
Explaining Low Dimensional Representation, a reproduction

Anonymous Author(s)
Affiliation
Address
email

Reproducibility Summary1

Scope of Reproducibility2

This report covers our reproduction of the paper ’Explaining Low dimensional Representation’ [8] by Plumb et al.3

In this paper, a method (Transitive Global Translations, TGT) is proposed for explaining different clusters in low4

dimensional representations of high dimensional data. They show their method outperforms the Difference Between the5

Means (DBM) method, is consistent in explaining differences with few features and matches real patterns in data. We6

verify these claims by reproducing their experiments and testing their method on new data. We also investigate the use7

of more complex transformations to explain differences between clusters.8

Methodology9

We reproduce the original experiments using their source code. We also replicate their findings by re-implementing the10

authors’ method in PyTorch [7] and evaluating on two of the dataset used in the paper and two new ones. Furthermore,11

we compare TGT with our own extension of TGT, which uses a larger class of transformations.12

Results13

We were able to reproduce their results using their code, yielding mostly similar results. TGT generally outperforms14

DBM, especially when explanations use few features. TGT is consistent in terms of the features to which it attributes15

cluster differences, across different sparsity levels. TGT matches real patterns in data. When extending the types of16

functions used for explanations, performance did not improve significantly, suggesting translations make for adequate17

explanations. However, the scaling extension shows promising performance on the modified synthetic data to recover18

the original signal.19

What was easy20

The easiest part was running the existing code with the pre-trained model files. The original authors had set up their21

code base in an organized manner with clear instructions.22

What was difficult23

The first difficulty that we encounter was finding the right environment. The source code depends on deprecated24

functionality. The clustering method they used, had to be re-implemented for us to use it in our replication. Another25

difficulty was the selection of clusters. The authors did not prove a consistent method for selecting clusters in a latent26

space representation. When retraining the provided models, we get a latent space representation different to the original27

experiments. The clusters have to be manually selected. The metrics that they used to evaluate their explanations are28

also depend on the clustering. This means that there is some variability in the exact verification of reproducibility.29

Communication with original authors30

We asked the original authors for clarification on how to choose the ε hyper-parameter. However, it became apparent31

that we had misread, and the procedure is indeed adequately reported in the paper.32

Submitted to ML Reproducibility Challenge 2020. Do not distribute.

1 Introduction33

The curse of dimensionality [3] is a long-standing problem in Machine Learning. Data in many domains and applications34

(e.g. Bioinformatics) has high-dimensional representations. Finding patterns in such high-dimensional data is a35

challenging task. To this end, dimensionality reduction [12] techniques have greatly helped in data-analysis, information36

extraction, building computational models, and in doing inference. Given an input x ∈ Rd, dimensionality reduction37

learns a function r : x 7→ r(x), r(x) ∈ Rm, where m << d. Such a dimensionality reduction function r naturally38

arises in deep learning due to the expressivity and representational power of neural networks. The goal of r is to encode39

useful knowledge about the input space, thus providing distinctive information in the transformed output r(x). This40

results in “clusters" or “groups of points" in the transformation space. The downside of this exercise, however, is that41

the output space is usually non-interpretable. There is usually no easy way to know what information is present in the42

transformed points r(x) and what sort of distinctive knowledge they contain.43

In this work, we reproduce the paper ‘Explaining Groups of Points in Low-Dimensional Representations’ by Plumb44

et al. [8]. This paper proposes a method for explaining different clusters in latent space representation. They look at45

the problem of explaining the points in the latent space representation through the lens of Interpretability in Machine46

Learning. We reproduce their findings and expand upon their work with our an extension. We extend their research by47

applying their method to a larger class of explanation functions and testing their method on new dataset. We further48

investigate the efficacy of the explanations using a probing classifier [2].49

2 Methodology50

Counterfactual Explanations [11] have emerged as an active research area in the field of Interpretable Machine Learning.51

A counterfactual explanation is defined as the smallest perturbation to the input that would change the output of a52

machine learning model. As such, these explanations are promising as they can provide suggestive recourse to the53

beneficiary in a machine learning based decision system. As an interpretable machine learning problem, Plumb et al.54

[8] aim to find such counterfactual explanations in order to explain the differences between the groups in latent space.55

