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ABSTRACT

The success of graph neural networks (GNNs) in the past years has aroused grow-
ing interest and effort in designing best models to handle graph-structured data.
As the neural architecture search (NAS) technique has been witnessed to rival
against human experts in discovering efficient network topology, recently, it has
been applied to the field of graphic network engineering. However, such works on
graphic NAS so far are purely software (SW) design and not considering hardware
(HW) constraints at all, which often leads to sub-optimal system performance.
To address this problem, we propose the first SW-HW co-design framework for
automating the search and deployment of GNNs. Using FPGA as the target plat-
form, our framework is able to perform the FPGA-aware graph neural architecture
search (FGNAS). To evaluate our design, we experiment on benchmark datasets,
namely Cora, CiteCeer, and PubMed, and the results show FGNAS has better ca-
pability in optimizing the accuracy of GNNs when their hardware implementation
is specifically constrained.

1 INTRODUCTION

Graph neural networks (GNNs) are the state of the art in solving machine learning problems rep-
resented in graph forms, including social networking (Tan et al., 2019; Nurek & Michalski, 2019),
molecular interaction (Huang et al., 2020; Spalević et al., 2020), and problems in Electronic Design
Automation (EDA) (Ma et al., 2020; Ma et al., 2019), etc. As a result, GNN has attracted a great
deal of research interest in deep learning community for both software (SW) (Wu et al., 2019; Li
et al., 2015) and hardware (HW) (Wang et al., 2020; Zeng & Prasanna, 2020).

Similar to many other neural networks, the performance of GNN significantly depends on its neural
architecture, and hence considerable effort has been put into tuning its computational components
(Hamilton et al., 2017). Among the existing algorithms, message-passing has set the ground of
spatial-based convolutional graph neural networks, from which most recent breakthough are derived
(Gilmer et al., 2017). As the algorithmic variation increases, to identify better sub-structures of
GNN tends to be substantially challenging due to the design space exponentially grows. On the
other hand, however, the improvement of feature-extracting ability is still highly demanded.

Soon after being proposed by Zoph & Le (2016), neural architecture search has become a main-
stream research topic of machine learning. It has been demonstrated NAS is promising to surpass
the human experts and meanwhile liberate their laborious effort (Chen et al., 2018). Although the
original NAS using reinforcement learning method suffers from timing inefficiency problem that fol-
lowing works strived to solve (Yan et al., 2019; Liu et al., 2019), it is well established thus adapted
to be used for searching novel GNNs.

Quite lately, Gao et al. (2019) has designed the first graph NAS framework. Based on the state-
of-art GNN methodology, Graph NAS has formulated the layered design space that is perferred
to the controller. Besides, parameter sharing strategy is also adopted. Coincidentally, Zhou et al.
(2019) has also used reinforcement learning to automate graph neural network design on similar
search space but with split controllers. The search process is well guided in an incremental manner
such that the sampling efficiency is boosted. Both of these works have improved the accuracy of
GNN against existing hand-crafted networks, indicating NAS is the future solution for graph-based
learning.
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However, these works are only focusing on the neural architecture while the hardware implementa-
tion for GNNs (Geng et al., 2019) is equally important to the final performance. The hardware-aware
NAS has been widely discussed for CNNs (Zhang et al., 2020; Wang et al., 2018). But, to our best
knowledge, joint search of hardware and GNN architectures have not publicly reported. In this
paper, we use Graph NAS with the hardware design objective and propose a software-hardware
co-design framework. We employ FPGA as the vehicle for illustration and implementation of our
methods. Specific hardware constraints are considered so quantization is adopted to compress the
model. Under specific hardware constraints, we show our framework can successfully identify a
solution of higher accuracy but using shorter time than random search and the traditional two-step
tuning.

2 PROBLEM FORMULATION

The problem of jointly searching graph neural network architectures and hardware design can be
formulated as the following. Given an architecture space A, each sample a ∈ A characterizes a
hardware space H(a). The objective is then to find the optimal architecture and hardware design
pair 〈a∗, h∗〉 such that a∗ ∈ A and h ∈ H(a∗). With the target dataset Dt for training and Dv

for validation, the accuracy of a design can be measured as acct(a, h) and accv(a, h), respectively,
while the hardware performance hp(a, h) is independent of the data. As the neural architecture
sample is parameterized by the weights w, we define the optimality of the design as

a∗ = arg max
a∈A

accv(a(w∗), h∗)

s.t. : w∗ = arg max
w

acct(a(w), h∗)
(1)

and at the same time

h∗ = arg max
h∈H(a∗)

hp(a∗, h)

s.t. : hp(a∗, h∗) ≥ spec
(2)

where spec is the hardware specification required to be satisfied by the design.

