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ABSTRACT

Accurately predicting molecular properties requires effective integration of struc-
tural information from both 2D molecular graphs and their corresponding equilib-
rium conformer ensembles. In this work, we propose a scalable Structure-Aware
Graph Transformer that efficiently aggregates features from multiple 3D conform-
ers while incorporating fragment-level information from 2D graphs. Unlike prior
methods that depend on static geometric solvers or rigid fusion strategies, our
approach employs a trainable attention-based mechanism within a graph trans-
former to dynamically fuse 2D and 3D representations. We further enhance this
mechanism by injecting fragment-specific structural biases into the attention lay-
ers, enabling the model to capture fine-grained molecular details. Our method
scales to large datasets, handling up to 75,000 molecules and hundreds of thou-
sands of conformers, and achieves state-of-the-art results in molecular property
prediction and reaction-level modeling. It is particularly effective on chemically
diverse compounds, including organocatalysts and transition-metal complexes.

1 INTRODUCTION

Machine learning has become a powerful tool for predicting molecular properties, with wide-ranging
applications in drug discovery and materials science (Choudhary et al., 2022; Fedik et al., 2022;
Batatia et al., 2023). Most existing models rely either on 2D molecular graphs, which efficiently
capture topological connectivity (Xu et al., 2018; Veličković et al., 2018), or on 3D representations
derived from a single conformer (Schütt et al., 2017; Batzner et al., 2022; Batatia et al., 2022).
While 2D graphs are computationally efficient, they lack geometric information that is often critical
for accurate property prediction. Incorporating 3D conformers helps address this by introducing
spatial features such as bond lengths, and torsion angles. However, relying on a single conformer
still fails to capture the intrinsic flexibility of molecular structures.

In reality, molecules dynamically sample a range of thermodynamically accessible conformations
due to bond rotations, vibrations, and environmental interactions (Ramsundar et al., 2019). As a
result, many experimentally observable properties such as solubility and binding affinity depend
on the full ensemble of conformers a molecule can adopt (Perola & Charifson, 2004). Yet, fully
modeling this distribution is computationally prohibitive, as generating and evaluating large numbers
of conformers using quantum methods is costly (Medrano Sandonas et al., 2024). This has motivated
hybrid models that combine the structural efficiency of 2D graphs with the geometric richness of a
small and representative subset of 3D conformers. By jointly capturing topological and spatial
variation, hybrid models offer scalable and expressive frameworks for molecular representation,
enabling more accurate prediction of conformation-sensitive properties across a range of chemical
and biological tasks.

Building on this hybrid paradigm, recent methods have introduced hybrid models that integrate 2D
molecular graphs with 3D conformer information to capture both topological and spatial features
(Zhu et al., 2024b; Axelrod & Gomez-Bombarelli, 2023). Despite the successes, these methods
often assume conformers contribute equally or can be reweighted without considering deeper geo-
metric context. In practice, only a subset of conformers may be thermodynamically or functionally
relevant, and naive aggregation overlooks their spatial relationships, such as alignment or structural
similarity. Moreover, current strategies rarely leverage interactions between 2D structural priors and
3D conformational variability, hindering the formation of truly expressive representations.

To address this, structure-aware ensemble methods based on optimal transport, especially those
using fused Gromov-Wasserstein (FGW) alignment, have shown promise Ma et al. (2023); Nguyen
et al. (2024a). By aligning both feature and geometric spaces, these models better preserve spatial
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correspondences across conformers and enable expressive ensemble aggregation. However, such
methods are computationally expensive and struggle to scale to large molecular datasets such as
Drugs-75k Zhu et al. (2023); Axelrod & Gomez-Bombarelli (2022), limiting their utility for high-
throughput applications in generative biology.

To address scalability challenges in geometry-aware molecular modeling, we introduce a novel ap-
proach that replaces expensive FGW alignment with efficient attention-based conformer aggrega-
tion. By supervising the model with FGW distances during training, we learn a latent embedding
space where conformer similarities reflect both topological and geometric structure. This enables
fast, permutation-invariant conformer integration suitable for large-scale generative pipelines. Be-
yond efficiency, we further enrich our model with fragment-level structural priors from 2D molecu-
lar graphs, injecting chemically meaningful hierarchies into both message passing and 3D attention
layers. This unified 2D–3D framework captures fine-grained spatial and topological interactions
essential for applications such as molecular property prediction, virtual screening, and functional
optimization. In summary, our key contributions are:

• We propose a scalable, geometry-aware conformer aggregation framework, denoted as
FACET, that replaces costly FGW alignment with a trainable Graph Transformer, enabling
efficient, deterministic attention-based inference. We further provide theoretical bounds on
the approximation error relative to FGW distances.

• We introduce a unified 2D–3D representation learning approach that embeds fragment-
level structural priors into both 2D message passing and 3D spatial self-attention, captur-
ing multi-scale interactions between molecular topology and geometry.

• Our method delivers over 6× faster aggregation than prior geometry-aware baselines and
achieves state-of-the-art performance across six benchmarks, including molecular prop-
erty prediction and Boltzmann-weighted ensemble tasks, demonstrating robustness across
diverse molecular scenarios and dataset scales.

2 RELATED WORK

2.1 CONFORMER ENSEMBLE LEARNING IN MOLECULAR REPRESENTATIONS

Traditional molecular representations span connectivity fingerprints (Morgan, 1965), 1D string en-
codings (Ahmad et al., 2022; Wang et al., 2019), 2D topological graphs (Yang et al., 2019a; Rong
et al., 2020), and 3D geometric graphs (Fang et al., 2021; Zhou et al., 2023). 3D models typically
rely on a single conformer, overlooking the fact that molecules often adopt multiple low-energy
conformations, which can serve as informative features, particularly in capturing thermodynamic
properties. Hybrid approaches now combine 2D graphs with ensembles of 3D conformers (Zhu
et al., 2024b; Wang et al., 2024), aggregated via mean pooling, DeepSets (Zaheer et al., 2017),
or self-attention (Vaswani et al., 2017). More advanced geometry-aware methods based on Fused
Gromov-Wasserstein (FGW) alignment (Ma et al., 2023; Nguyen et al., 2024a) capture both feature
and structural similarity across conformers, but remain computationally costly and scale poorly to
large datasets (e.g., Drugs-75k) or foundation models (Zhou et al., 2023; Chithrananda et al., 2020).
To address this, we propose a scalable framework that learns latent embeddings of 3D conform-
ers with graph transformers, integrating geometry-aware signals inspired by FGW and hierarchical
fragment-level features. This yields a permutation-invariant, expressive, and efficient method.

2.2 SCALABLE OPTIMAL TRANSPORT FOR GRAPH LEARNING

Learning-based approximations of Optimal Transport (OT) have emerged as efficient alternatives to
traditional solvers. Early works introduced differentiable Sinkhorn distances with entropic regular-
ization for stability and scalability (Cuturi, 2013; Feydy et al., 2019; Genevay et al., 2018). Later
methods improved efficiency via structural assumptions - e.g., low-rank factorization (Scetbon et al.,
2021; Cuturi et al., 2020) and spatial geometry (Bachmann et al., 2022; Solomon et al., 2015). Meta-
learning approaches further accelerated convergence by learning initialization schemes (Amos et al.,
2023). More recently, neural OT surrogates trained directly on data have bypassed iterative solvers
entirely (Courty et al., 2017; Tong et al., 2021; Haviv et al., 2024).

However, prior works focus on standard OT and fail to extend to structure-aware variants like FGW,
which jointly capture node attributes and graph topology. To address this, we introduce the first
learned approximation of FGW with a graph transformer, enabling scalable, geometry-aware con-
former aggregation. By embedding fragment-level priors into both 2D and 3D encoders, our ap-
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proach supports multi-scale reasoning across topological and spatial hierarchies, effectively bridging
molecular graphs with 3D conformational diversity.

2.3 FRAGMENT-BIASES IN MOLECULAR GNN
Fragment-level substructures - such as rings, functional groups, and pharmacophores - are key to
molecular property prediction and drug design (Merlot et al., 2003; Varnek et al., 2005). Recent
works have leveraged these motifs for scaffold-aware drug discovery (Lee et al., 2024; Chan et al.,
2024), self-supervised learning via fragment-based masking or contrastive tasks (Rong et al., 2020;
Zhang et al., 2021; Wen et al., 2024), and GNN architectures that encode fragment-level inductive
biases (Wang et al., 2025; Wollschläger et al., 2024). These methods show that fragments enhance
generalization, interpretability, and data efficiency. Building on these insights, we explore a com-
plementary direction: integrating fragment-level priors into hybrid 2D–3D ensemble models. In our
approach, fragment hierarchies are embedded into both 2D message-passing and 3D spatial atten-
tion layers, enabling multi-scale processing across molecular topology and geometry. This design
improves conformer aggregation and yields more expressive, geometry-aware representations suited
for conformation-sensitive tasks.

3 FRAGMENT-AWARE CONFORMER ENSEMBLE TRANSFORMER

Notation. Let ∆N := {ω ∈ RN
+ : ω⊤1N = 1} denote the probability simplex, where 1N is the

all-ones vector in RN . For x ∈ Ω, δx is the Dirac measure at x. We write [K] := {1, . . . ,K}
for K ∈ N, and use ⟨·, ·⟩ to denote the Frobenius inner product. For a tensor L = (Lijkl) and
matrix B = (Bkl), define the contraction L ⊗ B := (

∑
kl LijklBkl)ij . A graph G = (V,E)

has N := |V | nodes and edges E ⊆ {{u, v} ⊆ V : u ̸= v}. An attributed graph is given
by G := (H,A,ω), where H ∈ RN×d is the node feature matrix (with row Hv for node v),
A ∈ ZN×N

+ encodes structure (e.g., adjacency or shortest-path distance matrix), and ω ∈ ∆N is a
node weight distribution.

Given two graphs G1 and G2 with N1 and N2 nodes, the Fused Gromov-Wasserstein
(FGW) distance (Peyré et al., 2016; Titouan et al., 2019; 2020) is: FGWp,α(G1,G2) :=

minπ∈Π(ω1,ω2) ⟨(1− α)M + αL(A1,A2)⊗ π,π⟩ , where Π(ω1,ω2) := {π ∈ RN1×N2
+ :

π1N2
= ω1, π⊤1N1

= ω2} is the set of valid couplings, M [i, j] = df (H1[i],H2[j])
p

is the distance between feature of node i in G1 and of node j in G2, L(A1,A2)[i, j, l,m] =
|A1[i, j] − A2[l,m]|p captures structural mismatch, and α ∈ [0, 1] balances feature and structure
alignment.

3.1 CONFORMER GENERATION

Following prior work, we generate molecular conformers using distance geometry methods that
convert interatomic constraints - such as bond lengths, angles, stereochemistry, and steric limits -
into 3D coordinates (Hawkins, 2017). A lightweight force field refines the structures toward low-
energy conformations. Compared to quantum methods like DFT, this approach is highly scalable
and efficient for large datasets. As in prior studies (Raza et al., 2022; Nguyen et al., 2024b), we use
RDKit (Landrum, 2016) for fast and reliable conformer generation.