To this end, they employ the function r itself to find what perturbation δ needs to be made to the input x ∈ Rd so that56

r(x+ δ) belongs to the different target group. The goal is to find the global explanations that apply to the whole group57

as opposed to the local explanations which explain only individual examples [4]. Furthermore, the explanations need58

to be sparse for them to be interpretable by practitioners. Finally, these explanations should be be both symmetric59

and transitive. To obtain these Global Counterfactual Explanations(GCE), the authors propose the algorithm called,60

Transitive Global Translations (TGT), explained hereafter.61

Following the previous notation, let r : Rd → Rm denote our dimensionality reduction function, where d is the62

dimensionality of the input space and m is the latent space’s dimensionality. Suppose Xi, Xj ⊂ Rd get mapped63

to the clusters Ri, Rj ⊂ Rm respectively. The goal is to define the transformation ti→j : Rd → Rd on x ∈ Xi as64

x
′

= ti→j(x), so that r(x
′
) ∈ Rj , or equivalently x

′ ∈ Xj .65

The proposed algorithm TGT considers the transformations of the form ti→j(x) = x + δi→j . To find the optimal66

parameters of the transformation function, authors imply a compressed-sensing based objective function as below:67

l(δi→j) = ‖r(ti→j(X̄i))− R̄j‖22 + λ‖δi→j‖1 (1)

where λ‖δi→j‖1 is a regularization term to incentivize sparser explanations, and X̄i ∈ Rd and R̄j ∈ Rm denote the68

means of the clusters in the input space and latent space respectively. Given clusters 0, 1, . . . , n, we get a total of69
1
2n(n+ 1) transformations. To further increase sparsity, we can truncate δi→j to only the k features with the largest70

absolute value, for some k. An issue with this is that the translation using the truncated δi→j might no longer correctly71

transform inputs that get mapped to Ri into inputs that get mapped to Rj .72

Furthermore, the transformations ti→j have to adhere to several mathematical properties. Namely, for any clusters73

i, j, k these transformations should be : a) Symmetric, i.e. ti→j = tj→i
−1 and b) Transitive, i.e. tj→k ◦ ti→j = ti→k.74

From these properties it follows that ti→i is the identity function I as75

ti→i = ti→0 ◦ t0→i = ti→0 ◦ ti→0
−1 = I (2)

We define this condition as self-similarity. Furthermore, the group of translations is uniquely defined by t0→1, . . . , t0→n,76

because for any i, j:77

ti→j = t0→j ◦ ti→0 = t0→j ◦ t0→i−1 (3)

Plumb et al. [8] compare their method against the naive baseline of Difference Between the Means (DBM). With DBM,78

each transformation is still a translation: ti→j(x) = x+ δi→j . However, now δi→j = (X̄j − X̄i). We also use this as a79

baseline for comparison in this report.80

2

Since translations are a very narrow class of functions, we expanded upon the research by investigating other trans-81

formations that still satisfy the GCE requirements. We investigate the transformations of the form t0→i(x) =82

exp(γ0→i)� x+ δ0→i. These always have a well defined inverse, given by t0→i−1(x) = exp(−γ0→i)� (x− δ0→i)83

and only have O(d) parameters. The inclusion of scaling could enhance performance, while the necessary components84

of GCE are maintained.85

2.1 Metrics to evaluate Global Counterfactual Explanations86

To measure the efficacy of the transformation function ti→j , the authors propose two metrics, Coverage and Correctness.87

1. The Coverage (cv(ti→j)) is the fraction of points a ∈ Rj for which there is a point b ∈ Xi such that88

‖r(ti→j(b))− a‖2 < ε, i.e.89

cv(ti→j) =
1

|Rj |
∑
a∈Rj

I [∃b ∈ Xi|‖r(ti→j(b)− a‖2 < ε] (4)

2. The Correctness (cr(ti→j)) is the fraction of points b ∈ Xi for which there is some a ∈ Rj such that90

‖r(ti→j(b))− a‖2 < ε, i.e.91

cr(ti→j) =
1

|Xi|
∑
a∈Rj

I [∃a ∈ Rj |‖r(ti→j(b)− a‖2 < ε] (5)

Note that both these metrics have the hyperparameter ε which is to be chosen carefully. When i = j we do not count92

the point itself, there must be some other point within distance ε. 193

Furthermore, the Similarity metric measures the consistency of the explanations at different sparsity levels. Given two94

explanations e1, e2 where e1 is more sparse than e2, the similarity of e1 and e2 is defined as95

sim(e1, e2) =

∑
i|e1[i]|1(e2[i] 6= 0)

