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Abstract

Generative models based on dynamical transport of measure, such as diffusion models, flow
matching models, and stochastic interpolants, learn an ordinary or stochastic differential
equation whose trajectories push initial conditions from a known base distribution onto
the target. While training is cheap, samples are generated via simulation, which is more
expensive than one-step models like GANs. To close this gap, we introduce flow map
matching – an algorithm that learns the two-time flow map of an underlying ordinary
differential equation. The approach leads to an efficient few-step generative model whose
step count can be chosen a-posteriori to smoothly trade off accuracy for computational
expense. Leveraging the stochastic interpolant framework, we introduce losses for both direct
training of flow maps and distillation from pre-trained (or otherwise known) velocity fields.
Theoretically, we show that our approach unifies many existing few-step generative models,
including consistency models, consistency trajectory models, progressive distillation, and
neural operator approaches, which can be obtained as particular cases of our formalism.
With experiments on CIFAR-10 and ImageNet 32x32, we show that flow map matching leads
to high-quality samples with significantly reduced sampling cost compared to diffusion or
stochastic interpolant methods.

1 Introduction

In recent years, diffusion models (Song et al., 2020; Ho et al., 2020; Sohl-Dickstein et al., 2015; Song and Ermon,
2020a;b) have achieved state of the art performance across diverse modalities, including image (Dhariwal
and Nichol, 2021; Rombach et al., 2022; Esser et al., 2024), audio (Popov et al., 2021; Jeong et al., 2021;
Huang et al., 2022; Lu et al., 2022a), and video (Ho et al., 2022a;b; Blattmann et al., 2023; Wu et al., 2023)
data. Diffusion models, along with related techniques such as flow matching (Lipman et al., 2022), rectified
flow (Liu et al., 2022a), and stochastic interpolants (Albergo and Vanden-Eijnden, 2022; Albergo et al.,
2023a), construct a path in the space of measures between a base and a target distribution by specifying an
explicit connection between samples from each (Albergo et al., 2023a). This defines a time-dependent family
of probability distributions that describes the dynamical transport of measure along the path. Critically,
this construction reduces the generative modeling problem to that of learning the corresponding velocity
field (Song et al., 2020; Albergo et al., 2023a; Lipman et al., 2022; Liu et al., 2022a), which leads to an efficient
and stable paradigm for training. At sample generation time, however, models in this class generate data
by iteratively converting samples from the base into samples from the target through numerical integration
of an ordinary or stochastic differential equation. The number of integration steps required to produce
high-quality samples incurs a high cost that can limit real-time applications (Chi et al., 2024). Comparatively,
one-step models such as GANs (Goodfellow et al., 2014; 2020; Creswell et al., 2018) are notoriously difficult
to train (Metz et al., 2017; Arjovsky et al., 2017), but can be hundreds or thousands of times more efficient to
sample, because they only require a single network evaluation. As a result, there has been significant recent
interest in keeping the learning paradigm of diffusion-type models while reducing the number of steps needed
for sample generation (Karras et al., 2022).

Towards this goal, here we introduce a new class of generative models known as flow map matching models,
which learn the two-time flow map of a probability flow equation for an arbitrary diffusion or stochastic
interpolant. As shown in Figure 1, the learned flow map can be used as a single-step model or as an iterative
model with a sample quality that we find smoothly increases with the number of steps. We develop both
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Figure 1: Overview of flow map matching. Our approach learns the two-time flow map Xs,t that transports
along the trajectory of an ordinary differential equation from time s to time t. The map is bidirectional, and can be
used to build an integrator with an arbitrary discretization. This integrator is exact in theory, and its number of steps
can be adjusted post-training to reduce inaccuracies due to estimation errors. The map can be distilled from a known
velocity field or learned directly, and can be trained with an arbitrary, non-Gaussian base distribution, as illustrated
here with image-to-image translation.

distillation- and direct training-based approaches that can be used to convert a velocity into a flow map or to
learn a flow map from scratch. Overall, our main contributions can be summarized as:

• We introduce a framework for learning the two-time flow map of an arbitrary ordinary differential equation,
and we relate our approach to recent work on consistency models (Song et al., 2023; Song and Dhariwal,
2023) and consistency trajectory models (Kim et al., 2024).

• We show that, in contrast to previous approaches, learning the two-time flow map leads to an efficient
few-step generative model whose step count can be adjusted after training, to tradeoff accuracy for cost.

