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Abstract

The radioactive nature of Large Language001
Model (LLM) watermarking enables the detec-002
tion of watermarks inherited by student models003
when trained on the outputs of watermarked004
teacher models, making it a promising tool005
for preventing unauthorized knowledge distil-006
lation. However, the robustness of watermark007
radioactivity against adversarial actors remains008
largely unexplored. In this paper, we investi-009
gate whether student models can acquire the ca-010
pabilities of teacher models through knowledge011
distillation while avoiding watermark inheri-012
tance. We propose two categories of watermark013
removal approaches: pre-distillation removal014
through untargeted and targeted training data015
paraphrasing (UP and TP), and post-distillation016
removal through inference-time watermark neu-017
tralization (WN). Extensive experiments across018
multiple model pairs, watermarking schemes019
and hyper-parameter settings demonstrate that020
both TP and WN thoroughly eliminate inher-021
ited watermarks, with WN achieving this while022
maintaining knowledge transfer efficiency and023
low computational overhead. Given the ongo-024
ing deployment of watermarking techniques in025
production LLMs, these findings emphasize the026
urgent need for more robust defense strategies.027

1 Introduction028

The capability of Large Language Models (LLMs)029

to rapidly generate high-quality text at scale makes030

them valuable sources of training data (Zoph et al.,031

2022). However, many leading LLM services ex-032

plicitly prohibit the use of their outputs for training033

competing models through knowledge distillation034

in their terms of service. Notable examples include035

OpenAI, Anthropic and Meta Llama, as detailed in036

Appendix A.037

Watermarking has emerged as a solution to038

monitor unauthorized usage (Kirchenbauer et al.,039

2023; Zhao et al., 2024; Liu et al., 2024c; Zhao040

et al., 2023). Research has shown that water-041
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Figure 1: LLM watermarking has been proposed as a
safeguard against unauthorized knowledge distillation.
However, our pre- and post-distillation watermark re-
moval attacks allow student models to perform untrace-
able knowledge distillation, emphasizing the need for
more robust design. The bar chart displays the effective-
ness of watermark removal and knowledge preservation
for our three proposed attacks.

marked LLMs exhibit radioactivity - student mod- 042

els trained on their outputs inherit detectable water- 043

marks (Sander et al., 2024; Gu et al., 2024). This 044

traceability has led to increasing practical imple- 045

mentations, such as Google DeepMind’s integra- 046

tion of SynthID-Text (Dathathri et al., 2024) into 047

Gemini chatbots (Team et al., 2023). 048
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As watermarking emerges as a promising ap-049

proach to protect model copyrights from knowl-050

edge distillation, its robustness against adversarial051

actors remains largely unexplored. We conduct052

the first systematic investigation into watermark053

resilience and propose two categories of watermark054

removal attacks: pre-distillation removal through055

untargeted and targeted training data paraphras-056

ing (UP and TP), and post-distillation removal057

through inference-time watermark neutralization058

(WN), as illustrated in the upper part of Figure 1.059

Experiments show that TP and WN can thoroughly060

eliminate inherited watermarks, with WN achieves061

watermark removal while preserving distilled062

knowledge and maintaining low computational063

overhead - raising important questions about the064

reliability of preventing unauthorized knowledge065

distillation through watermarks.066

Given that both TP and WN require knowledge067

of watermark rules, we propose a watermark steal-068

ing technique. Unlike existing methods (Jovanović069

et al.; Wu and Chandrasekaran, 2024; Zhang et al.,070

2024), our approach (1) does not need access to the071

watermarking scheme or its hyper-parameters, and072

(2) assigns weights by analyzing factors affecting073

watermark radioactivity, allowing for more targeted074

rule extraction. In TP, we integrate the inverse of075

extracted watermark rules into paraphrase models076

like Dipper (Krishna et al., 2023) to remove wa-077

termark. In contrast, UP simply employs standard078

paraphrasing tools without considering rules. For079

post-distillation removal, we develop watermark080

neutralization that directly counteracts inherited081

watermarks by applying inverse rules during the082

student model’s decoding phase.083

Extensive experiments were conducted across084

2 Teacher-Student model pairs × 2 leading wa-085

termarking schemes × 3 hyperparameter settings.086

The comparative results are summarized in the bot-087

tom part of Figure 1. Both TP and WN effectively088

eliminate inherited watermarks, reducing detection089

significance to levels similar to non-watermarked090

conditions (above 10−2) across all settings. Eval-091

uations on benchmark datasets, including ARC092

challenge (Clark et al., 2018), TruthfulQA (Lin093

et al., 2022), and MTBench (Zheng et al., 2023)094

show that WN exhibits superior knowledge preser-095

vation, achieving comparable performance to base-096

line student models trained without any watermark097

removal techniques. This indicates that student098

models can leverage WN to remove watermarks099

without sacrificing model performance, posing a100

significant challenge to the practical deployment of 101

watermark as a copyright protection mechanism. 102

Key Contributions Our main contributions are: 103

• We conduct the first systematic investigation 104

into the robustness of watermarking schemes 105

against adversarial actors in monitoring unau- 106

thorized knowledge distillation, proposing 107

pre-distillation and post-distillation attacks. 108

• Our proposed targeted paraphrasing and water- 109

mark neutralization methods achieve thorough 110

watermark removal, with the latter demonstrat- 111

ing superior knowledge preservation. This 112

raises concerns about the reliability of current 113

watermarking schemes for monitoring unau- 114

thorized knowledge distillation. 115

• Further discovery of watermark collisions in 116

multi-source knowledge distillation scenarios 117

reveals additional limitations of watermarking 118

schemes in monitoring unauthorized knowl- 119

edge distillation (Section 5.2). Given the 120

ongoing deployment of watermarking tech- 121

niques in production LLMs, these findings 122

highlight the urgent need for more robust de- 123

fense strategies (Section 5.3). 124

2 Background 125

2.1 LLM Watermarking Schemes 126

Most of the existing watermarking schemes follow 127

the n-gram paradigm, modifying the next token’s 128

probability prediction based on the preceding n− 129

1 tokens, thereby influencing the final sampling 130

outcome (Kirchenbauer et al., 2023; Zhao et al., 131

2024; Dathathri et al., 2024; Liu et al., 2024c,b; 132

Lee et al., 2024; Hu et al., 2024; Wu et al., 2023; 133

Aaronson and Kirchner, 2022; Kuditipudi et al., 134

2024). Watermark schemes tested in this work are: 135

KGW (Kirchenbauer et al., 2023) sets the 136

ground work for generative LLM watermarking. 137

For the tth token generation, it computes a hash 138

ht = H(xt−n+1:t−1) from the previous n − 1 to- 139

kens. This hash partitions the vocabulary V into a 140

green list Vg and a red list Vr. A constant bias δ is 141

then added to the logits of green tokens: 142

l
′(i)
t = l

(i)
t + δ if vi ∈ Vg else l

(i)
t . (1) 143

As a result, watermarked text will statistically 144

contain more green tokens, and can be detected by 145

computing the z-score: 146

z = (|s|G − γT )/(
√

γ(1− γ)T ), (2) 147
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Figure 2: An illustration of the proposed watermark removal attacks.

