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Abstract

Artificial intelligence holds promise to improve materials discovery. GFlowNets
are an emerging deep learning algorithm with many applications in AI-assisted
discovery. Using GFlowNets, we generate porous reticular materials, such as
metal organic frameworks and covalent organic frameworks, for applications in
carbon dioxide capture. We introduce a new Python package (matgfn) to train
and sample GFlowNets. We use matgfn to generate the matgfn-rm dataset of
novel and diverse reticular materials with gravimetric surface area above 5000
m2/g. We calculate single- and two-component gas adsorption isotherms for the
top-100 candidates in matgfn-rm. These candidates are novel compared to the
state-of-art ARC-MOF dataset and rank in the 90th percentile in terms of working
capacity compared to the CoRE2019 dataset. We discover 15 hypothetical materials
outperforming all materials in CoRE2019.

1 Introduction

Artificial intelligence (AI) holds promise to improve the scientific method [17, 1] and to accelerate
scientific discovery. Applied to materials 1, AI unlocks vast search spaces and enables novel
applications in pharmaceuticals [11, 10, 16, 9], batteries or carbon capture [24].

Reticular materials [34] such as Metal-Organic Frameworks (MOFs) and Covalent Organic Frame-
works (COFs) are extended periodic structures connected via strong bonds [15]. They are synthesized
by connecting building blocks known as secondary building units to form three-dimensional periodic
structures [20]. By choosing the building blocks, the properties of a reticular material can be tuned to
support many applications [34].

Reticular materials with high gravimetric surface area are particularly useful for applications in
carbon capture, since carbon dioxide molecules adsorb at the internal surface area [14]. The larger
the gravimetric surface area, the more gas molecules can be adsorbed per gram of material.

In this work, we use GFlowNets to generate reticular materials with high gravimetric surface area for
applications in carbon capture. Our key contributions are:

1. The matgfn Phython library for training and sampling using GFlowNets.

2. A workflow using matgfn to generate reticular materials using secondary building units.

1Here, we conceptualise materials broadly to include molecules, proteins, crystals and complex materials.
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3. The matgfn-rm dataset of diverse and novel reticular materials with total internal surface
area higher than 5000 m2 g−1. The top-100 reticular materials candidates are novel compared
to the reference ARC-MOF dataset, rank in the 90th percentile in terms of simulated
working capacity compared to the CoRE2019 dataset. We discover 15 hypothetical materials
outperforming all materials in CoRE2019.

The code and dataset will be available at http://github.com/flaviucipcigan/matgfn and
archived on Zenodo [8].

2 Background and related work

Generative Flow Networks GFlowNets [3, 4] are an emerging machine learning algorithm with
many applications in AI-assisted materials discovery [19]. GFlowNets learn to generate composite
objects x by sampling from an unnormalised distribution p(x) ∝ R(x) where R(x) is a user-specified
positive reward function. A composite object x consists of symbols drawn from a vocabulary V and
relationships between those symbols. For example, x can be a sequence x = [x1, x2, . . . xn] or a
graph. The object x is built by through Markov Decision Process restricted to a directed acyclic
graph. Transition probabilities p(xi+1 |x) are approximated by a neural network called a flow model.
GFlowNets need fewer evaluations of the reward function to generate samples with high reward,
novelty and diversity when compared to alternatives such as Markov Chain Monte Carlo, Proximal
Policy Optimisation or Bayesian Optimisation [3].

Building hypothetical reticular frameworks Trillions of hypothetical frameworks such as MOFs
or COFs can be generated by placing secondary building units [20] into nodes and edges of a three
dimensional topology [27]. A secondary building unit is an organic molecule or a coordination
compound (a metal linked to organic atoms). A topology is a three dimensional arrangement
of nodes and edges. Replacing nodes and edges with secondary building units results in a three
dimensional point cloud of atoms connected by covalent or metal-organic bonds. We use the pormake
secondary building units [22] and topology codes from the Reticular Chemistry Structure Resource
[27]. Previously, deep autoencoders [35] and evolutionary methods [22] have been used to generate
frameworks using this approach.

Reference datasets We use two reference datasets in this work. These datasets are not used for
training models, but as comparison once training is done, as GFlowNet generates candidates using
just a reward function. The CoRE2019 dataset [7] consists of 12,023 metal-organic frameworks
with carbon dioxide uptake properties calculated by Moosavi et al. [25] using Grand Canonical
Monte Carlo. ARC-MOF (reported in 2022) [6] is a collection of 279,610 MOFs from previous MOF
datasets. It contains both experimental and hypothetical MOFs.

3 Generating reticular frameworks with GFlowNets

Figure 1: Regression of simulated high pres-
sure CO2 uptake to gravimetric surface area

Python package We built a Python library called
matgfn to train and sample GFlowNets. The library
is built on top of PyTorch [29] and Gymnasium [31]
and prioritises ease of use and code readability. We
intend for matgfn to be a general Python package for
generation of diverse types of materials from small
molecules to framework materials. Architecturally,
matgfn separates sampling, loss calculation, optimi-
sation, and environment definition as modular Python
classes. Each can be modified individually, to imple-
ment off-policy training or use improved losses, for
example. We note similar architectural choices for
torchgfn[21].