3.2 FRAMEWORK OVERVIEW

We propose a neural architecture with three main components (Fig. 1). First, a 2D message pass-
ing neural network (MPNN) captures molecular topology, while another 2D-MPNN operates on a
fragment-level graph, which consists of pairwise edges between fragment nodes, to encode higher-
order structural priors (Sec. 3.3). Their outputs are fused and refined through a lightweight adaptor
module before entering a pre-trained FGW-guided graph transformer (Sec. 3.4). For 3D informa-
tion, a set of conformers is sampled from the input molecule, and a 3D-MPNN extracts conformer
embeddings (Sec. 3.4.1), which are also calibrated by an adaptor layer to handle variability between
2D and 3D features. Then, conformer embeddings are fed into the graph transformer, where each
node attends to all other nodes, taking into account the conformers graph structure and fragment-
level information (Sec. 3.4.2). In essence, the graph transformer encodes conformer embeddings
into another space where their pairwise Euclidean distance is equal FGW distance (Sec. 3.4.3). Fi-
nally, a permutation- and E(3)-invariant fusion module unifies the 2D and 3D features into a single
embedding for downstream tasks (Sec. 3.4.4).
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Figure 1: FACET overview. The model receives both 2D molecular and its corresponding fragment
graph as inputs and processes them via 2D-MPNNs. Their features are then aggregated based on
correspondence between molecular nodes and the fragments they are in (represented by dashed box).
At the same time, 3D conformers are sampled and passed through 3D-MPNNs (Φ) to extract graph
embeddings. The 2D and 3D embeddings are then transformed by a lightweight adaptor and fused
by a fragment-aware graph attention module guided by FGW distance to produce geometry-aware
embeddings. These embeddings are combined with 2D and 3D representations for downstream tasks
prediction. The “fire” icon marks trainable components, the “snowflake” icon frozen ones, and blue
elements denote generated features and embeddings.

3.3 FRAGMENT-ENHANCED 2D MOLECULAR GRAPH

Each molecule is represented as a 2D graph G = (V,E), where nodes V correspond to atoms and
edges E to covalent bonds. Atom features h(0)

v ∈ Rd encode properties like atom type and valence,
while bonds (u, v) are annotated with features e(u, v) (Scarselli et al., 2008; Gilmer et al., 2017).
We adopt a 2D message-passing neural network (MPNN) that updates node embeddings layer-wise:

hℓ
v = UPDℓ(hℓ−1

v ,AGGℓ(Mℓ(hℓ−1
v ,hℓ−1

u , ev,u) | u ∈ N(v))), (1)

where Mℓ is a message function, AGGℓ is sum aggregation, and UPDℓ is identity or multilayer per-
ception layers. We use Graph Attention Networks (GATs) (Veličković et al., 2017), where messages
are computed as:

Mℓ
v,u = αℓ

v,uW
ℓhℓ−1

u , αℓ
v,u = softmaxu

(
LeakyReLU

(⊤[Wℓhℓ−1
v , |,Wℓhℓ−1

u ]
))

. (2)

After L layers, we obtain final atom-level features hL
v for each atom v used for downstream tasks.

Fragment-Based Structural Augmentation. To enhance atomic representations with higher-
order structural context, we construct a fragment-level graph from the input molecular graph G
using ring-path decomposition (Kong et al., 2022; Geng et al., 2023; Wollschläger et al., 2024) to
identify key substructures such as aromatic rings and functional groups (Fig. 4). Each fragment is
treated as a node in a new graph Gfrag = (V frag, Efrag), where nodes correspond to fragments and
edges are induced from the connectivity in G, two fragments are connected if they share an atom
or are directly bonded. In this work, we specifically follow the approach proposed in (Wollschläger
et al., 2024), as it offers a good balance of simplicity and effectiveness for our use case.

We apply the same GAT formulation in Eq. (1) to the fragment graph to obtain fragment embeddings
{hfrag

f }f∈V frag . Then for each atom v that belongs to its fragment f(v), we fuse their atom-level

representations h(L)
v with {hfrag

f } by:

h̃(L)
v = h(L)

v + FFN
(
hfrag
f(v)

)
, (3)

where FFN(·) is a learnable feedforward network that projects fragment-level context into the same
space as atom features. Finally, we define a fragment-enhanced graph level representation that is
computed by applying a readout function h2D = READOUT

(
{h̃(L)

v | v ∈ V }
)

=
∑

v∈V h̃
(L)
v .

Intuitively, the dual-level encoding combining local atomic features and global fragment-level con-
text as Eq.(3) allows the model to reason over both fine-grained and coarse-grained structures,
enhancing the expressivity of the molecular representation.
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3.4 LEARNING GRAPH TRANSFORMER FOR 3D MOLECULE AGGREGATIONS

A molecular conformer is represented as a set S = {ri, Zi}Ni=1, where N denotes the number of
atoms, ri ∈ R3 corresponds to the 3D Cartesian coordinates of atom i, and Zi ∈ N indicates its
atomic number.

3.4.1 3D conformer feature representation. For each conformer S, we can define its graph GS
and compute its 3D feature embedding by using the geometric MPNN SchNet (Schütt et al., 2017),
though other E(3)-invariant neural architectures can be readily substituted without modification
(Table 3). We represent the matrix of atom-level features from the final message-passing layer L
of SchNet as H, where each column H[v] corresponds to the feature vector h(L)

3d,v of atom v. We

then compute the vector representation of a conformer S as h3d,S =
∑

v∈V (W3d)h
(L)
3d,v + b3d ∈

Rd with W3d and b3d are learnable vectors. Given a set of K conformers {Sk}Kk=1, we define
H3d[k] = h3D,Sk as the feature embedding of the k-th conformer. The matrix H3d ∈ RK×d thus
summarizes the feature representations of all conformers in the set.
3.4.2 Fragment-aware Graph Transformer. Given the atom-wise feature matrix H for each
conformer S, we aim to learn structure-encoded latent representations using Graph Transformer
architectures (Ying et al., 2021; Kreuzer et al., 2021; Luo et al., 2024). We adopt the architecture
from Ying et al. (2021) due to its strong expressiveness on small molecular graphs, and further
extend its attention mechanism with fragment sub-structures (Fig .4). It is important to note that our
framework is flexible and can incorporate alternative transformer-based models.

In particular, we compose N transformer layers (Vaswani et al., 2017), each consisting of
a self-attention mechanism followed by a position-wise feed-forward network. Given H =

[h⊤
1 , . . . ,h

⊤
n ]

⊤ ∈ Rn×d computed in Section 3.4.1 by a 3D-MPNN, where hi = h
(L)
3d,vi

∈ R1×d is
the vector embedding of an atom vi with d dimensions. We compute self-attention, by linearly pro-
jecting H into query (Q), key (K), and value (V) matrices using learned weights WQ,WK ,WV ∈
Rd×d:
Q = HWQ, K = HWK , V = HWV , Ã = QK⊤/

√
d, Attention(H) = softmax(Ã)V. (4)

Here, Ã denotes the attention score matrix representing pairwise similarities between tokens. For
clarity, we present the single-head version; extending to multi-head attention is straightforward. Bias
terms are omitted for brevity.

While the attention in Eq. (4) operates only on feature nodes, leveraging the structural information of
the 3D conformer graph is essential. Following Ying et al. (2021), we incorporate (i) centrality
encoding, which measures the importance of a node in the graph via its degree, and (ii) spatial
encoding, which captures the spatial relation between two nodes vi and vj in GS using the short-
est path distance (SPD) (Cormen et al., 2022; Balaban, 1985), augmented with a learnable weight
assigned to each edge along the SPD. Specifically, we incorporate (i) by:

hi = hi + z−deg−(vi)
+ z+deg+(vi)

, (5)

where z−, z+ ∈ Rd are learnable embedding vectors specified by the indegree deg−(vi) and outde-
gree deg+(vi) of atom vi respectively. Here z−deg−(vi)

is implemented as a lookup table of learnable
embeddings indexed by shortest-path distance (i.e., degree) from node vi to others in the graph.
The shortest-path distance (SPD) matrix is first computed, and these distances are used to retrieve
the corresponding embeddings, which are then integrated into the attention mechanism to inject
topology-aware structural bias. Assume Ãij as the (i, j)-element of the Query-Key product matrix
Ã, the condition (ii) extends Ãij as:

Ãij = (hiWQ)(hjWK)T /
√
d+ sϕ(vi,vj) + cij , (6)

where sϕ(vi,vj) is a learnable scalar indexed by the SPD distance ϕ(vi, vj) and shared across layers;
cij = E(xen(w

En)T ), with xen the feature of edge en in SPDij , wE
n ∈ RdE its weight embed-

ding, and dE the dimensionality of edge features, computed as the difference between the feature
embeddings of its incident nodes.

While the spatial encoding in Eq.(6) is implicated by the SPD, we argue that this might inadequately
capture chemically meaningful substructures (ablation in Tab. 2). This motivates us to extend at-
tention scores in Eq. (6) using values derived from (iii) fragment-level node features
computed on 2D topology graph in Eq. (3), directly guiding attention toward structurally and func-
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Figure 2: Correlations between FGW distance and trained GraphTransformer on four datasets in
MoleculeNet benchmark. For each test molecule, we compute pairwise FGW distances between
conformers and compare them with Euclidean distances between their Graph Transformer embed-
dings. The correlation ρ is reported, with the reference line y = x shown in blue.

tionally relevant regions such as rings, functional groups, or scaffolds. To this end, we compute an
adjacency-like matrix A(G) using cosine distance over the final node embeddings h̃

(L)
v . Specifi-

cally, for each pair of atoms (vi, vj) in the 2D molecular graph, we define

A(G)ij = 1−
⟨h̃(L)

i , h̃
(L)
j ⟩

|h̃(L)
i |2 · |h̃

(L)
j |2

, (7)

which quantifies their directional dissimilarity in the embedding space. Finally, we compute the
attention score as:

Ãij = (hiWQ)(hjWK)T /
√
d+ sϕ(vi,vj) + cij +A(G)ij . (8)

3.4.3 Learning to Approximate FGW distance. We denote Tθ(.) as the graph transformer
model whose attention operation is Eq.(8), our goal is to train Tθ(·) to map the feature representation
of each conformer S into a latent space where the L2 distance between any pair Si, Sj approximates
their FGW distance - an effective, yet computationally expensive, geometry-aware metric (Ma et al.,
2023; Nguyen et al., 2024a). To this end, given a set of Ω = {Si}Ki=1 of K generated conformers,
we sample B conformers from Ω, then compute their encoding features by Tθ(Hi) for each Si ∈ B.
These outputs are compared with their pair-wise FGW distance to optimize the loss:

Lenc =
∑
ij

∣∣∣||Tθ(Hi)− Tθ(Hj)||22 − FGWp,α(G(Si),G(Sj))
∣∣∣. (9)

By minimizing the loss Lenc, we update the parameters of the transformation module Tθ(·) using
gradient descent: θ ← θ − ϵ∇Lenc. Once trained, we freeze Tθ and incorporate it back into the
framework to compute a geometry-aware representation across K conformers {Sk}Kk=1 as follows:

H = E
(
{Tθ(Hi)}Ki=1

)
, where H denotes the aggregated structural embedding. However, the 3D

conformer feature distribution, extracted by 3D-MPNN, used to train Lenc (Eq. 9) may experience
a domain shift when co-trained with other components in the full framework (Sec. 3.4) due to the
continuous updating of 3D-MPNN. To address this, we design adapter layers as simple FFN layers
to transform the input features in Eq. (9), aligning them to the seen distribution during training Tθ.
3.4.4 Invariant Aggregation of 2D and 3D Representation. We integrate representations
from the 2D molecular graph and multiple 3D conformers using both average pooling and a
GraphTransformer-based aggregation. The transformer captures rich spatial interactions while en-
suring permutation invariance across conformers and E(3) equivariance, preserving robustness to
3D transformations. Given K conformers, using H as the GraphTransformer (GT)-aggregated atom
features. We compute the global GT representation as: hGT =

∑
v∈V

(
WGT · hv + bGT

)
, where

hv = H[v] and WGT,bGT are learnable parameters. We then define H2D and HGT be the matrices
whose columns are, respectively, K copies of the 2D feature h2D (Sec.3.3) and hGT representations
from previous section. We fuse those representations with the 3D conformer features H3D to pro-
duce the final atom-wise embedding: Hcomb = W̃2D H2D+W̃3D H3D+W̃GT HGT, where each
W̃i, i ∈ {2D, 3D,GT} are trainable projection matrix. The combined embedding Hcomb is fed
into a final FFN layer to predict the target property (Sec.J Appendix).

