
Prometheus: A Recursively Self-Improving NAS System 1

Anonymous1 2

1Anonymous Institution 3

Abstract Neural Architecture Search (NAS) automates model design, but for systems involving a 4

Reinforcement Learning (RL) controller, one limitation is the fixed intelligence of the 5

controller itself. We introduce Prometheus, a proof-of-concept NAS system that addresses 6

this barrier through recursive self-improvement. Prometheus utilizes an RL agent that not only 7

edits a target convolutional neural network using network morphism but also modifies its own 8

architecture. This self-editing allows it to increase its intellectual capacity to achieve better 9

rewards. We demonstrate that this approach, combining a self-editing GNN controller with 10

heuristic-driven adaptation, achieves competitive performance on standard image classification 11

benchmarks like CIFAR-10 (95.58%±0.64%), SVHN (97.21%±0.09%), and Fashion-MNIST 12

(95.52%±0.22%), opening a new avenue of research in self-improving AI. 13

1 Introduction 14

Neural Architecture Search (NAS) automates network design, evolving from computation-heavy early 15

methods (Zoph and Le, 2017) to more efficient approaches such as weight sharing (Pham et al., 2018), 16

differentiable search (Liu et al., 2019), and network morphism that enables function-preserving edits 17

during training (Chen et al., 2016). More recent advances include extensible zero-cost proxies like 18

Eproxy (Li et al., 2023), robust training-free NAS techniques (He et al., 2024), and hardware-aware 19

multi-objective differentiable NAS (Sukthanker et al., 2025). However, for NAS with RL, most 20

systems rely on fixed-capacity, human-designed RL controllers. We ask: can a NAS agent improve 21

both the target model and itself? We introduce Prometheus, a recursively self-improving NAS 22

system whose Graph Neural Network (GNN)-based RL controller edits its own architecture as well 23

as the target network. Unlike EAS (Cai et al., 2018), which applies morphism only to the target, 24

Prometheus applies it to the agent too, using a block-based search space, graph representations, and 25

heuristic-triggered self-modification. Across standard image classification benchmarks, Prometheus 26

achieves competitive performance (95.58%±0.64% on CIFAR-10, 97.21%±0.09% on SVHN, and 27

95.52%±0.22% on Fashion-MNIST) while adding a new level of autonomy to NAS. 28

2 Methods 29

Prometheus is a two-network system, with an RL controller network editing a target network (the 30

network being trained on the target task; image recognition in this case). The RL controller is a GNN, 31

specifically a Graph Convolutional Network (GCN) (Kipf and Welling, 2017). In this formulation, 32

the target CNN is represented as a graph G𝑡 = (V, E), where each node 𝑣𝑖 ∈ V represents an operation 33

(e.g., Conv2D (LeCun et al., 1998), ReLU (Nair and Hinton, 2010)) with a feature vector encoding its 34

properties, and edges E represent the data flow. On every forward pass, the GCN performs message 35

passing, allowing each node to aggregate information from its neighbors. The resulting network 36

graph𝐺𝑡 feeds into policy heads that issue structurally informed actions. The GCN encoder produces 37

node embeddings 𝑍 from the graph 𝑍 = GCN(G𝑡). 38

The resulting matrix 𝑍 is defined as belonging to the space 𝑍 ∈ R |V |×𝑑ℎ , where R is the set of all 39

real numbers, |V | is the number of nodes in the target network graph, and 𝑑ℎ is the dimensionality of 40

those nodes. A global graph embedding 𝑧𝑔 is then obtained by mean-pooling the node embeddings. 41

At the architectural level, every permissible edit is a block transformation. To avoid performance 42

drops and retraining from scratch, these edits leverage network morphism techniques (Chen et al., 43

Submitted to AutoML 2025 Non-Archival Track © 2025 the authors, released under CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

2016), allowing the agent to modify the target network’s architecture without completely resetting its 44

learned weights. The specific function-preserving transformations implemented are: 45

• Net2Wider (widen): Following the operation from Chen et al. (2016), this action increases a 46

layer’s width (number of output channels). The new weight tensor is intelligently populated 47

from the old one, and the subsequent layer is adjusted to keep the network’s output invariant. 48

