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Abstract

Abstractive dialogue summarization presents
unique challenges due to the dynamic nature
of conversations, involving multiple speakers,
role changes, language variations, and infor-
malities. Despite recent advancements in this
field, summaries generated by existing methods
often suffer from factual errors. To address this
issue, post-processing correction has emerged
as a promising approach that offers practical-
ity and can be combined with other techniques.
However, existing correction models still ex-
hibit limitations, including false corrections
that transform clean summaries into incorrect
ones. We propose a simple and straightforward
framework for correction with the main idea
to separate the identification and use its results
as guidance for better correction. Initially, the
framework determines whether a summary con-
tains factual errors and proceeds to identify
the wrong part. This identified segment then
serves as guidance for the correction. Our eval-
uation results demonstrated the effectiveness
of our identifier and corrector model in terms
of detecting incorrect summaries and perform-
ing corrections while highlighting its flexibility.
Furthermore, the factuality human evaluation
further emphasizes the ability of our approach
to achieve accurate correction while preventing
false correction.

1 Introduction

Abstractive dialogue summarization (Carletta et al.,
2005) tackles the challenges posed by distilling
essential information from multi-party conversa-
tions. Dialogue summarization exhibits distinc-
tive characteristics compared to traditional arti-
cle/document summarization, involving the dy-
namic nature of conversation such as multiple
speakers, role changes, language variations, and
informalities. Transformer-based (Vaswani et al.,
2017) models such as BART (Lewis et al., 2020),
T5 (Raffel et al., 2020), and Pegasus (Zhang et al.,
2020) have made significant advancements (Chen

and Yang, 2020; Malykh et al., 2020; Chen and
Yang, 2021; Zhu et al., 2021), leveraging pre-
training and fine-tuning. However, despite their
successes, they tend to generate summaries with
factual errors (Cao et al., 2018; Maynez et al., 2020;
Kryściński et al., 2020; Lee et al., 2021; Zhong
et al., 2021), which is a piece of incorrect informa-
tion according to the dialogue contexts.

Researchers have aimed to address factual errors
in abstractive dialogue summarization through var-
ious approaches, such as incorporating discourse-
specific information (Zhu et al., 2020; Liu et al.,
2021; Liu and Chen, 2021), applying constraints
and filter generated candidates (Zhao et al., 2020;
Mao et al., 2020), and modifying pre-training or
fine-tuning objectives (Wan and Bansal, 2022; Cao
and Wang, 2021; Tang et al., 2022). These efforts
have shown promise in reducing factual errors but
still face challenges in fully resolving the problem.
In addition, post-processing correction, including
training generative language models for correction
on corrupted data (Cao et al., 2020; Lee et al., 2021)
and treating correction as a question-answering task
(Dong et al., 2020), have emerged as a promising
approach. However, existing correction models
face challenges in falsely correcting clean sum-
maries and providing insufficient corrections, high-
lighting the need for improved techniques. Ad-
ditionally, the application of post-processing cor-
rection methods in dialogue summarization is rel-
atively unexplored, creating opportunities for ad-
vancements in this field.

This paper proposes a simple framework for
post-processing correction in abstractive dialogue
summarization. The main idea is to separate the
identification and correction tasks, with a primary
focus on utilizing the identified incorrect words
as valuable guidance to improve correction. We
explore three distinctive approaches for the identi-
fier model: token classification, joint training with
binary classification, and generative language mod-
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Figure 1: High-level illustration of our proposed framework, consisting of identifier and corrector model with an
option for iterative correction.

eling for precise error identification. Additionally,
the corrector model is designed to incorporate dif-
ferent guidance formats, including tagging incor-
rect words or providing an incorrect word list, to
optimize the correction process. Through training
these models, our research aims to contribute to the
reduction of factual errors and the improvement of
faithfulness in dialogue summaries.

Our contributions are as follows:

1. We propose a framework for dialogue sum-
mary correction with the idea of separating
the identification and correction tasks and also
utilizing the span identification as guidance to
improve correction performance.

2. We explore different approaches to identify
factual errors in summaries and highlight their
importance in preventing false corrections.

3. We demonstrate the effectiveness of our pro-
posed framework in improving corrections
and reducing factual errors through empirical
evaluations. We also showcase its practicality
even when combined with baseline or existing
methods.

2 Related Works

Post-processing correction is a flexible approach
applied to generated summaries to address fac-
tual errors and semantic inconsistencies. Cao
et al. (2020) introduced a post-processing correc-
tion method using BART (Lewis et al., 2020) to
fix factual errors in corrupted summaries. Dong
et al. (2020) proposed the Span-fact model, which

leveraged Question Answering (QA) knowledge to
correct multi-fact errors in summarization. They
employed BERT (Devlin et al., 2019) as the basis
for two models: span-fact and auto-regressive fact.
Lee et al. (2021) addressed speaker incorrectness
in dialogue summaries by training a BART-based
speaker-focused corrector model. Their approach
involved predicting the correction type and apply-
ing the necessary correction to the draft summary.
FactCCX, a variant of FactCC (Kryściński et al.,
2020) to assess the factual consistency of a sum-
mary, employs span selection heads to highlight
supporting spans in the source text and identify er-
ror spans. This highlights the potential for leverag-
ing these identified spans to improve the correction
and enhancement of summaries.