• We introduce a new Lagrangian loss function for distillation of a flow map from a pre-trained velocity field,
which we show outperforms a related Eulerian loss function that can be obtained as the continuous-time
limit of the consistency distillation objective (Song et al., 2023). These Lagrangian and Eulerian loss
functions are shown to control the Wasserstein distance between the densities pushed forward by the
exact and the learned maps.

• We show that our Lagrangian loss, when coupled with the stochastic interpolant framework (Albergo
and Vanden-Eijnden, 2022; Albergo et al., 2023a), leads to a new loss function for direct training of flow
map models that can be used to stably and efficiently train few-step generative models without needing a
pre-trained velocity field.

• We introduce a map distillation objective inspired by progressive distillation (Salimans and Ho, 2022) and
neural operator approaches (Zheng et al., 2023) that can efficiently convert a few-step map model into a
single-step map.

To highlight the efficacy and generality of our formalism, we illustrate our approach with numerical experiments
on CIFAR-10 and ImageNet 32 × 32.

2 Related Work
Dynamical transport of measure. Our approach is built upon the modern perspective of generative
modeling based on dynamical transport of measure. Grounded in the theory of optimal transport (Villani,
2009; Benamou and Brenier, 2000; Santambrogio, 2015), these models originate at least with (Tabak and
Vanden-Eijnden, 2010; Tabak and Turner, 2013), but have been further developed by the machine learning
community in recent years (Rezende and Mohamed, 2015; Dinh et al., 2017; Grathwohl et al., 2018; Chen
et al., 2019). A breakthrough in this area originated with the appearance of score-based diffusion models (Song
et al., 2020; Song and Ermon, 2020a;b), along with related denoising diffusion probabilistic models (Ho et al.,
2020; Sohl-Dickstein et al., 2015). These methods generate samples by learning to time-reverse a stochastic
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differential equation with stationary density given by a Gaussian. More recent approaches such as flow
matching (Lipman et al., 2022), rectified flow (Liu et al., 2022a;b), and stochastic interpolants (Albergo
and Vanden-Eijnden, 2022; Albergo et al., 2023a; Ma et al., 2024; Chen et al., 2024) similarly construct
connections between the base density and the target, but allow for arbitrary base densities and provide a
greater degree of flexibility in the construction of the connection.

Reducing simulation costs. There has been significant recent interest in reducing the cost associated
with solving an ODE or an SDE for a generative model based on dynamical transport of measure. One
such approach, pioneered by rectification (Liu et al., 2022a;b), is to try to straighten the paths of the
probability flow, so as to enable more efficient adaptive integration. In the limit of optimal transport, the
paths become straight lines and the integration can be performed in a single step. A second approach is to
introduce couplings between the base and the target, such as by computing the optimal transport over a
minibatch (Pooladian et al., 2023; Tong et al., 2023), or by using data-dependent couplings (Albergo et al.,
2023b), which can simplify both training and sampling. A third approach has been to design hand-crafted
numerical solvers tailored for diffusion models (Karras et al., 2022; Zhang and Chen, 2023; Jolicoeur-Martineau
et al., 2021; Liu et al., 2022c; Lu et al., 2022b), or to learn these solvers directly (Watson et al., 2021; 2022;
Nichol and Dhariwal, 2021) to maximize efficiency. Instead, we propose to learn the flow map directly, which
avoids estimating optimal transport maps and can overcome the inherent limitations of numerical integration.

Distillation and consistency techniques. Most related to our approach is a class of one-step models
based on distillation or consistency; we give an explicit mapping between these techniques and our own
in Appendix C. Consistency models (Song et al., 2023) have been introduced as a new class of generative
models that can either be distilled from a pre-trained diffusion model or trained directly, and are related to
several notions of consistency of the score model that have appeared in the literature (Lai et al., 2023a;b;
Shen et al., 2022; Boffi and Vanden-Eijnden, 2023; Daras et al., 2023). These models learn a one-step map
from noise to data, and can be seen as learning a single-time flow map. While they can perform very well,
consistency models do not benefit from multistep sampling, and exhibit training difficulties that mandate
delicate hyperparameter tuning (Song and Dhariwal, 2023). By contrast, we learn a two-time flow map, which
enables us to smoothly benefit from multistep sampling. Moreover, we introduce new loss functions that are
easier to train. Similarly, neural operator approaches (Zheng et al., 2023) learn a one-time flow map from
noise to data, but do so by first generating a dataset of trajectories from the probability flow. Consistency
trajectory models (Kim et al., 2024) were later introduced to improve multistep sampling and to enable the
student to surpass the performance of the teacher. Similar to our approach, these models learn a two-time
flow map, but do so using a very different loss function that incorporates challenging adversarial training.
Progressive distillation (Salimans and Ho, 2022) and knowledge distillation (Luhman and Luhman, 2021)
techniques aim to convert a diffusion model into an equivalent model with fewer samples by matching several
steps of the original diffusion model. This approach is related to our flow map distillation scheme, though the
object we distill is fundamentally different.