However, there is a problem with the above formulation that is challenging to implementation. In
the case where the specification of hardware relate to multiple objectives, e.g. area and latency,
the hardware performance is not a scalar and hence the optimization is ambiguous. In practice, the
design is acceptable as long as the hardware constraints are met. In order to optimize the hardware
design, one can set more and more strict constraints to the aspect of interest. Therefore, we relax the
optimization of hardware performance to the hardware eligibility, and reformulate the problem as

a∗ = arg max
a∈A

accv(a(w∗), h)

s.t. : w∗ = arg max
w

acct(a(w), h)
(3)

and

∃h ∈ H(a∗)

s.t. : hp(a∗, h) ≥ spec. (4)

It is worth mentioning when the hardware constraint has two and more dimensions, the ≥ symbol
applies to every dimension.

In this work, we rely on the recurrent neural network to jointly optimize both the GNN architecture
and its hardware design. As such, the reinforcement learning NAS framework is restructured to co-
exploring the software and hardware spaces. Based on the above formulation, our framework aims
to discover the best neural architectures which are guaranteed to be implementable.

3 FGNAS

In this section, we delve into the details of our FPGA-aware graph nerual architecture search (FG-
NAS) framework. As shown in Figure 1, there are three main components comprising FGNAS,

2



Under review as a conference paper at ICLR 2021

GCN

GCN

GCN

GCN

Mean

Mean

Mean

Mean

bu
ffe

r

Mem.
Bank 1

Mem.
Bank 2

Mem.
Bank 1

Mem.
Bank 2

Mem.
Bank 1

Mem.
Bank 2

GAT

GAT

GAT

GAT

Sum

Sum

Sum

Sum

bu
ffe

r

GCN

GCN

GCN

GCN

Max

Max

Max

Max

bu
ffe

r

Generate 
Samples

Build FPGA 
Model

Train the 
Network

constraints
are met?

Start

End

maximum 
samples?

Update
Controller

Layer 1 Layer 2 Layer L

Architecture

Hardware & Quantization

Y

Y

N

N

Figure 1: Overview of the proposed SW-HW co-design framework.

namely the controller, the FPGA model builder, and the gnn model trainer. For each layer of the
child network, our controller generates the parameters of three types defining the network topology,
hardware realization, and the precision. With each sample of the controller, a hardware model will
be firstly constructed and evaluated against the predefined constraints. Since most samples may not
be implementable, their training are circumvented and rewards assigned to be 0; otherwise the net-
work will be built, trained and validated. Finally, when a mini-batch of samples are evaluated, the
parameters of the controller will be updated once. The process terminates after a certain number of
episodes.

3.1 SEARCH SPACE

We divide the search space into two sub-spaces: architectural space and hardware space. For each
layer of a GNN, the search spaces are completely the same so the same types of parameters are
sampled. For illustration convenience, we divide the parameters of a single layer and describe them
as follows.

3.1.1 ARCHITECTURAL SPACE

The architectural space contains the parameters that defines the operational mechanism of graph
network. As the time of writing, the topologies of GNNs share message-passing computational
flow characterized by graph-wise convolution, and only vary in the way embedded features are
generated and combined. In consequence, we define the architecture space regarding the tuning of
sub-structures.

Basically, three separate stages are cascaded in each layer: (1) the embedding form last layer are
linearly converted; (2) messages between each connected pair of nodes are weighted; and (3) new
features of neig‘hbouring nodes are aggregated to produce new embedding. Following the three
operations, five parameters are included in the architectural space.

• Embedding Dimension. The embedding represents the features of the nodes extracted by
the hidden layers. A linear operation is applied to convert the previous embedding into
another space of d dimensions.

• Attention Type. The attention type refers to how the messages between connected nodes
are weighted. For the new temporary embedding Hk

i,j , a coefficient is firstly computed for
weighting it during the aggregation phase.

• Aggregation Type. For all the incoming messages, there different ways in mixing them to
produce the new features. The common methods are namely, taking the summation, mean,
and maximum.

