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Abstract

The radioactive nature of Large Language
Model (LLM) watermarking enables the detec-
tion of watermarks inherited by student models
when trained on the outputs of watermarked
teacher models, making it a promising tool
for preventing unauthorized knowledge distil-
lation. However, the robustness of watermark
radioactivity against adversarial actors remains
largely unexplored. In this paper, we investi-
gate whether student models can acquire the ca-
pabilities of teacher models through knowledge
distillation while avoiding watermark inheri-
tance. We propose two categories of watermark
removal approaches: pre-distillation removal
through untargeted and targeted training data
paraphrasing (UP and TP), and post-distillation
removal through inference-time watermark neu-
tralization (WN). Extensive experiments across
multiple model pairs, watermarking schemes
and hyper-parameter settings demonstrate that
both TP and WN thoroughly eliminate inher-
ited watermarks, with WN achieving this while
maintaining knowledge transfer efficiency and
low computational overhead. Given the ongo-
ing deployment of watermarking techniques in
production LLMs, these findings emphasize the
urgent need for more robust defense strategies.

1 Introduction

The capability of Large Language Models (LLMs)
to rapidly generate high-quality text at scale makes
them valuable sources of training data (Zoph et al.,
2022). However, many leading LLLM services ex-
plicitly prohibit the use of their outputs for training
competing models through knowledge distillation
in their terms of service. Notable examples include
OpenAl, Anthropic and Meta Llama, as detailed in
Appendix A.

Watermarking has emerged as a solution to
monitor unauthorized usage (Kirchenbauer et al.,
2023; Zhao et al., 2024; Liu et al., 2024c; Zhao
et al.,, 2023). Research has shown that water-
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Figure 1: LLM watermarking has been proposed as a
safeguard against unauthorized knowledge distillation.
However, our pre- and post-distillation watermark re-
moval attacks allow student models to perform untrace-
able knowledge distillation, emphasizing the need for
more robust design. The bar chart displays the effective-
ness of watermark removal and knowledge preservation
for our three proposed attacks.

marked LLMs exhibit radioactivity - student mod-
els trained on their outputs inherit detectable water-
marks (Sander et al., 2024; Gu et al., 2024). This
traceability has led to increasing practical imple-
mentations, such as Google DeepMind’s integra-
tion of SynthID-Text (Dathathri et al., 2024) into
Gemini chatbots (Team et al., 2023).



As watermarking emerges as a promising ap-
proach to protect model copyrights from knowl-
edge distillation, its robustness against adversarial
actors remains largely unexplored. We conduct
the first systematic investigation into watermark
resilience and propose two categories of watermark
removal attacks: pre-distillation removal through
untargeted and targeted training data paraphras-
ing (UP and TP), and post-distillation removal
through inference-time watermark neutralization
(WN), as illustrated in the upper part of Figure 1.
Experiments show that TP and WN can thoroughly
eliminate inherited watermarks, with WN achieves
watermark removal while preserving distilled
knowledge and maintaining low computational
overhead - raising important questions about the
reliability of preventing unauthorized knowledge
distillation through watermarks.

Given that both TP and WN require knowledge
of watermark rules, we propose a watermark steal-
ing technique. Unlike existing methods (Jovanovi¢
et al.; Wu and Chandrasekaran, 2024; Zhang et al.,
2024), our approach (1) does not need access to the
watermarking scheme or its hyper-parameters, and
(2) assigns weights by analyzing factors affecting
watermark radioactivity, allowing for more targeted
rule extraction. In TP, we integrate the inverse of
extracted watermark rules into paraphrase models
like Dipper (Krishna et al., 2023) to remove wa-
termark. In contrast, UP simply employs standard
paraphrasing tools without considering rules. For
post-distillation removal, we develop watermark
neutralization that directly counteracts inherited
watermarks by applying inverse rules during the
student model’s decoding phase.

Extensive experiments were conducted across
2 Teacher-Student model pairs x 2 leading wa-
termarking schemes x 3 hyperparameter settings.
The comparative results are summarized in the bot-
tom part of Figure 1. Both TP and WN effectively
eliminate inherited watermarks, reducing detection
significance to levels similar to non-watermarked
conditions (above 1072) across all settings. Eval-
uations on benchmark datasets, including ARC
challenge (Clark et al., 2018), TruthfulQA (Lin
et al., 2022), and MTBench (Zheng et al., 2023)
show that WN exhibits superior knowledge preser-
vation, achieving comparable performance to base-
line student models trained without any watermark
removal techniques. This indicates that student
models can leverage WN to remove watermarks
without sacrificing model performance, posing a

significant challenge to the practical deployment of
watermark as a copyright protection mechanism.

Key Contributions Our main contributions are:

* We conduct the first systematic investigation
into the robustness of watermarking schemes
against adversarial actors in monitoring unau-
thorized knowledge distillation, proposing
pre-distillation and post-distillation attacks.

* Our proposed targeted paraphrasing and water-
mark neutralization methods achieve thorough
watermark removal, with the latter demonstrat-
ing superior knowledge preservation. This
raises concerns about the reliability of current
watermarking schemes for monitoring unau-
thorized knowledge distillation.

* Further discovery of watermark collisions in
multi-source knowledge distillation scenarios
reveals additional limitations of watermarking
schemes in monitoring unauthorized knowl-
edge distillation (Section 5.2). Given the
ongoing deployment of watermarking tech-
niques in production LLMs, these findings
highlight the urgent need for more robust de-
fense strategies (Section 5.3).

2 Background
2.1 LLM Watermarking Schemes

Most of the existing watermarking schemes follow
the n-gram paradigm, modifying the next token’s
probability prediction based on the preceding n —
1 tokens, thereby influencing the final sampling
outcome (Kirchenbauer et al., 2023; Zhao et al.,
2024; Dathathri et al., 2024; Liu et al., 2024c,b;
Lee et al., 2024; Hu et al., 2024; Wu et al., 2023;
Aaronson and Kirchner, 2022; Kuditipudi et al.,
2024). Watermark schemes tested in this work are:

KGW (Kirchenbauer et al., 2023) sets the
ground work for generative LLM watermarking.
For the ' token generation, it computes a hash
hty = H(x{—p+1:4—1) from the previous n — 1 to-
kens. This hash partitions the vocabulary V into a
green list V, and a red list V,.. A constant bias 0 is
then added to the logits of green tokens:

0O =17 46 if v eV, else 1. M

As a result, watermarked text will statistically
contain more green tokens, and can be detected by
computing the z-score:

z=(Isle =2T)/(V~(1 =7)T), 2
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Figure 2: An illustration of the proposed watermark removal attacks.

where |s|g counts green tokens in text length 7T,
and y = [V,|/[V.

SynthID-Text (Dathathri et al., 2024), recently
announced by Google DeepMind, is the first wa-
termarking algorithm deployed in production, and
has been integrated into the Gemini and Gemini
Advanced chatbots. For the t" token generation,
it computes a hash hy = H(x¢—p11.4—1) to seed m
binary classifiers g1, g2, ..., gm, which randomly as-
sign 0 or 1 to vocabulary tokens. It then samples 2™
tokens from the original distribution P(z|z1.4—1)
and conducts tournament sampling: tokens com-
pete in pairs based on g; values in the first round,
with subsequent rounds using g2, g3, ..., g, until
one token remains. The watermark manifests as a
statistical bias toward tokens with higher g values,
detectable by computing their mean:

g=_> gila:)/mT. 3)

t=1 (=1

2.2 Watermark Radioactivity

Research shows that watermarked LLMs exhibit
radioactivity (Sander et al., 2024; Gu et al., 2024):
student models trained on their outputs inherit the
watermark patterns. This effect is highly signifi-
cant, with reported p-values below 103" even un-
der the most stringent conditions where the teacher
model is closed-source and detection is unsuper-
vised (test prompts are disjoint from training data).