4 THEORETICAL BOUNDS FOR EMBEDDING NON-EUCLIDEAN FGW
Learning a Transformer Tθ(.) to predict the FGW problem is closely related to multidimensional
scaling (MDS) (Torgerson, 1952). Building on recent advances (Haviv et al., 2024; Sonthalia et al.,
2021), we extend MDS theory to derive bounds on the error of embedding non-Euclidean distances,
specifically Wasserstein and FGW, into a Euclidean space suitable for graph transformer integration.
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While computing FGW barycenters is costly, our embedding enables efficient approximation via
averaging and decoding in latent space. Prior work (Haviv et al., 2024) validated this approach
for Wasserstein distances; we generalize it to FGW and provide theoretical justification, offering a
scalable path for structure-aware graph alignment.
Cumulative Stress Optimization Problem via Pairwise FGW Distance Matrix. We define the
pairwise FGW distance matrix D for a set of K distributions as Dij := FGWp,α(G(Si),G(Sj))

for all i, j ∈ [K], following Section 3.4. The empirical FGW barycenter is given by GK ∈
arg minG∈Pp(Ω)

1
K

∑K
i=1 FGWp

p,α(G,G(Si)), where Pp(Ω) denotes the space of attributed graphs
with finite p-th order FGW distance.

To approximate this barycenter in embedding space, we require ∥eK − ej∥22 ≈
FGWp,α(GK ,G(Sj)) := DK,j for all j ∈ [K], where eK = 1

K

∑K
i=1 ei is the mean embedding

and ei := Tθ(Hi) is the learned representation. To assess how well the embeddings {ei}Ki=1 ⊂ Rd

preserve both pairwise FGW distances and barycenter structure, we define the cumulative stress:
S = minei∈Rd

∑
i,j∈[K]

(
∥ei − ej∥22 −Dij

)2
+
∑

j∈[K]

(
∥eK − ej∥22 −DK,j

)2
. This objective

encourages faithful reconstruction of both the distance structure and the barycenter alignment in the
learned embedding space, as formalized in Theorem 1, which is proved in Appendix I.

Theorem 1. Let D denote the pairwise FGWp,α distance matrix, and let {λi,vi}Ki=1 represent the
eigendecomposition of the associated criterion matrix F = −CDC, where C = IK − 1

K1K1⊤
K is

the centering matrix. The optimal stress value, denoted by S∗, is bounded as follows: L ≤ S∗ ≤ U ,
where L :=

∑
i:λi<0 λ

2
i , U :=

∑
ij(∆gi + ∆gj)

2 + L + C, ∆gi = 1
2

∑
j:λj<0 λj · v2

ij . Here,
vij denotes the j-th component of the i-th eigenvector vn of F , and C quantifies the approximation
error between the empirical barycenter in the Euclidean embedding space and the one in the original
space of undirected attributed graphs.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

General pipeline. Our training consists of three stages. Stage 1: We train the 2D and 3D MPNNs
independently for 150 epochs and the learning rate of 1e−3 to extract features from 2D molecular
graphs and 3D conformers, used to predict molecular properties by regression loss. These extracted
features also serve as a dataset to supervise the training of Graph Transformer for approximating the
FGW distance. Stage 2: The Graph Transformer is trained separately to approximate the compu-
tationally expensive FGW distance between pairs of conformers, using the learned representations
from Stage 1. We use the architecture of Graphormer (Ying et al., 2021), with 12 attention layers, 8
heads, and a hidden size of 64 (372k parameters). It is trained for 1000 epochs with a learning rate
of 1e−5. Stage 3: We train the full model end-to-end with 2D/3D MPNNs and the Graph Trans-
former (300 epochs, learning rate 5e−4). We further discuss this training scheme in Section G of
the Appendix. To mitigate feature shift during finetuning, MLP-based adaptors map 3D conformers
into 64-d refined embeddings, applied to both 2D and 3D features before the Graph Transformer.

5.2 APPROXIMATION OF FGW DISTANCE VIA GRAPH TRANSFORMER

Beyond theoretical estimation, we empirically evaluate how well the Graph Transformer approxi-
mates FGW distances between conformers in Euclidean space. As shown in Figure 2, results on the
MoleculeNet benchmarks reveal a strong correlation between learned embeddings and true FGW
distances, validating the transformer’s effectiveness in simulating costly FGW computations. While
correlation varies slightly across datasets, the results consistently highlight the model’s reliability as
a fast FGW surrogate, especially as the number of conformers in the aggregation increases.

5.3 SCALING FRAGMENT GEOMETRY-AWARE AGGREGATION

To validate the scalability of FACET model, based on a Graph Transformer for structure-aware
aggregation, we compare it against Conan-FGW (Nguyen et al., 2024a), a method computing FGW
distances on-the-fly during training and inference. We evaluate two key aspects: (i) inference-time
efficiency with varying numbers of conformers, and (ii) average training time per epoch at different
dataset scales. For inference, we measure the time required to generate output embeddings from
K conformers (K ∈ 5, 10, 15, 20) using a single GPU. Experiments are conducted on FreeSolv
and BACE, which differ in node/edge distributions, to assess performance across molecular graph
complexities.
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(a) Drugs-75K (b) Kraken

Figure 3: Comparison of the one-epoch training time of CONAN-FGW (Nguyen et al., 2024b) and
the proposed FACET on the Drugs-75K and Kraken datasets from the MARCEL benchmark.

Table 1: Number of samples for each split on molec-
ular property prediction, classification tasks, and re-
action prediction for MoleculeNet and the MAR-
CEL benchmark.

Model Lipo ESOL FreeSolv BACE Drugs-75k Kraken
Train 2940 789 449 1059 52569 1086
Valid. 420 112 64 151 7509 155
Test 2940 227 129 303 15021 311

Total 4200 1128 642 1513 75099 1552

Table 2: FACET ablation study.

Settings FACET w/o Frag. w/o Frag. in Trans. w/o Adap.
ESOL 0.516 0.531 0.525 0.546
FreeSolv 0.967 1.072 0.973 1.085

Table 3: FACET results on SchNet and VisNet.
Model Lipo ESOL FreeSolv BACE

CONAN (VisNet) 0.55± 0.45 1.03± 0.12 0.69± 0.032 0.61± 0.15
CONAN-FGW 0.50± 0.008 0.55± 0.05 0.64± 0.02 0.47± 0.01
FACET 0.48 ± 0.01 0.53 ± 0.05 0.61 ± 0.02 0.47 ± 0.01

CONAN (SchNet) 0.56± 0.013 0.57± 0.019 1.50± 0.16 0.64± 0.051
CONAN-FGW 0.42± 0.02 0.53± 0.02 1.07± 0.08 0.55± 0.02
FACET 0.42 ± 0.01 0.52 ± 0.04 0.97 ±0.08 0.50 ± 0.03

In the second setting, we compare the average per-epoch training time of FACET and Conan-FGW
on two datasets of different scales: Kraken (1,086 molecules) and Drugs-75k (52,569 molecules).
As summarized in Figures 7 (appendix) and 3, FACET exhibits linear scaling with the number of
conformers and achieves 5–6× faster runtime on average than Conan-FGW. This efficiency is critical
for scaling to large datasets and longer training schedules - for e.g, training Conan-FGW on Drugs-
75k for 300 epochs requires 1,107.58 GPU hours, while FACET only takes 214 hours. This can be
further reduced to 26.75 hours with 8 GPUs, compared to 138 hours for Conan-FGW under the
same hardware setup. We present in Section D more analysis on this scaling factor.

5.4 STATE-OF-THE-ART PERFORMANCE COMPARISON ON MOLECULAR TASKS

Datasets. We evaluate molecular property regression on the MoleculeNet (Wu et al., 2018) and
MARCEL (Zhu et al., 2024a) benchmarks. MoleculeNet includes four datasets, ESOL, BACE,
Lipo, and FreeSolv, with targets covering solubility, inhibitory concentration (pIC50), lipophilicity,
and hydration free energy. MARCEL consists of Drugs-75K and Kraken, where the goal is to
predict the Boltzmann-averaged property ⟨y⟩kB from sampled conformers. Drugs-75K uses quan-
tum descriptors (IP, EA, χ), while Kraken focuses on Sterimol features (B5, L, and their buried
forms). The Boltzmann average is computed as a weighted sum over conformer-specific values
yi with probabilities pi. All datasets follow the original random split settings, using the provided
sampled conformers.

Baselines. For the MoleculeNet benchmark (Wu et al., 2018), we compare FACET with a
wide range of baselines, including (i) 2D supervised methods (e.g., GAT (Veličković et al.,
2018), D-MPNN (Yang et al., 2019a), AttentiveFP (Xiong et al., 2019)), (ii) pre-training

Table 4: Comparison of molecular property regression performance on the
MoleculeNet benchmark (MSE ↓). The results of competing methods are
adapted from Nguyen et al. (2024b). FACET uses a SchNet backbone.