3



Under review as a conference paper at ICLR 2021

• Number of Heads. We apply multi-headed attention to the GNN architecture as it is com-
monly used to stablize the performance. Heads of the same message are concatenated for
every layer except the last one where they are averaged to match the output dimension.

• Activation Function. The activation function can add nonlinearity to the embedding. Con-
sidering the hardware constraints, we include four options for nonlinearity: “relu”, “tanh”,
“sigmoid”, and “elu”.

3.1.2 HARDWARE SPACE

The computation of GNN for inference are all parallelizable in terms of the features of the same
embedding. As a large dimension would require exponentially complex computation, it is necessary
to divide the vector-wise operation into sub-tasks. Therefore, we choose the size for grouping the
features as a key parameter to scale the hardware.

Almost all the main tasks can be divided, and we summarize them into four cases:

1. For the embedding to transform from Ti to To features, two parameters ti and to are used
for grouping them separately.

2. The attention coefficients possibly also require linear operation but the output is a scalar,
so we only divide the input by size of tattn.

3. The aggregation is similar to the above case in that there is only one output. We also assign
one parameter taggr for it.

4. Lastly, the nonlinearity requires one-to-one operation on the feature vector. As this is
probably the most challenging operation for hardware, we also group the features into size
of tact.

In addition to the architectural and hardware space, we also consider the mixed-precision design
which play important roles in both software and hardware performance. In this case, the quantization
space also needs to be explored and details is discussed in Section 3.4.

3.2 ALGORITHM

Reinforcement learning is applied in our design as the searching backbone. As we have parameter-
ized the design of both architecture and hardware and formatted these parameters by layer, one RNN
can be employed to sample the parameters sequentially as actions from the respective list of options.
For the sampled design, the hardware performance is analyzed using our FPGA model, under the
constraints of resources and latency. Only if the sample hardware design satisfy the hardware spec-
ifications, will the software design be trained and tested on the dataset. The reward for the sample
〈a, h〉 is then

R(a, h) =

{
0, hp(a, h) < spec

accv(a, h), otherwise (5)

This way, the training can be circumvented as possible and the search can be faster than pure NAS.

Once the reward is obtained, the parameter θ of the controller is updated following the policy gradi-
ent rule (Williams, 1992):

∇J(θ) =
1

m

m∑
k=1

T∑
t=1

γT−t∇θ log πθ(at|a(t−1):1)(Rk − b) (6)

where J(θ) is the expected reward at the initial step.

The controller is configured as the following. The number of steps T equals the total number of
parameters to be sampled; the batch size for updating θ is m = 5 episodes; the reward is not
discounted so γ = 1; and baseline b is the exponential moving average of the reward with a decaying
factor of 0.9.
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Figure 2: Block diagram of the FPGA model.

3.3 FPGA MODELING

We adopt a generic FPGA design model that is widely used for CNN acclerators (Zhang et al.,
2015). Figure 2 illustrates the block diagram of the hardware segment for one layer. For each layer
four stages are pipelined consisting of the linear transform, attention coefficient computation, aggre-
gation, and nonlinear operation. The messages in-between consecutive stages are registered. Two
buffers are employed to resolve the read/write conflict by alternately accessing the main memory and
serving the computational units. As mentioned above, this model is fully scalable in the dimension
of the embedded features baded on the parameteres defined.

3.4 MIXED PRECISION

We also consider the mixed-precision scenario in our design where data are quantized using different
bit width. Like the other parameters, quantization parameters are also arranged by layer so data in the
same layer share the same format. As the methods for quantizing is plentiful and have significant
impact on the model accuracy, we avoid the variation of them and simply adopt the post-training
quantization (PTQ) and linear quantization as follows.

Given the quantization interval ∆ and range bounded by Bmin and Bmax, the quantization of real
number x is

x̂ = clip(bx/∆e ×∆, Bmin, Bmax), (7)

where be is rounding to integers. For the fixed-point format with sign, ∆, Bmin and Bmax are
determined by the number of bits allocated to the integral (bi) and fractional (bf ) part as

∆ = 2−bf , Bmin = −2bi, Bmax = 2bi −∆. (8)

Consequently, in the mixed-precision design, four parameters are added to the search space namely
wi, wf for the weights and ai and af for the activation. With the mixed precision, the hardware
space exponentially increases, and the components in our FPGA model requires to be configured by
bitwidth. We rely on the HLS tool of Xilinx to synthesize all configurations to profile the sizes and
latency information. The synthesis result of sample operational units are shown in the supplimental
material. It is noted the impact of quantization on hardware significantly vary among operators.