Researchers who work on addressing factual er-
rors use various techniques to generate corrupted
summaries to train their models. These include
text transformations (Kryściński et al., 2020), pro-
noun and entity swapping (Cao et al., 2020), error
corruptions related to entities and numeric values
(Zhao et al., 2020), and speaker-based manipula-
tions (Lee et al., 2021). More complex corruption
techniques like noun and verb swapping, number
masking, and sentence deletion have also been em-
ployed (Tang et al., 2022). Furthermore, incorpo-
rating generative language models and techniques
like source-conditioned regeneration and selecting
the least probable generated sequence has been ex-
plored (Cao and Wang, 2021).

Correction and revision share similarities as they
both aim to enhance the quality of a text. Deliter-
ater (Kim et al., 2022) is a notable work in the field



Table 1: Example of transformed summary based on each corruption type. Red text highlights the corrupted words.

Reference Andy’ll go to the Georgian restaurant in Kazimierz on Saturday at 6
pm, and he’ll pick her up on the way to the place.

Corruption Type Transformed Summary
Speaker (Replace) Lisa’ll go to the Georgian restaurant in Kazimierz on Saturday at 6 pm,

and he’ll pick her up on the way to the place.
Speaker (Insert) Andy and Robert’ll go to the Georgian restaurant in Kazimierz on Saturday

at 6 pm, and he’ll pick her up on the way to the place.
Entity Andy’ll go to the Georgian restaurant in New York on Monday at 6 pm,

and he’ll pick her up on the way to the place.
Pronoun Andy’ll go to the Georgian restaurant in Kazimierz on Saturday at 6 pm,

and she’ll pick him up on the way to the place.
Verb Andy’ll pay to the Georgian restaurant in Kazimierz on Saturday at 6 pm,

and he’ll date her up on the way to the place.
Noun Andy’ll go to the Georgian way in Kazimierz on Saturday at 6 pm, and

he’ll pick her up on the restaurant to the place.
Number Andy’ll go to the Georgian restaurant in Kazimierz on Saturday at 4 pm,

and he’ll pick her up on the way to the place.

of text revision, employing a three-stage process:
delineate, edit, and iterate. The system first detects
editable spans, classifying tokens into revision in-
tentions, then revising them based on their respec-
tive revision intentions. The process is repeated in
the iterate stage until no editable spans are detected
or the maximum revision depth is reached.

3 Proposed Framework

We propose a simple framework inspired by text
revision (Kim et al., 2022) for post-processing cor-
rection to address summaries with potential factual
errors, as illustrated in Figure 1. The main idea be-
hind this framework is to separate the identification
and correction tasks, leveraging the identification
results as guidance to enhance the correction pro-
cess. By specifically identifying the factual errors
in a summary, we can focus our correction efforts
on those specific areas, improving the accuracy and
effectiveness of the correction process.

This framework includes three steps: Decide,
Identify, and Correct. The Decide step determines
if a summary has factual errors, while the Identify
step pinpoints the specific incorrect content. The
Correct step focuses on correcting the identified
errors while maintaining the summary’s meaning.
The framework utilizes an identifier model for the
Decide and Identify steps and a corrector model
for the Correction step. Additionally, an iterative
correction option allows for re-checking and further

correction if needed. Training data is generated
by intentionally corrupting reference summaries to
create incorrect summaries.

3.1 Corrupted Summary Generation

Following previous works (Kryściński et al., 2020;
Lee et al., 2021; Cao et al., 2020; Cao and Wang,
2021; Tang et al., 2022; Zhao et al., 2020), we
employ various techniques to generate corrupted
summaries to train our models. We focus on token-
level corruption, targeting entities, pronouns, num-
bers, verbs, and nouns. For speaker corruption, we
utilize insertion and replacement methods, omit-
ting deletion unlike Lee et al. (2021). Replace-
ment words/phrases are carefully selected from the
dialogue source or reference summary, also we
maintain case and pronoun groups for replaced pro-
nouns. Numbers are replaced with the same type
of number to maintain grammatical accuracy. We
use spaCy (Honnibal et al., 2020) library to do the
corruption. Detailed illustrations of the corruption
can be found in Table 1.

3.2 Identifier Model

In our proposed framework, the identifier model
plays a crucial role in deciding and identifying in-
correct parts in a summary. The framework offers
practicality and flexibility by allowing various mod-
els as identifier models, as long as they fulfill the
objectives. We explore three options for the identi-



fier model: token classification, joint training with
binary classification, and generative language mod-
eling. In the token classification approach, each to-
ken is predicted to determine whether it is factually
incorrect, employing the BIO tagging scheme with
class labels for entities, pronouns, verbs, nouns,
and numbers. The joint training approach com-
bines binary classification and token classification
tasks, where the model predicts if the summary is
clean or incorrect, and if incorrect, identifies the
specific error words. The generative model directly
identifies incorrect words by generating summaries
with tagged errors or providing a list of incorrect
words.

