𝜀1 + 𝜀2.

The minimizer of 𝔼[(𝑔(𝑿 + 𝜏ℓ𝒁 ) − 𝑿 )2] is given by 𝑓 ∗ℓ (·) = 𝔼[𝑿 | 𝑿 + 𝜏ℓ𝒁 = ·]. Using this
fact, we obtain the first result of the lemma statement. Similar to the proof of the right side of
the inequality, the quantity on the left side converges to 𝔼[(𝑓ℓ (𝑿 + 𝜏ℓ𝒁 , 𝜃𝑇 ) − 𝑿 )2] using the
monotone convergence theorem. This gives the second result of the lemma statement.

B.3 Stability of optimal denoisers

The right-hand side of the bound in the above Lemma corresponds to the minimum mean
squared error achievable for denoising at noise scale 𝜏ℓ , where 𝜏ℓ is the state evolution parameter
corresponding to running the learned AMP iterations up to that layer of the unrolled network.
To show that the learned network can compete with Bayes AMP, we need to relate 𝜏ℓ to
the corresponding state evolution parameter 𝜏ℓ given by Bayes AMP. For this, we need the
following stability result showing that the minimum mean-squared error is stable with respect
to perturbations of the noise scale.
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Lemma 5. Let prior 𝑿 be such that the score function 𝜕1𝑝 (·;𝜏) is 𝐵-Lipschitz continuous for all
𝜏 where 𝑝 (·;𝜏) denotes the probability density function of random variable 𝑿 + 𝜏𝒁 . Additionally,
assume that the variance of 𝑿 is bounded by 𝑉 . Then, we have

𝔼[(𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑿 )2] ≲ 𝔼[(𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑿 )2] +
𝑉 2𝐵2

𝜎6
|𝜏ℓ − 𝜏ℓ |

where 𝑓 ∗ℓ (𝑥) = 𝔼[𝑿 |𝑿 + 𝜏ℓ𝒁 = 𝑥] and 𝑓 ∗ℓ (𝑥) = 𝔼[𝑿 |𝑿 + 𝜏ℓ𝒁 = 𝑥].

Proof. Rewriting the error between 𝑓 ∗ℓ and 𝑓 ∗ℓ , we have

𝔼[(𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑿 )2] = 𝔼[(𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) + 𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑿 )2] (9)
= 𝔼[(𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ))2] (10)

+ 2𝔼[(𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 )) (𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑿 )] (11)
+ 𝔼[(𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑿 )2] . (12)

The term in Eq. (10) can be upper bounded by (𝐵(𝜏ℓ − 𝜏ℓ ))2/𝜏4ℓ because 𝑓ℓ is Lipschitz by
assumption. Using Cauchy-Schwartz for the term in Eq. (11), the second term is upper bounded
by

2𝔼[(𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 )) (𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑿 )]
≤ 2𝔼[(𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ))2]1/2𝔼[(𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑿 )2]1/2

≤ 2𝐵𝑉 |𝜏ℓ − 𝜏ℓ |/𝜏2ℓ . (13)
The squared term in Eq. (12) can be upper bounded by

𝔼[(𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑿 )2] = 𝔼[((𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ))2)]
+ 2𝔼[(𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 )) (𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑿 )]
+ 𝔼[(𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑿 )2] .

We can upper bound the first term above using Lemma 6. Likewise, the second term can be
bounded by Cauchy-Schwarz and Lemma 6. In this way, using that𝑉 2 ≥ 𝜏ℓ ≥ 𝜏ℓ ≥ 𝜎2, we obtain
that

𝔼[(𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑿 )2] ≲ 𝔼[(𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑿 )2] +
𝑉 2𝐵2

𝜎6
(𝜏ℓ − 𝜏ℓ )2 +

𝑉 2𝐵
𝜎3
|𝜏ℓ − 𝜏ℓ | .

Combining this bound with Eq. (13), we obtain the bound.

The proof above relies on the following “score perturbation lemma” showing that the optimal
denoiser is Lipschitz with respect to the noise scale.
Lemma 6 (Score perturbation lemma). Let 𝑝 (·;𝜏) be the density function of 𝑿 + 𝜏𝒁 . Let the score
function 𝜕1 log𝑝 (·;𝜏) be 𝐵−Lipschitz continuous. Then, the 𝐿2 error between the optimal denoisers
at two noise scales 𝜏ℓ and 𝜏ℓ is given by

𝔼
[
(𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ))2

]
≤ 𝜏2ℓ 𝐵

2(𝜏ℓ − 𝜏ℓ )2 +
𝐵2(𝜏ℓ − 𝜏ℓ )4

𝜏4
ℓ
𝜏2
ℓ

𝑉 2 .

Proof. Denote the probability density function of 𝑿 + 𝜏ℓ𝒁 random variable at value 𝑥 as 𝑝 (𝑥 ;𝜏ℓ ).
Assuming 𝜕1 log𝑝 (·;𝜏ℓ ) is 𝐵-Lipschitz function and using Lemma C.11 of [LLT22], we have
𝔼𝑥∼𝑝 ( ·;𝜏ℓ )

[
(𝜕1 log𝑝 (𝑥 ;𝜏ℓ ) − 𝜕1 log𝑝 (𝑥 ;𝜏ℓ ))2

]
≲ 𝐵2(𝜏ℓ −𝜏ℓ )2 +𝐵2(𝜏ℓ −𝜏ℓ )4𝔼

[
(𝜕1 log𝑝 (𝑥 ;𝜏ℓ ))2

]
.