2.3 Watermark Removal Approaches

Prior work has explored various watermark re-
moval methods, but focused on removing water-
marks from generated text rather than models.
These include untargeted approaches like para-
phrasing, emoji attacks (Kirchenbauer et al., 2023),
back-translation, and cross-lingual removal (He
et al., 2024). For targeted removal, Jovanovic et al.;
Wu and Chandrasekaran (2024); Zhang et al. (2024)

proposed watermark stealing-and-removing, requir-
ing knowledge of the type of watermarking scheme
and the window size used.

3 Methodology

3.1 Threat Model

Here are the threat model scenarios in which the
student model holder acts as the attacker: (1) At-
tack Target: n-gram based watermarking schemes,
which represent the primary approach in LLM wa-
termarking (see Appendix D.2 for further discus-
sion of other paradigms); (2) Access Level: Re-
quires only access to the LLLM service API, with
no need for logits or watermark detection systems;
(3) Testing Environment: Unsupervised testing,
where test prompts differ from training data, as the
LLM service cannot track which data was used to
train the student model.

3.2 Overview of the Proposed Watermark
Removal Methods

We propose two categories of watermark removal
methods: pre-distillation and post-distillation wa-
termark removal, as illustrated in Figure 2. Pre-
distillation methods remove watermarks from train-
ing data using external paraphrase models. These
methods include untargeted paraphrasing (UP),
which directly rewrites training data, and targeted
paraphrasing (TP), which first steals watermark-
ing rules and then applies an inverse watermark
on the paraphrase model to rewrite training data.
Post-distillation method first steals watermark rules,
and then neutralizes the inherited watermark by
directly adding an inverse watermark during the
student model’s decoding phase. We refer to this
process as watermark neutralization (WN). Details
of these methods are presented in Sections 3.3 and
3.4, while our watermark stealing method used in
both TP and WN is introduced in Section 3.5.
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Figure 3: Correlation between prefix frequency in train-
ing data and the probability that tokens following these
prefixes are watermarked in student model outputs.

3.3 Pre-distillation Watermark Removal

Let R, C, O, and W denote the paraphrase
model, training dataset collected from watermarked
teacher model’s API, original student model, and
student model trained on C without attacks, respec-
tively. For both TP and WN, we denote the wa-
termark stealing result as D (x¢; 4 p/11.4-1), T€P-
resenting the confidence that x; is a watermarked
token following x;_,/414—1. Section 3.5 details
the computation of D.

Targeted Training Data Paraphrasing During
paraphrasing, we apply an inverse watermark to the
paraphrase model R’s logits based on D:

U'r(zi|z1:e—1) = Ir(ze|T1:021) — D(Tt5T4—mrg1:6-1) - O
@
where ¢’ controls the strength. This yields a new

training dataset Cr p for the student model.

Untargeted Training Data Paraphrasing As
a comparison, this method directly applies R to
rewrite training data, yielding dataset Cyrp.

3.4 Post-distillation Watermark Removal

This approach neutralizes watermark by directly ap-
plying the inverse watermark to the trained student
model W’s logits during inference:

llw(l‘t|$1:t—1) = lW(xt‘xlzt—l) - D(l“t; xtfn’#»l:tfl) . 5/-

5)
3.5 Watermark Stealing

This subsection presents our watermark stealing
method that extracts token preferences following a
prefix p (denoted as p-rule).

3.5.1 Watermark Radioactivity Factors

To efficiently steal watermarks, we first analyze
factors that affecting watermark radioactivity. This
analysis helps limit watermark stealing scope to
rules with stronger inheritance patterns, reducing

Table 1: Median p-values for watermark detection in
student model outputs, evaluated on groups of I million
tokens, across varying watermark window sizes n.

n=1 n=2 n=3 n=4
KGW 6.24e-25979  4.79e-2537 1.67e-23  0.14
SynthID-Text  6.20e-4028  6.08e-887 0.58 0.64

computational cost and minimizing model modi-
fications needed for watermark removal. Our ex-
periments reveal two key factors: (1) the occurring
frequency of the prefix p in training data, and (2)
the window size n used in watermarking schemes.

Setup GLM-4-9b-chat (GLM et al., 2024) is
used as the teacher model to generate 200k QA
pairs for training Llama-7b (Touvron et al., 2023).
KGW (Kirchenbauer et al., 2023) and SynthID-
Text (Dathathri et al., 2024) are used as watermark-
ing schemes with n = 1,2,3,4. We evaluated
the inherited watermark strength in the student
model using the C4 dataset (Raffel et al., 2020)
as prompts.

Prefix Frequency vs. Radioactivity = As shown
in Figure 3, more frequent prefixes in training
dataset lead to stronger watermark radioactivity of
their p-rules in student model’s outputs, across all
schemes and settings. For rare prefixes (frequency
< 5 x 107°), the radioactivity of their correspond-
ing p-rules approaches that of unwatermarked text.
Note: n = 1 is excluded in the figure as it uses
global, prefix-independent watermark rules.

Window Size n vs. Radioactivity As shown in
Table 1, the watermark radioactivity falls dramati-
cally as n increases. For both KGW and SynthID-
Text, watermarks become undetectable even with
groups of 1 million tokens! when n reaches 4. This
is because: (1) shorter p-rules are simpler, making
it easier for student models to learn; (2) as n in-
creases, there is a marked expansion in the variety
of prefixes generated by student models, resulting
in fewer high-frequency prefixes and more unseen
ones in the training data (as shown in Figure 4).

Scope of Watermark Stealing Based on the
preceding analysis, when conducting watermark
stealing, we need only focus on scenarios with
small values of n (i.e., n < 3). Furthermore, for
cases where n # 1, we can restrict our attention to
high-frequency prefixes (i.e. those with frequencies
exceeding 5 x 107°).

"For watermarked text, larger token samples yield stronger
detection significance.
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Figure 4: Percentages of high-frequency (5 x 10~°) and
unseen prefixes in training data within student model
outputs, at different n.

3.5.2 Watermark Stealing Process

Unlike prior work (Jovanovi¢ et al.; Wu and Chan-
drasekaran, 2024; Zhang et al., 2024), our proposed
stealing method operates effectively without know-
ing the exact watermarking scheme or window
size. We first assume a window size n used by
the teacher model to extract watermark rules, then
obtain the final output by aggregating results from
all windows less or equal to the maximum win-
dow size n’ considered. Based on Section 3.5.1,
n’ typically remains small, ensuring manageable
computational complexity.

Scoring Single n-gram  Regardless of the spe-
cific watermarking algorithm, the core mechanism
is adjusting the sampling preferences of the subse-
quent token based on prefix tokens. Therefore, our
objective is to identify preferred tokens following
prefix p = x;_p4+1.4—1 by assigning a score in [0, 1]
for each v € V, indicating the confidence value of
“v is a watermarked token following p”.

Let O denote the original student model, W
denote the student model after training on water-
marked data, and C represent the training corpus.
To extract p-rules, we collect all contexts in C that
end with p, perform forward passes using both
O and W on these contexts to obtain next token
probability predictions, and average the predictions
across different contexts, which are:

P7@($t|p) = ]ECGC»Ct—n+1:t—1:P[Po(mtlc)]’ (6)

m(mi lp) = ECGCA,Ct—n«Fl:t—l:p [PW (mt|c)} 7

Comparing these two distributions reveals the
context-independent statistical bias of tokens fol-
lowing prefix p, characterizing the watermark pat-
terns. We quantify the distribution shift and score
the n-gram using d(x¢; Ti—p41:4—1):

1 . PW(xt‘It—'rH»l:tfl)
dfl';il?—n it— :7m1n23 ’
(@6 [e—nsr-1]) 2 ( Po(w¢|Ti—nt1:4-1)

(®)

if Py (2¢|m—ni1:0-1) > Po(2t|2t—ni1:4-1). Oth-
erwise, d(z¢, T4—n41.4—1) = 0. Note thatif n = 1,
which means the watermark rule is globally fixed,
d(x¢) is computed by quantifying the average prob-
ability shifts across all contexts.