Model Lipo ESOL FreeSolv BACE
2D-GAT 1.387 ± 0.206 2.288 ± 0.017 8.564 ± 1.345 1.844 ± 0.33
D-MPNN 0.534 ± 0.022 0.923 ± 0.045 4.213 ± 0.068 0.723 ± 0.021
Attentive FP 0.520 ± 0.001 0.771 ± 0.026 4.197 ± 0.193 -
PretrainGNN 0.545 ± 0.003 1.210 ± 0.005 6.392 ± 0.003 -
GROVER large 0.676 ± 0.012 0.798 ± 0.018 5.162 ± 0.047 -
ChemBERTa-2* 0.639 ± 0.006 0.795 ± 0.033 - 1.858 ± 0.029
ChemRL-GEM 0.486 ± 0.008 0.706 ± 0.061 3.924 ± 0.436 -
MolFormer 0.492 ± 0.012 0.766 ± 0.026 5.485 ± 0.045 1.091 ± 0.021
ConfNet 1.360 ± 0.038 2.115 ± 0.484 - 1.329 ± 0.042
UniMol 0.374 ± 0.012 0.741 ± 0.014 2.867 ± 0.186 -
SchNet-scalar 0.704 ± 0.032 0.672 ± 0.027 1.608 ± 0.158 0.723 ± 0.100
SchNet-emb 0.589 ± 0.022 0.635 ± 0.057 1.587 ± 0.136 0.692 ± 0.028
ChemProp3D 0.602 ± 0.035 0.681 ± 0.023 2.014 ± 0.182 0.815 ± 0.170
CONAN 0.556 ± 0.013 0.571 ± 0.019 1.496 ± 0.158 0.635 ± 0.051
CONAN-FGW 0.422 ± 0.016 0.529 ± 0.022 1.068 ± 0.083 0.549 ± 0.016

FACET 0.424 ± 0.009 0.516 ± 0.044 0.967 ± 0.082 0.495 ± 0.115

Figure 4: RingsPaths decom-
position on BACE, splitting
molecules into rings, paths,
and linkers. This reflects
molecular topology and im-
proves interpretability and
generalization.
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approaches (e.g., PretrainGNN (Hu et al., 2020b), GROVER (Rong et al., 2020), ChemBERTa-
2* (Ahmad et al., 2022), ChemRL-GEM (Fang et al., 2022), MolFormer (Ross et al., 2022)),
(iii) 3D-conformers based models (ConfNet (Liu et al., 2021), UniMol (Zhou et al., 2023),
SchNet (Schütt et al., 2017), ChemProp3D (Axelrod & Gómez-Bombarelli, 2023),CONAN-
FGW (Nguyen et al., 2024b)). Training follows the setup in CONAN-FGW (Nguyen et al., 2024b).

For the MARCEL benchmark (Zhu et al., 2024a), we compare FACET against 2D models
(e.g., GIN (Xu et al., 2019), GIN+VN (Hu et al., 2020a), ChemProp (Yang et al., 2019b),
GraphGPS (Rampášek et al., 2022)), 3D models (e.g., SchNet (Schütt et al., 2017),
DimeNet++ (Klicpera et al., 2020), GemNet (Gasteiger et al., 2021), PaiNN (Schütt et al., 2021),
ClofNet (Du et al., 2022), LEFTNet (Du et al., 2023)), and ensemble strategies such as
DeepSets-based ensemble (Zaheer et al., 2017), self-attention (Vaswani et al., 2017), etc. All meth-
ods are evaluated under the same settings as described in the MARCEL benchmark.

5.4.1 RESULTS
Table 5: Comparison of molecular property regression perfor-
mance on the MARCEL benchmark (MAE ↓). The results of
competing methods are adapted from Zhu et al. (2024a).

Category Model Drugs-75K Kraken
IP EA χ B5 L BurB5 BurL

2D models

GIN 0.4354 0.4169 0.2260 0.3128 0.4003 0.1719 0.1200
GIN+VN 0.4361 0.4169 0.2267 0.3567 0.4344 0.2422 0.1741
ChemProp 0.4595 0.4417 0.2441 0.4850 0.5452 0.3002 0.1948
GraphGPS 0.4351 0.4085 0.2212 0.3450 0.4363 0.2066 0.1500

3D models

SchNet 0.4394 0.4207 0.2243 0.3293 0.5458 0.2295 0.1861
DimeNet++ 0.4441 0.4233 0.2436 0.3510 0.4174 0.2097 0.1526
GemNet 0.4069 0.3922 0.1970 0.2789 0.3754 0.1782 0.1635
PaiNN 0.4505 0.4495 0.2324 0.3443 0.4471 0.2395 0.1673
ClofNet 0.4393 0.4251 0.2378 0.4873 0.6417 0.2884 0.2529
LEFTNet 0.4174 0.3964 0.2083 0.3072 0.4493 0.2176 0.1486

Ensemble
Strategy with

DeepSets

SchNet 0.4452 0.4232 0.2243 0.2704 0.4322 0.2024 0.1443
DimeNet++ 0.4126 0.3944 0.2267 0.2630 0.3468 0.1783 0.1185
GemNet 0.4066 0.3910 0.2027 0.2313 0.3386 0.1589 0.0947
PaiNN 0.4466 0.4269 0.2294 0.2225 0.3619 0.1693 0.1324
ClofNet 0.4280 0.4033 0.2199 0.3228 0.4485 0.2178 0.1548
LEFTNet 0.4149 0.3953 0.2069 0.2644 0.3643 0.2017 0.1386

FACET SchNet 0.4235 0.3971 0.2155 0.2508 0.3982 0.1803 0.1245
GemNet 0.3891 0.3852 0.1970 0.2225 0.3402 0.1503 0.0952

MoleculeNet. As shown in
Table 4, FACET achieves
state-of-the-art performance on
three molecular property regres-
sion tasks (ESOL, FreeSolv,
BACE), with the lowest MSEs:
0.516 ± 0.044, 0.967 ± 0.082,
and 0.495 ± 0.115, respec-
tively. Its consistent gains
over CONAN-FGW indicate
that, beyond geometry-aware
aggregation, FACET’s use of
fragment substructures (Fig-
ure 4) enhances attention to
localized chemical contexts.
This demonstrates the advan-
tage of combining 3D spatial
information with chemically
meaningful substructures for
molecular property prediction.

MARCEL. In Table 5, we evaluate FACET on two backbones, SchNet and GemNet. FACET con-
sistently boosts both, confirming the benefits of structure-aware aggregation and fragment-level hi-
erarchy. Unlike CONAN-FGW, which struggles to scale on the large MARCEL benchmark, FACET
remains efficient and achieves near-SOTA performance across all targets, demonstrating robust ef-
fectiveness in diverse molecular property prediction tasks.

5.5 ABLATION STUDY

In this section, we analyze the key components of FACET through ablation studies. Specifically,
we evaluate the impact of: (i) removing fragment structures from both the 2D MPNN and the self-
attention mechanism in the graph transformer (w/o Frag); (ii) using fragments only in the 2D MPNN
but not in the graph transformer (w/o Frag in Trans.); and (iii) omitting the trainable adaptor (w/o
Adap.) that aligns 3D conformer features with the graph transformer, which can lead to performance
degradation due to domain shift during training. As shown in Table 2, the absence of (i) significantly
reduces performance, making FACET comparable to CONAN-FGW but with better scalability. In-
corporating fragments into both components (ii) provides further gains, while (iii) proves essential
for mitigating the domain shift introduced by changes in the 3D MPNN during training.

6 CONCLUSION

We present FACET, a scalable method that integrates 3D conformer features with fragment-level 2D
graph information. Using an FGW-guided trainable attention mechanism, FACET dynamically fuses
2D and 3D representations, outperforming FGW-based baselines across all MoleculeNet tasks. It
also scales to 75,000 molecules and large conformer ensembles in the MARCEL benchmark, achiev-
ing state-of-the-art results in property and reaction prediction with efficient runtimes. A discussion
of the current limitations of FACET is presented in Section H Appendix.
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Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural net-
work for modeling quantum interactions. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.
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A IMPLEMENTATION DETAILS

Our training pipeline includes three stages: In the first stage, we train only the 2D and 3D MPNNs
to learn corresponding features from 2D molecular graph and 3D conformers. The features in this
stage also serve as a dataset for approximating Graph Transformer to the FGW distance. In the
next stage, the Graph Transformer is trained separately to simulate the costly computation of FGW
distance between two conformers using learned features from stage 1. In the last stage, Graph
Transformer is integrated in a single end-to-end training with 2D and 3D MPNNs. At this stage,
only 2D and 3D MPNNs are trained. As a result of changing MPNNs during the last stage, a
shift in the distribution of the Graph Transformer input might occur. We solve this problem by
adding an adaptor layer using an MLP on both 3D and 2D features before feeding them to the
GraphTransformer. For all experiments on the MoleculeNet and MARCEL benchmarks, we use
the same number of conformers as specified in their original settings.

In all stages, we use Adam as our optimizer. We train our model on an 8 V100-GPUs cluster.

Stage 1. Learning 2D and 3D features. For each molecule, we define by H2d−3d = W̃2DH2D+

W̃3DH3D, we then train for 150 epochs and set the learning rate to 1e−3. to optimize target property
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tasks Lpred = ||ŷ2d−3d − ỹ||22 where ỹ be the ground-truth value and ŷ be our predicted value
defined by:

ŷ2d−3d = WG

(
1

K

K∑
k=1

H2d−3d[k]

)
+ bG , (10)

with WG and bG are learnable parameters and K is number of conformers.

Stage 2. Training Graph Transformer to approximate FGW distance. The Graph Transformer
is trained separately in the second stage to approximate the FGW distance by Euclidean embedding
space. For the Graph Transformer architecture, we employ the same setting as Graphormer from
Ying et al. (2021). Specifically, a number of attention layers, a number of attention heads, and the
hidden dimension of the transformer are set to 12, 8, and 64, respectively, which makes the total
number of parameters of the Graph Transformer 372k. In our attention, we use the shortest-path
distance (SPD) between a pair of nodes. Following practical implementation in Ying et al. (2021),
we pre-compute SPD distance for each 3D molecule graph and load these values during training and
inference. We set a learning rate of 1e−5 and train for 1000 epochs with the following loss function:

Lenc =
∑
ij

[
||Tθ(Hi)− Tθ(Hj)||22 − FGWp,α(G(Si),G(Sj))

]
. (11)

Stage 3. Training Fragment-aware Graph Transformer. In the final stage, we freeze the trained
GraphTransformer T θ(·) and use it to compute aggregated features from 3D conformer embeddings
generated by the 3D-MPNN. To accommodate potential distribution shifts, we add lightweight FFN
adaptor layers on top of both the 2D- and 3D-MPNNs used in T θ(·), while continuing to update the
MPNNs during training. The full model is trained for 300 epochs with a reduced learning rate to
optimize the training loss Lpred = ||ŷ − ỹ||22 where

ŷ = WG

(
1

K

K∑
k=1

Hcomb[k]

)
+ bG . (12)

Hcomb is final atom-wise embedding.

B FURTHER VISUALIZATION FRAGMENT OUTPUTS

Fragment Generation Algorithms. We use a structural fragmentation method based on Ring-
Path algorithms (Kong et al., 2022; Geng et al., 2023; Wollschläger et al., 2024) that decompose
a molecular graph G = (V,E), where V denotes atoms and E denotes covalent bonds, into a set
of chemically interpretable fragments. The fragmentation process identifies a set of ring fragments
Fring ⊆ F using RDKit’s cycle basis algorithm (SSSR), where each ring fr ∈ Fring is encoded by
its atom indices and size class.

Next, all bonds not part of any ring are grouped into acyclic path fragments Fpath ⊆ F , where each
fp ∈ Fpath is a linear chain of nodes, extracted via depth-first search under a degree constraint. Each
fragment f ∈ F = Fring ∪ Fpath ∪ Fjunction is assigned a type t(f) ∈ {0, 1, 2} (representing ring,
path, or junction) and a type index ϕ(f) ∈ {0, 1, . . . ,K−1} within a fixed vocabulary of size K.
Fragments whose sizes exceed a predefined threshold kmax are mapped to the final index of their
category to preserve bounded dimensionality.