4 EXPERIMENT

In this section we test the performance of FGNAS on holdout graph datasets of node classification
utility. To study the search efficiency, both of the test accuracy and searching time are evaluated
and compared. The experiments are carried out using single Nvidia 1080Ti graphic processing unit
(GPU), and Intel 8700K CPU. There is no dedication for FPGA chips, but we use Xinlix devices
for reference. We assume the clock rate is 100 MHz throughout all the experiments. It is noted that
since we constraints the hardware, comparing the accuracy to the state-of-art networks are not quite
sensible and instead we evaluate the searching efficiency against baseline methods.

5



Under review as a conference paper at ICLR 2021

Table 1: Design space explored by our framework and the actual values used in the experiment.

Space Parameter Symbol Value

Architecture

Embedding Dimension d 4, 8, 12, 16, 32, 64
Attention Type attn “constant”, “gat”, “gcn”

Aggregation Type aggr “add”, “max”, “mean”
Number of Heads k 1, 2, 4, 8, 16

Activation Function act “relu”, “tanh”, “sigmoid”, “elu”

Hardware

Linear Group Size tin/tout 1, 2, 3, 4, 5
Attention Group Size tattn 1, 2, 4, 8

Aggregation Group Size taggr 1, 2, 4, 8
Activation Group Size tact 1, 2, 3, 4, 5

Integer Bit Width ai/wi 1, 2, 3
Fraction Bit Width af /wf 0, 1, 2, 3, 4, 5, 6

Table 2: Basic information on the statistics of the datasets and our configuration in usage.

Dataset Cora CiteSeer PubMed

Statistics

# Training Nodes 140 120 60
# Validation Nodes 500 500 500

# Testing Nodes 1000 1000 1000
# Input Features 1433 3703 500

# Classes 7 6 3

training configuration learning rate 0.01 0.01 0.01
weight decay 0.0005 0.0005 0.001

Hardware Specification
Latency (ms) 0.8/0.9/1.0 0.8/0.9/1.0 7/8/9
#LUT/#FF 10k/100k 10k/100k 10k/100k

DSP 10/100 10/100 100/1000

4.1 DATASET

Three datasets are used for benchmarking the performance on transductive learning, namely Cora,
CiteSeer, and PubMed. The statistics and training configuration is listed in Table 2. The setting for
training on these datasets follows that of Zhou et al. (2019). Since the volumns and complexity of
the datasets vary largely, the hardware of the search is constrained differently and accordingly.

4.2 BASELINE METHOD

To evaluate the ability and efficiency of FGNAS, two methods are considered as baseline and exper-
imented in parallel with our method.

Random Search. We perform a random search approach as the baseline of search efficiency. The
random search results can reflect the distribution of candidate solutions in specific design space. For
certain data and hardware constraints, the random search can render decent result already.

Separate Search. The traditional method of two-phase design philosophy cannot fully explore
the design space joined by hardware and architectural subspaces. In this philosophy, a fixed pure
network architecture is firstly selected (by handcraft or automation), and afterwards a hardware
design is customized for this specific architecture. Therefore, it explores only a fraction of the
design space containing every combination of architecture-hardware pair.

To show the advantage of our co-design method over the separate design, we follow the above
pipeline and partially use our framework to perform a pure architecture search followed by a pure
hardware search based on the best network found.
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Figure 3: Distribution of searched samples on Cora. Our joint search methods explores the region
that closest to the constrained area.

Table 3: Performance of the proposed joint search framework under different hardware constraints.
Best test accuracy and search time on Cora are used to compare against the baselines.

Constraints ours random search separate search
latency (ms) #LUT/#FF #DSP Acc. Time (h) Acc. Time (h) Acc. Time (h)