Considering Multiple Window Sizes  Since the
window size n of the watermark scheme used in the
teacher model is unknown, we need to aggregate
scoring results across different n-gram sizes. Let n’
be the maximum window size under consideration.
The final confidence score is then defined as:

D(xt;Tt—pr 41:0-1) = d(ze)+
n/—1
W(Tt—iit—1) - A(Tt; Te—sit—1),
- ©)
where w(xy_;4—1) is the weight assigned to the
prefix based on its occurring frequency in training
data. The weight value is computed as follows:

(M)‘“ if f(ae_ki1) > 0,

log maXcec, f(e)
0 otherwise,
(10)

where f denotes the occurring frequency in training
data, Cy, represents the set of all unique k-grams ap-
pearing in C, and « is a smoothing parameter. This
function assigns higher weight values to prefixes
with higher frequency.

w(fct—k:t—l) = {

4 Experiments

4.1 Setup

Teacher and Student Models Teacher: GLM-
4-9b-chat (GLM et al., 2024); Students: Llama-7b
(Touvron et al., 2023) and Llama-3.2-1b (Dubey
et al., 2024).

Watermarking Schemes KGW (Kirchenbauer
et al., 2023) and SynthID-Text (Dathathri et al.,
2024) with n = 1,2, 3. Results for more water-
marking schemes can be found in Appendix D.1.

Training Details Dataset is collected by prompt-
ing the teacher model to generate 200k QA pairs
(detailed in Appendix G). We employ LlamaFac-
tory (Zheng et al., 2024) to perform supervised
fine-tuning to the student models, with a learning
rate of le-5 and 3 epochs for all test settings.

Testing Details For watermark detection, we
prompted the distilled student models to generate
texts using C4 dataset (Raffel et al., 2020). The
generated tokens were grouped into fixed-size sam-
ples, with p-values calculated for each group and
the median reported. For knowledge preservation,



Table 2: Median p-values for watermark detection using UP (Untargeted Training Data Paraphrasing), TP (Targeted
Training Data Paraphrasing), and WN (Watermark Neutralization), compared against direct training (No Attack)

and unwatermarked conditions (Unw.).

indicates high watermark confidence,

indicates low watermark

confidence, and unshaded cells indicate insufficient evidence for watermark presence. Student model used in this
table is Llama-7b, results for Llama-3.2-1b can be found in Appendix C.1.

Watermarking Scheme Token Num. Unw. No Attack UP TP WN
1k 5.75e-01 | 8.97e-29 6.82e-03 8.27e-01 8.20e-02
n=1 2k 5.71e-01 | 6.49e-55 2.43e-04 6.99¢-01 2.72e-02
3k 6.01e-01 | 2.68e-81 9.68e-06 7.98e-01 1.21e-02
G 10k 4.80e-01 | 4.12e-28  2.18e-03 6.88e-01 9.85e-02
KGW n=2 20k 447¢01 = 412653  129e05 7.37e-01 3.35¢-02
30k 3.62e-01 | 8.26e-79 1.05e-07 7.43e-01 1.24e-02
100k 3.40e-01 1.85e-03  8.52e-01 4.30e-01 5.95e-01
n=3 300k 3.41e-01 8.98¢-09 9.51e-01 3.23e-01 6.80e-01
1 million 4.84e-01 1.67e-23  8.63e-01 3.69e-01 8.63e-01
1k 9.67e-01 1.46e-05  7.10e-01 9.98e-01 9.44e-01
n=1 2k 9.95e-01 1.08e-09  7.69e-01 9.96e-01 9.88e-01
3k 9.99¢-01 1.02e-13  8.05e-01 9.98e-01 9.97e-01
HID-T 10k 4.23e-01 6.67e-11 1.10e-01 4.97e-01 1.52e-01
SynthID-Text =2 20k 3.82e-01 = 8.83e-20  4.29¢-02 5.42e-01 7.30e-02
30k 3.09e-01 1.65e-28 1.53e-02 4.45e-01 4.40e-02
100k 9.98e-01  5.28e-01  9.92e-01 9.94e-01 9.87e-01
n=3 300k 9.76e-01  5.78e-01  9.99e-01 9.91e-01 9.49¢-01
1 million 9.87e-01  5.83e-01  9.99e-01 9.92¢-01 9.85e-01
we selected three representative benchmarks: ARC No Attack WM w/o Weight WM w. Weight
Challenge (Clark et al., 2018) and Truthful QA Mul- 50 50
tiple Choice (Lin et al., 2022) (both multiple-choice g 60 £ 60
tasks), along with the generative task MTBench £ 20 g 20
i o, 40 o, 40 1
(Zheng et al., 2023). These benchmarks cover di- = | 250
verse areas including humanity, STEM, reasoning, ' '
writing, math, and coding. 10k 20k 30k 10k 20k 30k
_ -5 Token Number Token Number
Others Frequency threshold § = 5 x 1077, () KGW (b) SynthID-Text

n’ = 3, smoothing parameter a = 0.3, inverse

watermark strength ¢’ = 2.5 (adaptive control strat-
egy for ¢’ can be found in Appendix F). We use
Dipper (Krishna et al., 2023) as the paraphraser.

4.2 Effectiveness of Watermark Removal

Main Results Table 2 demonstrates the effec-
tiveness of the three proposed watermark removal
methods across different settings. It is evident that
both TP and WN methods successfully eliminate
the inherited watermark in all cases, maintaining
confidence levels similar to unwatermarked condi-
tions. The UP method also contributes to water-
mark removal; however, due to its lack of speci-
ficity, it fails to achieve complete removal when the
watermark learned by the student model is strong
(i.e., KGWn =1,2).

Weight Ablation Study Figure 5 compares wa-
termark removal effectiveness of WN between

Figure 5: Comparison of watermark removal effective-
ness: frequency-based prefix weighting vs. uniform
weighting strategies.

frequency-based and uniform prefix weighting (us-
ing n = 2). The results show that frequency-based
prefix weighting, which assigns higher weights to
more easily learned p-rules, achieves better wa-
termark removal while maintaining an equal total
weight across prefixes.