Using Tweedie’s formula (𝜕1 log𝑝 (𝑥 ;𝜏ℓ ) = (𝔼[𝑿 |𝑿 + 𝜏ℓ𝒁 = 𝑥] − 𝑥)/𝜏2ℓ ), we have
𝔼𝑥∼𝑝 ( ·;𝜏ℓ )

[
(𝜕1 log𝑝 (𝑥 ;𝜏ℓ ) − 𝜕1 log𝑝 (𝑥 ;𝜏ℓ ))2

]
= 𝔼𝑥∼𝑝 (𝑥 ;𝜏 )

[( (𝜏2ℓ − 𝜏2ℓ ) (𝔼[𝑿 |𝑿 + 𝜏ℓ𝒁 = 𝑥] − 𝑥) + 𝜏2ℓ (𝔼[𝑿 |𝑿 + 𝜏ℓ𝒁 = 𝑥] − 𝔼[𝑿 |𝑿 + 𝜏ℓ𝒁 = 𝑥])
𝜏2
ℓ
𝜏2
ℓ

)2]
.
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This implies that
𝔼
[
(𝔼[𝑿 |𝑿 + 𝜏ℓ𝒁 = 𝑥] − 𝔼[𝑿 |𝑿 + 𝜏ℓ𝒁 = 𝑥])2

]
≲ 𝜏2ℓ 𝔼𝑥∼𝑝 ( ·;𝜏ℓ )

[
(𝜕1 log𝑝 (𝑥 ;𝜏ℓ ) − 𝜕1 log𝑝 (𝑥 ;𝜏ℓ ))2

]
+
(𝜏2ℓ − 𝜏2ℓ )2

𝜏4
ℓ
𝜏4
ℓ

𝔼[(𝔼[𝑿 |𝑿 + 𝜏ℓ𝒁 = 𝑥] − 𝑥)2]

≲ 𝜏2ℓ 𝐵
2(𝜏ℓ − 𝜏ℓ )2 +

𝐵2(𝜏ℓ − 𝜏ℓ )4

𝜏4
ℓ
𝜏2
ℓ

𝔼
[
(𝔼[𝑿 |𝑿 + 𝜏ℓ𝒁 = 𝑥] − 𝑥)2

]
where the last inequality uses the fact that 𝜏ℓ ≥ 𝜏ℓ because 𝜏ℓ is obtained using optimal denoiser.
Additionally, we have 𝜏0 = 𝜎2 + (1/𝛿)𝔼[𝑿2] ≤ 𝜏2 + 𝑉 2. Using law of total variance, we have
var[𝑿 ] = 𝔼[var(𝑿 |𝑿 + 𝜏ℓ𝒁 )] + var(𝔼[𝑿 |𝑿 + 𝜏ℓ𝒁 ]). Therefore, we have 𝔼[𝑿2] ≥ 𝔼[(𝔼[𝑿 |𝑿 +
𝜏ℓ𝒁 = 𝑥] − 𝑥)2] which implies the claimed bound.

B.4 Putting everything together

We are now ready to conclude the proof of our main result.

Proof of Theorem 2. Recall that the state evolution recursion for 𝜏ℓ is defined using the optimal
denoiser 𝑓 ∗ℓ at layer ℓ in Lemma 1. Similarly, the state evolution recursion for 𝜏ℓ is applied using
learned denoiser 𝑓ℓ ( · , 𝜃𝑇 ). At some places, we will use 𝑓ℓ ( · ) to denote 𝑓ℓ ( · , 𝜃𝑇 ) for brevity.
By the state evolution recursion for 𝜏ℓ , the error between 𝜏ℓ and 𝜏ℓ is given

𝜏2ℓ − 𝜏2ℓ =
1
𝛿
(𝔼[(𝑓ℓ−1(𝑿 + 𝜏ℓ−1𝒁 ) − 𝑿 )2] − 𝔼[𝑓 ∗ℓ−1(𝑿 + 𝜏ℓ−1𝒁 ) − 𝑿 )2])

≲
1
𝛿

(𝑉 2𝐵2
𝜎6
|𝜏ℓ−1 − 𝜏ℓ−1 |2 + 𝜀1 + 𝜀2

)
,

where the last inequality follows from Lemma 4 and Lemma 5. As 𝜏ℓ + 𝜏ℓ ≥ 2𝜎 for all ℓ and
𝜏ℓ ≥ 𝜏ℓ , we have

|𝜏ℓ − 𝜏ℓ | ≲
𝑉 2𝐵2

𝛿𝜎7
|𝜏ℓ−1 − 𝜏ℓ−1 | +

𝜀1 + 𝜀2
𝛿𝜎

.

Solving this recurrence, we have that the error in the state evaluation parameters after 𝐿 layers
is upper bounded by

|𝜏𝐿 − 𝜏𝐿 | ≲
(𝑉 2𝐵2
𝛿𝜎7

)𝐿
(𝜀1 + 𝜀2) .

Combining this bound with Lemma 4 and Lemma 5, we have

lim
𝑑→∞

𝔼𝑥,𝐴

[1
𝑑
∥ 𝑓ℓ (𝐴⊤�̂�ℓ + 𝑥ℓ , 𝜃𝑇 ) − 𝑥 ∥2

]
≲ 𝔼[(𝑓 ∗ℓ (𝑿 + 𝜏ℓ𝒁 ) − 𝑿 )2] +

(𝑉 2𝐵2
𝛿𝜎7

)𝐿+1
(𝜀1 + 𝜀2) .

Applying state evolution (Lemma 1), we get that

lim
𝑑→∞

𝔼𝑥,𝐴

[1
𝑑
∥ 𝑓ℓ (𝐴⊤�̂�ℓ + 𝑥ℓ , 𝜃𝑡 ) − 𝑥 ∥2

]
≲ lim

𝑑→∞
𝔼𝑥,𝐴

[1
𝑑
∥ 𝑓 ∗ℓ (𝐴⊤𝑣ℓ + 𝑥ℓ , 𝜃𝑡 ) − 𝑥 ∥2

]
+

(𝑉 2𝐵2
𝛿𝜎7

)𝐿+1
(𝜀1 + 𝜀2)

as claimed.