3.3 Corrector Model

The corrector model is responsible for fixing the
incorrect part of the draft summary identified by
the identifier model. It utilizes the information of
identified incorrect words to guide the correction
process while preserving the overall meaning. Two
guidance formats can be employed: tag and list.
In the tag format, identified words are enclosed
within tags based on token classification or gener-
ated text from the identifier model. This format
provides explicit guidance by modifying the sum-
mary with tags. In contrast, the list format compiles
identified words into a word list, which is used as
additional input for the corrector model. The list
format offers implicit guidance without directly
marking the identified words, allowing flexibility
to address corrections beyond the identified words.
This approach is valuable when the identifier model
may not capture all errors accurately, enabling the
correction of words not included in the list.

4 Experimental Setup

4.1 Datasets

We use two datasets in our experiments: SAMSum
(Gliwa et al., 2019) and DialogSum (Chen et al.,
2021). The SAMSum dataset consists of 16,369
messenger-like conversations while DialogSum
consists of 13,460 real-life conversations. Based
on these two datasets, we create corrupted versions
of them by utilizing the corruption techniques out-
lined earlier. The process involved three parame-
ters: x controlled the ratio of corrupted data, y de-
termined the probability of a corruption type being
applied, and α represented the ratio of corrupted
tokens within each sample for a specific corruption
type.

Table 2: Corrupted SAMSum and DialogSum datasets
statistics. E, V, P, N, and Q refer to entity, verb, pronoun,
noun, and quantity (number) respectively. Speaker is
considered an entity. The Test set is the results of human
annotation on 300 samples of generated corrupted data.

Split Clean Corr. Token Label
E V P N Q

SAMSum
Train 7593 6928 10965 2702 6266 2591 173
Val 425 380 628 160 353 130 15
Test 419 208 333 82 205 77 8
DialogSum
Train 6111 6030 23711 2656 3810 2800 68
Val 245 245 946 98 134 106 2
Test 268 195 716 80 100 69 1

Based on observations from previous studies
(Lee et al., 2021; Tang et al., 2022; Cao et al.,
2020), we prioritized corrupting speakers, entities,
pronouns, and numbers while placing less empha-
sis on corrupting nouns and verbs. To generate
the corrupted dataset, we used the following con-
figurations: x = 0.5 (half of the data corrupted).
For speakers, entities, pronouns, and numbers, y
= 1.0, and α = 0.5. For nouns and verbs, y = 0.3,
and α = 0.3. We excluded data exceeding a com-
bined dialogue and summary length of 512 tokens
to accommodate model limitations. Additionally,
samples that remained unchanged after corruption
were labeled as clean data. For detailed statistics
regarding the generated corrupted dataset, please
refer to Table 2.

Furthermore, we incorporate human annotation
for the corrupted test set. We hired six annotators
who were tasked with evaluating the quality of the
generated corrupted summaries. A good corrupted
summary was expected to contradict the dialogue
while maintaining sound semantics, grammar, and
syntax. We sampled 300 generated corrupted data
samples from each of the SAMSum and Dialog-
Sum corrupted test sets. Each of these samples
was evaluated by three different annotators, and
the majority vote determined the result. Only the
corrupted data that is evaluated as good will be
used.

4.2 Models & Baseline

We used bert-large-uncased (Devlin et al., 2019)
for the token classification and joint model. For
the joint model, we use the joint implementation
from JointBERT (Chen et al., 2019). The token
classification model was trained for 5 epochs, while



Table 3: Identification experiment result. Bold rep-
resents the best score for each metric, and underline
represents the second best.

Model SAMSum DialogSum
Token F1 Acc. Token F1 Acc.

FEC - 87.35 - 56.72
Our Identifier
Token 84.58 96.88 81.06 94.99
Joint 83.17 95.09 81.20 93.85
Gen. (Tag) 81.89 95.82 72.51 95.06
Gen. (List) 85.56 90.45 83.04 79.94

the joint model was trained for 10 epochs, with
both using a learning rate of 2e-5, weight decay
of 0.01, dropout rate of 0.1, and a batch size of
8. The generative identifier and corrector model
utilized bart-large (Lewis et al., 2020). We trained
each model for 10 epochs, with a learning rate of
2e-5, batch size of 4, and a beam width of 6 for
generation.

For the baseline, we compare our model with
the Factual Error Corrector (FEC) (Cao et al.,
2020) model. To ensure a fair comparison, the FEC
model was trained with the same configuration as
our corrector model on both clean and corrupted
data. We also compare the corrected summary with
the draft summary generated by vanilla BART
(Lewis et al., 2020) model to assess the impact of
correction in our framework in terms of factual-
ity. All models used the HuggingFace (Wolf et al.,
2019) implementation and were trained on a single
Nvidia A100 GPU with 40GB of memory.