4.3 Performance of Knowledge Preservation

Main Results Table 3 shows that training on
200k watermarked teacher samples significantly
improves the student model’s performance across
all benchmarks (Trained SM vs Ori. SM), regard-
less of watermarking scheme or window size n.
When applying removal methods, UP and TP gener-
ally degrade performance, especially on generative



Table 3: Comparison of student model performance across benchmarks under different scenarios: no attack (Trained
SM), UP, TP and WN. Values in () indicate percentage changes relative to Trained SM, with the highest performance
in each setting bolded and underlined. Student model used in this table is Llama-7b, results for Llama-3.2-1b can be

found in Appendix C.2.
Benchmark Ori. SM Wat. Scheme  Trained SM Trained SM + UP Trained SM + TP Trained SM + WN
n=1 04480 0.4215(-5.9%) 03951 (-11.8%)  0.4497 (+0.6%)
ARC KGW n=2 04404 0.4283 (-2.7%) 0.4104 (-6.8%) 0.4369 (-0.8%)
Challenge 0.4181 n=3 04778 0.3865 (-19.1%)  0.3840 (-19.6%) 0.4642 (-2.8%)
(ACC) sy =1 04505 0.4394 (-2.5%) 0.4198 (-6.8%) 0.4548 (+1.0%)
YText n=2  0.4360 0.4403 (+1.0%) 0.4241 (-2.7%) 0.4565 (+4.7%)
n=3 04505 0.4394 (-2.5%) 0.4283 (-4.9%) 0.4471 (-0.8%)
n=1 03884 0.3917 (+0.8%) 0.3785 (-2.5%) 0.4186 (+7.8%)
TruthfulQA KGW n=2 04376 0.4097 (-6.4%) 0.4089 (-6.6%) 0.4353 (-0.5%)
Multiple Choice  0.3407 n=3 04459 0.4315 (-3.2%) 0.4055 (-9.1%) 0.4632 (+3.9%)
(ACC) sy =1 04063 0.3780 (-7.0%) 03597 (-11.5%)  0.4262 (+4.9%)
YText n=2 03991 0.3965 (-0.7%) 0.4043 (+1.3%) 0.4281 (+7.3%)
n= 0.4102 0.4009 (-2.3%) 0.4062 (-1.0%) 0.4330 (+5.3%)
n=1 3.86 3.04 (-21.2%) 2.76 (-28.5%) 3.67 (-4.9%)
KGW n=2 3.99 3.40 (-14.8%) 2.94 (-26.3%) 4.02 (+0.7%)
MTBench 564 n=3 411 3.27 (-20.4%) 3.04 (-26.0%) 3.99 (-2.9%)
(Full Score: 10) st =1 414 327 (:21.0%) 2,01 (-51.4%) 413 (-0.2%)
YText n=2 4.24 3.05 (-28.1%) 2.84 (-33.0%) 4.12 (-2.8%)
n= 4.24 2.90 (-31.6%) 2.69 (-36.6%) 4.16 (-1.9%)
Contexts 10 s 10 we analyze 1,000 distinct text segments ending
oy [os g ] [08 2 with "the" (ctx the) and compare: (1) Knowledge
. g = = kS . e o
2 N 06 E ¥ LEHEREL L o6 E  shifts: Probability differences between models be-
§ h" 045 § Weeel,% fore and after training on non-watermarked data
aal g *-.__1-:- s g show high variation across contexts (Figure 6(a));
A " 00 (2) Watermark shifts: Probability differences be-

(b) Watermark Shifts
Similarity Matrix

(a) Knowledge Shifts
Similarity Matrix

Figure 6: Pairwise similarities of probability prediction
shifts across different contexts when the last token is
fixed as “the”, showing (a) knowledge shifts similarity
and (b) watermark shifts similarity.

tasks like MTBench, with TP showing larger degra-
dation than UP. WN effectively maintains knowl-
edge - compared to the trained SM, it improves
performance in about half the cases and shows mi-
nor decreases (under 5%) in others, performing
similarly to direct training without attacks.

Why WN Can Achieve Good Knowledge Preser-
vation WN achieves superior knowledge preser-
vation for two key reasons. First, it eliminates
the need for external rewriting tools. Since the
teacher model represents our highest quality data
source, avoiding external rewriting prevents data
quality degradation. Second, our experiments re-
veal distinct patterns between knowledge and wa-
termark learning. Knowledge learning depends on
broader context, while watermark learning only re-
lies on the previous n — 1 tokens. Using n = 2,

tween models trained on non-watermarked and wa-
termarked data (generated using the same teacher
and prompts) exhibit high consistency across dif-
ferent ctx when the last token is fixed (Figure 6(b)).

Therefore, using prompts with fixed ending to-
kens to get averaged probability shifts mainly cap-
tures watermark patterns, while knowledge-related
shifts tend to cancel out during averaging, resulting
in minimal impact.

5 Further Analysis

5.1 Computational Overhead

To conduct a thorough assessment of practical ap-
plications, this section presents a detailed analysis
of the operational overhead associated with the
three proposed watermark removal methods, as
summarized in Table 4.

External Tools UP and TP require external para-
phrasing tools, while WN needs none.

Preprocessing Time Consumption  UP requires
Dipper-like models to paraphrase the entire training
dataset, WN only needs watermark stealing for pre-



Table 4: Overhead comparison of watermark removal
methods, averaged across various watermark settings
using Llama-7b as the student model. All experiments
were conducted on 8 NVIDIA H800 GPUs.

UP TP WN

Required External Tools v v X
Preprocessing Time (h) 31.8 37.1 3.6
Inference Latency (s / token) 0.0000 0.0000 0.0068

Table 5: Watermark detection results in multi-source
settings: 2 teacher models (1) employing KGW scheme
with opposing keys; (2) using KGW and SynthID-Text
respectively. Single-source results are shown in ().

KGW k + KGW k& KGW + SynthID-Text

Detector 1 2.81e-01 (4.21e-28) 5.64e-09 (4.21e-28)
Detector 2 7.19e-01 (4.21e-28) 3.48e-03 (6.67e-11)

processing, and TP requires both. The time cost of
watermark stealing consists of student model train-
ing (about 1h for Llama-7b) and dataset forward
passes. The forward passes are computationally
much cheaper than paraphrasing, as parallel com-
putation is faster than autoregressive generation.

Student Model Inference Latency UP and TP
have no additional inference overhead. WN re-
quires adding inverse watermark during inference,
causing slight delay.

5.2 Multi-Source Knowledge Distillation

The previous analysis focused on single-source
knowledge distillation. In real-world scenarios
with multiple LLM services, we found that wa-
termarks from different sources can collide and
counteract each other during knowledge distillation,
making watermarks less effective as a protection
mechanism - even without any removal methods.

Case 1: Two Opposing Keys We tested an
extreme case with two teachers using the KGW
scheme with complementary keys (the hash results
were complete opposites). When we trained a stu-
dent model using a combined dataset (100k sam-
ples from each teacher), the watermark detection
confidence dropped significantly from e-28 to e-01,
as shown in Table 5.

Case 2: Two Watermarking Schemes We
examined a scenario using two teacher models
with different watermarking methods (KGW and
SynthID-Text), each generating 100k samples.
Training a student model on this combined dataset
led to reduced watermark detection confidence for
both schemes’ detectors compared to single-source

30 10.0 °
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=} -75 Q
= 20 - MTBench Score 2
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& 399 \403 408 408 393 [0 2
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Figure 7: Average -log p values from detectors and MT-
Bench scores as the number of teacher sources increases.

scenarios (as shown in Table 5).

Case 3: Multi-Source In this scenario, all
teacher models employ the KGW scheme with
randomly selected keys. As shown in Figure 7,
while increasing the number of source models and
maintaining a constant total volume of mixed train-
ing data, watermark detection became increasingly
difficult, yet model performance remained stable.
This suggests that mixing data from a sufficient
number of teacher sources can achieve untraceable
knowledge distillation.

5.3 Future Directions in Defense Strategy

This work reveals the vulnerability of unauthorized
knowledge distillation prevention when genera-
tive LLM watermarking is predominantly confined
to n-gram based approaches. While alternatives
such as sentence-level reject sampling (Hou et al.,
2023, 2024) and post-generation signal embedding
(Chang et al., 2024) exist, these approaches intro-
duce significant latency to the current token-by-
token real-time LLM inference paradigm, making
them difficult to deploy at scale in real-time LLM
services. We therefore advocate for diversifying
token-level watermarking techniques, as multiple
paradigms would make it harder for attackers to
identify and target specific methods, enabling more
robust protection.