3 Flow Map Matching
The central object in our method is the flow map of a differential equation, which is a function that maps
points along trajectories. Our focus in this work is on differential equations obtained from generative models
based on dynamical transport of measure, but our definitions and some of our results also apply in a more
general context, as we now show. All proofs of the statements made in this section are provided in Appendix A,
with some additional theoretical results given in Appendix B.

3.1 Setup and definitions
We consider problems that involve ordinary differential equations (ODEs) defined on Rd over an ensemble of
initial conditions,

ẋt = bt(xt), xt=0 = x0 ∼ ρ0, (3.1)

where b : [0, ∞) × Rd → Rd is the time-dependent velocity field and where ρ0 ∈ P(Rd) is a base probability
density function (PDF), which we assume positive everywhere. Throughout the paper we make the assumption
that:
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Assumption 3.1. The velocity field satisfies the one-sided Lipschitz condition

∃Ct ∈ L1[0, T ] : (bt(x) − bt(y)) · (x − y) 6 Ct|x − y|2 for all (x, y) ∈ Rd × Rd. (3.2)

Under this assumption, the classical Cauchy-Lipschitz theory (Hartman, 2002) guarantees that solutions
of (3.1) exist and are unique for all x0 ∈ Rd and for all t ∈ [0, T ]. The PDF ρt > 0 of xt satisfies the transport
equation associated with (3.1)

∂tρt(x) + ∇ · (bt(x)ρt(x)) = 0, ρt=0(x) = ρ0(x) (3.3)

where ∇ denotes a gradient with respect to x. Assuming that we can draw samples from ρ0, the generative
modeling problem is to generate samples from ρt at some t ∈ [0, T ]. When b is known, these samples can be
obtained by numerically integrating (3.1). In practice, however, this can be costly, particularly when b is
given by an expressive neural network that is expensive to evaluate.

Here, we bypass this numerical integration by estimating the two-time flow map, which we now define.

Definition 3.2 (Flow Map). The flow map Xs,t : Rd → Rd for (3.1) is the unique map such that

Xs,t(xs) = xt for all (s, t) ∈ [0, T ]2, (3.4)

where (xt)t∈[0,T ] is a solution to the ODE (3.1).

The flow map in Definition 3.2 can be seen as an integrator for (3.1) where the step size t − s may be chosen
arbitrarily. In addition to the defining condition (3.4), we now highlight some of its useful properties1.

Proposition 3.3. The flow map Xs,t(x) is the unique solution to the Lagrangian equation

∂tXs,t(x) = bt(Xs,t(x)), Xs,s(x) = x, (3.5)

for all (s, t, x) ∈ [0, T ]2 × Rd. In addition, it satisfies

Xt,τ (Xs,t(x)) = Xs,τ (x) (3.6)

for all (s, t, τ, x) ∈ [0, T ]3 × Rd; in particular Xs,t(Xt,s(x)) = x for all (s, t, x) ∈ [0, T ]2 × Rd, i.e. the flow
map is invertible.

Proposition 3.3 shows that if we can draw samples x0 ∼ ρ0, then we can use the flow map to generate one-step
samples from ρt for any t ∈ [0, T ] via xt = X0,t(x0) ∼ ρt. Using the semigroup relation (3.6), we can also
generate samples in multiple steps using xtk

= Xtk−1,tk
(xtk−1) ∼ ρtk

for any discretization points (t0, . . . , tK)
with tk ∈ [0, T ] and K ∈ N.

3.2 Distillation of a known velocity field bt(x)
The differential characterization of the flow map given by Proposition 3.3 leads to a distillation loss that can
be used to learn an integrator for any differential equation with known right-hand side b, as we now show.