5 Experiments

5.1 Identification Experiment

In the identification experiment, we assess the
model’s ability to determine whether a summary
contains factual errors and identify the specific in-
correct parts. We evaluate two aspects: summary
identification (binary classification) and incorrect
span identification (token classification). We uti-
lize balanced accuracy as the primary metric for
the summary identification and the F1-score of the
predicted tokens for incorrect span identification.
For the FEC model, a summary is predicted to con-
tain factual errors if the model makes any changes
to the summary, as done in the paper (Cao et al.,
2020).

Table 3 presents the identification evaluation re-
sults. All of our identifier models outperformed

Table 4: Correction experiment result. Excluding the
ideal condition, bold represents the best score for each
metric, and underline represents the second best. CR.
and R-L refer to Correction Ratio and ROUGE-L re-
spectively.

Model SAMSum DialogSum
Identifier Corrector CR. R-L CR. R-L

FEC 80.80 96.30 70.71 93.50
Ours (Identifier + Corrector)

Token
Tag 73.58 94.54 66.33 91.73
List 77.11 95.43 68.35 92.56

Joint
Tag 75.12 94.60 65.99 92.09
List 77.73 95.38 67.34 92.54

Generative
Tag 74.19 92.50 69.36 91.45
List 84.64 95.85 72.39 92.92

Ideal Guidance (Theoretical Proof)

Ideal
Tag 89.40 98.04 84.18 94.98
List 88.63 97.48 79.46 94.10

the FEC model in terms of determining whether
a summary contains factually incorrect content.
This result aligned with the data from Cao et al.
(2020) that separating the identification task will
result in better identification performance. How-
ever, in terms of identifying incorrect spans, our
models can only achieve approximately 80% of the
token F1-score, which indicates a suboptimal per-
formance and might lead to less accurate guidance
for correction in the next step. The Generative-List
model as the best model in identifying incorrect
spans, falls short in the summary identification,
which indicates the tendency of the model to much
more easily predict a summary to contain factual
errors.

5.2 Correction Experiment

In the correction experiment, we evaluate the
model’s performance in fixing incorrect words and
spans, utilizing the corrupted data from the test
set. We introduce a simple metric called the Cor-
rection Ratio. This metric calculates the ratio of
correctly corrected corrupted tokens compared to
all corrupted tokens, functioning as a recall metric
specifically for correction. The correction ratio is
calculated by simply dividing the number of cor-
rectly corrected corrupted tokens by the total num-
ber of corrupted tokens. The ability to compute
the correction ratio is enabled by storing the corre-
sponding correct tokens for each corrupted token
during the corrupted dataset generation. We also
use ROUGE-L (Lin, 2004) as it is considered to
align with human factuality evaluation (Koh et al.,



Table 5: Evaluation result on the entire test set. Bold represents the best score for each metric, and underline
represents the second best.

Model SAMSum DialogSum
Identifier Corrector Acc. Cor. Ratio IDCR Acc. Cor. Ratio IDCR

FEC 87.35 80.80 84.00 56.72 70.71 63.71
Our Identifier + Baseline Corrector
Token

FEC
96.89 79.11 87.99 94.99 69.02 82.01

Joint 95.80 78.65 87.22 93.85 68.69 81.27
Generative 96.41 80.18 88.30 95.69 70.37 83.03
Ours (Identifier + Corrector)

Token
Tag 96.64 73.58 85.11 95.55 66.33 80.94
List 96.52 77.11 86.82 96.69 68.35 82.52

Joint
Tag 95.92 75.12 85.52 93.78 65.99 79.88
List 96.40 77.73 87.07 93.89 67.34 80.62

Generative
Tag 95.82 74.19 85.00 95.06 69.36 82.21
List 90.45 84.64 87.55 79.94 72.39 76.17

2022).
Table 4 provides the correction experiment’s au-

tomatic evaluation results. In an ideal condition,
the corrector model outperforms other models in
terms of correction ratio. This outcome validates
our theory that providing proper guidance leads to
significant improvements in correcting summaries.
However, when using the actual identifier model,
the correction performance declines, although the
Generative-List model still outperforms the base-
line in correction ratio with slightly lower ROUGE-
L. The lower performance of other configurations
can be attributed to the wrong prediction of incor-
rect error spans, resulting in incorrect guides. The
higher correction ratio of the Generative-List model
also corresponds to the highest error identification
in Table 3, as explained in the previous section.

5.3 Overall Performance

In this experiment, we assess the model’s perfor-
mance using the entire test dataset. We utilize a
weighted metric, IDCR (Identification and Correc-
tion Ratio), to measure the combined performance
of identification and correction. IDCR is calculated
as the weighted sum of the identification balanced
accuracy and correction ratio, with both having the
same weight.

Table 5 shows the overall performance of each
model. There we can see that our proposed identi-
fier with corrector models performs better than the
FEC model. Most of our models are particularly
effective at accurately identifying clean summaries

Table 6: Percentage of head-to-head human evaluation
result for correction between our models compared to
the FEC model. Krippendorff’s α=0.81.