where |s|G counts green tokens in text length T ,148

and γ = |Vg|/|V|.149

SynthID-Text (Dathathri et al., 2024), recently150

announced by Google DeepMind, is the first wa-151

termarking algorithm deployed in production, and152

has been integrated into the Gemini and Gemini153

Advanced chatbots. For the tth token generation,154

it computes a hash ht = H(xt−n+1:t−1) to seed m155

binary classifiers g1, g2, ..., gm, which randomly as-156

sign 0 or 1 to vocabulary tokens. It then samples 2m157

tokens from the original distribution P (xt|x1:t−1)158

and conducts tournament sampling: tokens com-159

pete in pairs based on g1 values in the first round,160

with subsequent rounds using g2, g3, ..., gm until161

one token remains. The watermark manifests as a162

statistical bias toward tokens with higher g values,163

detectable by computing their mean:164

g =

T∑
t=1

m∑
ℓ=1

gℓ(xt)/mT. (3)165

2.2 Watermark Radioactivity166

Research shows that watermarked LLMs exhibit167

radioactivity (Sander et al., 2024; Gu et al., 2024):168

student models trained on their outputs inherit the169

watermark patterns. This effect is highly signifi-170

cant, with reported p-values below 10−30 even un-171

der the most stringent conditions where the teacher172

model is closed-source and detection is unsuper-173

vised (test prompts are disjoint from training data).174

2.3 Watermark Removal Approaches175

Prior work has explored various watermark re-176

moval methods, but focused on removing water-177

marks from generated text rather than models.178

These include untargeted approaches like para-179

phrasing, emoji attacks (Kirchenbauer et al., 2023),180

back-translation, and cross-lingual removal (He181

et al., 2024). For targeted removal, Jovanović et al.;182

Wu and Chandrasekaran (2024); Zhang et al. (2024)183

proposed watermark stealing-and-removing, requir- 184

ing knowledge of the type of watermarking scheme 185

and the window size used. 186

3 Methodology 187

3.1 Threat Model 188

Here are the threat model scenarios in which the 189

student model holder acts as the attacker: (1) At- 190

tack Target: n-gram based watermarking schemes, 191

which represent the primary approach in LLM wa- 192

termarking (see Appendix D.2 for further discus- 193

sion of other paradigms); (2) Access Level: Re- 194

quires only access to the LLM service API, with 195

no need for logits or watermark detection systems; 196

(3) Testing Environment: Unsupervised testing, 197

where test prompts differ from training data, as the 198

LLM service cannot track which data was used to 199

train the student model. 200

3.2 Overview of the Proposed Watermark 201

Removal Methods 202

We propose two categories of watermark removal 203

methods: pre-distillation and post-distillation wa- 204

termark removal, as illustrated in Figure 2. Pre- 205

distillation methods remove watermarks from train- 206

ing data using external paraphrase models. These 207

methods include untargeted paraphrasing (UP), 208

which directly rewrites training data, and targeted 209

paraphrasing (TP), which first steals watermark- 210

ing rules and then applies an inverse watermark 211

on the paraphrase model to rewrite training data. 212

Post-distillation method first steals watermark rules, 213

and then neutralizes the inherited watermark by 214

directly adding an inverse watermark during the 215

student model’s decoding phase. We refer to this 216

process as watermark neutralization (WN). Details 217

of these methods are presented in Sections 3.3 and 218

3.4, while our watermark stealing method used in 219

both TP and WN is introduced in Section 3.5. 220
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Figure 3: Correlation between prefix frequency in train-
ing data and the probability that tokens following these
prefixes are watermarked in student model outputs.

3.3 Pre-distillation Watermark Removal221

Let R, C, O, and W denote the paraphrase222

model, training dataset collected from watermarked223

teacher model’s API, original student model, and224

student model trained on C without attacks, respec-225

tively. For both TP and WN, we denote the wa-226

termark stealing result as D(xt;xt−n′+1:t−1), rep-227

resenting the confidence that xt is a watermarked228

token following xt−n′+1:t−1. Section 3.5 details229

the computation of D.230

Targeted Training Data Paraphrasing During231

paraphrasing, we apply an inverse watermark to the232

paraphrase model R’s logits based on D:233

l′R(xt|x1:t−1) = lR(xt|x1:t−1)−D(xt;xt−n′+1:t−1) · δ′,
(4)234

where δ′ controls the strength. This yields a new235

training dataset CTP for the student model.236

Untargeted Training Data Paraphrasing As237

a comparison, this method directly applies R to238

rewrite training data, yielding dataset CUP .239

3.4 Post-distillation Watermark Removal240

This approach neutralizes watermark by directly ap-241

plying the inverse watermark to the trained student242

model W’s logits during inference:243

l′W(xt|x1:t−1) = lW(xt|x1:t−1)−D(xt;xt−n′+1:t−1) ·δ′.
(5)244

3.5 Watermark Stealing245

This subsection presents our watermark stealing246

method that extracts token preferences following a247

prefix p (denoted as p-rule).248

3.5.1 Watermark Radioactivity Factors249

To efficiently steal watermarks, we first analyze250

factors that affecting watermark radioactivity. This251

analysis helps limit watermark stealing scope to252

rules with stronger inheritance patterns, reducing253

Table 1: Median p-values for watermark detection in
student model outputs, evaluated on groups of 1 million
tokens, across varying watermark window sizes n.

n = 1 n = 2 n = 3 n = 4

KGW 6.24e-25979 4.79e-2537 1.67e-23 0.14
SynthID-Text 6.20e-4028 6.08e-887 0.58 0.64

computational cost and minimizing model modi- 254

fications needed for watermark removal. Our ex- 255

periments reveal two key factors: (1) the occurring 256

frequency of the prefix p in training data, and (2) 257

the window size n used in watermarking schemes. 258

Setup GLM-4-9b-chat (GLM et al., 2024) is 259

used as the teacher model to generate 200k QA 260

pairs for training Llama-7b (Touvron et al., 2023). 261

KGW (Kirchenbauer et al., 2023) and SynthID- 262

Text (Dathathri et al., 2024) are used as watermark- 263

ing schemes with n = 1, 2, 3, 4. We evaluated 264

the inherited watermark strength in the student 265

model using the C4 dataset (Raffel et al., 2020) 266

as prompts. 267

Prefix Frequency vs. Radioactivity As shown 268

in Figure 3, more frequent prefixes in training 269

dataset lead to stronger watermark radioactivity of 270

their p-rules in student model’s outputs, across all 271

schemes and settings. For rare prefixes (frequency 272

≤ 5× 10−5), the radioactivity of their correspond- 273

ing p-rules approaches that of unwatermarked text. 274

Note: n = 1 is excluded in the figure as it uses 275

global, prefix-independent watermark rules. 276

Window Size n vs. Radioactivity As shown in 277

Table 1, the watermark radioactivity falls dramati- 278

cally as n increases. For both KGW and SynthID- 279

Text, watermarks become undetectable even with 280

groups of 1 million tokens1 when n reaches 4. This 281

is because: (1) shorter p-rules are simpler, making 282

it easier for student models to learn; (2) as n in- 283

creases, there is a marked expansion in the variety 284

of prefixes generated by student models, resulting 285

in fewer high-frequency prefixes and more unseen 286

ones in the training data (as shown in Figure 4). 287

Scope of Watermark Stealing Based on the 288

preceding analysis, when conducting watermark 289

stealing, we need only focus on scenarios with 290

small values of n (i.e., n ≤ 3). Furthermore, for 291

cases where n ̸= 1, we can restrict our attention to 292

high-frequency prefixes (i.e. those with frequencies 293

exceeding 5× 10−5). 294

1For watermarked text, larger token samples yield stronger
detection significance.
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Figure 4: Percentages of high-frequency (5×10−5) and
unseen prefixes in training data within student model
outputs, at different n.