We define a fragment-atom incidence matrix M ∈ {0, 1}|V |×|F|, where Mv,f = 1 if atom v ∈ V
belongs to fragment f . From this, we derive a fragment-level graph Gfrag = (Vfrag, Efrag), where
each node f ∈ F represents a molecular fragment and an edge (fi, fj) ∈ Efrag is added if two
fragments share at least one atom or are directly bonded.

Compared to traditional fragmentation algorithms like BRICS (Degen et al., 2008), BBB (Sommer
et al., 2023), or MagNet (Hetzel et al., 2023), the RingPath algorithm offers a more topology-aware
decomposition by explicitly capturing key structural motifs such as rings, paths, and linkers. While
BRICS and BBB often generate chemically meaningful fragments based on retrosynthetic rules,
they may overlook contextual connectivity critical for graph-based learning. In contrast, RingPath
preserves the relational structure between fragments, aligning closely with how molecules are built
and understood in topological space—making it particularly beneficial for tasks requiring structural
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interpretability and generalization in graph neural networks. The advantages of RingPath have also
been empirically validated in recent studies, demonstrating improved performance across various
molecular property prediction benchmarks.

Visualization of Typical Extracted Fragment Graphs. Figures 5 and 6 illustrate representative
examples of fragment extraction using the RingPath algorithm on the Kraken and Drug-75k datasets.
The top row displays the original 2D molecular structures, while the bottom row shows the corre-
sponding RingPath decompositions. Each colored region highlights a distinct structural fragment,
such as a ring or path, demonstrating the algorithm’s ability to segment complex molecules into
chemically meaningful and interpretable components.

(a) Sample 1 (b) Sample 2 (c) Sample 3

Figure 5: RingsPaths decomposition on three samples of the Kraken dataset. Top: 2D molecules;
bottom: corresponding RingsPaths decomposition results.

(a) Sample 1 (b) Sample 2 (c) Sample 3

Figure 6: RingsPaths decomposition on three samples of the Drugs-75K dataset. Top: 2D
molecules; bottom: corresponding RingsPaths decomposition results.

C ADDITIONAL ANALYSIS OF FACET’S SCALABILITY AND PERFORMANCE
WITH MORE 3D CONFORMERS

In this section, we further analyze FACET’s scalability on the following two factors:
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Table 6: Comparisons on performance with different numbers of conformers generated by RDKit.

Settings 3 conf. 5 conf. (default) 10 conf. 15 conf. 20 conf.
ESOL 0.539 ± 0.06 0.516 ± 0.04 0.501 ± 0.02 0.511 ± 0.03 0.546 ± 0.02
FreeSolv 0.977 ± 0.25 0.967 ± 0.08 0.933 ± 0.23 0.946 ± 0.24 0.949 ± 0.21
BACE 0.542 ± 0.05 0.495 ± 0.03 0.513 ± 0.02 0.519 ± 0.01 0.517 ± 0.03
Lipo 0.445 ± 0.02 0.424 ± 0.01 0.444 ± 0.02 0.447 ± 0.08 0.445 ± 0.01

C.1 INFERENCE TIME WHEN INCREASING THE NUMBER OF 3D CONFORMERS FOR EACH
MOLECULE.

We compare FACET against two versions of CONAN-FGW in running time to extract structure-
aware embedding aggregation with different input of 3D conformers. We use two variations of
CONAN-FGW, including a single GPU version and another relaxed solver that permits running
Sinkhorn iterations on GPUs by matrix multiplication, thus supporting distributed multi-GPUs ac-
celeration. The experiments are conducted on a single GPU using a batch size of 32 molecules,
each with different conformers ranging from 3, 5, 10, 15, and 20, and another experiment with four
GPUs on the same batch size, i.e., 8 molecules per GPU.

Figure 7 indicates our observations across four datasets of MoleculeNet benchmark, where we re-
port the required time to extract embedding aggregations for all molecules in the test set. We see that
(i) FACET demonstrates excellent scalability where its runtime remains nearly constant regardless
of the number of conformers, both in single-GPU and multi-GPU settings. In contrast, ConAN-FGW
shows poor scalability where runtime increases steeply with the number of conformers. While the
multi-GPU usage improves runtime over single-GPU, the growth trend remains significant, with
runtimes still exceeding 30 seconds at 20 conformers (e.g., with ESOL dataset).

Secondly, the nearly identical runtime of FACET across single- and multi-GPU settings, as shown
in the plot, can be attributed to its computational efficiency and the relatively small workload in
this experiment. In such cases, the overhead introduced by multi-GPU parallelization - such as
inter-GPU communication and data synchronization - can outweigh its potential speedup benefits.
Therefore, we argue that multi-GPU acceleration for FACET becomes advantageous only under
substantially larger workloads, such as batch processing of thousands to millions of molecules or
handling complex input representations that exceed the memory capacity of a single GPU.

C.2 AVERAGE TRAINING TIME PER EPOCH AS A FUNCTION OF DATASET SIZE.

We analyze the scalability of FACET with respect to the number of training molecules. To this end,
we report the average training time per epoch across four datasets from the MoleculeNet benchmark.
Figure 8 compares the training time of FACET and ConAN-FGW on a single GPU, using a batch
size of 256 and 5 conformers per molecule. As shown in the figure, FACET achieves a 2.28× to
3.17× speedup over ConAN-FGW. Notably, this speedup is roughly proportional to the number of
training molecules in each dataset, as reported in Table 1.

C.3 ABLATION STUDY ON THE IMPACT OF INCREASING THE NUMBER OF 3D CONFORMERS
IN FACET

We provide below a comprehensive ablation study on the impact of using an increasing number of
RDKit-generated conformers across four datasets (ESOL, FreeSolv, BACE, and Lipo).

As shown in Table 6, we observe a consistent trend across datasets: increasing the number of con-
formers from 3 to 5 leads to improved regression performance (lower values indicate better results).
However, beyond 5 conformers, the performance tends to converge or slightly fluctuate, confirming
that our geometry-aware embedding approach using the FGW distance provides stable and reliable
approximations. This aligns with the theoretical expectation that the approximation error scales with
O(1/K), where K is the number of conformers used.

When 3D conformers generated by RDKit are not used, our FACET model simplifies significantly.
In this configuration, the model only receives 2D molecular graphs along with fragment-level in-
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Figure 7: Runtime comparison of structure-aware embedding aggregation between ConAN-FGW
(Nguyen et al., 2024b) and the proposed FACET on four datasets from the MoleculeNet benchmark.
Results are shown for both single-GPU and 4-GPU configurations. Reported runtimes represent the
total time required to extract structural embeddings for all molecules in the test set of each dataset.

(a) ESOL (b) FreeSolv

(c) Lipo (d) BACE

Figure 8: Comparison of the one-epoch training time of CONAN-FGW (Nguyen et al., 2024b) and
the proposed FACET on four datasets from the MoleculeNet benchmark.
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Table 7: Comparisons on performance without conformers generated by RDKit.

Method ESOL(↓) FreeSolv(↓) BACE(↓) Lipo(↓)
FACET 0.516 ± 0.04 0.967 ± 0.08 0.495 ± 0.03 0.424 ± 0.01
w/o 3D conformers 0.546 ± 0.03 1.197 ± 0.09 0.584 ± 0.03 0.543 ± 0.02

formation, and key components such as the Graph Transformer are removed. Table 7 presents the
performance comparison between the full FACET model and its 2D-only variant across four bench-
mark datasets:

These results clearly demonstrate that incorporating 3D conformers, even those generated by RDKit,
is critical to the expressiveness and performance of FACET. The full model consistently outperforms
its 2D-only counterpart, highlighting the importance of 3D geometry in learning accurate molecular
representations.

D COMPARISON OF TRAINING TIME BETWEEN FACET AND CONAN-FGW

To provide a comprehensive comparison, we conducted additional experiments to compare the
training time of FACET and CoNAN-FGW, with the addition of GemNet, a strong state-of-the-
art 3D molecular model, on two benchmark datasets: BACE (1,059 molecules) and LIPO (2,940
molecules). All models were trained for 200 epochs under the same settings. Since both FACET
and CoNAN-FGW are originally built on the SchNet architecture, which is generally less expres-
sive than GemNet, we also report the performance of FACET when upgraded to use GemNet as its
backbone. From the results listed in Table 8, we have the following key observations:

• FACET vs. CoNAN-FGW: FACET consistently shows reduced training time compared to
CoNAN-FGW, though the degree of reduction varies by dataset size.

– On BACE: the time savings are marginal due to the additional cost introduced by the
Graph Transformer component in FACET, which is trained using the pre-computed
FGW distances from the optimal transport solver.

– On LIPO: the training time reduction is more substantial. This is because CoNAN-
FGW incurs a high computational cost from directly computing FGW distances be-
tween sets of 3D conformers in every forward pass. In contrast, FACET leverages
pre-learned geometry-aware embeddings, where the corresponding operation reduces
to a lightweight matrix multiplication in the Graph Transformer.

• FACET vs. GemNet: FACET represents a balanced trade-off between CoNAN-FGW and
GemNet in terms of training time. Despite using the simpler SchNet backbone, FACET
achieves competitive, sometimes better, performance compared to GemNet, thanks to its
geometry-aware aggregation via FGW-based embeddings. This efficiency stems from re-
placing costly pairwise conformer comparisons with a latent-space transformer that cap-
tures 3D geometric information in a more scalable manner.

• FACET (GemNet) vs. GemNet: When both models share the same GemNet architecture,
FACET outperforms GemNet in terms of predictive accuracy on both datasets. We observe
that (i) the additional training time incurred by FACET is relatively modest: approximately
+21% on BACE and +33% on LIPO, and (ii) given the performance gains, this extra time
remains acceptable in practical scenarios and demonstrates FACET’s scalability and effec-
tiveness.

E PERFORMANCE OF FACET AND CONAN-FGW ON MARCEL
BENCHMARK

To provide a meaningful comparison, we benchmarked FACET against CoNAN-FGW on 10% of
the Drug-75k dataset and on the Kraken dataset, which serve as representative subsets. The results
(provided below) show that FACET performs competitively or outperforms CoNAN-FGW, even
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Table 8: Comparisons on performance in terms of MSE(↓) and corresponding training time(↓).

Model Metric BACE LIPO
GemNet MSE 0.51 ± 0.07 0.45 ± 0.01

Time 2.04 hours 4.8 hours
Conan-FGW (SchNet) MSE 0.55 ± 0.02 0.42 ± 0.02

Time 2.5 hours 6.3 hours
FACET (SchNet) MSE 0.50 ± 0.03 0.42 ± 0.01

Time 2.3 hours 5.05 hours
FACET (GemNet) MSE 0.46 ± 0.03 0.39 ± 0.02

Time 2.47 hours 6.4 hours

Table 9: Comparisons on performance with different standalone 3D architectures.

Model BACE(↓) LIPO(↓)
SchNet 0.64 ± 0.05 0.56 ± 0.01
FACET (SchNet) 0.50 ± 0.03 0.42 ± 0.01
GemNet 0.51 ± 0.07 0.45 ± 0.01
FACET (GemNet) 0.46 ± 0.03 0.39 ± 0.02
VisNet 0.61 ± 0.15 0.55 ± 0.45
FACET (VisNet) 0.47 ± 0.01 0.48 ± 0.01

under these reduced-scale settings, reinforcing the efficiency and effectiveness of our approach. The
results are shown in Tables 10 and 11.