• Net2Deeper (deepen): This operation increases network depth by inserting a new layer 49

initialized to perform an identity mapping. 50

• Custom Thinning (thin): As the inverse of widening, this custom structured pruning operation 51

reduces a layer’s width by discarding filters. It is a "lossy" transformation that reduces 52

complexity and relies on fine-tuning to recover performance. 53

The controller can choose from the following edits: 54

• Add Convolutional Block: Appends a Conv2d → BatchNorm2d → ReLU trio at a stage’s 55

end. The Conv2d is identity-initialized (Net2Deeper style), and BatchNorm2d starts with 56

𝛾 = 1.0, 𝛽 = 0.0. After the block is appended, the agent chooses a channel multiplier to set the 57

block’s width, which is applied using Net2Wider. 58

• Add Linear Block: Deepens the classifier by inserting a Linear → BatchNorm1d → ReLU 59

right before the final layer, initialized as an identity mapping. The agent then chooses a width 60

that is applied using Net2Wider. 61

• Resize Layer: Selects any Conv2d or Linear node and scales its output dimension by a chosen 62

factor using Net2Wider. A learned attention head pinpoints the most promising layer. 63

• Add Skip Connection: Creates a shortcut between two nodes within the same stage. If channel 64

counts differ, an identity-initialized 1 × 1 convolution is automatically inserted. 65

The search process is initialized with a simple VGG-style CNN backbone (Simonyan and 66

Zisserman, 2014). This starting architecture consists of three sequential stages, each featuring a 67

Conv2d → BatchNorm2d → ReLU block, with channel dimensions increasing from 64 to 128 68

and finally to 256. The first two stages are followed by max-pooling. The network is connected 69

to a classifier head composed of an adaptive average pooling layer and a single linear layer. The 70

initial network was pre-trained for 50 epochs to ensure that the initial rewards for the RL agent are 71

representative of the edit quality. 72

The RL component was optimized with Advantage Actor-Critic (A2C). The controller’s operation 73

is formalized as a Markov Decision Process (MDP). At each timestep 𝑡 , the controller receives a state 74

𝑠𝑡 representing the target network’s graph structure and performance metrics. It then samples an 75

action 𝑎𝑡 from its policy 𝜋𝜃 (𝑎𝑡 |𝑠𝑡). The reward 𝑅𝑡 now combines accuracy with a quadratic penalty 76

for exceeding a parameter budget, explicitly steering the search toward compact models. The reward 77

function is: 78

𝑅𝑡 = 100 · (acc𝑡+1 − acc𝑡) − 𝜆𝑝 ·max
(
0,
𝑃𝑡+1 − 𝑃thresh

106

)2
(1)

where acc𝑡+1 is the post-edit validation accuracy, 𝑃𝑡+1 is the new parameter count, 𝑃thresh is a budget 79

(20M parameters), and 𝜆𝑝 is a penalty coefficient (0.2). If the parameter count exceeds 30 million, 80

the model is automatically reverted, and the controller receives a -50 reward. 81

The controller’s parameters 𝜃 and the value function’s parameters 𝜙 are updated by minimizing a 82

composite loss function 𝐿(𝜃, 𝜙), composed of a policy loss, a value loss, and an entropy bonus: 83

𝐿(𝜃, 𝜙) = − log𝜋𝜃 (𝑎𝑡 |𝑠𝑡)𝐴𝑡 + 𝛽𝑣 (𝑅𝑡 −𝑉𝜙 (𝑠𝑡))2 − 𝛽𝑒H(𝜋𝜃 (·|𝑠𝑡)) (2)

where 𝐴𝑡 = 𝑅𝑡 −𝑉𝜙 (𝑠𝑡) is the advantage, 𝑉𝜙 (𝑠𝑡) is the critic’s value estimate, H is the policy entropy, 84

and 𝛽𝑣, 𝛽𝑒 are loss coefficients. An entropy bonus (−0.0005 · entropy) was applied to the final loss 85

function to encourage exploration. 86

2

The number of post-edit training epochs, 𝐸post, scales in proportion to the magnitude of the 87

architectural change: 88

𝐸post = min
(
100, round

(
𝐸base ·max

(
1.0,

𝑃𝑡+1
𝑃𝑡

)))
(3)

where 𝐸base = 25, and 𝑃𝑡 , 𝑃𝑡+1 are the parameter counts before and after the edit. 89