Model SAMSum DialogSum
Win Lose Tie Win Lose Tie

vs Gen-List 54 26 20 66 12 22
vs Token-List 28 32 40 52 20 28
vs Joint-Tag 28 36 36 30 28 42

and preventing them from being wrongly corrected.
This came from the separation between the identifi-
cation and correction tasks in our proposed frame-
work. The Generative-List model here came out
as the best overall model for the SAMSum dataset,
while the Token CLS-List model is much better in
DialogSum because of the lower balanced accuracy
from the Generative-List model in DialogSum. Our
models provide different options that can be suited
to different cases.

The FEC model, although having a high cor-
rection ratio, suffers from lower summary identi-
fication accuracy as its identification mechanism
is combined with the correction. Specifically, in
the DialogSum dataset where speaker names are
censored with #Person<Num>#, which affected the
model’s tendency to predict most summaries to con-
tain factual errors because lots of the appearance
of symbol #. Such things did not happen in the
SAMSum dataset which has its named person as it
is.

One interesting part is we can combine our iden-



tifier model with the FEC model as the corrector.
By doing so, we capitalize on the advantages of-
fered by each model, thereby improving the over-
all performance. This also proves that our frame-
work is flexible, allowing for the integration of var-
ious models that follow the framework’s guidelines.
However, utilizing the FEC model as a corrector
means the identified incorrect span will not be used
as the FEC model did not use any kind of guidance.

5.4 Human Evaluation

5.4.1 Correction

We conducted a human evaluation to further as-
sess the correction performance. We sampled 50
corrected summaries from each dataset and com-
pared three of our models head-to-head with the
FEC model. Human evaluators were asked to de-
termine which corrected summary was better in
terms of correction and factuality aligned with the
dialogue. Each comparison was evaluated by 3
different evaluators, and we took the majority an-
swer as the result. We also compute Krippendorff’s
α-coefficient (Hayes and Krippendorff, 2007) to
measure the inter-rater reliability.

Results in Table 6 prove that the Generative-List
model consistently wins against the FEC model,
as this model exhibits a higher correction ratio al-
though slightly lower ROUGE-L. The Token-List
and Joint-Tag models demonstrate comparable per-
formance in most cases for the SAMSum dataset,
while also producing better-corrected summaries in
the case of DialogSum. These findings further em-
phasize the significance of providing accurate fac-
tual error words as guidance for correction. How-
ever, it should be noted that the effectiveness of the
correction depends on the performance of the iden-
tifier model that provides the guide. The correction
comparison sample used in this evaluation can be
found in Figure 5 in the appendix section A.3.

5.4.2 Factuality

We focus on human evaluation to assess the factu-
ality of summaries in comparison to the draft sum-
maries without any correction, because automated
metrics are unable to capture subtle differences
from correction (automatic factuality evaluation
result can be found in the appendix section A.2).
In this evaluation, we presented the dialogue, one
draft summary generated by Vanilla BART, and
ten summaries (corrected or not) produced by ten
different model configurations, including the FEC

model and models with our framework. We sam-
pled 50 instances from each dataset in which at
least one model performed a correction. We ask hu-
man evaluators to check each one of the summaries
provided whether is considered factually correct
or not. Each sample was evaluated by 3 different
evaluators, and we take the majority vote as the
final decision. We also compute Krippendorff’s
α-coefficient (Hayes and Krippendorff, 2007) to
measure the inter-rater reliability.

Figure 2 provides the result of the factuality
human evaluation. In the case of the SAMSum
dataset, most models from our proposed frame-
work demonstrated the ability to generate more
factually correct summaries compared to the draft.
This highlights the optimal decision-making capa-
bility of our framework in determining when to
perform corrections and when to retain the original
draft. Additionally, the FEC model tended to make
more corrections on the draft, resulting in a higher
incidence of false corrections and slightly fewer
factually correct summaries overall. These findings
align with our earlier experiment results, which
indicated that the FEC model suffers from lower
identification accuracy, leading to false corrections.
For the DialogSum dataset, most of our models also
result in the same or more factually correct sum-
maries, while the FEC model also still has a lower
percentage because of false corrections. Sample
summaries used in this factuality evaluation can be
found in Figure 6 in the appendix section A.4.

6 Discussion

We highlight some important findings and consid-
erations regarding the performance and character-
istics of the proposed correction framework. First,
there exists a trade-off between correction ratio
and identification accuracy, as models with higher
correction ratios tend to exhibit lower identifica-
tion accuracy. Finding the right balance between
easily correcting summaries and accurately identi-
fying incorrect parts is crucial for optimizing the
framework’s overall performance. In regards to
identification, generative models show superior per-
formance compared to other models, showing that
generation currently is the way to go for most tasks.