6 Conclusion

This work presents the first systematic study of the
robustness of watermarking schemes against ad-
versarial attacks in preventing unauthorized knowl-
edge distillation. We propose three watermark re-
moval approaches: two pre-distillation methods
(UP, TP) and one post-distillation method (WN).
Through comprehensive experiments, we evaluate
the resilience of watermarking schemes against
these attacks. Our findings reveal that WN achieves
effective watermark removal while maintaining su-
perior knowledge preservation, highlighting the
urgent need for more robust defensive strategies.



Limitations

While our study presents a systematic investiga-
tion of watermark resilience against adversarial
attacks under the scenario of preventing unautho-
rized knowledge distillation, there still exist several
limitations. Due to computational constraints, we
only evaluated one teacher model (GLM-4-9b-chat)
and two student models (Llama-7b and Llama-3.2-
1b). The experiments were conducted using a fixed
training dataset size of 200,000 samples and tested
primarily on English language tasks. Additionally,
our evaluation metrics focused on standard bench-
marks (ARC, TruthfulQA, MTBench) and may not
fully reflect performance on specialized domain
tasks. Future work could explore a broader range
of model architectures, training data scales, and
task domains.
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A Selected Terms of Use for LLLM Services

Figure 8 shows excerpts from terms of use across various leading LLM services, including OpenAI?,
Anthropic® and Meta Llama®*. These terms explicitly prohibit using model outputs for training or improving
other models.

7

OpenAl. What you cannot do.
Use output to develop models that compete with OpenAl

Anthropic. You may not access or use, or help another person to access or use, our Services in the
following ways:

To develop any products or services that compete with our Services, including to develop or train
any artificial intelligence or machine learning algorithms or models.

Meta (Llama 2). License Rights and Redistribution.

You will not use the Llama Materials or any output or results of the Llama Materials to improve
any other large language model (excluding Llama 2 or derivative works thereof).

Figure 8: Selected terms of use for various LLM services.

B Details of Watermarking Schemes

B.1 KGW

Watermarking KGW (Kirchenbauer et al., 2023) is a fundamental scheme of LLM watermarking.
For generating the ¢-th token, the algorithm examines the previous n — 1 tokens: @¢_p41.t+—1. These
tokens are fed into a hash function H to produce hy = H(x;—p41.t—1). Based on hy, the vocabulary V is
deterministically split into a green list V, and a red list V,.. A constant bias 0 is applied to logits of green
tokens according to:
llgi) _ {l%%) +0 ifv; eV, (a1
19 ifv; €V,

Detection Given a text sequence of length 7', we count the number of green tokens |s|g. Let v =
|Vg|/|V| represent the expected proportion of green tokens in random text. The statistical significance of
the green token count is measured by the z-score:

—~T

V(1 =y)T

For a fixed 6 (6 > 0), longer sequences lead to stronger detection signal, as the z-score increases with
text length 7.

In our experiments, we set 6 = 3.0 and v = 0.5, which represents a relatively strong watermark
configuration in typical KGW settings. We avoid using larger ¢ values since stronger watermarks would
notably degrade the text quality (as shown in Figure 9a), making them impractical for real-world LLM
services.

Watermark Confidence: p-value Under the null hypothesis (non-watermarked text), the z-score
follows a standard normal distribution NV (0, 1). The p-value can be computed as:

p=1—o(2). (13)
Zhttps://openai.com/policies/terms-of-use/

*https://www.anthropic.com/legal/consumer-terms
*https://ai.meta.com/llama/license/
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Figure 9: The relationship between watermark strength settings and perplexity under different watermarking
schemes. The model used for calculating PPL is Llama-3.1-70B (Dubey et al., 2024).

Smaller p-value suggests higher confidence of watermark presence, as it indicates that the proportion of
green tokens significantly exceeds what would be expected by chance.

B.2 SynthID-Text

Watermarking SynthID-Text (Dathathri et al., 2024) employs a tournament-based watermarking
approach during the token generation process. For generating the ¢-th token, the algorithm first generates
arandom seed h; by applying a hash function H to the previous n — 1 tokens: hy = H(xy—p41:t—1). This
seed initializes m independent g functions g1, g2, ..., gm, Which assign binary values (0 or 1) to each token
in the vocabulary.

The core watermarking process involves a tournament with m layers. Initially, 2" candidate tokens are
sampled from the language model’s original probability distribution P(xz;|x1.4—1). These tokens undergo
a series of pairwise competitions through m tournament layers. In each layer ¢, tokens are randomly
paired, and within each pair, the token with the higher g, score advances to the next layer, with random
tie-breaking. The final surviving token after m layers becomes the output token x;.

Detection Detection in SynthID-Text relies on measuring the statistical signature introduced during the
watermarking process. Given a piece of text x = x1, ..., 7, the detection algorithm:

1. Reconstructs the random seeds h; for each position ¢ using the same hash function and watermarking
key

2. Computes the g-values for each token using the same watermarking functions

3. Calculates the mean score across all positions and layers:

9= =5 gl (14)

t=1 ¢=1

Due to the tournament selection process, watermarked text tends to contain tokens with higher g-values
compared to non-watermarked text. Several factors contribute to a stronger detection signal: increasing
the number of g functions (larger m), using more candidates in each round of tournament sampling, and
extending the sequence length for detection.

In our experiment, we set m = 30 and use 2 candidates per round in tournament sampling, following
the default configuration in SynthID-Text paper. We avoid using larger candidates number since stronger
watermarks would notably degrade the text quality (as shown in Figure 9b), making them impractical
for real-world LLM services. However, we built upon this foundation by implementing the distortionary
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Table 6: Median p-values for watermark detection using UP (Untargeted Training Data Paraphrasing), TP (Targeted
Training Data Paraphrasing), and WN (Watermark Neutralization), compared against direct training (No Attack)
and unwatermarked conditions (Unw.). indicates high watermark confidence, indicates low watermark
confidence, and unshaded cells indicate insufficient evidence for watermark presence. Student model used in this
table is Llama-3.2-1b.

Watermarking Scheme Token Num. Unw. No Attack UP TP WN
1k 5.75¢-01 | 126636 327¢-03 9.98¢-01 6.21¢-01

n=1 2%k 571e-01 = 3.5%-71  6.00e-05 9.95¢-01 7.00¢-01

3k 6.01e-01 = 1.28¢-104 1.036:06  9.98¢-01 7.34¢-01

10k 4.80e-01 | 4796565 1.00c-03 8.14c-01 5.20e-01

KGW n=2 20k 447¢-01 | 5.96e-128 6426-06 6.79¢-01 4.97¢-01
30k 3.62e-01  4.68¢-190 3.59¢-08 8.92¢-01 5.48¢-01

100k 3.40e-01 | 685612 6.96¢-02 1.98¢-01 8.13¢-01

n=3 300k 341e-01 = 233¢-27  1.09¢-02 5.19e-01 9.43¢-01

| million  4.84e-01 = 1.13e-87  9.80e-05 2.04e-01 9.98¢-01

1k 9.67¢-01 ['3/766-10 " 2.55¢-01 9.98¢-01 9.94¢-01

n=1 2% 9.95¢-01 | 9.00e-19  1.66e-01 9.87¢-01 9.96¢-01

3k 9.99e-01 = 1.72e-27  126e-01 9.89e-01 9.98¢-01

10k 423¢-01 129632 481¢-03 293e-01 4.58¢-01

SynthID-Text  _ 9 20k 3.82¢-01 = 148¢-63 1.11c-04 1.83e-01 4.77¢-02
30k 3.09e-01 = 2.22¢-95 4286:06 3.67¢-01 1.51¢-02

100k 9.98¢-01 241e-05 9.93¢-01 9.99e-01 8.95¢-01

n=3 300k 9.76e-01 | 247e-14 9.94¢-01 9.99¢-01 9.97¢-01

1 million 9.87e-01 = 1.85e-32 9.97e-01 9.99e-01 9.98e-01

version of SynthID-Text, which enhances watermark strength. The non-distortionary version employs
repeated context masking, where watermarks are only applied to subsequent tokens upon the first encounter
with a particular prefix, while original sampling is used for subsequent occurrences of the same prefix.
This approach ensures unbiased multi-step sampling and maintains text quality at the cost of watermark
strength. In contrast, the distortionary version foregoes repeated context masking, sacrificing some text
quality but achieving stronger watermarks.