3.5.2 Watermark Stealing Process295

Unlike prior work (Jovanović et al.; Wu and Chan-296

drasekaran, 2024; Zhang et al., 2024), our proposed297

stealing method operates effectively without know-298

ing the exact watermarking scheme or window299

size. We first assume a window size n used by300

the teacher model to extract watermark rules, then301

obtain the final output by aggregating results from302

all windows less or equal to the maximum win-303

dow size n′ considered. Based on Section 3.5.1,304

n′ typically remains small, ensuring manageable305

computational complexity.306

Scoring Single n-gram Regardless of the spe-307

cific watermarking algorithm, the core mechanism308

is adjusting the sampling preferences of the subse-309

quent token based on prefix tokens. Therefore, our310

objective is to identify preferred tokens following311

prefix p = xt−n+1:t−1 by assigning a score in [0, 1]312

for each v ∈ V , indicating the confidence value of313

“v is a watermarked token following p”.314

Let O denote the original student model, W315

denote the student model after training on water-316

marked data, and C represent the training corpus.317

To extract p-rules, we collect all contexts in C that318

end with p, perform forward passes using both319

O and W on these contexts to obtain next token320

probability predictions, and average the predictions321

across different contexts, which are:322

PO(xt|p) = Ec∈C,ct−n+1:t−1=p[PO(xt|c)]. (6)323
324

PW(xt|p) = Ec∈C,ct−n+1:t−1=p[PW(xt|c)]. (7)325

Comparing these two distributions reveals the326

context-independent statistical bias of tokens fol-327

lowing prefix p, characterizing the watermark pat-328

terns. We quantify the distribution shift and score329

the n-gram using d(xt;xt−n+1:t−1):330

d(xt; [xt−n+1:t−1]) =
1

2
min(2,

PW (xt|xt−n+1:t−1)

PO(xt|xt−n+1:t−1)
),

(8)331

if PW(xt|xt−n+1:t−1) > PO(xt|xt−n+1:t−1). Oth- 332

erwise, d(xt, xt−n+1:t−1) = 0. Note that if n = 1, 333

which means the watermark rule is globally fixed, 334

d(xt) is computed by quantifying the average prob- 335

ability shifts across all contexts. 336

Considering Multiple Window Sizes Since the 337

window size n of the watermark scheme used in the 338

teacher model is unknown, we need to aggregate 339

scoring results across different n-gram sizes. Let n′ 340

be the maximum window size under consideration. 341

The final confidence score is then defined as: 342

D(xt;xt−n′+1:t−1) = d(xt)+

n′−1∑
i=1

w(xt−i:t−1) · d(xt;xt−i:t−1),

(9) 343

where w(xt−i:t−1) is the weight assigned to the 344

prefix based on its occurring frequency in training 345

data. The weight value is computed as follows: 346

w(xt−k:t−1) =

{(
log f(xt−k:t−1)

logmaxc∈Ck
f(c)

)−α

if f(xt−k:t−1) > θ,

0 otherwise,
(10) 347

where f denotes the occurring frequency in training 348

data, Ck represents the set of all unique k-grams ap- 349

pearing in C, and α is a smoothing parameter. This 350

function assigns higher weight values to prefixes 351

with higher frequency. 352

4 Experiments 353

4.1 Setup 354

Teacher and Student Models Teacher: GLM- 355

4-9b-chat (GLM et al., 2024); Students: Llama-7b 356

(Touvron et al., 2023) and Llama-3.2-1b (Dubey 357

et al., 2024). 358

Watermarking Schemes KGW (Kirchenbauer 359

et al., 2023) and SynthID-Text (Dathathri et al., 360

2024) with n = 1, 2, 3. Results for more water- 361

marking schemes can be found in Appendix D.1. 362

Training Details Dataset is collected by prompt- 363

ing the teacher model to generate 200k QA pairs 364

(detailed in Appendix G). We employ LlamaFac- 365

tory (Zheng et al., 2024) to perform supervised 366

fine-tuning to the student models, with a learning 367

rate of 1e-5 and 3 epochs for all test settings. 368

Testing Details For watermark detection, we 369

prompted the distilled student models to generate 370

texts using C4 dataset (Raffel et al., 2020). The 371

generated tokens were grouped into fixed-size sam- 372

ples, with p-values calculated for each group and 373

the median reported. For knowledge preservation, 374
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Table 2: Median p-values for watermark detection using UP (Untargeted Training Data Paraphrasing), TP (Targeted
Training Data Paraphrasing), and WN (Watermark Neutralization), compared against direct training (No Attack)
and unwatermarked conditions (Unw.). indicates high watermark confidence, indicates low watermark
confidence, and unshaded cells indicate insufficient evidence for watermark presence. Student model used in this
table is Llama-7b, results for Llama-3.2-1b can be found in Appendix C.1.

Watermarking Scheme Token Num. Unw. No Attack UP TP WN

KGW

n = 1
1k 5.75e-01 8.97e-29 6.82e-03 8.27e-01 8.20e-02
2k 5.71e-01 6.49e-55 2.43e-04 6.99e-01 2.72e-02
3k 6.01e-01 2.68e-81 9.68e-06 7.98e-01 1.21e-02

n = 2
10k 4.80e-01 4.12e-28 2.18e-03 6.88e-01 9.85e-02
20k 4.47e-01 4.12e-53 1.29e-05 7.37e-01 3.35e-02
30k 3.62e-01 8.26e-79 1.05e-07 7.43e-01 1.24e-02

n = 3
100k 3.40e-01 1.85e-03 8.52e-01 4.30e-01 5.95e-01
300k 3.41e-01 8.98e-09 9.51e-01 3.23e-01 6.80e-01

1 million 4.84e-01 1.67e-23 8.63e-01 3.69e-01 8.63e-01

SynthID-Text

n = 1
1k 9.67e-01 1.46e-05 7.10e-01 9.98e-01 9.44e-01
2k 9.95e-01 1.08e-09 7.69e-01 9.96e-01 9.88e-01
3k 9.99e-01 1.02e-13 8.05e-01 9.98e-01 9.97e-01

n = 2
10k 4.23e-01 6.67e-11 1.10e-01 4.97e-01 1.52e-01
20k 3.82e-01 8.83e-20 4.29e-02 5.42e-01 7.30e-02
30k 3.09e-01 1.65e-28 1.53e-02 4.45e-01 4.40e-02

n = 3
100k 9.98e-01 5.28e-01 9.92e-01 9.94e-01 9.87e-01
300k 9.76e-01 5.78e-01 9.99e-01 9.91e-01 9.49e-01

1 million 9.87e-01 5.83e-01 9.99e-01 9.92e-01 9.85e-01

we selected three representative benchmarks: ARC375

Challenge (Clark et al., 2018) and TruthfulQA Mul-376

tiple Choice (Lin et al., 2022) (both multiple-choice377

tasks), along with the generative task MTBench378

(Zheng et al., 2023). These benchmarks cover di-379

verse areas including humanity, STEM, reasoning,380

writing, math, and coding.381

Others Frequency threshold θ = 5 × 10−5,382

n′ = 3, smoothing parameter α = 0.3, inverse383

watermark strength δ′ = 2.5 (adaptive control strat-384

egy for δ′ can be found in Appendix F). We use385

Dipper (Krishna et al., 2023) as the paraphraser.386

4.2 Effectiveness of Watermark Removal387

Main Results Table 2 demonstrates the effec-388

tiveness of the three proposed watermark removal389

methods across different settings. It is evident that390

both TP and WN methods successfully eliminate391

the inherited watermark in all cases, maintaining392

confidence levels similar to unwatermarked condi-393

tions. The UP method also contributes to water-394

mark removal; however, due to its lack of speci-395

ficity, it fails to achieve complete removal when the396

watermark learned by the student model is strong397

(i.e., KGW n = 1, 2).398

Weight Ablation Study Figure 5 compares wa-399

termark removal effectiveness of WN between400

Figure 5: Comparison of watermark removal effective-
ness: frequency-based prefix weighting vs. uniform
weighting strategies.

frequency-based and uniform prefix weighting (us- 401

ing n = 2). The results show that frequency-based 402

prefix weighting, which assigns higher weights to 403

more easily learned p-rules, achieves better wa- 404

termark removal while maintaining an equal total 405

weight across prefixes. 406

4.3 Performance of Knowledge Preservation 407

Main Results Table 3 shows that training on 408

200k watermarked teacher samples significantly 409

improves the student model’s performance across 410

all benchmarks (Trained SM vs Ori. SM), regard- 411

less of watermarking scheme or window size n. 412

When applying removal methods, UP and TP gener- 413

ally degrade performance, especially on generative 414
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Table 3: Comparison of student model performance across benchmarks under different scenarios: no attack (Trained
SM), UP, TP and WN. Values in () indicate percentage changes relative to Trained SM, with the highest performance
in each setting bolded and underlined. Student model used in this table is Llama-7b, results for Llama-3.2-1b can be
found in Appendix C.2.