From the correction experiment, we can see that
the list format for guidance is more robust com-
pared to the tag format. While the tag format per-
forms better in ideal conditions, the list format
proves preferable especially when the identifier



(a) SAMSum. Krippendorff’s α=0.54 (b) DialogSum. Krippendorff’s α=0.39

Figure 2: Percentage of factually correct summaries based according to human evaluators.

model’s guidance may be incomplete or inaccurate.
Also, we acknowledge the limitations of relying
solely on automated metrics to measure the factual-
ity of summaries, which we provide in the appendix
section A.2. Automated metrics may not capture
subtle differences that determine the faithfulness
of a summary, emphasizing the need for human
evaluation.

7 Conclusion

In this paper, we proposed a simple framework for
addressing factual errors in abstractive dialogue
summarization with the main idea of separating
the identification task and utilizing guidance for
correction. Our identifier models achieved supe-
rior identification accuracy, confirming the strength
of our approach to detecting factual errors. We
also showed that providing proper guidance can im-
prove correction performance. Overall, our frame-
work outperformed the baseline in balancing iden-
tification and correction tasks and proved flexible.
The human evaluation further validated the effec-
tiveness of our models and framework, with im-
proved correction and higher factuality according
to human evaluators.

8 Future Work

Future work can focus on improving the identi-
fication accuracy of the identifier model, particu-
larly for the token and joint models, to match the
effectiveness of the generative model in provid-
ing guidance for correction. Additionally, explor-
ing correction at higher levels such as sentences
or entire summaries presents an interesting direc-
tion. This would involve incorporating information
about factual errors in these higher-level units and

developing new corruption techniques and guid-
ance methods to train the corrector model accord-
ingly. These advancements would contribute to
improving the overall performance and capabilities
of this framework.

9 Limitations

Limitations of our work are observed when utiliz-
ing the actual identifier model, leading to a decline
in the correction performance. This is attributed
to the reliance of the corrector model on the guid-
ance provided by the identifier model, where the
token and joint identifier models achieved an ap-
proximate F1-score of 80%, implying that some
incorrect tokens/spans may go unidentified. Con-
sequently, the correction performance is affected
by errors or incompleteness in the guidance, em-
phasizing the need for accurate and comprehensive
guidance.

Additionally, the correction in our framework
operates at the token/span level, making it chal-
lenging to directly measure the impact of correc-
tion using automated metrics. Even slight changes
in token/span level correction may not yield signif-
icant differences in automated metric scores. Fur-
thermore, there are cases where token/span level
correction is insufficient as the entire summary or
sentence may be flawed, highlighting the necessity
for higher-level correction methods that involve
reconstructing sentences or summaries.

Ethical Considerations

We acknowledge the limitations of our correction
models and the possibility of false corrections. Our
models should not be considered as providing ab-
solute truth, and it is important to exercise criti-



cal analysis and verify information from reliable
sources. We also made sure all human annota-
tors and evaluators are participate voluntarily, were
fairly compensated, and given informed consent
for their participation.
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Wojciech Kryściński, Bryan McCann, Caiming Xiong,
and Richard Socher. 2020. Evaluating the factual
consistency of abstractive text summarization. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9332–9346.

Philippe Laban, Tobias Schnabel, Paul Bennett, and
Marti A Hearst. 2022. Summac: Re-visiting nli-
based models for inconsistency detection in summa-
rization. Transactions of the Association for Compu-
tational Linguistics, 10:163–177.

Dongyub Lee, Jungwoo Lim, Taesun Whang, Chan-
hee Lee, Seungwoo Cho, Mingun Park, and Heui-
Seok Lim. 2021. Capturing speaker incorrectness:
Speaker-focused post-correction for abstractive dia-
logue summarization. In Proceedings of the Third
Workshop on New Frontiers in Summarization, pages
65–73.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.



Zhengyuan Liu and Nancy Chen. 2021. Controllable
neural dialogue summarization with personal named
entity planning. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 92–106.

Zhengyuan Liu, Ke Shi, and Nancy Chen. 2021.
Coreference-aware dialogue summarization. In Pro-
ceedings of the 22nd Annual Meeting of the Special
Interest Group on Discourse and Dialogue, pages
509–519.

Valentin Malykh, Konstantin Chernis, Ekaterina Arte-
mova, and Irina Piontkovskaya. 2020. Sumtitles: a
summarization dataset with low extractiveness. In
Proceedings of the 28th International Conference on
Computational Linguistics, pages 5718–5730.

Yuning Mao, Xiang Ren, Heng Ji, and Jiawei Han.
2020. Constrained abstractive summarization: Pre-
serving factual consistency with constrained genera-
tion. arXiv preprint arXiv:2010.12723.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factu-
ality in abstractive summarization. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1906–1919.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Xiangru Tang, Arjun Nair, Borui Wang, Bingyao Wang,
Jai Desai, Aaron Wade, Haoran Li, Asli Celikyil-
maz, Yashar Mehdad, and Dragomir Radev. 2022.
Confit: Toward faithful dialogue summarization with
linguistically-informed contrastive fine-tuning. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5657–5668.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

David Wan and Mohit Bansal. 2022. Factpegasus:
Factuality-aware pre-training and fine-tuning for ab-
stractive summarization. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1010–1028.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
Bartscore: Evaluating generated text as text gener-
ation. Advances in Neural Information Processing
Systems, 34:27263–27277.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328–11339. PMLR.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Zheng Zhao, Shay B Cohen, and Bonnie Webber. 2020.
Reducing quantity hallucinations in abstractive sum-
marization. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 2237–
2249.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia
Mutuma, Rahul Jha, Ahmed Hassan, Asli Celikyil-
maz, Yang Liu, Xipeng Qiu, et al. 2021. Qmsum: A
new benchmark for query-based multi-domain meet-
ing summarization. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 5905–5921.