B.5 Bounding the complexity of denoisers

In Definition 1, we primarily focus on the setting where 𝐶𝛼 ≥ 1. Here we provide some bounds
on ℭ𝜀 (𝜙, 𝛼) in this regime. This in turn provides the bound for ℭ𝑠 (𝜙, 𝛼). First note that we
always have

(log(1/𝜀)/𝑖)𝑖/2(𝐶𝛼)𝑖 ≤ exp(log(1/𝜀)𝐶𝛼/2) = (1/𝜀)𝑂 (𝐶𝛼 ) . (14)
First consider the case where 𝜙 =

∑
𝑖 𝑐𝑖𝑧

𝑖 is a degree-𝑘 polynomial. Eq. (14) then implies
ℭ𝜀 (𝜙, 𝛼) ≲ 𝑘 (1/𝜀)𝑂 (𝐶𝛼 ) max

𝑖
|𝑐𝑖 | . (15)
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This bound is useful when the degree is high, e.g. when 𝑘 = 𝜔 (𝐶𝛼 log(1/𝜀)). We also have the
following naive bounds when the degree is small or intermediate. When 𝑘 ≥ log(1/𝜀),

ℭ𝜀 (𝜙, 𝛼) ≲ (log(1/𝜀)𝐶𝛼)𝑂 (log 1/𝜀 ) max
𝑖≤log(1/𝜀 )

|𝑐𝑖 | + (𝐶𝛼)𝑘 max
𝑖>log(1/𝜀 )

|𝑐𝑖 | . (16)

When 𝑘 ≤ log(1/𝜀),
ℭ𝜀 (𝜙, 𝛼) ≲ (log(1/𝜀)𝐶𝛼)𝑂 (𝑘 ) max

𝑖
|𝑐𝑖 | . (17)

In the context of our learning result, it suffices for the true denoisers 𝑓 ∗ℓ to be well-approximated
by functions of low complexity, e.g. low-degree polynomials.
In our setting of Lipschitz denoisers from Assumption 1, we can get good approximation by
low-degree polynomials via the following standard result:
Lemma 7 (Jackson’s theorem [Jac11]). Let 𝑘 ∈ ℤ, 𝐵, 𝑅 ≥ 0. If a function 𝑓 : ℝ → ℝ is
𝐵-Lipschitz, then there exists a polynomial 𝑞 of degree-𝑘 for which

sup
|𝑧 | ≤𝑅
|𝑓 (𝑧) − 𝑞(𝑧) | ≲ 𝐵𝑅/𝑘 . (18)

As the true denoisers are Lipschitz and the prior 𝑝 is assumed to be 𝑅-sub-Gaussian so that
the effective support over which the true denoisers must be approximated has radius 𝑂 (𝑅),
this implies that we can approximate them pointwise to error 𝛿 with polynomials of degree
𝑘 = 𝑂 (𝑅/𝛿). To apply any of the complexity bounds in Eqs. (15)- (17) to these polynomials, it
remains to bound the coefficient of largest magnitude. For this, we can apply a result like the
following:
Lemma 8 (Corollary of Lemma 4.1 from [She12]). Given a polynomial 𝑞(𝑧) = ∑𝑘

𝑖=0 𝑐𝑖𝑧
𝑖 for

which sup𝑧∈[0,1] |𝑞(𝑧) | ≤ 𝑀 , ∑︁
𝑖

|𝑐𝑖 | ≤ 4𝑑𝑀 . (19)

In situations where the denoiser has additional smoothness properties, one can obtain even
better polynomial approximations. To illustrate this, we provide an example in the special case
of the ℤ2 prior:
Example 1. When 𝑝 = ℤ2, the optimal denoisers used in Bayes AMP are of the form tanh

(
·/𝜏2

)
for

various 𝜏 ≥ 𝜎 , where𝜎2 is the variance of the measurement noise. This function is𝐵 = 1/𝜎2-Lipschitz,
and the effective support of 𝑝 ★ N(0, 𝜏2) is of radius 𝑅 = 𝑂 (1). By standard results, tanh

(
·/𝜏2

)
can be 𝜂-approximated over [−𝑂 (1),𝑂 (1)] with a polynomial of degree-𝑘 = 𝑂 (log(𝜎/𝜂)/𝜎2),
see e.g. Lemma 2 in [LSSS14]. Applying Lemma 8 to bound the coefficients of this polynomial by
(𝜎/𝜂)𝑂 (1/𝜎2 ) and then applying the bound in Eq. (16), we conclude that the denoisers in the case
of ℤ2 prior are 𝜂-approximated by polynomials 𝑞 of complexity

ℭ𝜀 (𝑞, 𝛼) ≲ (𝜎/𝜂)𝑂 (1/𝜎
2 ) ·

(
(log(1/𝜀)𝐶𝛼)𝑂 (log 1/𝜀 ) + (𝐶𝛼)𝑂 (log(𝜎/𝜂 )/𝜎2 )

)
. (20)

C Rank-one matrix estimation

C.1 Preliminaries

While compressed sensing involves a linear noisy transformation of its underlying signal, rank-
one matrix estimation offers a nonlinear counterpart. Here, the unknown signal 𝑥 ∈ ℝ𝑑 is first
transformed into a rank-one matrix 𝑥𝑥⊤. The observed signal is given by

𝑌 =
𝜆

𝑑
𝑥𝑥𝑇 +𝐺, (21)

where 𝐺 ∈ ℝ𝑑×𝑑 is a symmetric matrix with entries 𝐺𝑖 𝑗 ∼ N(0, 1
𝑑
) for 𝑖 ≤ 𝑗 and 𝜆 > 0 denotes

the signal-to-noise (SNR) ratio. Again, we assume 𝑥 ∼ 𝑝x for product prior 𝑝x ≜ 𝑝⊗𝑑 with 𝑝
some distribution over ℝ. Then, the rank-one matrix estimation problem attempts to recover an
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estimate 𝑥 for 𝑥 such that the Frobenius mean squared error (MSE) 1
𝑑
𝔼∥𝑥𝑥⊤ − 𝑥𝑥⊤∥2

𝐹
is minimal.