Benchmark Ori. SM Wat. Scheme Trained SM Trained SM + UP Trained SM + TP Trained SM + WN

ARC
Challenge

(ACC)
0.4181

KGW
n = 1 0.4480 0.4215 (-5.9%) 0.3951 (-11.8%) 0.4497 (+0.6%)
n = 2 0.4404 0.4283 (-2.7%) 0.4104 (-6.8%) 0.4369 (-0.8%)
n = 3 0.4778 0.3865 (-19.1%) 0.3840 (-19.6%) 0.4642 (-2.8%)

SynthID
-Text

n = 1 0.4505 0.4394 (-2.5%) 0.4198 (-6.8%) 0.4548 (+1.0%)
n = 2 0.4360 0.4403 (+1.0%) 0.4241 (-2.7%) 0.4565 (+4.7%)
n = 3 0.4505 0.4394 (-2.5%) 0.4283 (-4.9%) 0.4471 (-0.8%)

TruthfulQA
Multiple Choice

(ACC)
0.3407

KGW
n = 1 0.3884 0.3917 (+0.8%) 0.3785 (-2.5%) 0.4186 (+7.8%)
n = 2 0.4376 0.4097 (-6.4%) 0.4089 (-6.6%) 0.4353 (-0.5%)
n = 3 0.4459 0.4315 (-3.2%) 0.4055 (-9.1%) 0.4632 (+3.9%)

SynthID
-Text

n = 1 0.4063 0.3780 (-7.0%) 0.3597 (-11.5%) 0.4262 (+4.9%)
n = 2 0.3991 0.3965 (-0.7%) 0.4043 (+1.3%) 0.4281 (+7.3%)
n = 3 0.4102 0.4009 (-2.3%) 0.4062 (-1.0%) 0.4330 (+5.3%)

MTBench
(Full Score: 10)

2.64

KGW
n = 1 3.86 3.04 (-21.2%) 2.76 (-28.5%) 3.67 (-4.9%)
n = 2 3.99 3.40 (-14.8%) 2.94 (-26.3%) 4.02 (+0.7%)
n = 3 4.11 3.27 (-20.4%) 3.04 (-26.0%) 3.99 (-2.9%)

SynthID
-Text

n = 1 4.14 3.27 (-21.0%) 2.01 (-51.4%) 4.13 (-0.2%)
n = 2 4.24 3.05 (-28.1%) 2.84 (-33.0%) 4.12 (-2.8%)
n = 3 4.24 2.90 (-31.6%) 2.69 (-36.6%) 4.16 (-1.9%)

Figure 6: Pairwise similarities of probability prediction
shifts across different contexts when the last token is
fixed as “the”, showing (a) knowledge shifts similarity
and (b) watermark shifts similarity.

tasks like MTBench, with TP showing larger degra-415

dation than UP. WN effectively maintains knowl-416

edge - compared to the trained SM, it improves417

performance in about half the cases and shows mi-418

nor decreases (under 5%) in others, performing419

similarly to direct training without attacks.420

Why WN Can Achieve Good Knowledge Preser-421

vation WN achieves superior knowledge preser-422

vation for two key reasons. First, it eliminates423

the need for external rewriting tools. Since the424

teacher model represents our highest quality data425

source, avoiding external rewriting prevents data426

quality degradation. Second, our experiments re-427

veal distinct patterns between knowledge and wa-428

termark learning. Knowledge learning depends on429

broader context, while watermark learning only re-430

lies on the previous n − 1 tokens. Using n = 2,431

we analyze 1,000 distinct text segments ending 432

with "the" (ctx the) and compare: (1) Knowledge 433

shifts: Probability differences between models be- 434

fore and after training on non-watermarked data 435

show high variation across contexts (Figure 6(a)); 436

(2) Watermark shifts: Probability differences be- 437

tween models trained on non-watermarked and wa- 438

termarked data (generated using the same teacher 439

and prompts) exhibit high consistency across dif- 440

ferent ctx when the last token is fixed (Figure 6(b)). 441

Therefore, using prompts with fixed ending to- 442

kens to get averaged probability shifts mainly cap- 443

tures watermark patterns, while knowledge-related 444

shifts tend to cancel out during averaging, resulting 445

in minimal impact. 446

5 Further Analysis 447

5.1 Computational Overhead 448

To conduct a thorough assessment of practical ap- 449

plications, this section presents a detailed analysis 450

of the operational overhead associated with the 451

three proposed watermark removal methods, as 452

summarized in Table 4. 453

External Tools UP and TP require external para- 454

phrasing tools, while WN needs none. 455

Preprocessing Time Consumption UP requires 456

Dipper-like models to paraphrase the entire training 457

dataset, WN only needs watermark stealing for pre- 458

7



Table 4: Overhead comparison of watermark removal
methods, averaged across various watermark settings
using Llama-7b as the student model. All experiments
were conducted on 8 NVIDIA H800 GPUs.

UP TP WN

Required External Tools ✓ ✓ ✗
Preprocessing Time (h) 31.8 37.1 3.6
Inference Latency (s / token) 0.0000 0.0000 0.0068

Table 5: Watermark detection results in multi-source
settings: 2 teacher models (1) employing KGW scheme
with opposing keys; (2) using KGW and SynthID-Text
respectively. Single-source results are shown in ().

KGW k + KGW k KGW + SynthID-Text

Detector 1 2.81e-01 (4.21e-28) 5.64e-09 (4.21e-28)
Detector 2 7.19e-01 (4.21e-28) 3.48e-03 (6.67e-11)

processing, and TP requires both. The time cost of459

watermark stealing consists of student model train-460

ing (about 1h for Llama-7b) and dataset forward461

passes. The forward passes are computationally462

much cheaper than paraphrasing, as parallel com-463

putation is faster than autoregressive generation.464

Student Model Inference Latency UP and TP465

have no additional inference overhead. WN re-466

quires adding inverse watermark during inference,467

causing slight delay.468

5.2 Multi-Source Knowledge Distillation469

The previous analysis focused on single-source470

knowledge distillation. In real-world scenarios471

with multiple LLM services, we found that wa-472

termarks from different sources can collide and473

counteract each other during knowledge distillation,474

making watermarks less effective as a protection475

mechanism - even without any removal methods.476

Case 1: Two Opposing Keys We tested an477

extreme case with two teachers using the KGW478

scheme with complementary keys (the hash results479

were complete opposites). When we trained a stu-480

dent model using a combined dataset (100k sam-481

ples from each teacher), the watermark detection482

confidence dropped significantly from e-28 to e-01,483

as shown in Table 5.484

Case 2: Two Watermarking Schemes We485

examined a scenario using two teacher models486

with different watermarking methods (KGW and487

SynthID-Text), each generating 100k samples.488

Training a student model on this combined dataset489

led to reduced watermark detection confidence for490

both schemes’ detectors compared to single-source491

Figure 7: Average -log p values from detectors and MT-
Bench scores as the number of teacher sources increases.

scenarios (as shown in Table 5). 492

Case 3: Multi-Source In this scenario, all 493

teacher models employ the KGW scheme with 494

randomly selected keys. As shown in Figure 7, 495

while increasing the number of source models and 496

maintaining a constant total volume of mixed train- 497

ing data, watermark detection became increasingly 498

difficult, yet model performance remained stable. 499

This suggests that mixing data from a sufficient 500

number of teacher sources can achieve untraceable 501

knowledge distillation. 502

5.3 Future Directions in Defense Strategy 503

This work reveals the vulnerability of unauthorized 504

knowledge distillation prevention when genera- 505

tive LLM watermarking is predominantly confined 506

to n-gram based approaches. While alternatives 507

such as sentence-level reject sampling (Hou et al., 508

2023, 2024) and post-generation signal embedding 509

(Chang et al., 2024) exist, these approaches intro- 510

duce significant latency to the current token-by- 511

token real-time LLM inference paradigm, making 512

them difficult to deploy at scale in real-time LLM 513

services. We therefore advocate for diversifying 514

token-level watermarking techniques, as multiple 515

paradigms would make it harder for attackers to 516

identify and target specific methods, enabling more 517

robust protection. 518

6 Conclusion 519

This work presents the first systematic study of the 520

robustness of watermarking schemes against ad- 521

versarial attacks in preventing unauthorized knowl- 522

edge distillation. We propose three watermark re- 523

moval approaches: two pre-distillation methods 524

(UP, TP) and one post-distillation method (WN). 525

Through comprehensive experiments, we evaluate 526

the resilience of watermarking schemes against 527

these attacks. Our findings reveal that WN achieves 528

effective watermark removal while maintaining su- 529

perior knowledge preservation, highlighting the 530

urgent need for more robust defensive strategies. 531

8



Limitations532

While our study presents a systematic investiga-533

tion of watermark resilience against adversarial534

attacks under the scenario of preventing unautho-535

rized knowledge distillation, there still exist several536

limitations. Due to computational constraints, we537

only evaluated one teacher model (GLM-4-9b-chat)538

and two student models (Llama-7b and Llama-3.2-539

1b). The experiments were conducted using a fixed540

training dataset size of 200,000 samples and tested541

primarily on English language tasks. Additionally,542

our evaluation metrics focused on standard bench-543

marks (ARC, TruthfulQA, MTBench) and may not544

fully reflect performance on specialized domain545

tasks. Future work could explore a broader range546

of model architectures, training data scales, and547

task domains.548
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A Selected Terms of Use for LLM Services768

