Prometheus: A Recursively Self-Improving NAS System

Anonymous'

! Anonymous Institution

Abstract Neural Architecture Search (NAS) automates model design, but for systems involving a
Reinforcement Learning (RL) controller, one limitation is the fixed intelligence of the
controller itself. We introduce Prometheus, a proof-of-concept NAS system that addresses
this barrier through recursive self-improvement. Prometheus utilizes an RL agent that not only
edits a target convolutional neural network using network morphism but also modifies its own
architecture. This self-editing allows it to increase its intellectual capacity to achieve better
rewards. We demonstrate that this approach, combining a self-editing GNN controller with
heuristic-driven adaptation, achieves competitive performance on standard image classification
benchmarks like CIFAR-10 (95.58%+0.64%), SVHN (97.21%=+0.09%), and Fashion-MNIST
(95.52%=0.22%), opening a new avenue of research in self-improving Al

1 Introduction

Neural Architecture Search (NAS) automates network design, evolving from computation-heavy early
methods (Zoph and Le, 2017) to more efficient approaches such as weight sharing (Pham et al., 2018),
differentiable search (Liu et al., 2019), and network morphism that enables function-preserving edits
during training (Chen et al., 2016). More recent advances include extensible zero-cost proxies like
Eproxy (Li et al., 2023), robust training-free NAS techniques (He et al., 2024), and hardware-aware
multi-objective differentiable NAS (Sukthanker et al., 2025). However, for NAS with RL, most
systems rely on fixed-capacity, human-designed RL controllers. We ask: can a NAS agent improve
both the target model and itself? We introduce Prometheus, a recursively self-improving NAS
system whose Graph Neural Network (GNN)-based RL controller edits its own architecture as well
as the target network. Unlike EAS (Cai et al., 2018), which applies morphism only to the target,
Prometheus applies it to the agent too, using a block-based search space, graph representations, and
heuristic-triggered self-modification. Across standard image classification benchmarks, Prometheus
achieves competitive performance (95.58%=0.64% on CIFAR-10, 97.21%=0.09% on SVHN, and
95.52%=+0.22% on Fashion-MNIST) while adding a new level of autonomy to NAS.

Methods

Prometheus is a two-network system, with an RL controller network editing a target network (the
network being trained on the target task; image recognition in this case). The RL controller is a GNN,
specifically a Graph Convolutional Network (GCN) (Kipf and Welling, 2017). In this formulation,
the target CNN is represented as a graph G, = (V, £), where each node v; € V represents an operation
(e.g., Conv2D (LeCun et al., 1998), ReLU (Nair and Hinton, 2010)) with a feature vector encoding its
properties, and edges £ represent the data flow. On every forward pass, the GCN performs message
passing, allowing each node to aggregate information from its neighbors. The resulting network
graph G; feeds into policy heads that issue structurally informed actions. The GCN encoder produces
node embeddings Z from the graph Z = GCN(G;).

The resulting matrix Z is defined as belonging to the space Z € RIVI*: where R is the set of all
real numbers, || is the number of nodes in the target network graph, and dj, is the dimensionality of
those nodes. A global graph embedding z, is then obtained by mean-pooling the node embeddings.

At the architectural level, every permissible edit is a block transformation. To avoid performance
drops and retraining from scratch, these edits leverage network morphism techniques (Chen et al.,

Submitted to AutoML 2025 Non-Archival Track © 2025 the authors, released under CC BY 4.0

20
21
22
23
24
25
26
27

28

29
30
31
32
33
34
35
36
37
38
39
40
41
42

43

https://creativecommons.org/licenses/by/4.0/

2016), allowing the agent to modify the target network’s architecture without completely resetting its
learned weights. The specific function-preserving transformations implemented are:

* Net2Wider (widen): Following the operation from Chen et al. (2016), this action increases a
layer’s width (number of output channels). The new weight tensor is intelligently populated
from the old one, and the subsequent layer is adjusted to keep the network’s output invariant.

* Net2Deeper (deepen): This operation increases network depth by inserting a new layer
initialized to perform an identity mapping.

* Custom Thinning (thin): As the inverse of widening, this custom structured pruning operation
reduces a layer’s width by discarding filters. It is a "lossy" transformation that reduces
complexity and relies on fine-tuning to recover performance.

The controller can choose from the following edits:

* Add Convolutional Block: Appends a Conv2d — BatchNorm2d — ReLU trio at a stage’s
end. The Conv2d is identity-initialized (Net2Deeper style), and BatchNorm?2d starts with
y = 1.0, § = 0.0. After the block is appended, the agent chooses a channel multiplier to set the
block’s width, which is applied using Net2Wider.

* Add Linear Block: Deepens the classifier by inserting a Linear — BatchNorm1d — ReLU
right before the final layer, initialized as an identity mapping. The agent then chooses a width
that is applied using Net2Wider.

* Resize Layer: Selects any Conv2d or Linear node and scales its output dimension by a chosen
factor using Net2Wider. A learned attention head pinpoints the most promising layer.