‖e1‖1
(6)

This is equal to 1 if e1 uses a subset of the features that e2 uses. By definition, DBM always has similarity 1.96

3 Scope of Reproducibility97

We investigate the following claims from the original paper:98

1. In terms of the average correctness and coverage, TGT performs equally well or better than the DBM method.99

This remains true, especially for sparser explanations.100

2. TGT explanations have similarity close to 1. It is consistent in which features it uses for explanations across101

different sparsities.102

3. TGT correctly identifies known causal structure in data.103

4. Furthermore, TGT explanations are consistent. When altering the dataset by adding a copy of a cluster with a104

specific feature altered, TGT recovers the modification with little change to the other explanations.105

4 Methodology of Reproducibility106

We make use of the code made available by the original authors 2 for our pilot investigative study. We first verify that107

the provided models and explanations stay true to the claims made in the paper. We further retrain their models on the108

provided dataset. We also made our own PyTorch [7] implementation to to further verify the claims, and to perform109

experiments with the proposed extension.110

1We use this definition to set the value for epsilon, as explained in the Methodology section of the original Paper.
2https://github.com/GDPlumb/ELDR

3

4.1 Model description111

We identify that the scope of the original paper is to explain clusters in the low-dimensional representations. However,112

obtaining meaningful and discernible low-dimensional representations is an active area of research. The original authors113

employ a t-SNE [10] objective based Variational Autoencoder (called, henceforth, as scVIS) [5] as the r function. They114

make use of library3 by the original scVIS authors in their implementation. We also implement this model in Pytorch115

for our experiments. However, we deliberately decide not to match the model implementation exactly. This is done116

to study the model-agnosticism of the TGT algorithm. By design, TGT should be able to explain the clusters for any117

differentiable r function. However, we maintain that r should give discernible latent representations with preserved118

global structure in the data. In our implementation of the scVIS library, we therefore do not employ the hyperparameters119

and the training settings from the original library.120

4.2 Dataset Description121

We reproduce the findings of the authors on four datasets that they used. We use two of these datasets as well as two122

new ones to test our PyTorch implementation.123

1. Single cell RNA [9]: This dataset has 13166 features. We use the same number of clusters at the original124

authors, 18 in this case.125

2. UCI Boston housing This dataset has 506 entries with 13 features. We use 6 clusters for both reproduction126

and replication.127

3. UCI Heart disease This dataset has 303 entries with 13 features and 1 binary label. We used 8 clusters in the128

reproduction and 4 in the replication. The data was normalized to be in the range [0, 1].129

4. UCI Iris This dataset has 150 entries with 4 features and 1 ternary label. Ran in the reproduction with 3130

clusters. N = 150131

5. Breast Cancer Wisconsin (Diagnostic) 4 This dataset has 569 entries with 30 features and 1 binary label. We132

use 3 clusters in the replication.133

6. Pima Indians Diabetes Database 5 This dataset has 768 entries with 8 features and 1 binary label. We used134

3 clusters in the replication. The data was normalized to be in the range [0, 1].135

Note that the number of clusters depend on the latent-space representation, and thus, are user dependent.136

4.3 Hyperparameters137

Tensorflow [1] Experiments For the reproduction of the original experiments, we use the same hyperparameters as138

the original authors.139

Pytorch For our implementation of the scVIS model, we use l2 regularization of 0.001, learning rate 0.01, and140

perplexity of 10. Furthermore, the degree-of-freedom for the studentT distribution is set to 2.0. Perplexity and the141

degree-of-freedom is used same as the original scVIS implementation. We use validation set to monitor the training142

process of the scVIS model, and stop training when the ELBO(Evidence Lower BOund)[6] stops improving. For143

training the TGT explanations, we closely follow the settings from Plumb et al. [8]. We initialize the deltass as144

zero vectors. We tune the regularization parameter λ by grid search over a fixed range [0.0, 5.0] incremented by 0.5.145

Defining the metrics for TGT requires careful setting of the ε hyper-parameter. We follow the self-similarity condition146

(transformations of clusters to themselves should, theoretically, have correctness and coverage to be 1.0), and increase147

the ε in the range [0.0, 2.0] with increments of 0.02 until the correctness and coverage metrics are greater than 0.95.148