The asymptotic setting corresponds to working with a sequence of such problems indexed by
dimension 𝑑, where 𝑑 →∞.
The approximate message passing (AMP) algorithm for estimating 𝑥 given 𝑌 proposed in [RF12]
takes the form

𝑥ℓ+1 = 𝑓ℓ (𝑣ℓ ) (22)
𝑣ℓ = 𝑌𝑥ℓ − 𝑥ℓ−1⟨𝑓 ′ℓ−1(𝑣ℓ−1)⟩, (23)

where 𝑓ℓ : ℝ→ ℝ again indicates a scalar denoiser applied componentwise. There are various
possible choices for initialization; here we consider 𝑥0 = 1̂ ∈ ℝ𝑑 and 𝑣0 = 𝑌𝑥0.
As with compressed sensing, AMP iterates for rank-one matrix estimation satisfy a state evolution
recursion. Define parameters 𝜇ℓ and 𝜏ℓ evolving according to the scalar equations

𝜇ℓ+1 = 𝜆𝔼[𝑿 𝑓ℓ (𝜇ℓ𝑿 +
√
𝜏ℓ𝒁 )] (24)

𝜏ℓ+1 = 𝔼[𝑓ℓ (𝜇ℓ𝑿 +
√
𝜏ℓ𝒁 )2], (25)

where 𝑿 ∼ 𝑝 and 𝒁 ∼ N(0, 1). Then for 𝑑 → ∞, the empirical distribution over entries of 𝑣ℓ
converges asymptotically to the one-dimensional distribution over 𝜇ℓ𝑿 +

√
𝜏ℓ𝒁 [RF12]. Bayes

AMP thus corresponds to the choice of denoising functions optimizing the posterior mean on 𝑿
given 𝜇ℓ𝑿 +

√
𝜏ℓ𝒁 :

𝑓 ∗ℓ = 𝔼[𝑿 | 𝜇∗ℓ𝑿 +
√︃
𝜏∗
ℓ
𝒁 = ·], (26)

where 𝜇∗ℓ and 𝜏∗ℓ are obtained by substituting 𝑓 ∗ℓ as the denoiser in Eqs. (24) and (25).
As with compressed sensing, AMP has powerful theoretical guarantees for rank-one matrix
estimation. In some cases, e.g. when 𝑝 is the uniform distribution over {1,−1}, the Bayes
AMP algorithm is information-theoretically optimal, i.e., it asymptotically matches the MSE
achieved by the Bayes optimal estimator [DM14]. In general, Bayes AMP is conjectured to
achieve asymptotically optimal MSE over all polynomial-time algorithms for this task [MV21]
while being provably optimal over all GFOMs [MW22b].
Despite these guarantees, Bayes AMP for rank-one matrix estimation suffers from the same
implementation bottlenecks regarding knowledge of the true prior of the underlying signal. And
as with compressed sensing, choosing the state evolution parameters 𝜇ℓ and 𝜏ℓ according to the
true recursion can cause Bayes AMP to diverge, so in practice one estimates these parameters
using the previous iterates. In particular, practitioners typically replace 𝜏ℓ with 1𝑑 ∥𝑥ℓ ∥22 using
Eq. (25) and 𝜇ℓ with

√︃
| 1
𝑑
∥𝑣ℓ ∥22 −

1
𝑑
∥𝑥ℓ ∥22 | using the infinite dimensional distribution of the

components of 𝑣ℓ . The latter holds when the prior 𝑝 has zero mean and unit variance; in general,
the estimate must be scaled down by an additional factor of

√︁
𝔼𝑿∼𝑝 [𝑿2], which can be estimated

from data. Unless expressed otherwise, we assume 𝔼𝑥∼𝑝 [𝑥] = 0 and 𝔼𝑥∼𝑝 [𝑥2] = 1 in this setting
throughout. These conditions are without loss of generality for compressed sensing, to which
our theoretical results pertain, but not without loss of generality for rank-one matrix estimation.

C.2 Unrolled architecture

Here, we are given training data {(𝑌 𝑖 , 𝑥𝑖)}𝑁
𝑖=1 generated by Eq. (21) with all 𝑥𝑖 ∼ 𝑝x. Let F

denote a family of MLPs with fixed architecture constrained to three-dimensional inputs and
a one-dimensional output. Set 𝑥0 = 1̂ ∈ ℝ𝑑 and 𝑣0 = 𝑌𝑥0. Initializing MLP 𝑓ℓ ∈ F for all
ℓ ∈ [0, 𝐿 − 1], we obtain an 𝐿-layer unrolled network that computes