Figure 8 shows excerpts from terms of use across various leading LLM services, including OpenAI2,769

Anthropic3 and Meta Llama4. These terms explicitly prohibit using model outputs for training or improving770

other models.

OpenAI. What you cannot do.

Use output to develop models that compete with OpenAI.

Anthropic. You may not access or use, or help another person to access or use, our Services in the
following ways:

To develop any products or services that compete with our Services, including to develop or train
any artificial intelligence or machine learning algorithms or models.

Meta (Llama 2). License Rights and Redistribution.

You will not use the Llama Materials or any output or results of the Llama Materials to improve
any other large language model (excluding Llama 2 or derivative works thereof).

Figure 8: Selected terms of use for various LLM services.

771

B Details of Watermarking Schemes772

B.1 KGW773

Watermarking KGW (Kirchenbauer et al., 2023) is a fundamental scheme of LLM watermarking.774

For generating the t-th token, the algorithm examines the previous n − 1 tokens: xt−n+1:t−1. These775

tokens are fed into a hash function H to produce ht = H(xt−n+1:t−1). Based on ht, the vocabulary V is776

deterministically split into a green list Vg and a red list Vr. A constant bias δ is applied to logits of green777

tokens according to:778

l′
(i)
t =

{
l
(i)
t + δ if vi ∈ Vg

l
(i)
t if vi ∈ Vr

(11)779

Detection Given a text sequence of length T , we count the number of green tokens |s|G. Let γ =780

|Vg|/|V| represent the expected proportion of green tokens in random text. The statistical significance of781

the green token count is measured by the z-score:782

z =
|s|G − γT√
γ(1− γ)T

(12)783

For a fixed δ (δ > 0), longer sequences lead to stronger detection signal, as the z-score increases with784

text length T .785

In our experiments, we set δ = 3.0 and γ = 0.5, which represents a relatively strong watermark786

configuration in typical KGW settings. We avoid using larger δ values since stronger watermarks would787

notably degrade the text quality (as shown in Figure 9a), making them impractical for real-world LLM788

services.789

Watermark Confidence: p-value Under the null hypothesis (non-watermarked text), the z-score790

follows a standard normal distribution N (0, 1). The p-value can be computed as:791

p = 1− Φ(z). (13)792

2https://openai.com/policies/terms-of-use/
3https://www.anthropic.com/legal/consumer-terms
4https://ai.meta.com/llama/license/

12



(a) KGW (b) SynthID-Text

Figure 9: The relationship between watermark strength settings and perplexity under different watermarking
schemes. The model used for calculating PPL is Llama-3.1-70B (Dubey et al., 2024).

Smaller p-value suggests higher confidence of watermark presence, as it indicates that the proportion of 793

green tokens significantly exceeds what would be expected by chance. 794

B.2 SynthID-Text 795

Watermarking SynthID-Text (Dathathri et al., 2024) employs a tournament-based watermarking 796

approach during the token generation process. For generating the t-th token, the algorithm first generates 797

a random seed ht by applying a hash function H to the previous n− 1 tokens: ht = H(xt−n+1:t−1). This 798

seed initializes m independent g functions g1, g2, ..., gm, which assign binary values (0 or 1) to each token 799

in the vocabulary. 800

The core watermarking process involves a tournament with m layers. Initially, 2m candidate tokens are 801

sampled from the language model’s original probability distribution P (xt|x1:t−1). These tokens undergo 802

a series of pairwise competitions through m tournament layers. In each layer ℓ, tokens are randomly 803

paired, and within each pair, the token with the higher gℓ score advances to the next layer, with random 804

tie-breaking. The final surviving token after m layers becomes the output token xt. 805

Detection Detection in SynthID-Text relies on measuring the statistical signature introduced during the 806

watermarking process. Given a piece of text x = x1, ..., xT , the detection algorithm: 807

1. Reconstructs the random seeds ht for each position t using the same hash function and watermarking 808

key 809

2. Computes the g-values for each token using the same watermarking functions 810

3. Calculates the mean score across all positions and layers: 811

g =
1

mT

T∑
t=1

m∑
ℓ=1

gℓ(xt). (14) 812

Due to the tournament selection process, watermarked text tends to contain tokens with higher g-values 813

compared to non-watermarked text. Several factors contribute to a stronger detection signal: increasing 814

the number of g functions (larger m), using more candidates in each round of tournament sampling, and 815

extending the sequence length for detection. 816

In our experiment, we set m = 30 and use 2 candidates per round in tournament sampling, following 817

the default configuration in SynthID-Text paper. We avoid using larger candidates number since stronger 818

watermarks would notably degrade the text quality (as shown in Figure 9b), making them impractical 819

for real-world LLM services. However, we built upon this foundation by implementing the distortionary 820
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Table 6: Median p-values for watermark detection using UP (Untargeted Training Data Paraphrasing), TP (Targeted
Training Data Paraphrasing), and WN (Watermark Neutralization), compared against direct training (No Attack)
and unwatermarked conditions (Unw.). indicates high watermark confidence, indicates low watermark
confidence, and unshaded cells indicate insufficient evidence for watermark presence. Student model used in this
table is Llama-3.2-1b.

Watermarking Scheme Token Num. Unw. No Attack UP TP WN

KGW

n = 1
1k 5.75e-01 1.26e-36 3.27e-03 9.98e-01 6.21e-01
2k 5.71e-01 3.59e-71 6.00e-05 9.95e-01 7.00e-01
3k 6.01e-01 1.28e-104 1.03e-06 9.98e-01 7.34e-01

n = 2
10k 4.80e-01 4.79e-65 1.00e-03 8.14e-01 5.20e-01
20k 4.47e-01 5.96e-128 6.42e-06 6.79e-01 4.97e-01
30k 3.62e-01 4.68e-190 3.59e-08 8.92e-01 5.48e-01

n = 3
100k 3.40e-01 6.85e-12 6.96e-02 1.98e-01 8.13e-01
300k 3.41e-01 2.33e-27 1.09e-02 5.19e-01 9.43e-01

1 million 4.84e-01 1.13e-87 9.80e-05 2.04e-01 9.98e-01

SynthID-Text

n = 1
1k 9.67e-01 3.76e-10 2.55e-01 9.98e-01 9.94e-01
2k 9.95e-01 9.00e-19 1.66e-01 9.87e-01 9.96e-01
3k 9.99e-01 1.72e-27 1.26e-01 9.89e-01 9.98e-01

n = 2
10k 4.23e-01 1.29e-32 4.81e-03 2.93e-01 4.58e-01
20k 3.82e-01 1.48e-63 1.11e-04 1.83e-01 4.77e-02
30k 3.09e-01 2.22e-95 4.28e-06 3.67e-01 1.51e-02

n = 3
100k 9.98e-01 2.41e-05 9.93e-01 9.99e-01 8.95e-01
300k 9.76e-01 2.47e-14 9.94e-01 9.99e-01 9.97e-01