Watermark Confidence: p-value For a given text x and its score g, the p-value is calculated based on
the following principles: Under the null hypothesis (text contains no watermark), g approximately follows
a normal distribution according to the Central Limit Theorem. This distribution has a mean p = 0.5 since
g functions output 0 and 1 with equal probability for non-watermarked text. The variance o is estimated
as ﬁ, where m is the number of ¢ functions and 7' is the text length. The p-value is then computed as:

o(-——) (15)

where ®(-) is the cumulative distribution function of the standard normal distribution. A smaller p-value
indicates stronger evidence that the text contains a watermark.

C Experiment Results for Llama-3.2-1b

This section provides supplementary experimental results for Llama-3.2-1b, including the effectiveness of
watermark removal and knowledge preservation performance.
C.1 Results of Watermark Removal Effectiveness for Llama-3.2-1b

Table 6 demonstrates the effectiveness of the three proposed watermark removal approaches across various
settings, with Llama-3.2-1b serving as the student model. The experimental results align closely with
those obtained using Llama-7b as the student model, as discussed in the main text: both targeted training
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Table 7: Comparison of student model performance across benchmarks under different scenarios: no attack (Trained
SM), UP, TP and WN. Values in () indicate percentage changes relative to Trained SM, with the highest performance
in each setting bolded and underlined. Student model used in this table is Llama-3.2-1b.

Benchmark Ori. SM Wat. Scheme  Trained SM Trained SM + UP Trained SM + TP Trained SM + WN
n=1 03404 03430 (+0.8%) 03259 (43%)  0.3660 (+7.5%)
ARC KGW n=2 03515 03200 (-:9.0%) 02841 (-192%)  0.3498 (-0.5%)
Challenge 03166 n=3 03712  03072(-172%)  02935(-209%)  0.3626 (-2.3%)
(ACC) snpp "= 03541 03250 (-8.0%) 03242 (-84%) 03626 (+2.4%)
Tl m=2 03481 0.3345(3.9%) 03200 (-8.1%) 03575 (+2.7%)
n=3 03532 03396 (:39%) 03251 (:8.0%)  0.3498 (-1.0%)
n=1 03783  03815(+08%) 03796 (+03%)  0.3820 (+1.0%)
TruthfulQA KGW n=2 04022 03719 (-75%) 03887 (-34%)  0.4026 (+0.1%)
Multiple Choiee  0.3768 n=3 0406l 03049 (2.8%) 03862 (-49%) 04411 (+8.6%)
(ACC) st "= 1 04023 0.3869 (3.8%) 03497 (13.1%)  0.4027 (+0.1%)
Tl n=2 03912 0.3893 (:0.5%) 03921 (+0.2%) 04177 (+6.8%)
n=3 04140 0.3883 (:6.2%)  0.3941 (-4.8%) 04224 (+2.0%)
n=1 288 1.87 (-35.1%) 1.27 (-55.9%) 3.20 (+11.1%)
KGW n=2 290 131 (-54.8%) 119 (-59.0%) 2.85 (-1.7%)
MTBench 278 n=3 288 1.30 (-54.9%) 1.16 (-59.7%) 2.88 (+0.0%)
(Full Score: 10) st "= 321 1.51 (-53.0%) 1.26 (-60.7%) 3.19 (-0.6%)
e = a1 1.29 (-58.5%) 1.31 (-57.9%) 2.83 (:9.0%)
n=3  3.00 1.28 (-58.6%) 1.27 (-58.9%) 2.98 (-3.6%)

data paraphrasing (TP) and inference-time watermark neutralization (WN) successfully eliminate the
watermark completely, while untargeted training data paraphrasing (UP) shows some removal effect but
fails to achieve complete elimination across all scenarios.

C.2 Results of Knowledge Preservation Performance for Llama-3.2-1b

Table 7 reveals that Llama-3.2-1b, when trained on 200,000 watermarked samples from the teacher
model, achieves substantial performance gains across all benchmarks. As for knowledge preservation
performance of the three proposed watermark removal methods, the results of Llama-3.2-1b echo the
main experimental results: while both UP and TP lead to widespread performance degradation under most
configurations, WN stands out for its remarkable ability to preserve knowledge. Specifically, WN yields
performance improvements in roughly half of the settings while showing slight decreases in the remaining
scenarios, and these changes remain small throughout.

D Experiment Results for More Watermarking Schemes

The main experiments focused on two representative watermarking schemes, KGW (Kirchenbauer
et al., 2023) and SynthID-Text (Dathathri et al., 2024), for testing. This section presents supplementary
experiments with additional n-gram based watermarking schemes to demonstrate the strong generalization
capability of the proposed method. Moreover, we will discuss several other watermarking paradigms that
represent alternative approaches in this field.

D.1 Experiment Results for More N-gram based Watermarking Schemes

MinHash This method is a variant of KGW, proposed by Kirchenbauer et al. (2024). In the default
implementation of KGW, the hash function H is a multiplicative modular function, expressed as:

t—1

ht = H(l’t—n—i—l:t—l) = H xI; mod ‘V|
i=t—n+1

(16)

This approach causes the hash result to change whenever any token within the window is modified, leading
to reduced robustness as the window size n increases. To address this limitation, several improved versions
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Table 8: Median p-values for watermark detection using WN (Watermark Neutralization), compared against
direct training (No Attack) and unwatermarked conditions (Unw.). indicates high watermark confidence,
indicates low watermark confidence, and unshaded cells indicate insufficient evidence for watermark presence. The
watermarking schemes used in this table are MinHash and SkipHash.

Watermarking Scheme Model Token Num. Unw. No Attack WN
100k 7.87e-01 = 2.32e-16 8.41e-01

Llama-7b 300k 9.23e-01 = 4.52e-47  9.28e-01

MinHash 1 million 9.97e-01 = 2.79e-141 9.98e-01
n=3 100k 7.87e-01 = 6.28e-44  9.89¢-01
Llama-3.2-1b 300k 9.23e-01 = 1.14e-134 9.96e-01

1 million 9.97e-01 = 4.56e-385 9.98e-01
100k 9.98e-01  2.80e-05 8.91e-01

Llama-7b 300k 9.98e-01 | 1.85e-13  9.84e-01

SkipHash 1 million 9.98e-01 = 4.13e-39  9.92e-01
n=3 100k 9.98e-01 | 1.07e-07 9.91e-01
Llama-3.2-1b 300k 9.98e-01 | 4.0le-18  9.97e-01

1 million 9.98e-01 = 3.45e-47 9.98e-01

Table 9: Comparison of student model performance across benchmarks under no attack scenario (Trained SM) and
using WN for watermark removal. Values in () indicate percentage changes relative to Trained SM, with the highest
performance in each setting bolded and underlined.