Environment for reticular framework generation
We configure a GFlowNet environment to build string
sequences made out of text tokens. Those text tokens
start with either an N, representing a node building block, or an E, representing an edge building
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block. For example, one of the potential generated sequences is ["N577", "N238", "N194",
"E5", "E3", "E74"]. We use building blocks in the pormake database. The string sequences
are transformed to a Crystallographic Information File (*.cif) by pormake to create a reticular
framework. Not all strings create valid materials. Thus, during generation, building blocks were
restricted such that (a) each topology had the correct number of nodes and edges, (b) the building
blocks were placed in the correct order and (c) each slot had a compatible building block.

Reward We calculate the Gravimetric Surface Area GSA in m2/g with Zeo++ [33] during the training
loop of the GFlowNet. We configure Zeo++ with a probe radius of 1.525Å and 2000 samples. The
GFlowNet is given the following reward:

R(x) = H (GSA(x)− C) ∗ exp
(
GSA(x)− C

C

)
(1)

where H(x) is the Heaviside step function H(x) = 0 if x < 0, 1 if x ≥ 0 and C is a cutoff. Zeo++
and pormake sometimes raise errors due to large distances between atoms. The reward is zero when
an error occurred to encourage the GFlowNet to avoid materials with unrealistic bond lengths.

Relationship with CO2 capture We demonstrate that the gravimetric surface area predicts CO2
uptake by analysing approximately 30,000 MOFs from three databases: CoRE2019 [7], ARABG [2]
and BW20K [5]. We performed univariate linear regression of CO2 uptake at 16 bar using each of the
geometric and chemical descriptors. The best performing descriptor was the gravimetric surface area
with coefficient of determination is 0.88, RMSE is 2.41 mol kg−1 and Spearman’s rank correlation
coefficient of 0.97. Figure 1 shows the CO2 uptake as a function of gravimetric surface area. We
validated the regression using 50 rounds of 10-fold cross validation, with each cross-validation
consisting of an 80-20 split between training and test data. The mean coefficient of determination is
0.88 ± 0.0002 and mean RMSE is 2.41 ± 0.022 mol/kg. The training and test values of coefficient
of determination and RMSE are the same to two decimal places and the standard deviation of these
metrics during cross validation are very small which shows that the correlation is robust and stable.

4 The matgfn-rm dataset

Training We trained a GFlowNet using Trajectory Balance loss [23] and an LSTM flow model. We
use a learning rate of 5 × 10−3 for both the flow model and the partition function. We train for a
maximum of 100,000 episodes and stop when the mean loss over 10,000 episodes is lower than
1.8. Eleven topologies were chosen: CDZ-E, CLD-E, EFT, FFC, TSG, TFF, ASC, DMG, DNQ,
FSO, URJ. For each topology, two GFlowNets were trained, one with edges and one without. The
performance is shown in Supplementary Information. Once the GFlowNets have been trained, they
were sampled to generate matgfn-rm dataset of over 1 million hypothetical reticular frameworks.

Diversity analysis We compare the top-100 and top-100,000 candidates from matgfn-rm to the
ARC-MOF dataset. For each CIF file, we compute the average minimum distance (AMD) descriptor
[32] of length 100. This descriptor uniquely identifies crystal structures and is a continuous metric,
meaning that the distance (measured using the Chebyshev metric) is zero for similar crystals. For
visualisation, we perform dimensionality reduction to two dimensions using t-SNE implemented.
We chose the implementation in openTSNE [30], use the Chebyshev distance metric and calculate
nearest neighbours using nearest neighbour descent [13]. Figure 2 shows the result. The matgfn-rm
materials are separated from most materials from ARC-MOF. Thus, the generated materials are
novel compared to existing datasets. For a clearer virew of some of the overlapping regions, check
Figure 18.

Simulated CO2 capture performance In order to confirm the expectation of efficient CO2 capture
from an adsorption proxy (i.e., the gravimetric surface area), we run Physics-based Grand Canonical
Monte Carlo simulations for the top-100 generated materials in the matgfn-rm dataset [26, 28].
We simulated single-component adsorption isotherms for pure CO2, from which we extract the
CO2 working capacity, and dual-component adsorption isotherms for dry flue gas (15% CO2 and
85% N2), from which we extract the CO2 / N2 selectivity. All simulations were performed at
300 K, with pressures ranging from 0.15 to 16 bar. The working capacity was calculated as the
difference in uptake of (single-component) CO2 between 16 and 0.15 bar, while the selectivity was
calculated as S = (QCO2

/QN2
)/(fCO2

/fN2
), where Qi is the uptake of species i at 0.15 bar and fi

is the concentration of species i in the input flue gas stream. Figure 3 shows the distribution of
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Figure 2: Two dimensional t-SNE embed-
ding of the average minimum distance of
ARC-MOF (green), and matgfn-rm (yel-
low to orange) materials. The colours in
the matgfn-rm dataset are proportional to
the reward, with light yellow signifying
low reward and dark orange high reward.