𝑥ℓ+1 = 𝑓ℓ (�̂�ℓ ; �̂�ℓ , 𝜏ℓ ) (27)
�̂�ℓ+1 = 𝑌𝑥ℓ+1 − 𝑥ℓ ⟨𝜕1 𝑓ℓ (�̂�ℓ ; �̂�ℓ , 𝜏ℓ )⟩, (28)

at every iteration, where �̂�ℓ =
√︃�� 1

𝑑
∥𝑣ℓ ∥22 −

1
𝑑
∥𝑥ℓ ∥22

�� and 𝜏𝑡 = 1
𝑑
∥𝑥ℓ ∥22. Here 𝑓ℓ ( · ; �̂�ℓ , 𝜏ℓ ) denotes

applying the scalar function 𝑓ℓ ( · ; �̂�ℓ , 𝜏ℓ ) entrywise.
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C.3 Results

Implementation details. We set 𝑑 = 210 and fix 𝜆 = 1.5. We focus on the Gaussian and ℤ2
priors for this setting. The family of MLPs F is constrained to have three hidden layers, each
with 20 neurons and GELU activations, and we train over a dataset {𝑌 𝑖 , 𝑥𝑖 }𝑁

𝑖=1 of size 𝑁 = 212
obtained by sampling from the prior and using Eq. (21).
As with compressed sensing, we train with finetuning and also consider a baseline with the MLP
denoisers in LDNet replaced with guided denoisers that learn parameters attached to the analytic
forms of the Bayes-optimal denoisers.

Figure 3: LDNet for Rank-One Matrix Estimation. On the left, we plot the NMSE obtained by LDNet
and Bayes AMP on the Gaussian prior, while the right plots are on ℤ2. LDNet matches Bayes AMP with a
slightly quicker convergence.

Gaussian prior. For a Gaussian prior, each component 𝑥𝑖 of 𝑥 is drawn 𝑥𝑖 ∼ N(0, 1), so 𝑝x = 𝑝⊗𝑑

for 𝑝 = N(0, 1). As expected, LDNet tracks Bayes AMP to convergence at an NMSE of 0.6931
with a slightly quicker convergence.

ℤ2 prior. As with compressed sensing, each component of 𝑥 is drawn from {−1, 1} with
probability 12 . Again, LDNet slightly outperforms Bayes AMP until convergence at an (information-theoretically optimal [DM14]) NMSE of 0.5243.

Figure 4: Learned Denoisers for Rank-One Matrix Estimation. We plot layerwise denoising functions
learned by LDNet on the Gaussian and ℤ2 priors relative to their optimal denoisers over a range of inputs
in (−2, 2). The state evolution inputs 𝜇ℓ , 𝜏ℓ to each denoiser are set to be their empirical estimates.

LDNet denoisers. While later iterations are able to recover the Bayes-optimal denoisers, it is
worth noting the high approximation error at early iterations as shown in Figure 4. Early iterations
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correspond to when the AMP estimates stagnate at an NMSE of roughly 1.0, corresponding
to a random, uninformed signal that can accommodate high denoiser error. Around iteration
10 is an inflection point when both LDNet and AMP transition from the uninformed regime to
convergence at an informed NMSE (Figure 3), where low approximation error is tolerated.

D Beyond Bayes AMP performance

D.1 Learning auxiliary parameters

Figure 5: Learned B with Decreasing Dimension. We hold 𝛿 = 12 fixed while scaling𝑚 from 200 down to100. Plots show NMSE (dB) performance of unrolling denoisers and learning B vs. Bayes AMP for randomly
drawn measurement matrices. There is an increasing gap in performance as𝑚 decreases.

In Figure 5, we set the parameters of 𝐵 = 𝐴⊤ to be learnable alongside the layerwise denoisers
(see Algorithm 2). Holding 𝛿 = 1

2 fixed while scaling down𝑚 has the effect of widening thegap between the NMSE performance of Bayes AMP versus LDNet with trainable 𝐵. Over five
randomly drawn measurement matrices per dimension regime, we find that, on average, LDNet
outperforms Bayes AMP by 7.2750% when𝑚 = 200, 16.4364% when𝑚 = 150, and 37.0605%
when𝑚 = 100. Here, percentage is measured by |Bayes−LDNet ||Bayes | × 100% in NMSE (dB).

Figure 6: Non-Gaussian Measurements. On the left, we plot LDNet with learnable 𝐵 compared to several
baselines for a random truncated orthogonal measurement matrix, and on the right, for a random truncated
Gram matrix. LDNet outperforms the other baselines in NMSE as well as convergence.

Another regime to which existing theory for Bayes AMP largely breaks down is when the entries of
the sensing matrix𝐴 are non-Gaussian. While it was previously observed that learning 𝐵 can help
for ill-conditioned 𝐴 [BSR17], we find that there are advantages even for well-conditioned (but
non-Gaussian) sensing matrices. Figure 6 plots NMSE for two sensing matrices 𝐴 ∈ ℝ250×500:
one obtained by truncating a random orthogonal matrix𝑄 ∈ ℝ500×500 (condition number 1), and
the other by truncating a Gram matrix𝑋⊤𝑋 ∈ ℝ500×500 with𝑋𝑖 𝑗 ∼ N(0, 1/𝑚) (condition number
1091). Also displayed are the iterative baselines of Bayes AMP, ISTA, and COSAMP [NT10]. For
the truncated random Gram matrix, Bayes AMP and ISTA actually diverge, so we plot “adjusted”
baselines replacing 𝐴⊤ in Eqs. (2) and (3) with the “𝐵" matrix learned by LDNet. The baselines
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Algorithm 2: Learning 𝐵
Input: Training data D, LDNet Ψ, Measurement matrix 𝐴