F COMPARISONS WITH SOTA METHODS IN 2D (OR 3D)

FACET is designed as a modular framework for enhancing molecular property prediction by inte-
grating structure-aware aggregation over multiple conformers. A central strength of this design is
that it can be plugged into a variety of existing backbone architectures, whether 2D or 3D, thus
offering a complementary mechanism rather than an alternative to these models.

FACET improves standalone 3D architectures We integrated FACET with established 3D mod-
els such as SchNet, GemNet, and VisNet, and consistently observed performance improvements
across datasets. Table 9 demonstrates that FACET’s geometry-aware aggregation over multiple con-
formers complements even strong 3D baselines, validating its utility beyond what these models
achieve on their own.

FACET enhances simple 2D MPNNs We also applied FACET to a lightweight 2D message-
passing neural network and found that incorporating FACET’s fragment-level structure-aware ag-
gregation significantly improved performance. This result underscores the compatibility of FACET
with 2D backbones and its ability to enhance models that do not explicitly process 3D information.

G UNIFIED TRAINING PIPELINE

We investigated the performance of the proposed method when combining all training steps into an
end-to-end pipeline. Below, we summarize our findings step by step:

• Step 1 – Pretraining 2D and 3D MPNNs: As suggested in prior work like CoNAN-FGW,
we begin by pretraining the 2D and 3D MPNNs independently. This initial phase is critical
to ensure that the encoders, especially the 3D MPNN, converge to a stable and meaningful
representation before introducing structure-aware aggregation. To test the necessity of this
stage, we experimented with a variant where all three stages were co-trained from scratch.
The results showed substantially lower performance, confirming that Stage 1 is crucial for
learning rich, aligned, and stable representations.
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Table 10: Comparisons of performance between FACET and CoNan-FGW on Kraken

L BurL B5 BurB5

Conan-FGW (SchNet) 0.397 0.117 0.272 0.195
FACET (SchNet) 0.398 0.125 0.251 0.180

Table 11: Comparisons of performance between FACET and CoNan-FGW on Drugs-7.5k

χ IP EA

Conan-FGW (SchNet) 0.374 0.541 0.587
FACET (SchNet) 0.365 0.535 0.552

• Steps 2 and 3 – Co-training Graph Transformer and Downstream Fine-tuning: While
our default setup trains Step 2 (Graph Transformer with FGW supervision) and Step 3 (fine-
tuning on molecular properties) sequentially, we explored an alternative setup where both
steps are co-trained. To manage the computational cost of FGW supervision, we adopted
an alternating strategy: after every five steps of property prediction optimization, we update
the Graph Transformer to approximate FGW distances. This reduces the training burden
compared to full FGW supervision at every iteration (as in CoNAN-FGW).

As shown in Table 12, without separately training Step 1, the model got low performance, confirming
that this stage helps the model ensure rich, aligned, and stable molecular representations before
incorporating more advanced structure awareness. Secondly, on four MoleculeNet datasets, co-
training Steps 2 and 3 produced slightly improved performance over the default FACET setup. For
example, on ESOL, performance improved from 0.505 to 0.516, and on FreeSolv, from 0.867 to
0.967. This improvement can be attributed to the model’s ability to jointly adapt the 2D/3D encoders
and the Graph Transformer, leading to more aligned, task-relevant representations. However, there is
a trade-off. This co-training strategy comes with an increased training cost, as FGW distances must
still be computed periodically. As a result, while training is slower than the default FACET setup,
it remains significantly faster than CoNAN-FGW, and achieves a strong balance between efficiency
and predictive performance, especially on large-scale datasets like Drug-75k.

Table 12: Comparisons of performance (MSE ↓)of different training strategies.

ESOL(↓) FreeSolv(↓) BACE(↓) Lipo(↓)

ConAN-FGW 0.529 ± 0.022 1.068 ± 0.083 0.549 ± 0.016 0.422 ± 0.016
FACET 0.516 ± 0.044 0.967 ± 0.082 0.495 ± 0.115 0.424 ± 0.009
FACET (Merge all steps) 0.567 ± 0.023 1.264 ± 0.094 0.591 ± 0.062 0.530 ± 0.013
FACET (Merge steps 2-3) 0.505 ± 0.014 0.867 ± 0.102 0.497 ± 0.035 0.44 0± 0.014

H LIMITATIONS OF FACET

H.1 FACET OPERATES ON A PREDEFINED SET OF 3D CONFORMERS.

Our method enables efficient geometry-aware aggregation without requiring expensive alignment
procedures at inference time. While FACET demonstrates improved performance even with a small
subset of conformers, the quality and representativeness of this subset can still influence downstream
predictions. In particular, if the selected conformers are heavily biased or fail to capture key struc-
tural variations, some aspects of molecular flexibility may be underrepresented. Addressing this
challenge through better conformer sampling strategies or task-aware selection mechanisms could
further enhance model robustness, especially for highly flexible molecules.

Future direction: A promising extension would be to develop end-to-end models that can learn to
generate conformers dynamically during training, using gradient feedback from downstream predic-
tion losses. Such a differentiable conformer generation module could enable task-aware structural
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modeling, ensuring that the generated conformers are optimized not just for physical plausibility,
but also for relevance to the predictive task at hand.

H.2 LIMITATIONS IN SCOPE: FOCUS ON SMALL MOLECULES

FACET has primarily been evaluated on standard molecular property prediction benchmarks such
as those in MoleculeNet, which consist mostly of small, drug-like molecules. While this setup is
well-suited for many pharmacological applications, it limits the assessment of FACET’s general-
izability to more complex molecular systems. For example, biomacromolecules (e.g., peptides,
proteins, nucleic acids) exhibit high flexibility, long-range dependencies, and hierarchical organi-
zation that are not present in small molecules. Polymers and materials often involve much larger
structures without well-defined conformers, challenging FACET’s reliance on discrete 3D inputs.
Additionally, FACET currently models only single-molecule properties and has not been extended
to multi-molecular interactions, such as protein-ligand binding.

Future direction: To broaden FACET’s applicability, several promising future directions can be
explored. First, incorporating efficient attention to capture both local fragment-level information
and long-range structural dependencies is essential for handling large biomolecules. Second, adapt-
ing FACET to support flexible input formats, such as voxel grids or material-specific graphs, would
allow it to process polymers and crystalline materials that lack stable conformers. Third, extend-
ing FACET to jointly model molecular interactions through cross-graph attention or co-embedding
mechanisms could open applications in drug docking and molecular complex prediction. Finally,
applying and evaluating FACET on broader datasets, such as PDBbind (Liu et al., 2015), PolyInfo
(Otsuka et al., 2011), or CoRE MOF 2019 (Chung et al., 2019), would provide a more comprehen-
sive understanding of its strengths and limitations across molecular domains.

I PROOF OF THEOREM 1

Recall that we aim to establish the following novel theoretical bounds: Let D denote the pairwise
FGWp,α distance matrix, and let {λk,vk}Kk=1 represent the eigendecomposition of the associated
criterion matrix F = −CDC, where C = IK − 1

K1K1⊤
K is the centering matrix. The optimal

stress value, denoted by S∗, is bounded as follows: L ≤ S∗ ≤ U , where

L :=
∑

k:λk<0

λ2
k, U :=

∑
kl

(∆gk +∆gl)
2 + L+ C, ∆gk =

1

2

∑
l:λl<0

λl · v2
kl, ∀k ∈ [K].

Here, vkl denotes the l-th component of the k-th eigenvector vk of F , and C quantifies the ap-
proximation error between the empirical barycenter in the Euclidean embedding space and its
counterpart in the original space of undirected attributed graphs. This is equivalent to that given
e := {ek}k∈[K] ∈ Rd×K , our objective is to derive lower and upper bounds for the following
cumulative stress:

S∗ = min
e∈Rd×K

S(e), S(e) = S1(e) + S2(e), (13)

S∗1 := min
e∈Rd×K

S1(e), S1(e) :=
∑

k,l∈[K]

(
∥ek − el∥22 −Dkl

)2
, (14)

S∗2 := min
e∈Rd×K

S2(e), S2(e) :=
∑
l∈[K]

(
∥eK − el∥22 −DK,l

)2
. (15)

To this end, we begin by specifying and formally defining the following important concepts in
Appendix I.1.

I.1 NON-EUCLIDEAN NATURE OF PAIRWISE FGW DISTANCE MATRIX

Definition 1 (Euclidean Distance Matrix). A K ×K distance matrix D is said to be Euclidean if
there exists a set of points e = {ek}Kk=1 in some Euclidean space Rd such that

∀k, l ∈ [K], Dkl = ∥ek − el∥22.
The space of all Euclidean distance matrices (EDM) is denoted by E .

Fact 1 (Conditions for Euclidean Distance Matrix, see, e.g., Gower (1985)). A matrix D is an EDM
if and only if it satisfies the following three conditions:
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(i) Non-negativity: Dkl ≥ 0 for all k, l ∈ [K],

(ii) Hollow diagonal: Dkk = 0 for all k ∈ [K],

(iii) Positive semidefiniteness: the associated double-centered matrix F := −CDC is positive
semidefinite (PSD), where C = IK − 1

K1K1⊤
K is the centering matrix, and 1K denotes

the K-dimensional vector of ones.

Recall that the pairwise FGW distance matrix D for a collection of K distributions is defined entry-
wise by Dkl := FGWp,α(G(Sk),G(Sl)) for all k, l ∈ [K], as introduced in Section 3. The following
result establishes that this matrix does not correspond to a Euclidean distance matrix:
Lemma 1 (Non-Euclidean Nature of Pairwise FGW Distance Matrix). Consider the case where
df = ∥ · ∥2. Then the FGW distance matrix D, whose entries are given by

FGWp,α(G1,G2) := min
π∈Π(ω1,ω2)

⟨(1− α)M + αL(A1,A2)⊗ π,π⟩ ,

with α ∈ [0, 1], does not define a Euclidean distance matrix.

As established in Lemma 1, which is proved in Appendix I.4, the distance FGWp,α is not a Eu-
clidean distance. Therefore, we are interested in quantifying how accurately non-Euclidean distance
matrices can be approximated by pairwise distances between learned embeddings. To this end, we
analyze the lower and upper bound of the set S in Appendices I.2 and I.3, respectively.