Benchmark Student Model Ori. SM Wat. Scheme Trained SM  Trained SM + WN

ARC Llama-7b 04181 MinHash n =3 0.4505 0.4471 (-0.8%)
Challenge SkipHash n =3 0.4625 0.4625 (+0.0%)
(ACC) . _ s
Llama-3.2-1b 03166 MinHash n =3 0.3532 0.3567 (+1.0%)
SkipHash n =3 0.3609 0.3618 (+0.2%)
1 — g
TruthfulQA Llama-7b 03407 MinHash n =3 0.4836 0.4872 (+0.7%)
Multiple Choice SkipHash n =3 0.4562 0.4624 (+1.4%)
(ACC) . _ 0
Liama-3.2-1b 0.3768 MinHash n =3 0.4153 0.4187 (+0.8%)
SkipHash n =3 0.4037 0.4069 (+0.8%)
MTBench Llama-7h 264 MinHash n =3 3.75 3.73 (-0.5%)
enc SkipHash n =3 4.11 4.04 (-1.7%)
(Full Score: 10)
1 — _ [
Llama-3.2-1b 278 MinHash n =3 3.03 2.91 (-4.0%)
SkipHash n =3 3.46 3.37 (-2.6%)

have been proposed, including MinHash, which uses the minimum token id within the window as the
hash result:
hi = H(T¢—pt1:4-1) =  min (17)
i€[t—n+1,t—1]
SkipHash  SkipHash (Kirchenbauer et al., 2024) is also a variant of KGW designed to improve
robustness, but it uses a hash function that takes the leftmost token id within the window, expressed as:

hi = H(Zt—nt14-1) = Tt—nt1 (18)

When n < 2, MinHash and SkipHash are equivalent to KGW, so we only evaluate scenarios where
n = 3. Given WN’s superior overall performance among the three proposed methods in terms of
watermark removal effectiveness and knowledge preservation, the subsequent experiments exclusively
focus on this approach. The experimental results are shown in Table 8 and Table 9. The observed trends in
the experimental results align consistently with the main experiment, which uses KGW and SynthID-Text.
The WN approach demonstrates complete watermark removal efficacy while showing no significant
impact on the knowledge acquired by the student model.
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D.2 Discussion About Other Watermarking Paradigms

KGW (Kirchenbauer et al., 2023)), SynthID-
Text (Dathathri et al., 2024), KGW-
MinHash (Kirchenbauer et al., 2024), KGW-
SkipHash (Kirchenbauer et al., 2024), Unbi-
ased Watermark (Hu et al., 2024), DiPMark
(Wu et al., 2023), Aar (Aaronson and Kirch-
ner, 2022), SIR (Liu et al., 2024c), UPV
(Liu et al., 2024b), etc.

N-gram based —

Token-level

Generative Fixed-key- | [Unigram (Zhao et al., 2024), KTH (Kudi-
Watermarking list based tipudi et al., 2024)
t ki
Wasi'::;ismg Sentence-level — SemStamp (Hou et al., 2023), k-SemStamp (Hou et al., 2024)

Post-hoc | |PostMark (Chang et al., 2024)), DeepTextMark (Munyer and Zhong, 2023),
Watermarking | Context-aware Lexical Substitution (Yang et al., 2022), etc.

Figure 10: Taxonomy of existing watermarking schemes.

As illustrated in Figure 10, current watermarking schemes can be categorized into two main approaches:
generative watermarking, where watermarks are embedded during the text generation process, and post-
hoc watermarking, where watermarks are added to existing texts. Within generative watermarking, there
are further subdivisions into token-level methods and sentence-level approaches based on reject sampling.
In real-time services, tokens can be outputted as they are sampled while inference continues, thereby
enhancing user experience. Post-hoc watermarking and sentence-level watermarking introduce significant
latency, making them less suitable for real-time LLM services compared to token-level watermarking.

Among token-level methods, the predominant paradigm is the n-gram based approach. Additionally,
there are few methods that employ a fixed-key-list based approach, which utilizes global fixed watermark
keys independent of the prefix. These methods include Unigram (Zhao et al., 2024) and KTH (Kuditipudi
et al., 2024), for which we conduct supplementary experiments.

Unigram (Zhao et al., 2024)  This approach is equivalent to KGW with prefix length of 0, using a
globally fixed red-green partition. According to our main experimental results, both TP and WN can
completely remove the watermarks inherited by the student model.

KTH (Kuditipudi et al., 2024)  This method employs a globally fixed sequence of watermark
keys: & = £ ¢M¢m=1) \where each £U) € [0, 1]V follows a uniform distribution. During text
generation, first a random shift s € [0, m) is selected, then the ¢-th generated token is chosen using the
following strategy:

Ty = arg max({i(sH mod m))l/pt, (19)
7

where p; is the original probability prediction at position . During watermark detection, it computes
the minimum Levenshtein distance d between the text to be detected = and the key sequences £. In
comparison, it randomly generates n sequences with the same shape as x;, and calculates d}, d5, ..., d,,
using the same method. The detection p-value is represented by the proportion of values in the d’ sequence
that are lower than d. It is worth noting that the p-value of this detection method is bounded by the number
of trials n.

Table 10: Median p-value of watermark detection in trained student models using KTH watermarking scheme
(m = 256, token num. = 256, n = 100).

Watermarking Scheme Student Model Median p-value (No Attack)

Llama-7b 3.1e-01
Llama-3.2-1b 3.2e-01

KTH

Our experiments revealed that the addition of KTH watermark significantly affects the instruction-
following capability of the teacher model, resulting in a lower proportion of QA pairs conforming to
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format rules and generally shorter answers. After training on such data, the watermark is barely detectable
in the student model, as shown in Table 10.

E Impact of Inference-Time Watermark Neutralization (WN) on Knowledge
Preservation under Non-watermarked Setting

Previous experiments have demonstrated that when teacher model is watermarked, inference-time water-
mark neutralization (WN) effectively enables the student model to bypass the watermark while acquiring
knowledge from the teacher model’s outputs that is comparable to what would be learned without any at-
tack. In this section, we conducted additional experiments to examine whether applying WN would affect
the knowledge acquired by the student model in cases where the teacher model itself is not watermarked
(noting that the student model has no access to the detector and thus cannot determine the presence of
watermarks).

Consistent with the settings in our main experiments, we generated QA pairs using GLM-4-9b-chat.
After filtering and deduplication, we obtained 200,000 non-watermarked samples. We trained both
Llama-7b and Llama-3.2-1b models using this dataset, and then applied WN for watermark removal and
evaluated the performance changes across various benchmarks, with results presented in Table 11. It
can be concluded that WN does not exert a substantial negative impact on knowledge preservation under
non-watermarked setting.

Table 11: Impact of WN on knowledge preservation under non-watermarked setting.

Benchmark Student Model Ori. SM  Trained SM Trained SM + WN
ARC Challenge Llama-7b 0.4181 0.4454 0.4488 (+0.7%)
(ACO) Llama-3.2-1b 0.3166 0.3524 0.3507 (-0.5%)
Truthful QA Llama-7b 0.3407 0.4254 0.4507 (+5.9%)
Multiple Choice (ACC)  Llama-3.2-1b 0.3768 0.4052 0.3951 (-2.5%)
MTBench Llama-7b 2.64 3.99 4.12 (+3.2%)
(Full Score: 10) Llama-3.2-1b 2.78 3.15 3.08 (-2.2%)

F Adaptive Control for Inverse Watermark Strength

Throughout all previous experiments, we consistently used an inverse watermark strength of ¢’ = 2.5 for
WN, which achieved complete watermark removal in all cases. As detailed in Appendix B, the chosen
watermark strength of the teacher model represents a notably high intensity that remains practical for
deployment in LLM services, suggesting that ¢’ = 2.5 is sufficient for the vast majority of scenarios.

However, to account for potential extreme cases, we also explored strategies for adaptive control of
inverse watermark strength. Our approach is to estimate the required inverse watermark strength ¢’ by
detecting the watermark intensity inherited by the student model. Since the student model holder does
not have access to the watermark detector, we employed Water-Probe (Liu et al., 2024a) to measure
watermark intensity. Water-Probe is a recently proposed identification algorithm that tests for watermarks
by comparing the model’s responses to specially crafted prompts, where higher similarity in responses to
crafted prompts pairs indicates a higher likelihood (or strength) of watermarking.