1 Initialize 𝐵 = 𝐴⊤;
2 for ℓ = 0 to ℓ = 𝐿 − 1 do
3 if ℓ > 0 then
4 Initialize 𝑓ℓ ← 𝑓ℓ−1;
5 Freeze learnable weights in 𝐵 and 𝑓𝑘 for 𝑘 < ℓ;
6 Train Ψ[0 : ℓ] on D;
7 Unfreeze learnable weights in 𝐵 and 𝑓𝑘 for 𝑘 < ℓ;
8 Train Ψ[0 : ℓ] on D;
Output: Fully trained Ψ, Learned 𝐵

considered all drastically underperform our unrolled network. In fact, the underperformance
of “adjusted” Bayes AMP demonstrates that the LDNet denoisers are strongly coupled with 𝐵,
suggesting that learning denoisers is beneficially composable with the traditional algorithm
unrolling approach.
All told, we see how adding auxiliary learnable parameters can mitigate scenarios (e.g. finite
dimensionality, non-Gaussian or ill-conditioned sensing matrices) where Bayes AMP is suboptimal
or not known to be optimal.

D.2 Non-product priors

Thus far, our theoretical and experimental results have remained in the regime of product priors.
But what happens when our underlying signal is drawn from a non-product distribution?
The modifications to AMP are minimal, as detailed in [BMN20], amounting to 𝑑-dimensional
denoisers 𝑓ℓ : ℝ𝑑 → ℝ𝑑 and replacing the average derivative of the scalar denoiser in the
Onsager term with the normalized divergence 1

𝑑
div𝑓ℓ in Eqs. (3) and (23). In this non-separable

setting, AMP still satisfies a one-dimensional state evolution recursion [BMN20]. In fact, in the
asymptotic limit, in some sense our theoretical guarantees carry over if for generic 𝑑-dimensional
priors, minimizing the score-matching objective via gradient descent (now in 𝑑 dimensions
instead of 1 dimension) can learn the Bayes-optimal denoiser with gradient descent. This is a
question of immense interest within the theory and practice of diffusion generative modeling
and remains an important open direction in this area.
In practice, for compressed sensing, unrolled AMP has been shown to be performant on image
datasets [MMB17], which serve as prime examples of real-world, non-product signal priors. For
our purposes, we focus on rank-one matrix estimation which, even in the product setting, remains
unexplored in the unrolling literature. Additionally, we work with handcrafted priors, where we
can plot a baseline achieved by Bayes AMP.

LDNet for non-product priors. We work in the low-dimensional regime 𝑑 = 10, where 𝑥 ∈ ℝ𝑑 .
LDNet requires small modifications to the layer iterations defined by Eqs. (27) and (28). The
family of MLPs F parametrizing the denoisers have three hidden layers with 1000 neurons
and GELU activations, with input dimension 𝑑 + 2 and output dimension 𝑑. We take 𝑓ℓ ∈ F for
ℓ ∈ [0, 𝐿 − 1], and we replace ⟨𝜕1 𝑓ℓ⟩ in Eq. (28) with 1𝑑 div𝑓ℓ . To avoid backpropagating throughthe Jacobian during training, we omit the finetuning step in Algorithm 1.

Signal distributions. To analyze the performance of 𝑑-dimensional LDNet, we consider two
priors on 𝑥 : product ℤ2 and a mixture of Gaussians. In both instances we work with a dataset of
size 𝑁 = 212 generated by sampling a signal and using Eq. (21). The product ℤ2 prior serves
as a test example to see whether the multi-dimensional learnable denoiser provides additional
performance gain over Bayes AMP when treating the product distribution as 𝑑-dimensional as
opposed to one-dimensional.
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Mixture of Gaussians provide a quite general class of non-product priors. We consider 𝑝 =
1
2N(𝜇1, Σ1;𝑥) + 12N(𝜇2, Σ2;𝑥), where we choose 𝜇1 and 𝜇2 at random with each coordinate
chosen from N(0, 1), ensuring that 𝜇1 and 𝜇2 do not define the same direction. For each of the
covariance matrices,we begin by a choosing random vectorwith each coordinate drawn uniformly
from [1, 2] and normalize so that vector has norm

√
𝑑. We take this to be the diagonalization

(i.e. eigenvalues) of the covariance, and conjugate by a randomly drawn orthogonal matrix.

Figure 7: Multi-Dimensional LDNet for Rank-One Matrix Estimation. On the left, we plot the NMSE
obtained by LDNet and Bayes AMP on ℤ2, while the right plots are on the mixture of Gaussians. LDNet
outperforms Bayes AMP by significant margins.

As Figure 7 demonstrates, multi-dimensional LDNet significantly outperforms the Bayes AMP
baseline on both priors. On a product ℤ2 prior, LDNet achieves an NMSE of 0.6485 compared
to Bayes AMP’s 0.6864, marking a 5.52% improvement while also reaching convergence much
faster. On the mixture of Gaussians prior, LDNet achieves NMSE 0.6881 compared to Bayes
AMP’s 1.8757, marking a 63.32% improvement.

D.3 Learned denoiser dependence on sensing matrix

Figure 8: Transfer Experiments . Above we plot the NMSE (in dB) over 15 iterations for different choices of
measurement matrices coupled with our learned MLP denoisers, including the training-time sensing matrix.
We see that the denoising functions are roughly transferable to several random Gaussian measurement
settings, suggesting the learning process is not coupled to the fixed sensing matrix seen during training.