* Add Skip Connection: Creates a shortcut between two nodes within the same stage. If channel
counts differ, an identity-initialized 1 X 1 convolution is automatically inserted.

The search process is initialized with a simple VGG-style CNN backbone (Simonyan and
Zisserman, 2014). This starting architecture consists of three sequential stages, each featuring a
Conv2d — BatchNorm2d — ReLU block, with channel dimensions increasing from 64 to 128
and finally to 256. The first two stages are followed by max-pooling. The network is connected
to a classifier head composed of an adaptive average pooling layer and a single linear layer. The
initial network was pre-trained for 50 epochs to ensure that the initial rewards for the RL agent are
representative of the edit quality.

The RL component was optimized with Advantage Actor-Critic (A2C). The controller’s operation
is formalized as a Markov Decision Process (MDP). At each timestep ¢, the controller receives a state
s; representing the target network’s graph structure and performance metrics. It then samples an
action a; from its policy mg(a;|s;). The reward R, now combines accuracy with a quadratic penalty
for exceeding a parameter budget, explicitly steering the search toward compact models. The reward
function is:

Pt+1 _Pthresh)z (1)

R; =100 - (accsyq — accy) — A, - max (O, o6
where acc,y; is the post-edit validation accuracy, P;4; is the new parameter count, Pyeqp 1S a budget
(20M parameters), and A, is a penalty coefficient (0.2). If the parameter count exceeds 30 million,
the model is automatically reverted, and the controller receives a -50 reward.

The controller’s parameters 6 and the value function’s parameters ¢ are updated by minimizing a
composite loss function L(6, ¢), composed of a policy loss, a value loss, and an entropy bonus:

L(0,¢) = —log mo(arls:)Ar + Bo(Re — Vip(s1))® = BeH (o (+st)) 2)

where A; = R; — Vi (s;) is the advantage, V(s;) is the critic’s value estimate, H is the policy entropy,
and f,, B, are loss coeflicients. An entropy bonus (—0.0005 - entropy) was applied to the final loss
function to encourage exploration.

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

78

79
80
81
82

83

84
85

86

31

The number of post-edit training epochs, E,o, scales in proportion to the magnitude of the
architectural change:

P
Epost = min (100, round (Eblee - max (1.0, ;1))) 3)
t

where Epyse = 25, and Py, Py are the parameter counts before and after the edit.

The RL agent was given the ability to prune itself in addition to growing itself, but only after
certain heuristic triggers. If validation accuracy fails to improve for 5 iterations, a growth self-edit is
triggered. If the model fails 3 consecutive dummy forward passes (a check for immediate NaN errors),
a pruning self-edit occurs. Growth choices comprise deepening the GNN, widening its hidden layers,
or deepening a policy head, all with function preserving operations. Pruning options, which are the
reverse, were enabled only after the controller’s parameter count exceeded 15,000.

Finally, the meta-agent’s own learning rate is adaptive, annealing based on the target model’s
accuracy to balance exploration and exploitation:

max (0, acC — aCCpyse)

(lrbase - lrmin) 4)

Irmeta = Irpase — min | 1,
ACCrarget — ACChase

where acCpase = 0.80 and acCrarger = 0.93 define the accuracy range for annealing.

Experiments and Results
We evaluated Prometheus on CIFAR-10, SVHN, and Fashion-MNIST over five independent runs for
each experiment. The search was performed on a single NVIDIA L4 GPU.

Analysis of Self-Editing Mechanism

Table 1: Ablation study of the self-editing mechanism on CIFAR-10. Results are reported as mean +
standard deviation over five runs.

SYSTEM VARIANT SELF-EpiTING PEAK Acc. (%)
PROMETHEUS (ABLATED) DisABLED 95.1620.77
PromETHEUS (FULL) ENABLED 95.58+0.64

An ablation study was conducted to measure the effects of self-editing. The ablation in Table 1
shows a 0.42% average gain when the controller’s self-editing capability is enabled. While the
upward trend is encouraging, it is not yet statistically significant. We conjecture that the benefit of
self-editing would be magnified on higher-complexity datasets like CIFAR-100 and ImageNet where
a fixed-capacity controller may not be enough. We also conjecture that the self-editing function
would be better in longer searches that give the heuristic triggers more opportunities to activate and

refine the controller. A broader study involving more datasets is required before drawing conclusions.

3.2 Benchmark Performance

Table 2: CIFAR-10 accuracy vs. other controller-based NAS methods.

METHOD Tor-1 Acc. (%)
NAS-RL (Zoprn anp LE, 2017) 96.35
PNAS (L1u ET AL., 2018) 96.60
ENAS (PaaM ET AL., 2018) 97.11

EAS (CNN onLy) (CAI ET AL., 2018) 95.77
PROMETHEUS (AVERAGE) 95.58+0.64
PROMETHEUS (BEST OF 5 RUNS) 96.48

87

88

89

920

91

92

93

94

95

96

97

98

99

100

101

102

On CIFAR-10 (Table 2), Prometheus is competitive with its closest antecedent, EAS, while introducing
the novel self-editing dynamic. It operates with a far smaller computational budget than methods like
NAS-RL or PNAS. The search time took an average of 23 GPU hours.