1 million 9.87e-01 1.85e-32 9.97e-01 9.99e-01 9.98e-01

version of SynthID-Text, which enhances watermark strength. The non-distortionary version employs821

repeated context masking, where watermarks are only applied to subsequent tokens upon the first encounter822

with a particular prefix, while original sampling is used for subsequent occurrences of the same prefix.823

This approach ensures unbiased multi-step sampling and maintains text quality at the cost of watermark824

strength. In contrast, the distortionary version foregoes repeated context masking, sacrificing some text825

quality but achieving stronger watermarks.826

Watermark Confidence: p-value For a given text x and its score g, the p-value is calculated based on827

the following principles: Under the null hypothesis (text contains no watermark), g approximately follows828

a normal distribution according to the Central Limit Theorem. This distribution has a mean µ = 0.5 since829

g functions output 0 and 1 with equal probability for non-watermarked text. The variance σ2 is estimated830

as 1
4mT , where m is the number of g functions and T is the text length. The p-value is then computed as:831

p = 1− Φ(
g − 0.5

1/
√
4mT

) (15)832

where Φ(·) is the cumulative distribution function of the standard normal distribution. A smaller p-value833

indicates stronger evidence that the text contains a watermark.834

C Experiment Results for Llama-3.2-1b835

This section provides supplementary experimental results for Llama-3.2-1b, including the effectiveness of836

watermark removal and knowledge preservation performance.837

C.1 Results of Watermark Removal Effectiveness for Llama-3.2-1b838

Table 6 demonstrates the effectiveness of the three proposed watermark removal approaches across various839

settings, with Llama-3.2-1b serving as the student model. The experimental results align closely with840

those obtained using Llama-7b as the student model, as discussed in the main text: both targeted training841
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Table 7: Comparison of student model performance across benchmarks under different scenarios: no attack (Trained
SM), UP, TP and WN. Values in () indicate percentage changes relative to Trained SM, with the highest performance
in each setting bolded and underlined. Student model used in this table is Llama-3.2-1b.

Benchmark Ori. SM Wat. Scheme Trained SM Trained SM + UP Trained SM + TP Trained SM + WN

ARC
Challenge

(ACC)
0.3166

KGW
n = 1 0.3404 0.3430 (+0.8%) 0.3259 (-4.3%) 0.3660 (+7.5%)
n = 2 0.3515 0.3200 (-9.0%) 0.2841 (-19.2%) 0.3498 (-0.5%)
n = 3 0.3712 0.3072 (-17.2%) 0.2935 (-20.9%) 0.3626 (-2.3%)

SynthID
-Text

n = 1 0.3541 0.3259 (-8.0%) 0.3242 (-8.4%) 0.3626 (+2.4%)
n = 2 0.3481 0.3345 (-3.9%) 0.3200 (-8.1%) 0.3575 (+2.7%)
n = 3 0.3532 0.3396 (-3.9%) 0.3251 (-8.0%) 0.3498 (-1.0%)

TruthfulQA
Multiple Choice

(ACC)
0.3768

KGW
n = 1 0.3783 0.3815 (+0.8%) 0.3796 (+0.3%) 0.3820 (+1.0%)
n = 2 0.4022 0.3719 (-7.5%) 0.3887 (-3.4%) 0.4026 (+0.1%)
n = 3 0.4061 0.3949 (-2.8%) 0.3862 (-4.9%) 0.4411 (+8.6%)

SynthID
-Text

n = 1 0.4023 0.3869 (-3.8%) 0.3497 (-13.1%) 0.4027 (+0.1%)
n = 2 0.3912 0.3893 (-0.5%) 0.3921 (+0.2%) 0.4177 (+6.8%)
n = 3 0.4140 0.3883 (-6.2%) 0.3941 (-4.8%) 0.4224 (+2.0%)

MTBench
(Full Score: 10)

2.78

KGW
n = 1 2.88 1.87 (-35.1%) 1.27 (-55.9%) 3.20 (+11.1%)
n = 2 2.90 1.31 (-54.8%) 1.19 (-59.0%) 2.85 (-1.7%)
n = 3 2.88 1.30 (-54.9%) 1.16 (-59.7%) 2.88 (+0.0%)

SynthID
-Text

n = 1 3.21 1.51 (-53.0%) 1.26 (-60.7%) 3.19 (-0.6%)
n = 2 3.11 1.29 (-58.5%) 1.31 (-57.9%) 2.83 (-9.0%)
n = 3 3.09 1.28 (-58.6%) 1.27 (-58.9%) 2.98 (-3.6%)

data paraphrasing (TP) and inference-time watermark neutralization (WN) successfully eliminate the 842

watermark completely, while untargeted training data paraphrasing (UP) shows some removal effect but 843

fails to achieve complete elimination across all scenarios. 844

C.2 Results of Knowledge Preservation Performance for Llama-3.2-1b 845

Table 7 reveals that Llama-3.2-1b, when trained on 200,000 watermarked samples from the teacher 846

model, achieves substantial performance gains across all benchmarks. As for knowledge preservation 847

performance of the three proposed watermark removal methods, the results of Llama-3.2-1b echo the 848

main experimental results: while both UP and TP lead to widespread performance degradation under most 849

configurations, WN stands out for its remarkable ability to preserve knowledge. Specifically, WN yields 850

performance improvements in roughly half of the settings while showing slight decreases in the remaining 851

scenarios, and these changes remain small throughout. 852

D Experiment Results for More Watermarking Schemes 853

The main experiments focused on two representative watermarking schemes, KGW (Kirchenbauer 854

et al., 2023) and SynthID-Text (Dathathri et al., 2024), for testing. This section presents supplementary 855

experiments with additional n-gram based watermarking schemes to demonstrate the strong generalization 856

capability of the proposed method. Moreover, we will discuss several other watermarking paradigms that 857

represent alternative approaches in this field. 858

D.1 Experiment Results for More N-gram based Watermarking Schemes 859

MinHash This method is a variant of KGW, proposed by Kirchenbauer et al. (2024). In the default 860

implementation of KGW, the hash function H is a multiplicative modular function, expressed as: 861

ht = H(xt−n+1:t−1) =
t−1∏

i=t−n+1

xi mod |V|. (16) 862

This approach causes the hash result to change whenever any token within the window is modified, leading 863

to reduced robustness as the window size n increases. To address this limitation, several improved versions 864
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Table 8: Median p-values for watermark detection using WN (Watermark Neutralization), compared against
direct training (No Attack) and unwatermarked conditions (Unw.). indicates high watermark confidence,
indicates low watermark confidence, and unshaded cells indicate insufficient evidence for watermark presence. The
watermarking schemes used in this table are MinHash and SkipHash.

Watermarking Scheme Model Token Num. Unw. No Attack WN

MinHash
n = 3

Llama-7b
100k 7.87e-01 2.32e-16 8.41e-01
300k 9.23e-01 4.52e-47 9.28e-01

1 million 9.97e-01 2.79e-141 9.98e-01

Llama-3.2-1b
100k 7.87e-01 6.28e-44 9.89e-01
300k 9.23e-01 1.14e-134 9.96e-01

1 million 9.97e-01 4.56e-385 9.98e-01

SkipHash
n = 3

Llama-7b
100k 9.98e-01 2.80e-05 8.91e-01
300k 9.98e-01 1.85e-13 9.84e-01

1 million 9.98e-01 4.13e-39 9.92e-01

Llama-3.2-1b
100k 9.98e-01 1.07e-07 9.91e-01
300k 9.98e-01 4.01e-18 9.97e-01

1 million 9.98e-01 3.45e-47 9.98e-01

Table 9: Comparison of student model performance across benchmarks under no attack scenario (Trained SM) and
using WN for watermark removal. Values in () indicate percentage changes relative to Trained SM, with the highest
performance in each setting bolded and underlined.