The RL agent was given the ability to prune itself in addition to growing itself, but only after 90

certain heuristic triggers. If validation accuracy fails to improve for 5 iterations, a growth self-edit is 91

triggered. If the model fails 3 consecutive dummy forward passes (a check for immediate NaN errors), 92

a pruning self-edit occurs. Growth choices comprise deepening the GNN, widening its hidden layers, 93

or deepening a policy head, all with function preserving operations. Pruning options, which are the 94

reverse, were enabled only after the controller’s parameter count exceeded 15,000. 95

Finally, the meta-agent’s own learning rate is adaptive, annealing based on the target model’s 96

accuracy to balance exploration and exploitation: 97

𝑙𝑟meta = 𝑙𝑟base −min
(
1,
max(0, acc − accbase)

acctarget − accbase

)
(𝑙𝑟base − 𝑙𝑟min) (4)

where accbase = 0.80 and acctarget = 0.93 define the accuracy range for annealing. 98

3 Experiments and Results 99

We evaluated Prometheus on CIFAR-10, SVHN, and Fashion-MNIST over five independent runs for 100

each experiment. The search was performed on a single NVIDIA L4 GPU. 101

3.1 Analysis of Self-Editing Mechanism 102

Table 1: Ablation study of the self-editing mechanism on CIFAR-10. Results are reported as mean ±
standard deviation over five runs.

System Variant Self-Editing Peak Acc. (%)

Prometheus (Ablated) Disabled 95.16±0.77
Prometheus (Full) Enabled 95.58±0.64

An ablation study was conducted to measure the effects of self-editing. The ablation in Table 1 103

shows a 0.42% average gain when the controller’s self-editing capability is enabled. While the 104

upward trend is encouraging, it is not yet statistically significant. We conjecture that the benefit of 105

self-editing would be magnified on higher-complexity datasets like CIFAR-100 and ImageNet where 106

a fixed-capacity controller may not be enough. We also conjecture that the self-editing function 107

would be better in longer searches that give the heuristic triggers more opportunities to activate and 108

refine the controller. A broader study involving more datasets is required before drawing conclusions. 109

3.2 Benchmark Performance 110

Table 2: CIFAR-10 accuracy vs. other controller-based NAS methods.

Method Top-1 Acc. (%)

NAS-RL (Zoph and Le, 2017) 96.35
PNAS (Liu et al., 2018) 96.60
ENAS (Pham et al., 2018) 97.11
EAS (CNN only) (Cai et al., 2018) 95.77

Prometheus (average) 95.58±0.64
Prometheus (best of 5 runs) 96.48

3

On CIFAR-10 (Table 2), Prometheus is competitive with its closest antecedent, EAS, while introducing 111

the novel self-editing dynamic. It operates with a far smaller computational budget than methods like 112

NAS-RL or PNAS. The search time took an average of 23 GPU hours. 113

Table 3: Test accuracy comparison on SVHN.

Method Accuracy (%)

DrNAS (Chen et al., 2021) (reported by Lee et al., 2021) 96.30±0.05
EAS (Cai et al., 2018) 98.17
ResNet (baseline from Lee et al.; ResNet-56) (Lee et al., 2021) 96.13±0.19

Prometheus 97.21±0.09

On SVHN (Table 3), Prometheus outperforms all compared baselines except for EAS, demon- 114

strating strong generalization without any dataset-specific tuning. This search took an average of 49 115

GPU hours. 116

Table 4: Test accuracy comparison on Fashion-MNIST.