Chenguang Zhu, Yang Liu, Jie Mei, and Michael Zeng.
2021. Mediasum: A large-scale media interview
dataset for dialogue summarization. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 5927–5934.

Chenguang Zhu, Ruochen Xu, Michael Zeng, and Xue-
dong Huang. 2020. A hierarchical network for ab-
stractive meeting summarization with cross-domain
pretraining. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 194–
203.



A Appendix

A.1 Ablation Studies

We conducted some ablation studies to provide an
in-depth analysis of some parts of our proposed
framework.

A.1.1 Corruption Type Label

We explore the impact of different corruption type
labels. By default, the corrupted tokens were la-
beled according to their specific corruption types.
However, we also investigated the performance
when combining all corruption types into a single
label, thus simplifying the task.

The ablation studies in Table 7 demonstrate that
combining all corruption types into one label leads
to a decrease in identification performance across
all models. The models appear to be more effective
at predicting incorrect words when they are labeled
based on their specific corruption types. This out-
come is expected since the separation of corruption
types makes the task more similar to other common
tasks, such as part-of-speech (POS) tagging. The
corruption type also acts as an implicit hint for the
identifier model, resulting in better token classifi-
cation performance. However, few models appear
to have better accuracy although still have lower
token classification performance.

We also investigated the impact of different con-
figuration corruption labels on the correction per-
formance, as shown in Table 8. We found that us-
ing combined corruption labels generally resulted
in lower performance for the correction task in
most models. The lower correction performance
observed when using combined corruption labels
can be attributed to the lower identification per-
formance. The correction model heavily relies on
the guide provided by the identifier model. When
the identification performance is compromised due
to the combined corruption labels, it impacts the
correction model’s ability to make accurate cor-
rections. However, models with the list guidance
format showed a different pattern. These models
convert the output of the identifier model into a
word list, which focuses on the correct identifica-
tion of words or spans rather than their specific
token positions. As a result, the performance of
models with list guidance format appears to be less
affected by corruption labels.

Table 7: Ablation study with corruption labels on identi-
fication experiment. Bold represents the best score for
each metric, and underline represents the second best.

Model Label SAMSum DialogSum
Token F1 Acc. Token F1 Acc.

Token
Sep. 84.58 96.88 81.06 94.99

Comb. 82.28 95.92 78.54 96.76

Joint
Sep. 83.17 95.09 81.20 93.85

Comb. 81.44 95.92 75.04 93.73

Gen. (Tag)
Sep.

-
95.82

-
95.06

Comb. 95.34 93.91

Table 8: Ablation study with corruption labels on cor-
rection experiment. Bold represents the best score for
each metric, and underline represents the second best.

Model Label SAMSum DialogSum
Identifier Corrector Cor. Ratio Cor. Ratio

Token
Tag

Sep. 73.27 65.66
Comb. 71.43 65.99

List
Sep. 76.96 67.68

Comb. 77.11 68.35

Joint
Tag

Sep. 74.50 65.32
Comb. 72.66 63.64

List
Sep. 77.11 66.67

Comb. 77.57 67.34

Gen. Tag
Sep. 72.96 68.01

Comb. 66.82 62.63

A.1.2 Iterative Correction

As mentioned, our framework offers the option to
apply the correction process iteratively, allowing
for multiple rounds of checking and correcting the
identified errors in the summary. We conducted
an ablation study to investigate the effects of iter-
ative correction on model performance as shown
in Figure 4 and Figure 3. In this study, we exper-
iment with the number of iterations from 1 (no
iteration) until 5, and the iterative process would
continue until either the identifier model predicted
the summary as clean or the maximum iteration
was reached.

Overall, the results indicate a slight improve-
ment in the correction ratio when applying iterative
correction across all models. This suggests that run-
ning the framework iteratively provides the model
with additional opportunities to review and correct
errors that may have been missed in the previous it-
erations. The iterative nature of the process allows
for a more thorough examination of the summary
and can contribute to a higher correction ratio.