I.2 LOWER BOUNDS ON EMBEDDING NON-EUCLIDEAN FGW DISTANCES

We would like to find the lower bound of S. We note that the original formulation is non-convex,
making it analytically intractable. Nonetheless, by reparameterizing the objective as a function of the
pairwise squared distances D̂kl := ∥ek − el∥22 and D̂Kl := ∥eK − el∥22 induced by the embedding,
and by incorporating the necessary conditions to ensure that D̂ corresponds to a valid Euclidean
distance matrix, the reformulated problem becomes convex for S1. Note that we can prove that S
has a lower bound at L̂∗, where L̂∗ is a minimizer of S1, that is,

S∗ = min
D̂∈E

[
S1(D̂) + S2(D̂)

]
, S2(D̂) :=

∑
l∈[K]

(
D̂Kl −DK,l

)2
, (16)

S1(L̂∗) = min
D̂∈E
S1(D̂), S1(D̂) :=

∑
k,l∈[K]

(
D̂kl −Dkl

)2
. (17)

Indeed, given the previous reformulation of S, we can establish the following lower bound via
Proposition 1. Notably, to simplify the problem, in Proposition 1, we relax the EDM constraint by
considering EL, containing E by keeping only the PSD property from the EDM definition in Fact 1.
We will reintroduce the missing constraints in EL and use the solution for the simplified problem to
construct an upper bound in Appendix I.3.
Proposition 1 (Error Lower Bound of S∗). The lower bound of S is provided as follows:

S∗ = min
D̂∈E

[
S1(D̂) + S2(D̂)

]
≥ S1(L̂∗) + S2(L̂∗) ≥ L1 + L2 =: L, (18)

S1(L̂∗) = min
D̂∈EL

S1(D̂) ≥
∑

k:λk<0

λ2
k =: L1, (19)

S2(L̂∗) = min
D̂∈EL

S2(D̂) = 0 =: L2. (20)

Here EL contains E by keeping only the PSD property from the EDM definition in Fact 1.

Proof of Proposition 1. Note that if S1 is minimized at L̂∗, that is,

S1(L̂∗) = min
D̂∈E
S1(D̂), S1(D̂) :=

∑
k,l∈[K]

(
D̂kl −Dkl

)2
. (21)

We then can find the lower bound of S∗ = minD̂∈E

[
S1(D̂) + S2(D̂)

]
via the minimizer L̂∗.

Using the definition of Frobenius norm and EL, we can obtain:
S1(L̂∗) := min

D̂∈E
S1(D̂) ≥ min

D̂∈EL

S1(D̂), S1(D̂) = ∥D̂ −D∥2F ,
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We then obtain the following decomposition:
∥D̂ −D∥2F = ∥A∥2F + ∥B∥2F , A := CD̂C −CDC,

B :=
1

K
OD̂C +

1

K
CD̂O +

1

K2
OD̂O −

(
1

K
ODC +

1

K
CDO +

1

K2
ODO

)
,

where C = IK − 1
KO is the centering matrix and O = 1K1⊤

K is the all-ones matrix. Indeed, using
the definition of the centering matrix C = IK − 1

KO, we have IK = C + 1
KO.

∥D̂ −D∥2F = ∥IKD̂IK − IKDIK∥2F = ∥A+B∥2F = ∥A∥2F + ∥B∥2F + 2Tr(AB) = ∥A∥2F + ∥B∥2F ,
Here we used the fact that the matrix product is invariant under cyclic permutation:

Tr(AB) = Tr

(
C(D̂ −D)C(D̂ −D)

1

K
O

)
= Tr

(
1

K
OC(D̂ −D)C(D̂ −D)

)
= 0,

and
1

K
OC =

1

K
O

(
IK −

1

K
O

)
=

1

K
O − 1

K2
OO = 0.

Under only the PSD constraint, the optimal solution L̂∗ that minimizes S1(D̂) can be decomposed
as:

L̂∗ = L̂∗
A + L̂∗

B,

where L̂∗
A and L̂∗

B respectively minimize the terms ∥A∥2F and ∥B∥2F independently.

In particular, using the definition of the centering matrix C = IK − 1
KO, the entries of L̂∗

B are
given by:

L̂∗
B,kl :=

[
1

K
ODC +

1

K
CDO +

1

K2
ODO

]
kl

=

[
1

K
OD +

1

K
(OD)⊤ − 1

K2
ODO

]
kl

= Dk +Dl −D,

where Dk denotes the mean of the k-th row (or column) of D, and D is the global mean of all
elements in D. Therefore, the rows/columns mean of L̂∗

B equal those of D itself, and hence
L̂∗

B = arg min
D̂∈EL

∥B∥2F , min
D̂∈EL

∥B∥2F = 0.

Therefore,

min
D̂∈EL

S2(D̂) = min
D̂∈EL

∑
l∈[K]

(
D̂Kl −DK,l

)2
= 0.

Here we used the fact that the matrix D is given by Dkl := FGWp,α(G(Sk),G(Sl)) for all k, l ∈ [K]
and the empirical FGW barycenter is given by

GK ∈ arg min
G∈Pp(Ω)

1

K

K∑
l=1

FGWp
p,α(G,G(Sl)) = arg min

G∈Pp(Ω)

1

K

K∑
l=1

FGWp,α(G,G(Sl)),

DK,l := FGWp,α(GK ,G(Sl)) = min
G∈Pp(Ω)

1

K

K∑
l=1

FGWp,α(G,G(Sl)) (=: column l-th means of D),

where Pp(Ω) denotes the space of attributed graphs with finite p-th order FGW distance. To ap-
proximate this barycenter in embedding space, we require

∥eK − el∥22 ≈ FGWp,α(GK ,G(Sl)) := DK,l for all l ∈ [K],
where eK = 1

K

∑K
k=1 ek is the mean embedding and ek := Tθ(Hk) is the learned representation.

Now we would like to find a local analytic solution L̂∗
A minimizing ∥A∥2F such that the global

solution L̂∗ = L̂∗
A + L̂∗

B minimizes both terms ∥A∥2F and ∥B∥2F simultaneously. That is,
min
D̂∈EL

∥A∥2F = min
D̂∈EL

∥C(L̂A + L̂B)C −CDC∥2F

= ∥C(L̂∗
A + L̂∗

B)C −CDC∥2F = ∥CL̂∗
AC −CDC∥2F .

Here we used the fact that by definition of L̂∗
B , it holds that CL̂∗

BC = 0. Hence, the optimization
becomes:

min
D̂∈EL

∥CL̂AC −CDC∥2F .
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This is in fact the problem of computing the nearest PSD approximation CL̂AC to a symmetric
matrix CDC. Using the result from Higham (1988), we find the analytic solution as follows:

L̂∗
A = −

∑
k:λk>0

λkvkv
⊤
k . (22)

Here {λk,vk}k∈[K] are the eigenvalues and eigenvectors of F = −CDC. Because CDC has
rows/columns means 0, the ones vector 1K is an eigenvector of CDC with eigenvalue 0. This
leads to 1K is also in the null space L̂∗

A and:

L̂∗
A = CL̂∗

AC,
1

K
OL̂∗

A =
1

K

(
OL̂∗

A

)⊤
= 0.

Therefore,
∥L̂∗ −D∥2F = ∥L̂∗

A + L̂∗
B −D∥2F =

∑
k:λk<0

λ2
k.

Combining all together, Proposition 1 is derived as follows:
S∗ ≥ min

D̂∈EL

∥A∥2F + min
D̂∈EL

∥B∥2F + min
D̂∈EL

S2(D̂) =
∑

k:λk<0

λ2
k + 0 + 0 =

∑
k:λk<0

λ2
k =: L.

I.3 UPPER BOUNDS ON EMBEDDING OF PAIRWISE EMPIRICAL FGW BARYCENTER
DISTANCES

As discussed in Appendix I.2, the lower bound stated in Proposition 1 is derived by simplifying the
problem and relaxing the EDM constraint. Specifically, this relaxation involves considering the set
EL, which contains E but retains only the PSD requirement from the EDM characterization given
in Fact 1. In Proposition 2, we reintroduce the missing constraints excluded in EL and leverage
the closed-form solution obtained from the relaxed problem to construct an upper bound under the
original EDM constraint set E .

Proposition 2 (Error Upper Bound of S∗). There exists a matrix Û∗ ∈ E such that the following
upper bounds hold:

S∗ = min
D̂∈E

[
S1(D̂) + S2(D̂)

]
≤ S1(Û∗) + S2(Û∗) ≤ U1 + U2 =: U , (23)

S1(Û∗) = min
D̂∈E
S1(D̂) ≤ U1 :=

∑
k:λk<0

λ2
k +

∑
kl

(∆pk +∆pl)
2,

∆pk =
1

2

∑
l:λl<0

λl · v2
kl, ∀k ∈ [K] (24)

S2(Û∗) = min
D̂∈E
S2(D̂) ≤

∑
l

(∆pl)
2
=: U2, (25)

where the aggregated error term is defined as:

∆pl :=
1

2K

K∑
k=1

∑
l:λl<0

λl · v2
kl.

We aim to exploit the information derived from the truncation of the negative eigenspace of the
matrix CDC, specifically the matrix introduced in Eq.(22), defined as:

L̂∗
A = −

∑
k:λk>0

λkvkv
⊤
k ,

where {λk,vk}k∈[K] denote the eigenvalues and corresponding eigenvectors of the matrix F =
−CDC.

Recall that the entries of L̂∗
B are given by:

L̂∗
B,kl =

[
1

K
OD +

1

K
(OD)⊤ − 1

K2
ODO

]
kl

= Dk +Dl −D.

As a consequence, the sum L̂∗
A+ L̂∗

B may not be strictly hollow or PSD when D is not an EDM. To
address this, we seek to construct a symmetric matrix P to be added to L̂∗

A, resulting in the matrix
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Û∗ := L̂∗
A+P , which is both hollow and PSD. This adjustment is designed to avoid any additional

penalty on the term ∥A∥2F , though it may introduce some approximation errors in ∥B∥2F and in the
quantity S2. These induced errors contribute to the upper bound U for the optimal score S∗.

We begin with the requirement that the matrix P does not contribute any additional penalty to the
term ∥A∥2F . This can be ensured by imposing the constraint CPC = 0. Under this condition, the
matrix Û∗ remains a minimizer of ∥A∥2F , as demonstrated below:

min
D̂∈EL

∥A∥2F = min
D̂∈EL

∥C(L̂A + L̂B)C −CDC∥2F

= ∥C(L̂∗
A + P + L̂∗

B)C −CDC∥2F
= ∥CL̂∗

AC −CDC∥2F ,
where the final equality holds due to the constraint CPC = 0.

This leads to the condition (CP )C = C(PC) = 0, implying that CP lies in the left null space
of C, and PC lies in its right null space. As a result, all rows of PC must be constant, and this
expression can be written as:

1Kc⊤ = PC = P

(
IK −

1

K
O

)
or P = 1Kc⊤ + P

1

K
O,

where c is a column vector to be defined subsequently. Here, we have used the fact that C is the
centering matrix defined by C = IK − 1

KO.

Multiplying both sides on the left by 1
KO yields:

1

K
OP =

1

K
O1Kc⊤ +

1

K
O

(
1

K
PO

)
= 1Kc⊤ +

1

K2
OPO.

This leads to

c⊤ =
1

K
1⊤
KP − 1

K2
1⊤
KOPO.

Indeed, via the definition of O = 1K1⊤
K , we can verify this as follows:

1Kc⊤ +
1

K2
OPO = 1K

(
1

K
1⊤
KP − 1

K2
1⊤
KOPO

)
+

1

K2
OPO

=
1

K
1K1⊤

KP − 1

K2
1K1⊤

KOPO +
1

K2
OPO

=
1

K
1K1⊤

KP − 1

K2
OOPO +

1

K2
OPO

=
1

K
OP .