Method Accuracy (%)

MO-ResNet (Wang et al., 2025) 95.91
DeepSwarm (Byla and Pang, 2019) 93.56
Hierarchical NAS (Christoforidis et al., 2023) 93.25

Prometheus 95.52±0.22

On Fashion-MNIST (Table 4), it achieves 95.52%±0.22%, outperforming several evolutionary 117

methods and remaining highly competitive with the state-of-the-art. The average search time was 20 118

GPU hours. 119

4 Conclusion 120

We introduced Prometheus, a NAS system built on the principle of recursive self-improvement. The 121

system, which combines a self-editing GNN controller with block-based actions and heuristic-driven 122

adaptation, achieves competitive accuracy on multiple benchmarks. The primary contribution of 123

this work, however, is the mechanism. We present Prometheus as a successful proof-of-concept for 124

a more autonomous class of NAS agents that can manage their own complexity. A key limitation 125

is the reliance on hard-coded heuristics to trigger self-modification. Future work should aim to 126

integrate this decision directly into the agent’s learning process, for example, through a hierarchical 127

RL policy. Solving this credit assignment problem is a key step toward building more general and 128

truly autonomous machine learning systems. 129

4

References 130

Byla, E. and Pang, W. (2019). Deepswarm: Optimising convolutional neural networks using swarm 131

intelligence. In Proceedings of the 19th UK Workshop on Computational Intelligence (UKCI). 132

Cai, H., Chen, T., Zhang, W., Yu, Y., and Wang, J. (2018). Efficient architecture search by network 133

transformation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, pages 134

2787–2794. 135

Chen, T., Goodfellow, I., and Shlens, J. (2016). Net2net: Accelerating learning via knowledge transfer. 136

arXiv preprint arXiv:1511.05641. 137

Chen, X., Wang, R., Cheng, M., Tang, X., and Hsieh, C.-J. (2021). Drnas: Dirichlet neural architecture 138

search. In International Conference on Learning Representations. 139

Christoforidis, A., Kyriakides, G., and Margaritis, K. (2023). A novel evolutionary algorithm for 140

hierarchical neural architecture search. arXiv preprint arXiv:2107.08484. 141

He, Z., Shu, Y., Dai, Z., and Low, B. K. H. (2024). Robustifying and boosting training-free neural 142

architecture search. In International Conference on Learning Representations (ICLR) Posters. 143

Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convolutional networks. 144

In International Conference on Learning Representations (ICLR). 145

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to 146

document recognition. Proceedings of the IEEE, 86(11):2278–2324. 147

Lee, H., Hyung, E., and Hwang, S. J. (2021). Rapid neural architecture search by learning to generate 148

graphs from datasets. arXiv preprint arXiv:2107.00860. 149

Li, Y., Li, J., Hao, C., Li, P., Xiong, J., and Chen, D. (2023). Extensible and efficient proxy for neural 150

architecture search. In Proceedings of the IEEE/CVF International Conference on Computer 151

Vision, pages 6199–6210. 152

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.-J., Fei-Fei, L., Yuille, A., Huang, J., 153

and Murphy, K. (2018). Progressive neural architecture search. In Proceedings of the European 154

Conference on Computer Vision (ECCV), pages 19–34. 155

Liu, H., Simonyan, K., and Yang, Y. (2019). DARTS: Differentiable architecture search. In 156

International Conference on Learning Representations (ICLR). 157

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In 158

Proc. of the 27th International Conference on Machine Learning (ICML), pages 807–814. 159

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J. (2018). Efficient neural architecture search 160

via parameter sharing. In Proceedings of the International Conference on Machine Learning 161

(ICML), pages 4095–4104. 162

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image 163

recognition. arXiv preprint arXiv:1409.1556. 164

Sukthanker, R. S., Zela, A., Staffler, B., Dooley, S., Grabocka, J., and Hutter, F. (2025). Multi-objective 165

differentiable neural architecture search. In International Conference on Learning Representations 166

(ICLR) Posters. 167

Wang, S., Tang, H., and Ouyang, J. (2025). A neural architecture search method using auxiliary 168

evaluation metrics based on resnet architecture. arXiv preprint arXiv:2505.01313. 169

5

Zoph, B. and Le, Q. V. (2017). Neural architecture search with reinforcement learning. arXiv preprint 170

arXiv:1611.01578. 171

6

	Introduction
	Methods
	Experiments and Results
	Analysis of Self-Editing Mechanism
	Benchmark Performance

	Conclusion