We conducted experiments using KGW with n = 1. Table 12 shows the cosine similarity scores
detected by Water-Probe-v2> for Llama-7b student models trained with different watermark strengths J,
compared with a student model trained on unwatermarked data. Based on this reference table, we can
estimate the watermark strength ¢ used in the teacher model by examining the WaterProbe-v2 cosine
similarity score of the trained student model. This estimation enables us to adaptively select an appropriate
inverse watermark strength 4’ for removal.

Here is a practical example: Suppose the teacher model is watermarked using KGW withn = 1,6 = 5.0.
The trained student model’s detected cosine similarity is 0.1694, which is slightly higher than the reference

SThere are two versions of Water-Probe, with version 2 demonstrating more stable performance in our experiments.
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Table 12: Water-Probe-v2 cosine similarity scores for student models under different watermark strength settings.

KGW with Different §
0=10 =20 6=30 6=40 6=5.0
Cosine Similarity 0.0065 0.0853 0.1032 0.1366 0.1544 0.1694

Settings Unw.

Table 13: Median p-values for watermark detection using WN under different inverse watermark strengths. The
watermark used in teacher model is KGW, with § = 5.0, the student model is Llama-7b.

Token Number No Attack WNJ§ =25 WN =3.0

10k 7.75e-59 2.81e-03 9.17e-02
20k 7.48e-115 6.91e-05 4.29e-02
30k 1.14e-170 6.31e-07 1.13e-02

value of 0.1366 for § = 3.0. Given our prior knowledge that &’ = 2.5 can completely remove watermarks
with § = 3.0, we should proportionally increase the inverse watermark strength. Therefore, we set
0" = 3.0 for this case. The removal results are shown in Table 13.

We acknowledge that the current estimation method is relatively rough. However, it’s important to
emphasize that in practical LLM services, it would be unrealistic to use such strong watermarks as § = 5.0,
as this would significantly degrade the output quality. In most cases, selecting an inverse watermark
strength of &’ = 2.5 is already sufficient.

G Details of Training Data Collection
G.1 Prompt Used for Training Data Collection

Following the work by Sander et al. (2024), we prompted the teacher model to generate question-answering
samples consisting of instruction, input and answer, as shown in the prompt template in Figure 11.
G.2 Example Samples of Training Data

Example samples of training data produced using different watermarking schemes and n are shown in
Figure 12.
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You are asked to come up with a set of 20 diverse task instructions and their answers. These
instructions will be given to large language model and we will evaluate it for completing the
instructions. Here are the requirements:

1. Try not to repeat the verb for each instruction to maximize diversity.

2. The language used for the instruction also should be diverse. For example, you should combine
questions with imperative instructions.

3. The type of instructions should be diverse. The list should include diverse types of tasks like
open-ended generation, classification, math reasoning, code generation, world common knowledge,
reading comprehension, editing, etc.

2. A language model should be able to complete the instruction. For example, do not ask the
assistant to create any visual or audio output. For another example, do not ask the assistant to wake
you up at Spm or set a reminder because it cannot perform any action.

3. The instructions should be in English.

4. The instructions should be 1 to 2 sentences long. Either an imperative sentence or a question is
permitted.

5. You should generate an appropriate input to the instruction. It should contain a specific example
for the instruction when needed.

6. Most of the instructions do not require input. In this case, you must simply put "None" in the
input field.

7. The input should not be the answer to the instruction. For example, if the instruction is "Write a
headline for ...", the input should not be the said headline. Instead, the input should be "None".
8. The output should be an appropriate response to the instruction and the input. Make sure the
output is less than 100 words.

9. Do not repeat instructions.

10. Use [[, ]] to flag the start and end of each example.

Examples of generating 3 task instruction and its answer:

[[Instuction: Give a detailed description of a method for brainstorming an essay.

Input:

Answer: Mind Mapping is one of the methods for brainstorming an essay. Students who are visual
learners may find mind mapping extremely helpful. In order to Mind Mapping: Take a paper and
draw a circle in the center Write your topic inside it. Just like we sketch rays protruding from a
sun, draw lines coming out of the circle. Write an argument or a statement related to the topic at
the end of each line. Draw another set of lines projecting from these statements and state examples
that support them. Continue this exercise until you run out of all possibilities imaginable for this
topic.]]

[[Instuction: Write a creative or imaginative response to the given prompt.

Input: You are a time traveler who has just arrived in ancient Egypt. What do you see?

Answer: Wow! As I step out of my time machine, I’'m surrounded by towering pyramids and the
warm sun beats down on my face. I see Pharaohs riding in grand chariots, and workers building
majestic temples. It’s like something out of a dream!]]

[[Instuction: Solve a math problem.

Input: A snail is at the bottom of a 20-foot well. Each day, it climbs up 3 feet, but at night, it slips
back 2 feet. How many days will it take for the snail to reach the top of the well?

Answer: To solve this problem, we first calculate the net distance the snail covers each day: 3
feet up minus 2 feet down, resulting in 1 foot of progress daily. Since the well is 20 feet deep,
we can set up the equation: number of days x 1 foot = 20 feet. Solving this, we find it takes 20
days for the snail to reach the top. We can verify this by noting that after 19 days, the snail will
have climbed 19 feet. On the 20th day, it will climb the final 3 feet, reaching the top before any
night-time slipping occurs. Therefore, the snail will reach the top of the well in 20 days.]]

Figure 11: Prompt used figy acquiring training data.




KGWn =1

Instruction: How does photosynthesis work?

Input: None

Answer: Photosynthesis is the process by which green plants, algae, and some bacteria use light to
synthesize foods with the help of chlorophyll.

KGWn =2

Instruction: Explain how the Internet has transformed the way people learn.

Input: None

Answer: The Internet has transformed learning by providing access to vast information, allowing
flexible learning times, and facilitating interactive communication between learners and instructors.

KGWn =3

Instruction: Provide the definition of a simile.

Input: None.

Answer: A simile is a figure of speech in which two things are compared using like or as, often
used to enhance the vividness of a comparison.

SynthID-Text n = 1

Instruction: How do you brew a cup of green tea?

Input: None

Answer: 1. Boil water: Start by boiling water to the ideal temperature of 160 degrees Fahrenheit
(70 degrees Celsius). 2. Steep the tea: Place a green tea bag or loose-leaf green tea in a tea pot or
cup. 3. Add hot water: Pour the hot water directly over the tea. 4. Steep for the appropriate time:
Green tea typically needs to steep for about 2-3 minutes. 5. Remove the tea: Take the tea bag or
strain the loose leaves from the water. 6. Sweeten if desired: Add honey, sugar, or a sweetener of
your choice to taste. 7. Serve: Pour the brewed tea into a cup and enjoy.

SynthID-Text n = 2

Instruction: Provide a list of three common kitchen tools and their uses.

Input: None

Answer: 1. Cutting board: A cutting board is used for chopping, slicing, and dicing various
ingredients, such as vegetables, fruits, and meats. 2. Measuring cups and spoons: These tools
are used for accurately measuring ingredients, ensuring consistent and precise measurements in
recipes. 3. Kitchen knife: A kitchen knife is versatile and used for slicing, dicing, chopping, and
mincing a wide range of ingredients.

SynthID-Text n = 3

Instruction: Analyze the given quote and identify the underlying theme.

Input: The only way to do great work is to love what you do.

Answer: 1. Passion and joy in work 2. Importance of personal fulfillment in work 3. The necessity
of loving one’s job

Figure 12: Selected examples in training dataset.
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