Furthermore, we use the truncation values(TV)(refer Table 1) to evaluate on the sparsity of the explanations. For the149

Pima Indians Diabetes Database and Breast Cancer Wisconsin(Diagnostic) dataset, we use the same truncation values150

as for UCI Boston Housing dataset.151

4.4 Experimental setup and code152

We closely follow the experimental setup in the original paper for our experiments. We make our Pytorch code available153
6 to further support the reproducible research. We reran the code of the original authors with new clustering models154

3https://github.com/shahcompbio/scvis
4https://www.kaggle.com/uciml/breast-cancer-wisconsin-data
5https://www.kaggle.com/uciml/pima-indians-diabetes-database
6https://github.com/elfrink1/FACT

4

https://github.com/shahcompbio/scvis

Dataset Truncation Values(TV) ε
Single Cell RNA 50, 100, 250, 500, 1000, 15000 0.75

Heart Disease 1, 3, 5, 7, 9, 11, 13 1.0
Housing 1, 3, 5, 7, 9, 11, 13 1.5

Iris 1, 2, 3, 4 0.75
Table 1: Truncation Values (TV) and ε value used for each of the dataset.

Explanation x1 x2 x3 x4
0→ 1 -1.01 -0.02 0.00 -0.88
0→ 1 -1.05 0.99 0.00 -0.88
0→ 3 0.00 0.89 0.00 0.00

Table 2: Explanations for the synthetic dataset as given by our implementation. Note that both DBM and TGT are able
to infer that the x3 is not causing any cluster. However, the authors’ claim that TGT also discovers that x4 doesn’t cause
any cluster cannot be verified.

and new explanations. We optimize the compressed-sensing based objective function for the TGT algorithm using the155

gradient descent algorithm. Our scaling extension is easily integrated in the source code, and can be optimized in a156

similar way. We train the scVIS models on the Lisa computing cluster 7. We use approximately 30 hours of GPU time.157

We train the TGT explanations on CPU (Intel i5).158

5 Results159

For the reproduction of the authors’ experiments, we achieve approximately similar results to the original paper. The160

TGT method does seem to outperform DBM method. The TGT explanations also have high similarity across sparsity161

levels. However, the TGT algorithm is unable to identify known causal structure in synthetic data with as good precision162

as reported in the original paper. We are also unable to match the results on the modified and corrupted data to a good163

precision. We describe the results in the following sections:164

5.1 Results reproducing original paper165

5.1.1 Coverage, Correctness and similarity166

In figure 1, we can see a comparison between the correctness, coverage and similarity of the TGT and DBM methods.167

Note that the DBM always has similarity 1. The similarity of TGT stays between 1 and 0.9, which supports claim 2.168

We see that the coverage and correctness are similar for the UCI Heart disease dataset. On the UCI Iris dataset, the169

coverage is comparable but the correctness is better for TGT. In both housing and RNA, the coverage and correctness170

are better at less features and similar for more features. Overall, these results support claim 1, especially for a small171

amount of features.172

Figure 1: Comparison of the metrics(Correctness, Coverage, and Similarity) across different datasets for reproduction
experiments.

7https://userinfo.surfsara.nl/systems/lisa

5

5.2 Explaining Causal Structure in the Synthetic Data173

We verify the claim that TGT identifies the causal structure in the data (claim 3). The synthetic dataset is generated174

same as the original paper, i.e. x1, x2 ∼ N (0, 0.2) + Bern(0.5), x2 ∼ N (0, 0.05), x4 ∼ x1 +N (0, 0.05). Note that175

this dataset has four different clusters, caused by the first two dimensions x1 and x2, x3 is noise, and x4 is correlated176

with x1 and x2. The authors claim that for this synthetic data, TGT is able to find that x4 is not the cause for any group.177

However, the said claim cannot be re-verified. Interestingly, the re-run of their code doesn’t provide the justification178

either to the degree as mentioned in the paper. We observe that both TGT and DBM are able to identify x3 is not179

causing any groups. Thus, in this scenario, both TGT and DBM are comparable. Refer table 2 for the explanations180

obtained. We, hereby note, that the explanations vary across multiple runs and we use the experimental setup same as181

the original authors. However, the values across the third dimension are consistently approximately 0.182