Hence,

P = 1K

(
1

K
1⊤
KP − 1

K2
1⊤
KOPO

)
+ P

1

K
O

=
1

K
1K(1⊤

KP ) +
1

K
(P1K)1⊤

K −
1

K2
1K1⊤

KOPO

Since P1K is a column vector, to satisfy this constraint, P must be of the form:

P = 1K
p⊤

K
+

p

K
1⊤
K − p̂

1K1⊤
K

K
,

where p ∈ RK is a vector of free parameters, and p̂ denotes its average. This construction implies
that P has only K degrees of freedom. However, to ensure that L̂∗

A +P has zero diagonal (i.e., the
resulting matrix is hollow), the diagonal entries of P must satisfy the following K linear constraints:

pk −
1

2
p̂ = −1

2
[L̂∗

A]kk, ∀k ∈ [K].

Solving this linear system yields:

pk =
1

2

( ∑
l:λl>0

λl · v2
kl +

1

K
p̂

)
,
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p̂ =
1

K

K∑
k=1

pk =
1

K

K∑
k=1

∑
l:λl>0

λl · v2
kl,

where we have used the fact that L̂∗
A = −

∑
l:λl>0 λlvlv

⊤
l , and hence its diagonal entries are given

by [L̂∗
A]kk = −

∑
l:λl>0 λl · v2

kl.

Consequently, the resulting matrix P can be expressed element-wise as:

Pk,l = −
[L̂∗

A]kk + [L̂∗
A]ll

2
≥ 0,

where the inequality follows from the fact that L̂∗
A is negative semi-definite.

In summary, the matrix Û∗ := L̂∗
A + P satisfies all three constraints specified in Definition 1.

Although Û∗ preserves the value of ∥A∥2F , it differs from L̂∗
A and introduces approximation errors

in the ∥B∥2F term and the S2 term. Note that the sum of the untruncated version of CDC and the
matrix

1

K
ODC +

1

K
CDO +

1

K2
ODO

is equal to D and remains hollow. Recall the decomposition:
∥D̂ −D∥2F = ∥A∥2F + ∥B∥2F , A := CD̂C −CDC,

B :=
1

K
OD̂C +

1

K
CD̂O +

1

K2
OD̂O

−
(

1

K
ODC +

1

K
CDO +

1

K2
ODO

)
,

where C = IK − 1
KO is the centering matrix and O = 1K1⊤

K is the all-ones matrix.

The matrix
1

K
ODC +

1

K
CDO +

1

K2
ODO

can be written similarly to P by including the contributions from the negative eigenvalues, resulting
in the matrix P̃ , parameterized by:

p̃k =
1

2

(∑
l

λl · v2
kl +

1

K
˜̂p) ,

˜̂p =
1

K

K∑
k=1

p̃k =
1

K

K∑
k=1

∑
l

λl · v2
kl.

Define the correction due to negative eigenvalues as:

∆pk :=
1

2

∑
l:λl<0

λl · v2
kl, ∀k ∈ [K].

The resulting error in the ∥B∥2F term is given by:

∥B∥2F = ∥P̃ − P ∥2F =
∑
k,l

(∆pk +∆pl)
2
.

Furthermore, the contribution to S2 is bounded as:

S2 = min
D̂∈E
S2(D̂) =

∑
l∈[K]

(
D̂K,l −DK,l

)2
≤
∑
l

(∆pl)
2
=: U2,

where the aggregated error term is defined as:

∆pl :=
1

2K

K∑
k=1

∑
l:λl<0

λl · v2
kl.

I.4 PROOF OF LEMMA 1

The proof is proved via leveraging Proposition 8.2 from Peyré et al. (2019), applied to the specific
case α = 0, and relies on the relationships among FGW, Wasserstein (W), and Gromov-Wasserstein
(GW) distances.
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The FGW cost FGWp,α(G1,G2) is defined via two components: the node feature cost matrix
M [i, j] = df (H1[i],H2[j])

p, and the structural discrepancy tensor L(A1,A2)[i, j, l,m] =
|A1[i, j]−A2[l,m]|p.

Let G1 = (H1,A1,ω1) and G2 = (H2,A2,ω2) be two attributed graphs with N1 and N2 nodes,
respectively. Their associated probability measures are

µ1 =
∑
k

ω1kδ(x1k,a1k), µ2 =
∑
l

ω2lδ(x2l,a2l).

We define the marginals µH1
=
∑

k ωkδxk
and µA1

=
∑

k ωkδak
(and analogously for µH2

and
µA2

) as projections of µ1 and µ2 onto the feature and structural spaces, respectively.

Using these definitions, we introduce the following notation:
Jp(A1,A2,π) =

∑
ijkl

Lijkl(A1,A2)
pπijπkl, (26)

GWp(µH1
, µH2

)p = min
π∈Π(ω1,ω2)

Jp(A1,A2,π), (27)

Hp(M ,π) =
∑
kl

df (x1k,x2l)
pπkl, (28)

Wp(µA1
, µA2

)p = min
π∈Π(ω1,ω2)

Hp(M ,π). (29)

Let π ∈ Π(ω1,ω2) be any admissible coupling. If both µ1 and µ2 are defined over a common
metric space (Ω,A, µ), then the FGW distance is given by:

FGWp,α(G1,G2) := min
π∈Π(ω1,ω2)

⟨(1− α)M + αL(A1,A2)⊗ π,π⟩ . (30)

We now derive the following fundamental identity:
Ep,α (M ,A1,A2,π) :=

∑
ijkl

[(1− α)df (x1k,x2l)
p + α |A1(i, k)−A2(j, l)|p]πijπkl

= (1− α)Hp(M ,π) + αJp(A1,A2,π). (31)

Moreover, let πα denote the optimal coupling that minimizes the FGW objective
Ep,α (M ,A1,A2, ·). Then the FGW distance admits the following decomposition:

FGWp
p,α(µ1, µ2) = min

π∈Π(ω1,ω2)
Ep,α (M ,A1,A2,π) = Ep,α (M ,A1,A2,πα)

= (1− α)Hp(M ,πα) + αJp(A1,A2,πα)

≥ (1− α)Wp
p(µA1 , µA2) + αGWp

p(µH1 , µH2). (32)

This inequality follows from the optimality of the W and GW distances with respect to the cost
functions Hp and Jp, respectively, and highlights the interpolation nature of the FGW distance
between these two metrics as governed by the parameter α.

The generalized FGW cost Ep,α (M ,A1,A2,π) admits the following explicit formulation:
Ep,α (M ,A1,A2,π) = ⟨(1− α)Mp + αL(A1,A2)

p ⊗ π,π⟩

=
∑
i,j,k,l

[(1− α)df (x1k,x2l)
p + α |A1(i, k)−A2(j, l)|p]πijπkl.

Based on the formulation above, we obtain the following upper bound on the FGW distance:
FGWp,α(G1, G2) ≤ ⟨(1− α)M + αL(A1,A2)⊗ π,π⟩

≤
∑
k,l

[
(1− α) df (x1k,x2l) + 2p−1αA[k, l]

]p
πkl, (33)

where the second inequality follows from the convexity of the function x 7→ xp for p ≥ 1 and an
application of Minkowski-type bounds on the structural term. Importantly, inequality in Eq.(33)
holds for any admissible coupling π ∈ Π(ω1,ω2), and in particular, it remains valid when π = π,
the optimal coupling associated with the Wasserstein distance Wp(µ1, µ2) over the product metric
space (Ω, d). Here, the effective distance d between structured nodes (x1,a1) and (x2,a2) is
defined as:

d((x1,a1), (x2,a2)) = (1− α) df (x1,x2) + 2p−1αA(a1,a2).
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Combining this with the Wasserstein formulation in Eq.(29), we observe the following inequality:
FGWp,α(G1,G2) ≤Wp(µA1 , µA2), and FGWp,α(G1,G2) = Wp(µA1 , µA2) when α = 0.

(34)

J E(3) INVARIANT PROPERTY

We utilize a 2D-MPNN, where node embeddings are iteratively refined across layers as follows:

hℓ
v = UPDℓ

(
hℓ−1
v ,AGGℓ

({
Mℓ

(
hℓ−1
v ,hℓ−1

u , ev,u
)
: u ∈ N(v)

}))
, (35)

with Mℓ denoting the message function, AGGℓ representing aggregation by summation, and UPDℓ

implemented as either the identity function or a multilayer perceptron. The final atom-level repre-
sentation is obtained by integrating three modalities: the 2D molecular graph embeddings H2D, the
3D conformational features H3D, and the geometry-based structural descriptors HGT. This fusion
is performed using trainable linear projections:

Hcomb = W̃2D H2D + W̃3D H3D + W̃GT HGT, (36)
where W̃2D,W̃3D, and W̃GT are trainable parameter matrices. Assuming that H2D and HGT are
composed of K repeated copies of their respective feature vectors, we compute the fused represen-
tation as:

Hcomb = W̃2DH2D + W̃3DH3D + γ W̃GTHGT, (37)
where γ is a hyperparameter controlling the influence of the barycenter features. This fusion scheme
allows balanced contributions from all modalities, which is empirically beneficial.

To predict the molecular property, we perform a mean pooling over the K conformations and apply
a linear transformation:

ŷ = WG

(
1

K

K∑
k=1

Hcomb[k]

)
+ bG , (38)

where WG and bG are the weight matrix and bias vector used for the final prediction.

We demonstrate that the function specified in Eq.(35) through Eq.(38)remains invariant under both
the action of the E(3) and permutations of the input conformers.
Theorem 2 (E(3) Invariant Property). Let G denote the 2D molecular graph, and let (S1, . . . ,SK)
be a collection of K conformers, where each Sk = {rk,n, Zk,n}Nn=1 for k ∈ [K]. Consider the
function ŷ = fθ(G, (S1, . . . ,SK)) as defined by Eq.(35) to Eq.(38). Then, for any transformations
g1, . . . , gK ∈ E(3), the following holds:

fθ(G, (g1S1, . . . , gKSK)) = fθ(G, (S1, . . . ,SK)).
Furthermore, for any permutation π ∈ Sym([K]), we have:

fθ(G, (Sπ(1), . . . , Sπ(K))) = fθ(G, (S1, . . . ,SK)).

Proof of Theorem 2. We establish the result in several steps. First, we consider the invariance prop-
erties of the geometric representation HGT. By construction, the geometry-aware embedding ag-
gregation used to obtain H = E

(
{Tθ(Hi)}Ki=1

)
, is invariant under permutation of conformers.

Additionally, because E(3) transformations preserve Euclidean distances and given that the up-
stream 3D MPNN is assumed to be E(3)-invariant, the generated features Hi are likewise invariant
under such transformations.

Next, consider the aggregated representation defined in Eq.(37):
Hcomb = W̃2DH2D + W̃3DH3D + W̃GTHGT.

From the prior step, we know that HGT is invariant under both E(3) actions and conformer permu-
tations. Additionally, H3D inherits E(3) invariance from the 3D MPNN and is permutation equiv-
ariant, i.e., permuting the conformer inputs permutes the columns of H3D accordingly. However,
because the final prediction in Eq.(38) is based on an average over the conformer-wise features:

ŷ = WG

(
1

K

K∑
k=1

Hcomb[k]

)
+ bG .

which is invariant to column permutations of the matrix H3D, leading to the final ŷ is invariant to
E(3) group and permutation of 3D conformers.
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