Recall that our unrolled denoising network differs from the theoretical setting in two key ways:
a), the network is trained assuming a fixed sensing matrix 𝐴 rather than in expectation over
random Gaussian 𝐴, and b), state evolution parameters are estimated from previous iterates to
account for finite dimension corrections.
Indeed, despite these differences, the plots in Figure 2 suggest our network appears to learn a
fundamental “optimal” denoiser that is independent of 𝐴. To further verify this claim, we froze
the learned MLP denoiser weights for the Bernoulli-Gaussian prior and replaced the 𝐴 matrix in
Eqs. (5) with other randomly sampled Gaussian matrices 𝐴′ ∈ ℝ250×500. As shown in Figure 8,
this leads to minimal changes in the NMSE profile.
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E Explicit expressions for various Bayes-optimal denoisers

For prior 𝑝 and 𝑿 ∼ 𝑝, 𝒁 ∼ N(0, 1), the Bayes optimal denoiser in Bayes AMP is given by
𝑓 ∗ℓ = 𝔼[𝑿 |𝑿 + 𝜏ℓ𝒁 = 𝑦] (29)

for compressed sensing and
𝑓 ∗ℓ = 𝔼[𝑿 |𝜇ℓ𝑿 +

√
𝜏ℓ𝒁 = 𝑦] (30)

for rank-one matrix estimation. For the priors examined in our experiments, we write out the
setting-specific optimal denoiser along with the parameterized guided denoiser form (if relevant),
where the parameters are learnable during training.

Bernoulli-Gaussian prior. One can compute the optimal denoiser to be

𝑓 ∗ℓ (𝑦) =
𝑦(

1 + 𝜏2
ℓ

) (
1 + 1−𝜀

𝜀

N(0,𝜏2ℓ ;𝑦)
N(0,𝜏2ℓ +1;𝑦)

) . (31)

and parameterize the denoiser via

𝑓ℓ (𝑦;𝜃1, 𝜃2) =
𝑦(

1 + 𝜏2ℓ
𝜃1

) (
1 +

√︃
1 + 𝜃1

𝜏2ℓ
exp

(
𝜃2 − 𝑦2

2(𝜏2ℓ +𝜏4ℓ /𝜃1 )

)) , (32)

as done in [BS16, BSR17].

ℤ2 prior. The compressed sensing optimal denoiser [DM14] can be written as

𝑓 ∗ℓ (𝑦) = tanh
(
𝑦 · 1

𝜏2
ℓ

)
, (33)

which we parameterize as
𝑓ℓ (𝑦; 𝛽) = tanh

(
𝑦 · 𝛽 1

𝜏2
ℓ

)
. (34)

For rank-one matrix estimation, the optimal denoiser can be similarly computed to be

𝑓 ∗ℓ (𝑦) = tanh
(
𝑦 · 𝜇ℓ

𝜏ℓ

)
, (35)

parametrized as
𝑓ℓ (𝑦; 𝛽) = tanh

(
𝑦 · 𝛽𝜇ℓ

𝜏ℓ

)
. (36)

Gaussian prior. For rank-one matrix estimation, the optimal denoiser for a Gaussian prior is

𝑓 ∗ℓ (𝑦) = 𝑦 · 𝜇ℓ

𝜇2
ℓ
+ 𝜏ℓ

(37)

parametrized as
𝑓ℓ (𝑦; 𝛽) = 𝑦 · 𝛽 𝜇ℓ

𝜇2
ℓ
+ 𝜏ℓ

. (38)

Mixture of Gaussians prior. The calculation of the Bayes-optimal denoiser for a mixture of
Gaussians prior in rank-one matrix estimation is slightly more involved, so we provide some
more details about the calculation. Given 𝑝 = 1

𝑘

∑𝑘
𝑖=1 N(𝜇𝑖 , Σ𝑖 ;𝑥), where 𝜇𝑖 ∈ ℝ𝑑 and Σ𝑖 ∈ ℝ𝑑×𝑑

are invertible positive semidefinite symmetric covariance matrices, convolution with √𝜏ℓ𝒁 ∼
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N(0, 𝜏ℓ 𝐼𝑑 ) results in the mixture of Gaussians distribution 𝑝 = 1
𝑘

∑𝑘
𝑖=1 N(𝜇ℓ𝜇𝑖 , 𝜇2ℓ Σ𝑖 + 𝜏𝑡 𝐼𝑑 ;𝑥). For

any mixture ∑𝑘
𝑖=1 𝜆𝑖N(𝜇𝑖 , 𝑄𝑖 ;𝑥), the score is given by [CKS24]

−
𝑘∑︁
𝑖=1

(
𝜆𝑖N(𝜇𝑖 , 𝑄𝑖 ;𝑥)∑
𝑗 𝜆 𝑗N(𝜇 𝑗 , 𝑄 𝑗 ;𝑥)

)
𝑄−1𝑖 (𝑥 − 𝜇𝑖). (39)

Thus, we have

∇ log𝑝 (𝑥) = −
𝑘∑︁
𝑖=1

N(𝜇ℓ𝜇𝑖 , 𝜇2ℓ Σ𝑖 + 𝜏𝑡 𝐼𝑑 ;𝑥)∑
𝑗 N(𝜇ℓ𝜇 𝑗 , 𝜇2ℓ Σ 𝑗 + 𝜏𝑡 𝐼𝑑 ;𝑥)

(𝜇2ℓ Σ𝑖 + 𝜏𝑡 𝐼𝑑 )−1(𝑥 − 𝜇ℓ𝜇𝑖), (40)

so by Tweedie’s formula, the posterior mean on 𝑿 given 𝜇ℓ𝑿 +
√
𝜏ℓ𝒁 = 𝑦 is

1
𝜇ℓ
·
(
𝑦 −

(
𝜏ℓ ·

𝑘∑︁
𝑖=1

N(𝜇ℓ𝜇𝑖 , 𝜇2ℓ Σ𝑖 + 𝜏𝑡 𝐼𝑑 ;𝑦)∑
𝑗 N(𝜇ℓ𝜇 𝑗 , 𝜇2ℓ Σ 𝑗 + 𝜏𝑡 𝐼𝑑 ;𝑦)