Table 3: Test accuracy comparison on SVHN.

METHOD Accuracy (%)
DrNAS (CHEN ET AL., 2021) (REPORTED BY LEE ET AL., 2021) 96.30+0.05
EAS (Car1 et AL., 2018) 98.17
RESNET (BASELINE FROM LEE ET AL.; RESNET-56) (LEE ET AL., 2021) 96.13+0.19
PROMETHEUS 97.21+0.09

111

112

118

On SVHN (Table 3), Prometheus outperforms all compared baselines except for EAS, demon- 114

strating strong generalization without any dataset-specific tuning. This search took an average of 49
GPU hours.

Table 4: Test accuracy comparison on Fashion-MNIST.

METHOD Accuracy (%)
MO-ResNET (WANG ET AL., 2025) 95.91
DeepSwarM (ByLa anD Pang, 2019) 93.56
HierARrRcHICAL NAS (CHRISTOFORIDIS ET AL., 2023) 93.25
PROMETHEUS 95.52+0.22

On Fashion-MNIST (Table 4), it achieves 95.52%+0.22%, outperforming several evolutionary
methods and remaining highly competitive with the state-of-the-art. The average search time was 20
GPU hours.

Conclusion

We introduced Prometheus, a NAS system built on the principle of recursive self-improvement. The
system, which combines a self-editing GNN controller with block-based actions and heuristic-driven
adaptation, achieves competitive accuracy on multiple benchmarks. The primary contribution of
this work, however, is the mechanism. We present Prometheus as a successful proof-of-concept for
a more autonomous class of NAS agents that can manage their own complexity. A key limitation
is the reliance on hard-coded heuristics to trigger self-modification. Future work should aim to
integrate this decision directly into the agent’s learning process, for example, through a hierarchical
RL policy. Solving this credit assignment problem is a key step toward building more general and
truly autonomous machine learning systems.

115

116

117
118

119

120
121
122
123
124
125
126
127
128

129

References
Byla, E. and Pang, W. (2019). Deepswarm: Optimising convolutional neural networks using swarm
intelligence. In Proceedings of the 19th UK Workshop on Computational Intelligence (UKCI).

Cai, H., Chen, T., Zhang, W., Yu, Y., and Wang, J. (2018). Efficient architecture search by network
transformation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, pages
2787-2794.

Chen, T., Goodfellow, I., and Shlens, J. (2016). Net2net: Accelerating learning via knowledge transfer.

arXiv preprint arXiv:1511.05641.

Chen, X., Wang, R., Cheng, M., Tang, X., and Hsieh, C.-J. (2021). Drnas: Dirichlet neural architecture
search. In International Conference on Learning Representations.

Christoforidis, A., Kyriakides, G., and Margaritis, K. (2023). A novel evolutionary algorithm for
hierarchical neural architecture search. arXiv preprint arXiv:2107.08484.

He, Z., Shu, Y., Dai, Z., and Low, B. K. H. (2024). Robustifying and boosting training-free neural
architecture search. In International Conference on Learning Representations (ICLR) Posters.

Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convolutional networks.

In International Conference on Learning Representations (ICLR).

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324.

Lee, H., Hyung, E., and Hwang, S. J. (2021). Rapid neural architecture search by learning to generate
graphs from datasets. arXiv preprint arXiv:2107.00860.

Li, Y., Li, J., Hao, C., Li, P., Xiong, J., and Chen, D. (2023). Extensible and efficient proxy for neural
architecture search. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 6199-6210.

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.-J., Fei-Fei, L., Yuille, A., Huang, J.,
and Murphy, K. (2018). Progressive neural architecture search. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 19-34.

Liu, H., Simonyan, K., and Yang, Y. (2019). DARTS: Differentiable architecture search. In
International Conference on Learning Representations (ICLR).

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In
Proc. of the 27th International Conference on Machine Learning (ICML), pages 807-814.

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J. (2018). Efficient neural architecture search
via parameter sharing. In Proceedings of the International Conference on Machine Learning
(ICML), pages 4095-4104.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

Sukthanker, R. S., Zela, A., Staffler, B., Dooley, S., Grabocka, J., and Hutter, F. (2025). Multi-objective
differentiable neural architecture search. In International Conference on Learning Representations
(ICLR) Posters.

Wang, S., Tang, H., and Ouyang, J. (2025). A neural architecture search method using auxiliary
evaluation metrics based on resnet architecture. arXiv preprint arXiv:2505.01313.

130
131

132

133
134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150
151

152

153
154

155

156

157

158

159

161

162

163

164

165
166

167

168

169

Zoph, B. and Le, Q. V. (2017). Neural architecture search with reinforcement learning. arXiv preprint 170
arXiv:1611.01578. 171

	Introduction
	Methods
	Experiments and Results
	Analysis of Self-Editing Mechanism
	Benchmark Performance

	Conclusion