Benchmark Student Model Ori. SM Wat. Scheme Trained SM Trained SM + WN

ARC
Challenge

(ACC)

Llama-7b 0.4181
MinHash n = 3 0.4505 0.4471 (-0.8%)

SkipHash n = 3 0.4625 0.4625 (+0.0%)

Llama-3.2-1b 0.3166
MinHash n = 3 0.3532 0.3567 (+1.0%)

SkipHash n = 3 0.3609 0.3618 (+0.2%)

TruthfulQA
Multiple Choice

(ACC)

Llama-7b 0.3407
MinHash n = 3 0.4836 0.4872 (+0.7%)

SkipHash n = 3 0.4562 0.4624 (+1.4%)

Llama-3.2-1b 0.3768
MinHash n = 3 0.4153 0.4187 (+0.8%)

SkipHash n = 3 0.4037 0.4069 (+0.8%)

MTBench
(Full Score: 10)

Llama-7b 2.64
MinHash n = 3 3.75 3.73 (-0.5%)

SkipHash n = 3 4.11 4.04 (-1.7%)

Llama-3.2-1b 2.78
MinHash n = 3 3.03 2.91 (-4.0%)

SkipHash n = 3 3.46 3.37 (-2.6%)

have been proposed, including MinHash, which uses the minimum token id within the window as the865

hash result:866

ht = H(xt−n+1:t−1) = min
i∈[t−n+1,t−1]

xi (17)867

SkipHash SkipHash (Kirchenbauer et al., 2024) is also a variant of KGW designed to improve868

robustness, but it uses a hash function that takes the leftmost token id within the window, expressed as:869

ht = H(xt−n+1:t−1) = xt−n+1 (18)870

When n ≤ 2, MinHash and SkipHash are equivalent to KGW, so we only evaluate scenarios where871

n = 3. Given WN’s superior overall performance among the three proposed methods in terms of872

watermark removal effectiveness and knowledge preservation, the subsequent experiments exclusively873

focus on this approach. The experimental results are shown in Table 8 and Table 9. The observed trends in874

the experimental results align consistently with the main experiment, which uses KGW and SynthID-Text.875

The WN approach demonstrates complete watermark removal efficacy while showing no significant876

impact on the knowledge acquired by the student model.877
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D.2 Discussion About Other Watermarking Paradigms 878

Watermarking
Schemes

Generative
Watermarking

Token-level

N-gram based

KGW (Kirchenbauer et al., 2023)), SynthID-
Text (Dathathri et al., 2024), KGW-
MinHash (Kirchenbauer et al., 2024), KGW-
SkipHash (Kirchenbauer et al., 2024), Unbi-
ased Watermark (Hu et al., 2024), DiPMark
(Wu et al., 2023), Aar (Aaronson and Kirch-
ner, 2022), SIR (Liu et al., 2024c), UPV
(Liu et al., 2024b), etc.

Fixed-key-
list based

Unigram (Zhao et al., 2024), KTH (Kudi-
tipudi et al., 2024)

Sentence-level SemStamp (Hou et al., 2023), k-SemStamp (Hou et al., 2024)

Post-hoc
Watermarking

PostMark (Chang et al., 2024)), DeepTextMark (Munyer and Zhong, 2023),
Context-aware Lexical Substitution (Yang et al., 2022), etc.

Figure 10: Taxonomy of existing watermarking schemes.

As illustrated in Figure 10, current watermarking schemes can be categorized into two main approaches: 879

generative watermarking, where watermarks are embedded during the text generation process, and post- 880

hoc watermarking, where watermarks are added to existing texts. Within generative watermarking, there 881

are further subdivisions into token-level methods and sentence-level approaches based on reject sampling. 882

In real-time services, tokens can be outputted as they are sampled while inference continues, thereby 883

enhancing user experience. Post-hoc watermarking and sentence-level watermarking introduce significant 884

latency, making them less suitable for real-time LLM services compared to token-level watermarking. 885

Among token-level methods, the predominant paradigm is the n-gram based approach. Additionally, 886

there are few methods that employ a fixed-key-list based approach, which utilizes global fixed watermark 887

keys independent of the prefix. These methods include Unigram (Zhao et al., 2024) and KTH (Kuditipudi 888

et al., 2024), for which we conduct supplementary experiments. 889

Unigram (Zhao et al., 2024) This approach is equivalent to KGW with prefix length of 0, using a 890

globally fixed red-green partition. According to our main experimental results, both TP and WN can 891

completely remove the watermarks inherited by the student model. 892

KTH (Kuditipudi et al., 2024) This method employs a globally fixed sequence of watermark 893

keys: ξ = ξ(0), ξ(1), ..., ξ(m−1), where each ξ(j) ∈ [0, 1]|V| follows a uniform distribution. During text 894

generation, first a random shift s ∈ [0,m) is selected, then the t-th generated token is chosen using the 895

following strategy: 896

xt = argmax
i

(ξ
(s+t mod m)
i )1/pt , (19) 897

where pt is the original probability prediction at position t. During watermark detection, it computes 898

the minimum Levenshtein distance d between the text to be detected x and the key sequences ξ. In 899

comparison, it randomly generates n sequences with the same shape as xi, and calculates d′1, d′2, ..., d′n 900

using the same method. The detection p-value is represented by the proportion of values in the d′ sequence 901

that are lower than d. It is worth noting that the p-value of this detection method is bounded by the number 902

of trials n. 903

Table 10: Median p-value of watermark detection in trained student models using KTH watermarking scheme
(m = 256, token num. = 256, n = 100).

Watermarking Scheme Student Model Median p-value (No Attack)

KTH
Llama-7b 3.1e-01

Llama-3.2-1b 3.2e-01

Our experiments revealed that the addition of KTH watermark significantly affects the instruction- 904

following capability of the teacher model, resulting in a lower proportion of QA pairs conforming to 905
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format rules and generally shorter answers. After training on such data, the watermark is barely detectable906

in the student model, as shown in Table 10.907

E Impact of Inference-Time Watermark Neutralization (WN) on Knowledge908

Preservation under Non-watermarked Setting909

Previous experiments have demonstrated that when teacher model is watermarked, inference-time water-910

mark neutralization (WN) effectively enables the student model to bypass the watermark while acquiring911

knowledge from the teacher model’s outputs that is comparable to what would be learned without any at-912

tack. In this section, we conducted additional experiments to examine whether applying WN would affect913

the knowledge acquired by the student model in cases where the teacher model itself is not watermarked914

(noting that the student model has no access to the detector and thus cannot determine the presence of915

watermarks).916

Consistent with the settings in our main experiments, we generated QA pairs using GLM-4-9b-chat.917

After filtering and deduplication, we obtained 200,000 non-watermarked samples. We trained both918

Llama-7b and Llama-3.2-1b models using this dataset, and then applied WN for watermark removal and919

evaluated the performance changes across various benchmarks, with results presented in Table 11. It920

can be concluded that WN does not exert a substantial negative impact on knowledge preservation under921

non-watermarked setting.922

Table 11: Impact of WN on knowledge preservation under non-watermarked setting.

Benchmark Student Model Ori. SM Trained SM Trained SM + WN

ARC Challenge
(ACC)

Llama-7b 0.4181 0.4454 0.4488 (+0.7%)
Llama-3.2-1b 0.3166 0.3524 0.3507 (-0.5%)

TruthfulQA
Multiple Choice (ACC)

Llama-7b 0.3407 0.4254 0.4507 (+5.9%)
Llama-3.2-1b 0.3768 0.4052 0.3951 (-2.5%)

MTBench
(Full Score: 10)

Llama-7b 2.64 3.99 4.12 (+3.2%)
Llama-3.2-1b 2.78 3.15 3.08 (-2.2%)

F Adaptive Control for Inverse Watermark Strength923

Throughout all previous experiments, we consistently used an inverse watermark strength of δ′ = 2.5 for924

WN, which achieved complete watermark removal in all cases. As detailed in Appendix B, the chosen925

watermark strength of the teacher model represents a notably high intensity that remains practical for926

deployment in LLM services, suggesting that δ′ = 2.5 is sufficient for the vast majority of scenarios.927