5.2.1 Feature modifications183

For each of the UCI datasets, the original authors add a ‘corrupted’ version where an extra cluster is added with artificial184

feature modification. With the exception of the modified features, the corrupted class is a copy of a chosen target class.185

They train TGT explanations using both the original scVIS model for the respective dataset and a model retrained on the186

corrupted dataset. We reproduce these experiments to see if TGT correctly attributes the difference between the target187

and corrupted class to the right features. Refer to Appendix A.1 for the illustrated figures and description. Overall, we188

observe that TGT is unable to identify the modifications to as good a precision as reported in the original paper. TGT is189

able to identify the modification for the UCI Iris dataset. For UCI Heart Disease Dataset (figure 7), it does not identify190

the features modified and on the UCI Boston Housing Dataset (figure 6), it identifies noisy modifications. However,191

with the retrained scVIS model and new representations, TGT is consistent in identifying the modifications across all192

the datasets.193

5.3 Results beyond original paper194

5.3.1 PyTorch replication195

We also replicate the TGT algorithm in PyTorch. Our Pytorch implementation includes the entire method along with196

the scVIS clustering method. In our implementation, we use the Scikit learn 8 kmeans module for our cluster selection197

as opposed to the manual clustering in the Tensorflow implementation. However, our number of clusters argument to198

the kmeans algorithm was informed by the learned low-dimensional representations for each dataset. Due to differences199

in the clustering model and cluster selection, we cannot directly compare the coverage and correctness metrics between200

our Pytorch replication and the TensorFlow reproduction. We additionally experiment with our scaling extension to the201

TGT algorithm. In the scaling extension of the TGT algorithm, along with the δ (δ) parameters, each cluster now has a202

γ (γ) parameters. The transformation from cluster 0 to i is now given by: t0→i = eγi � x+ δi The gammas(γs) are203

truncated just like the deltas and their L1 norm is added to the regularization term. Note that these transformations are204

strictly more expressive. If γ is the zero vector, these transformations reduce to regular TGT.205

5.3.2 UCI Heart Disease and UCI Boston Housing Dataset206

In figure 2 we see the results of our replication on the UCI Boston Housing and UCI Heart Disease dataset. For the UCI207

Boston Housing data, the TGT method seems to slightly outperform DBM both with and without scaling. This supports208

claim 1. The deltas(δs) and gammas(γs) show high similarity, supporting claim 2. For the UCI Heart Disease dataset,209

we do not see a difference in performance without scaling while TGT with scaling performs slightly worse.210

Figure 2: Results for the PyTorch replication for UCI Boston Housing and UCI Heart Disease dataset.

8https://scikit-learn.org/stable/index.html

6

0 to 1 1 to 0
δ1 δ2 δ3 δ4 γ1 γ2 γ3 γ4Cr Cv Cr Cv

TGT 1 0.529 0.333 1.000 2.581 0.014 0.001 0.842 - - - -
Scaling 1 0.529 0.520 1.000 2.608 0.023 -0.001 0.927 0.879 0.009 0.002 0.007

Table 3: The deltas(δs) and gammas(γs) for the mapping from group 0 to group 1 on the modified synthetic dataset for
regular TGT and TGT with scaling. Cr and Cv indicate correctness and coverage, respectively.

5.3.3 Breast Cancer Wisconsin (Diagnostic) and Pima Indians Diabetes Database211

In figure 3 we see the results for the Pima Indians Diabetes and Breast Cancer Wisconsin (Diagnostic) dataset. For the212

diabetes dataset, TGT with and without scaling outperforms DBM when more than one feature is used. This supports213

claim 1. Since the delta (δ) similarity is close to 1, claim 2 is also supported. For the Breast Cancer dataset, we see214

similar performance for DBM and TGT and slightly worse performance with scaling. The deltas (δs) still have high215

similarity, supporting claim 2.216

=
Figure 3: Results of the PyTorch replication on PIMA Indians Diabetes and Breast Cancer Wisconsin (Diagnostic)
Dataset.