(𝜇2ℓ Σ𝑖 + 𝜏𝑡 𝐼𝑑 )−1(𝑦 − 𝜇ℓ𝜇𝑖)
))

. (41)
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope?
Answer: [Yes]
Justification: We provide complete proofs of our theoretical claim and experimental
figures for the experiments.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including
the contributions made in the paper and important assumptions and limitations. A
No or NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect
how much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in the last section of the paper.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results
are to violations of these assumptions (e.g., independence assumptions, noiseless
settings, model well-specification, asymptotic approximations only holding locally).
The authors should reflect on how these assumptions might be violated in practice
and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach
was only tested on a few datasets or with a few runs. In general, empirical results
often depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the
approach. For example, a facial recognition algorithm may perform poorly when
image resolution is low or images are taken in low lighting. Or a speech-to-text
system might not be used reliably to provide closed captions for online lectures
because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might
be used by reviewers as grounds for rejection, a worse outcome might be that
reviewers discover limitations that aren’t acknowledged in the paper. The authors
should use their best judgment and recognize that individual actions in favor of
transparency play an important role in developing norms that preserve the integrity
of the community. Reviewers will be specifically instructed to not penalize honesty
concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions
and a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide complete set of assumption in Assumption ?? 1.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and
cross-referenced.

• All assumptions should be clearly stated or referenced in the statement of any
theorems.

• The proofs can either appear in the main paper or the supplemental material, but
if they appear in the supplemental material, the authors are encouraged to provide
a short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be
complemented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims
and/or conclusions of the paper (regardless of whether the code and data are provided
or not)?
Answer: [Yes]
Justification: We provide detailed information about the setup of our experiments.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model
with the same dataset, or provide access to the model. In general. releasing code
and data is often one good way to accomplish this, but reproducibility can also
be provided via detailed instructions for how to replicate the results, access to a
hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may
depend on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should
describe the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there
should either be a way to access this model for reproducing the results or a way
to reproduce the model (e.g., with an open-source dataset or instructions for
how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which
case authors are welcome to describe the particular way they provide for
reproducibility. In the case of closed-source models, it may be that access to
the model is limited in some way (e.g., to registered users), but it should be
possible for other researchers to have some path to reproducing or verifying
the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
Answer: [No]
Justification: We currently don’t provide the code for the open access but we are planning
to do it soon.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might
not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply
for not including code, unless this is central to the contribution (e.g., for a new
open-source benchmark).

• The instructions should contain the exact command and environment needed to
run to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including
how to access the raw data, preprocessed data, intermediate data, and generated
data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible,
they should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to
the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?
Answer: [Yes]
Justification: We provide detailed information about the training and test details.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

• The full details can be provided eitherwith the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other
appropriate information about the statistical significance of the experiments?
Answer: [No]
Justification: The goal of our analysis is to validate theoretical findings on the synthetic
data.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars,
confidence intervals, or statistical significance tests, at least for the experiments
that support the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated
(for example, train/test split, initialization, random drawing of some parameter, or
overall run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard
error of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the
hypothesis of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables
or figures symmetric error bars that would yield results that are out of range (e.g.
negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text
how they were calculated and reference the corresponding figures or tables in the
text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?
Answer: [Yes]
Justification: The estimated amount of training time for our final experiments is around
100 CPU hours.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [NA]
Justification: Our research is theoretical and does not have any direct ethical impact.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of
Ethics.

• If the authors answer No, they should explain the special circumstances that require
a deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our research is theoretical and does not have any direct societal impact.
Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended
uses (e.g., disinformation, generating fake profiles, surveillance), fairness
considerations (e.g., deployment of technologies that could make decisions that
unfairly impact specific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not
tied to particular applications, let alone deployments. However, if there is a direct
path to any negative applications, the authors should point it out. For example, it
is legitimate to point out that an improvement in the quality of generative models
could be used to generate deepfakes for disinformation. On the other hand, it is
not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology
is being used as intended and functioning correctly, harms that could arise when
the technology is being used as intended but gives incorrect results, and harms
following from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible
mitigation strategies (e.g., gated release of models, providing defenses in addition to
attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system
learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language
models, image generators, or scraped datasets)?
Answer: [NA]
Justification: Our research is theoretical and does not have any safety threats.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released
with necessary safeguards to allow for controlled use of the model, for example by
requiring that users adhere to usage guidelines or restrictions to access the model
or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The
authors should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers
do not require this, but we encourage authors to take this into account and make a
best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used
in the paper, properly credited and are the license and terms of use explicitly mentioned
and properly respected?
Answer: [NA]
Justification: Most of our experiments are validating theoretical foundings and on the
synthetic data.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or
dataset.

• The authors should state which version of the asset is used and, if possible, include
a URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms
of service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in
the package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license
of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out
to the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the
documentation provided alongside the assets?
Answer: [NA]
Justification: Our research is theoretical in nature.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of
their submissions via structured templates. This includes details about training,
license, limitations, etc.

• The paper should discuss whether and how consent was obtained from people
whose asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does
the paper include the full text of instructions given to participants and screenshots, if
applicable, as well as details about compensation (if any)?
Answer: [Yes]
Justification: Our research is theoretical in nature.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection,
curation, or other labor should be paid at least the minimum wage in the country
of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country
or institution) were obtained?
Answer: [Yes]
Justification: Our research is theoretical and does not involve any human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.
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• Depending on the country in which research is conducted, IRB approval (or
equivalent) may be required for any human subjects research. If you obtained
IRB approval, you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and
the guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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