Figure 3: Simulated CO2 working capac-
ity and CO2 / N2 selectivity for the top-100
matgfn-rm materials. The (red) dashed line
represents the highest working capacity found
in the CoRE2019 dataset, which is surpassed
by 15 of the top-100 matgfn-rm materials.

absolute (working capacity) and relative (selectivity) capture metrics for the top-100 matgfn-rm
materials. All top-100 materials are (modestly) more selective towards CO2 than N2 and exhibit very
high CO2 working capacities, corresponding to the 90th percentile of the experimentally-realised
CoRE2019 dataset [25]. Fifteen of the top-100 matgfn-rm materials have working capacities that
are higher than all materials found in the CoRE2019 dataset. In particular, we highlight in Figure 4
the covalent organic framework 005-ffc-10217 that achieved the highest CO2 working capacity of
approximately 44 mol/kg.

Figure 4: A render of the relaxed structure of
005-ffc-10217, the highest performing struc-
ture in the matgfn-rm dataset. We show here the
2× 2× 2 supercell.

Relaxation and validity check Due to the hypo-
thetical nature of the generated MOFs, the crys-
talline structures are not guaranteed to be per-
fect. We therefore used the mofchecker library
[18] to perform basic consistency checks on the
generated CIFs. According to mofchecker, all
of the top-100 matgfn-rm are porous (metal-
) organic materials. However, due to the hy-
pothetical interatomic distances sometimes be-
ing larger (or shorter) than the typical bond
lengths, some atoms are flagged as either over-
or under-coordinated. In order to obtain a more
realistic structure, we performed atomic coordi-
nate and unit cell relaxation using the CHGNet
[12] interatomic potential. Relaxing the struc-
tures solves most of the structural problems,
with 98% presenting neither atomic overlaps nor
over-coordination of C, N and H atoms, respec-
tively. In particular, for the high-performing
005-ffc-10217 structure, relaxation led to a
23% reduction in the unit cell volume, bring-
ing the CO2 working capacity down to 37.5
mol/kg, which is still larger than those found in
the CoRE2019 dataset. The relaxed pore size of
005-ffc-10217 is approximately 87 Å. Struc-
tural relaxation changes the average minimum
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distance descriptors by a small amount and thus the diversity analysis still holds. See Figure 18 for
an illustration of the effect of relaxation on the t-SNE embeddings.

5 Conclusion

In summary, we built a workflow using GFlowNets to generate diverse and novel reticular frameworks
with gravimetric surface area greater than 5000 m2/g. As a key result, the top-100 candidates of
the resulting matgfn-rm dataset have working capacities in the top 90th percentile of CoRE2019
reference dataset. Moreover, 15 of the top-100 matgfn-rm materials have working capacities that are
higher than all materials found in the CoRE2019 dataset. Further tests are underway to confirm the
stability and synthesizability of the materials generated in our study. Nevertheless, our results clearly
demonstrate the potential of GFlowNets for materials discovery in carbon capture applications.
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Appendix A: Training details of GFlowNets on all MOF topologies

Figure 5 shows the trajectory balance losses for training a GFlowNet on the ASC topology without
edges while figure 6 shows the logZ. All other training runs on other topologies showed similar
behaviour.

Figure 5: trajectory balance losses for training a GFlowNet on the ASC topology without edges.
Losses are smoothed with a 1,000 episode window moving average due to the discovery of a high
performing MOF causing a one-episode long spike in the loss.

Figure 6: logZ during training for the ASC topology without edges.

The figures below show the performance of the GFlowNet vs random sampling for all eleven
topologies with and without edges.
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Figure 7: Performance of the GFlowNet trained on the CDZ-E topology.

Figure 8: Performance of the GFlowNet trained on the CDL-E topology.

Figure 9: Performance of the GFlowNet trained on the EFT topology.
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Figure 10: Performance of the GFlowNet trained on the FFC topology.

Figure 11: Performance of the GFlowNet trained on the TSG topology.

Figure 12: Performance of the GFlowNet trained on the TFF topology.
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Figure 13: Performance of the GFlowNet trained on the ASC topology.

Figure 14: Performance of the GFlowNet trained on the DMG topology.

Figure 15: Performance of the GFlowNet trained on the DNQ topology.
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Figure 16: Performance of the GFlowNet trained on the FSO topology.

Figure 17: Performance of the GFlowNet trained on the URJ topology.

13



Figure 18: Two dimensional t-SNE embedding of the average minimum distance descriptor of
ARC-MOF (green) and the top-100 matgfn-rm structures. The red circles are the unrelaxed top-100
structures. The blue squares are the relaxed top-100 structures, with two structures missing due to
structural relaxation errors.
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