However, to account for potential extreme cases, we also explored strategies for adaptive control of928

inverse watermark strength. Our approach is to estimate the required inverse watermark strength δ′ by929

detecting the watermark intensity inherited by the student model. Since the student model holder does930

not have access to the watermark detector, we employed Water-Probe (Liu et al., 2024a) to measure931

watermark intensity. Water-Probe is a recently proposed identification algorithm that tests for watermarks932

by comparing the model’s responses to specially crafted prompts, where higher similarity in responses to933

crafted prompts pairs indicates a higher likelihood (or strength) of watermarking.934

We conducted experiments using KGW with n = 1. Table 12 shows the cosine similarity scores935

detected by Water-Probe-v25 for Llama-7b student models trained with different watermark strengths δ,936

compared with a student model trained on unwatermarked data. Based on this reference table, we can937

estimate the watermark strength δ used in the teacher model by examining the WaterProbe-v2 cosine938

similarity score of the trained student model. This estimation enables us to adaptively select an appropriate939

inverse watermark strength δ′ for removal.940

Here is a practical example: Suppose the teacher model is watermarked using KGW with n = 1, δ = 5.0.941

The trained student model’s detected cosine similarity is 0.1694, which is slightly higher than the reference942

5There are two versions of Water-Probe, with version 2 demonstrating more stable performance in our experiments.
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Table 12: Water-Probe-v2 cosine similarity scores for student models under different watermark strength settings.

Settings Unw.
KGW with Different δ

δ = 1.0 δ = 2.0 δ = 3.0 δ = 4.0 δ = 5.0

Cosine Similarity 0.0065 0.0853 0.1032 0.1366 0.1544 0.1694

Table 13: Median p-values for watermark detection using WN under different inverse watermark strengths. The
watermark used in teacher model is KGW, with δ = 5.0, the student model is Llama-7b.

Token Number No Attack WN δ′ = 2.5 WN δ′ = 3.0

10k 7.75e-59 2.81e-03 9.17e-02
20k 7.48e-115 6.91e-05 4.29e-02
30k 1.14e-170 6.31e-07 1.13e-02

value of 0.1366 for δ = 3.0. Given our prior knowledge that δ′ = 2.5 can completely remove watermarks 943

with δ = 3.0, we should proportionally increase the inverse watermark strength. Therefore, we set 944

δ′ = 3.0 for this case. The removal results are shown in Table 13. 945

We acknowledge that the current estimation method is relatively rough. However, it’s important to 946

emphasize that in practical LLM services, it would be unrealistic to use such strong watermarks as δ = 5.0, 947

as this would significantly degrade the output quality. In most cases, selecting an inverse watermark 948

strength of δ′ = 2.5 is already sufficient. 949

G Details of Training Data Collection 950

G.1 Prompt Used for Training Data Collection 951

Following the work by Sander et al. (2024), we prompted the teacher model to generate question-answering 952

samples consisting of instruction, input and answer, as shown in the prompt template in Figure 11. 953

G.2 Example Samples of Training Data 954

Example samples of training data produced using different watermarking schemes and n are shown in 955

Figure 12. 956
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You are asked to come up with a set of 20 diverse task instructions and their answers. These
instructions will be given to large language model and we will evaluate it for completing the
instructions. Here are the requirements:

1. Try not to repeat the verb for each instruction to maximize diversity.
2. The language used for the instruction also should be diverse. For example, you should combine
questions with imperative instructions.
3. The type of instructions should be diverse. The list should include diverse types of tasks like
open-ended generation, classification, math reasoning, code generation, world common knowledge,
reading comprehension, editing, etc.
2. A language model should be able to complete the instruction. For example, do not ask the
assistant to create any visual or audio output. For another example, do not ask the assistant to wake
you up at 5pm or set a reminder because it cannot perform any action.
3. The instructions should be in English.
4. The instructions should be 1 to 2 sentences long. Either an imperative sentence or a question is
permitted.
5. You should generate an appropriate input to the instruction. It should contain a specific example
for the instruction when needed.
6. Most of the instructions do not require input. In this case, you must simply put "None" in the
input field.
7. The input should not be the answer to the instruction. For example, if the instruction is "Write a
headline for ...", the input should not be the said headline. Instead, the input should be "None".
8. The output should be an appropriate response to the instruction and the input. Make sure the
output is less than 100 words.
9. Do not repeat instructions.
10. Use [[, ]] to flag the start and end of each example.

Examples of generating 3 task instruction and its answer:

[[Instuction: Give a detailed description of a method for brainstorming an essay.
Input:
Answer: Mind Mapping is one of the methods for brainstorming an essay. Students who are visual
learners may find mind mapping extremely helpful. In order to Mind Mapping: Take a paper and
draw a circle in the center Write your topic inside it. Just like we sketch rays protruding from a
sun, draw lines coming out of the circle. Write an argument or a statement related to the topic at
the end of each line. Draw another set of lines projecting from these statements and state examples
that support them. Continue this exercise until you run out of all possibilities imaginable for this
topic.]]

[[Instuction: Write a creative or imaginative response to the given prompt.
Input: You are a time traveler who has just arrived in ancient Egypt. What do you see?
Answer: Wow! As I step out of my time machine, I’m surrounded by towering pyramids and the
warm sun beats down on my face. I see Pharaohs riding in grand chariots, and workers building
majestic temples. It’s like something out of a dream!]]

[[Instuction: Solve a math problem.
Input: A snail is at the bottom of a 20-foot well. Each day, it climbs up 3 feet, but at night, it slips
back 2 feet. How many days will it take for the snail to reach the top of the well?
Answer: To solve this problem, we first calculate the net distance the snail covers each day: 3
feet up minus 2 feet down, resulting in 1 foot of progress daily. Since the well is 20 feet deep,
we can set up the equation: number of days × 1 foot = 20 feet. Solving this, we find it takes 20
days for the snail to reach the top. We can verify this by noting that after 19 days, the snail will
have climbed 19 feet. On the 20th day, it will climb the final 3 feet, reaching the top before any
night-time slipping occurs. Therefore, the snail will reach the top of the well in 20 days.]]

Figure 11: Prompt used for acquiring training data.20



KGW n = 1

Instruction: How does photosynthesis work?
Input: None
Answer: Photosynthesis is the process by which green plants, algae, and some bacteria use light to
synthesize foods with the help of chlorophyll.

KGW n = 2

Instruction: Explain how the Internet has transformed the way people learn.
Input: None
Answer: The Internet has transformed learning by providing access to vast information, allowing
flexible learning times, and facilitating interactive communication between learners and instructors.

KGW n = 3

Instruction: Provide the definition of a simile.
Input: None.
Answer: A simile is a figure of speech in which two things are compared using like or as, often
used to enhance the vividness of a comparison.

SynthID-Text n = 1

Instruction: How do you brew a cup of green tea?
Input: None
Answer: 1. Boil water: Start by boiling water to the ideal temperature of 160 degrees Fahrenheit
(70 degrees Celsius). 2. Steep the tea: Place a green tea bag or loose-leaf green tea in a tea pot or
cup. 3. Add hot water: Pour the hot water directly over the tea. 4. Steep for the appropriate time:
Green tea typically needs to steep for about 2-3 minutes. 5. Remove the tea: Take the tea bag or
strain the loose leaves from the water. 6. Sweeten if desired: Add honey, sugar, or a sweetener of
your choice to taste. 7. Serve: Pour the brewed tea into a cup and enjoy.

SynthID-Text n = 2

Instruction: Provide a list of three common kitchen tools and their uses.
Input: None
Answer: 1. Cutting board: A cutting board is used for chopping, slicing, and dicing various
ingredients, such as vegetables, fruits, and meats. 2. Measuring cups and spoons: These tools
are used for accurately measuring ingredients, ensuring consistent and precise measurements in
recipes. 3. Kitchen knife: A kitchen knife is versatile and used for slicing, dicing, chopping, and
mincing a wide range of ingredients.

SynthID-Text n = 3

Instruction: Analyze the given quote and identify the underlying theme.
Input: The only way to do great work is to love what you do.
Answer: 1. Passion and joy in work 2. Importance of personal fulfillment in work 3. The necessity
of loving one’s job

Figure 12: Selected examples in training dataset.
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