5.3.4 Scaling extension217

In figure 2, we can see the difference in performance on two dataset included in the original experiments. Scaling does218

not seem to improve performance on the UCI Boston Housing dataset and slightly decreases performance on the UCI219

Heart Disease dataset. The similarity of the gammas (γs) is mostly above 0.9.220

In figure 3, we see the same metrics for the Breast Cancer and Pima Indians Diabetes Dataset. For the Diabetes221

dataset, the performance improves slightly and the gammas(γs) show high similarity. For the Breast Cancer dataset, the222

performance is about the same but the gammas(γs) show relatively low similarity.223

Altogether, these results suggest that the addition of scaling does not significantly improve the accuracy and correctness224

while making the transformations more complex. Based on our experiments, we do not recommend the addition of225

scaling in the explanation functions, and conclude that the original TGT is expressive enough.226

5.3.5 Experiment with Modified Synthetic Data227

In order to study the efficacy of the proposed scaling function, we perform experiments on the synthetic dataset. We228

modify one of the groups of points G by performing the operation axki + b, where i corresponds to the group number229

and k denotes the feature dimension which we modify. We define a ∼ U(1.0, 2.0) and b ∼ U(−0.5, 1.0). We add230

modified group G′ into the original data D to get the new data D
′
. We follow the experiment setup from the original231

paper as: a) r(G
′
) should form a different group of its own. b) G

′
should be within the distribution of the original D.232

In this study, we want to investigate whether the TGT with scaling is able to recover the modifications, and if in doing233

so it affects the explanations between other groups. The sampling procedure gave a=2.0, b=0.60 and we keep k=0. We234

observe that the explanations with scaling are able to recover the modification to an approximate degree(scaling factor235

eγ ≈ 2.38, actual a=2.0), and give better correctness as compared to the regular TGT (refer figure 3). Interestingly, the236

translations explanations of the scaling extension are approximately equal to the deltas of the regular TGT. The exact237

results can be found in Table 3. Figures 8 and 9 in the appendix show the data spread and resulting translations.238

7

Figure 4: Classification accuracy of probing classifier at different sparsity levels for Housing (left) and Iris (right)
dataset.

5.3.6 Experiments with Probing Classifier239

To further investigate the efficacy of TGT explanations, we use a probing-classifier [2] as a proxy to study the qualitative240

differences of the features selected by TGT and DBM. For each cluster, we train a binary classifier with features ranked241

highest by TGT and DBM at different sparsity levels K. We compute the overall accuracy at each sparsity level using242

the ensemble of these binary classifiers. As can be seen in Figure 4, the results demonstrate that for sparser explanations,243

TGT selects features that lead to higher accuracy of the ensemble classifier than those selected by DBM. This further244

validates the paper’s claim that TGT leads to better sparse explanations as compared to DBM. Furthermore, we also245

use the probing classifier to understand the differences between the groups. For each pair of group, we train a Binary246

Linear Classifier to predict the group of a test point. We, then, investigate the feature importances of the classifier247

towards decision making. We ascertain that the features classifier give more importance to while decision making are248

the defining property of the class. Interestingly, we find that the more important features according to the classifier249

correspond to the explanations provided by the TGT algorithm. Refer to figure 11. This provides further evidence that250

TGT is able to find real distinctive signals as explanations.251

6 Discussion252

Based on the reproduction of the original experiments, claims 1 and 2 seem to hold, the experiments for claim 4 do not253

all support it, but the claim does seem to hold. Claim 1 and 2 seem to hold in particular for sparse explanations. The254

evidence for claim 3 is inconclusive. The coverage and correctness in our reproduction were not always the same as in255

the original paper. It is difficult to compare these metrics for different clustering outcomes, as they depend on the ε256

parameter which depends on the clustering.257

A major difficulty in reproduction is the cluster selection. When retraining the scVIS model, the latent space repre-258

sentation structure changes. The authors provide no method as to determine the different clusters other than visual259

inspection. Cluster selection could be an explanation for the differences in results between the original experiments and260

our reproduction. To verify the results with more confidence, a robust method for cluster selection might be required.261

References262

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,263

Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous264

distributed systems. arXiv preprint arXiv:1603.04467, 2016.265

[2] Yonatan Belinkov, Sebastian Gehrmann, and Ellie Pavlick. Interpretability and analysis in neural NLP. In266