However, it is important to note that there is a
decrease in the ROUGE-L score for some models



(a) Correction Ratio (b) ROUGE-L

Figure 3: Correction ratio and ROUGE-L by model and number of iterations for SAMSum dataset

(a) Correction Ratio (b) ROUGE-L

Figure 4: Correction ratio and ROUGE-L by model and number of iterations for DialogSum dataset

when iterative correction is applied. The decline
in the ROUGE score suggests that when applying
iterative correction, the corrector model tends to
modify not only the identified corrupted tokens but
also correct words. This phenomenon leads to a
higher correction ratio but a lower ROUGE score
since unnecessary changes may be introduced, af-
fecting the alignment with the reference summary.
In this case, we should treat the number of itera-
tions differently for each model, because they have
different behavior and optimal number of iterations
to maximize both the correction ratio and ROUGE-
L score. For example, the Generative-List model
in the SAMSum dataset achieves optimal perfor-
mance with 3 iterations, where the correction ratio
is maximized and the ROUGE-L score comes back
up after a decline in iteration 2.

A.2 Automatic Factuality Evaluation

The evaluation results presented in Tables 9 and
10 provide insights into the factuality evaluation
using some automated metrics for the SAMSum
and DialogSum datasets. ROUGE (Lin, 2004)

evaluates n-gram overlaps between the generated
and reference summaries. BERTScore (Zhang
et al., 2019) which measures the similarity between
the generated text and the reference using BERT.
BARTScore (Yuan et al., 2021) which formulates
the evaluation of generated text from BART. Sum-
maC (Laban et al., 2022) a factuality metric that
relies on NLI models by comparing the generated
summary to the source.

Analyzing the results, it is noticeable that the
scores across the various metrics do not exhibit
substantial variations. The corrector models do not
exhibit significantly higher scores compared to the
vanilla BART model. This suggests that the correc-
tions made by the corrector models are relatively
minor, involving only a few words or subtle mod-
ifications. However, it is crucial to recognize that
even small changes in the summaries can have a
considerable impact on their factuality. Changes in
names or pronouns, for instance, can significantly
influence the faithfulness of the summaries. Unfor-
tunately, the automated metrics might not fully cap-
ture these changes, resulting in similar scores for



Table 9: Factuality evaluation results using automated metric for SAMSum dataset. Bold represents the best score
for each metric.

Model ROUGE BERT.S
F1

BART.S
F1

SummaC
Identifier Corrector R-1 R-2 R-L ZS Conv

Vanilla BART 51.00 26.03 41.73 91.63 -2.77 1.02 34.52
Corrected Draft
FEC 51.03 26.22 41.80 91.63 -2.77 1.05 34.69

Token CLS
FEC 51.04 26.11 41.73 91.64 -2.77 0.97 34.49
List 51.05 26.04 41.72 91.63 -2.77 1.11 34.51
Tag 51.03 26.10 41.73 91.63 -2.77 0.93 34.49

Joint
FEC 51.02 26.11 41.74 91.63 -2.77 1.00 34.52
List 51.03 26.05 41.73 91.63 -2.77 1.11 34.54
Tag 51.04 26.08 41.74 91.63 -2.77 0.84 34.47

Generative
FEC 50.99 26.11 41.73 91.63 -2.77 1.03 34.57
List 50.97 25.94 41.64 91.62 -2.78 1.13 34.52
Tag 50.99 26.10 41.72 91.63 -2.77 1.17 34.60

Table 10: Factuality evaluation results using automated metric for DialogSum dataset. Bold represents the best
score for each metric.

Model ROUGE BERT.S
F1

BART.S
F1

SummaC
Identifier Corrector R-1 R-2 R-L ZS Conv

Vanilla BART 43.95 17.96 35.01 91.18 -2.74 -49.79 27.39
Corrected Draft
FEC 43.67 17.86 34.86 91.19 -2.74 -49.39 27.48

Token CLS
FEC 43.94 17.96 35.00 91.18 -2.74 -49.79 27.39
List 43.94 17.98 34.99 91.18 -2.74 -49.77 27.39
Tag 43.93 17.94 34.98 91.18 -2.74 -49.76 27.39

Joint
FEC 43.95 17.97 35.01 91.18 -2.74 -49.83 27.35
List 43.96 17.99 35.01 91.18 -2.74 -49.78 27.39
Tag 43.94 17.96 35.00 91.18 -2.74 -49.92 27.34

Generative
FEC 43.87 17.98 35.01 91.17 -2.75 -49.63 27.49
List 43.62 17.82 34.79 91.17 -2.76 -49.28 27.56
Tag 43.78 17.93 34.92 91.15 -2.75 -49.29 27.79

the corrector models and the vanilla BART model.
These evaluations highlight the challenges of as-
sessing factuality through automated metrics.

A.3 Correction Evaluation Sample
We provide some samples that were used for cor-
rection comparison human evaluation, including
the evaluator’s answer. The correction comparison
samples are in Figure 5.

A.4 Factuality Evaluation Sample
We provide some samples that were used for factu-
ality human evaluation. The summary samples can
be found in Figure 6.



Figure 5: Sample of correction comparison between FEC, Generative-List, Token CLS-List, and Joint-Tag model.
The evaluator’s answer in comparison to the FEC model is provided on the right side. The blue text highlights
different corrections performed by the models.



Figure 6: Sample of correction performed to the draft summary from BART. Red text highlights factually incorrect
words, green text highlights words that are successfully corrected.