0.8
10,000 10 66.2% 0.56 61.8% 1.12 62.6% 1.87

100 62.9% 0.87 60.0% 1.22 63.8% 1.65

100,000 10 67.8% 0.88 62.9% 1.12 64.6% 1.55
100 68.7% 0.89 64.0% 0.95 68.5% 1.40

0.9
10,000 10 68.1% 0.69 68.0% 1.19 66.0% 1.32

100 69.2% 1.17 68.9% 1.20 69.0% 1.50

100,000 10 68.8% 0.99 69.0% 1.44 68.0% 1.69
100 70.2% 0.88 69.5% 1.44 69.6% 1.70

1.0
10,000 10 68.1% 0.72 67.8% 1.23 66.0% 1.38

100 70.1% 1.33 69.0% 1.40 69.9% 1.44

100,000 10 68.8% 1.19 69.2% 1.66 69.0% 1.77
100 71.5% 1.48 69.9% 1.55 69.9% 1.60

4.3 SEARCHING DETAILS

The actual search space used throughput the experiments are shown in Table 1. During the search,
the controller is updated with ordinary SGD algorithm and a constant learning rate of 0.1. When
a child network is sampled and hardware verified, it will be trained using Adam optimizer for 200
epochs. The validation is performed after every epoch, from which the highest will be taken as the
reward to the controller. By rule of thumb, we set the depth of the child networks as two layers.

The searching stops after sampling 2000 episodes. With hardware constraints, however, most sam-
ples in both joint and random search may not be valid so the training can be saved. Consequently
for fair comparison, we use the total number of trained samples to guide the random search such
that the GPU hours would be on the same scale. In the case of separate search, the GPU time is
completely defined by the episode quantity and we set 200 as for the architecture search and 800 for
the hardware search. Each experiment includes 5 runs, and the one with the highest test accuracy is
taken for evaluation. With the selected run, we report the accuracy of both the best sample as well
as the top-10 samples averaged.

4.4 PERFORMANCE

We test the seaching efficiency of our method across variational hardware parameters in latency,
number of LUTs/FFs and number DSPs. The result on Cora is shown in Table 3. In general, the
joint search ahieves the best accuracy and shortes searching time while there exists variance.
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Table 4: The best accuacry result on differnt datasets.

Dataset Latency #LUT/#FF #DSP Ours Random Search Separate Search

Cora 1 ms 100k 100 71.5% 69.9% 69.9%
CiteSeer 1 ms 100k 100 72.4% 72.0% 68.5%
PubMed 7 ms 100k 1000 82.4% 80.0% 65.6%

4.4.1 COMPARING WITH RANDOM SEARCH

The random search is already very performant in the sense that the highest accuracy are discoverable
at certain hardware constraints. For example, with 1 ms latency, 100,000 LUTs/FFs and 100 DSPs,
it achieves the best accuracy among the three methods. However, when the constraints are more
narrow the distribution of decent sampels are far more sparse. As a result, the best accuracy covered
by searching a fixed number of samples is lower than the other two methods.

The search time of random method is around 1x to 2x of the joint search. There are two explanations
for that. Firstly, the sampled newtorks are more scattered so their average size is larger. Although
the GPU calls are equal, the training time of randomly sampled networks are higher. Another reason
is that in order to reach the same number of implementable samples as joint search, much more
episodes needs to be inspected so the CPU time adds up to a coniderable level.

4.4.2 COMPARING WITH SEPARATE SEARCH

The separate search consumes highest time with our setting because 1) more sampels are actually
trained due to the manual setup; and 2) the architecture found in the first step is larger than average
size. It is observed that accuracy is slightly better than random search and in some cases surpass the
joint search. However, since the pure architecture search are not aware of the hardware constraints at
all, the post-quantization accuracy may degrade severly as decent bit width allocation hardly exists.

4.4.3 IN-DEPTH OBSERVATION

The experimental results concludes that our method exlpores the design space more efficiently than
the baselines. It achieves the best accuracy in most hardware cases while runs 1x - 3x faster. The
advantage owes to the fact the SW/HW co-search explores the design space in a local region ap-
proaching to the constrained area. Figure 3 plots actual hardware statistics of the searched samples
projected onto three usage-latency planes. It is shown the Pareto frontier of the joint search method
is closet the valid area constrained by the hardware among all the methods.

5 CONCLUSION

Neural architecture search is a promising solution for the advancentment of graph neural network
engineering, but it lacks hardware awareness. In this work we propose to an FPGA-based SW/HW
co-design framework, named FGNAS, that jointly explores the architectural and hardware spaces.
Using reinforcemnt learning, generic hardware model, and mixed precision design, FGNAS per-
forms evidently more efficient than the random search and traditional separate methods. Under
different hardware constraints, FGNAS has the best accuracy in majority of the cases with 1x-3x
faster running time. Besides, the cause of the advantage is discussed from statistical analysis.
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