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts,267

pages 1–5, Online, July 2020. Association for Computational Linguistics.268

[3] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.269

[4] Diogo V Carvalho, Eduardo M Pereira, and Jaime S Cardoso. Machine learning interpretability: A survey on270

methods and metrics. Electronics, 8(8):832, 2019.271

[5] Jiarui Ding, Anne Condon, and Sohrab P. Shah. Interpretable dimensionality reduction of single cell transcriptome272

data with deep generative models. bioRxiv, 2017.273

[6] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2014.274

8

[7] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,275

Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep276

learning library. arXiv preprint arXiv:1912.01703, 2019.277

[8] Gregory Plumb, Jonathan Terhorst, Sriram Sankararaman, and Ameet Talwalkar. Explaining groups of points in278

low-dimensional representations, 2020.279

[9] Karthik Shekhar, Sylvain W Lapan, Irene E Whitney, Nicholas M Tran, Evan Macosko, Monika Kowalczyk, Xian280

Adiconis, Joshua Z Levin, James Nemesh, Melissa Goldman, Steven Mccarroll, Constance L Cepko, Aviv Regev,281

and Joshua R Sanes. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell,282

166:1308–1323.e30, 08 2016.283

[10] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning research,284

9(11), 2008.285

[11] Sahil Verma, John Dickerson, and Keegan Hines. Counterfactual explanations for machine learning: A review,286

2020.287

[12] Haozhe Xie, Jie Li, and Hanqing Xue. A survey of dimensionality reduction techniques based on random288

projection, 2018.289

9

A Extra figures290

A.1 Experiments on Corrupted datasets291

Figure 5: Explanation for corrupted features on UCI Iris dataset. Feature modified is 1(Sepal Width). Left: Visualization
of the TGT explanations on the modified dataset. Right: Visualization of the TGT explanations with scVIS retrained on
the modified dataset. We observe that the TGT explanations are robust to the modifications.

Figure 6: Explanation for corrupted features on UCI Boston Housing dataset. We modify the features 1(ZN) and
9(TAX). Left: Visualization of the TGT explanations on the modified dataset. We observe that TGT returns noisy
explanations in this case. Right: Visualization of the TGT explanations with scVIS retrained on the modified dataset.
With retrained scVIS model, TGT is able to recover the modifications.

10

Figure 7: Explanation for corrupted features on UCI Heart Disease dataset. Left: Visualization of the TGT explanations
on the modified dataset. We modified the 6(restecg) and 8(exang). However, the TGT recovers modifications in features
2(cp), 5(fbs), and 10(slope) instead. Right: Visualization of the TGT explanations with scVIS retrained on the modified
dataset. With retrained scVIS model, TGT recovers the modified features along with 10(slope) feature. This observation
does not entirely support the claim 4.

A.2 Synthetic data292

Figure 8: a) Synthetic data b) Synthetic data with the modification applied. We modify the data from group 1 across the
0th dimension by ax01 + b. Here a and b are 2.0, 0.60 respectively.

11

Figure 9: We compare the explanations from the TGT algorithm (left) and the TGT with scaling extension algo-
rithm(right) on the modified synthetic data. We can observe that the TGT with scaling extension has better correctness,
and is able to identify the scaling we have applied across the first dimension (i.e. k=0). The γ for this dimension is 0.87,
which means the scaling factor is eγ ≈ 2.38. Moreover, the translation parameters are approximately same in both the
variants of the TGT.

12

Figure 10: Explanations between different groups for the Pima Indians Diabetes Database.

A.3 Probing Classifier and Feature Importance293

13

Figure 11: Feature Importance by the binary classifier for the Pima Indians Diabetes Database. a) (top-left): Feature
importance for the classifier between groups 0 and 1. b) (top-right): Feature importance for the classifier between
groups 0 and 2. c) (bottom-left): Feature importance for the classifier between groups 1 and 2. We note that the
classifiers give significant feature importances to the features which correspond to the deltas (refer fig. 10).

14

	Introduction
	Methodology
	Metrics to evaluate Global Counterfactual Explanations

	Scope of Reproducibility
	Methodology of Reproducibility
	Model description
	Dataset Description
	Hyperparameters
	Experimental setup and code

	Results
	Results reproducing original paper
	Coverage, Correctness and similarity

	Explaining Causal Structure in the Synthetic Data
	Feature modifications

	Results beyond original paper
	PyTorch replication
	UCI Heart Disease and UCI Boston Housing Dataset
	Breast Cancer Wisconsin (Diagnostic) and Pima Indians Diabetes Database
	Scaling extension
	Experiment with Modified Synthetic Data
	Experiments with Probing Classifier

	Discussion
	Extra figures
	Experiments on Corrupted datasets
	Synthetic data
	Probing Classifier and Feature Importance