Corollary 3.4 (Lagrangian map distillation). The flow map is the global minimizer over X̂ of the loss

LLMD(X̂) =
∫

[0,T ]2

∫
Rd

ws,t

∣∣∂tX̂s,t(x) − bt(X̂s,t(x))
∣∣2

ρs(x)dxdsdt, (3.7)

subject to the boundary condition that X̂s,s(x) = x for all x ∈ Rd and s ∈ [0, T ]. In (3.7), ws,t > 0 is a weight
function and ρs is the solution to (3.3).

We remark that we can use any density in (3.7); nevertheless, it will be convenient to use ρs as it guarantees
that we learn the flow map at values of x where we typically need to evaluate it. Moreover, we will show
in Section 3.4 how the stochastic interpolant framework will enable us to evaluate (3.7) empirically without
having to solve (3.1) by providing access to alternative samples from ρs.

1We refer to (3.5) as the “Lagrangian equation” because it is defined in a frame of reference that moves with Xs,t(x). Later,
we write down an alternative “Eulerian” relation that is defined at any fixed point x ∈ Rd.
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Algorithm 1 Lagrangian map distillation (LMD)
1: Input: Interpolant coefficients αt, βt, γt; velocity model bt; weight function ws,t; batch size M .
2: repeat
3: Draw batch (si, ti, Isi)M

i=1.
4: Compute L̂LMD = 1

M

∑M
i=1 wsi,ti |∂tX̂si,ti(Isi) − bti(X̂si,ti(Isi))|2.

5: Take gradient step on L̂LMD to update X̂.
6: until converged
7: Return: Flow map X̂.

The weight ws,t can be adjusted to learn the map for different pairs (s, t) of interest. For example, if we want
to estimate the map Xs,t and its inverse Xt,s, we can set ws,t = 1. If we only want to estimate the map going
forward with s 6 t, then we can set ws,t = 1 if s 6 t and ws,t = 0 otherwise.

When applied to a pre-trained model, such as the b of the probability flow equation of a flow matching or
diffusion model, Corollary 3.4 can be used to train a new, few-step generative model with performance that
matches that of the teacher. When X̂s,t is parameterized by a neural network, the partial derivative with
respect to t can be computed efficiently using forward-mode automatic differentiation in most modern deep
learning packages. This procedure is summarized in Algorithm 1.

Equation (3.7) is based on the Lagrangian equation (3.5). The following result shows that the flow map Xs,t

also obeys an Eulerian equation involving a derivative with respect to s.

Proposition 3.5. The flow map Xs,t is the unique solution of the Eulerian equation

∂sXs,t(x) + bs(x) · ∇Xs,t(x) = 0, Xt,t(x) = x, (3.8)

for all (s, t, x) ∈ [0, T ]2 × Rd.

By squaring the left hand-side of (3.8), we may construct a second loss function for distillation.2

Corollary 3.6 (Eulerian map distillation). The flow map is the global minimizer over X̂ of the loss

LEMD(X̂) =
∫

[0,T ]2

∫
Rd

ws,t

∣∣∂sX̂s,t(x) + bs(x) · ∇X̂s,t(x)
∣∣2

ρs(x)dxdsdt, (3.9)

subject to the boundary condition X̂s,s(x) = x for all x ∈ Rd and for all s ∈ R. In (3.9), ws,t > 0 is a weight
function and ρs is the solution to (3.3).

While the Jacobian-vector product bs(x) · ∇X̂s,t(x) can be computed using forward-mode automatic differen-
tiation, the high-dimensionality of x in most applications incurs an additional computational expense, so that
the loss in Corollary 3.4 may be preferred in practice. In our numerical experiments reported below, we also
observed that the loss (3.7) is better behaved and converges faster than (3.9). Nevertheless, we summarize a
training procedure based on Corollary 3.6 in Algorithm 2.

In Appendix C, we demonstrate how the preceding results connect with existing distillation-based approaches.
In particular, when bt(x) is the velocity of the probability flow ODE associated with a diffusion model,
Corollary 3.6 recovers the continuous-time limit of the loss functions used for consistency distillation (Song
et al., 2023; Song and Dhariwal, 2023) and consistency trajectory models (Kim et al., 2024), while Corollary 3.4
is new.

3.3 Wasserstein control
In this section, we show that the Lagrangian and Eulerian distillation losses (3.7) and (3.9) control the
Wasserstein distance between the density in (3.3) and the density of the pushforward of ρ0 under the learned
flow map. Combined with the Wasserstein bound in Albergo and Vanden-Eijnden (2022), the following results

2In (3.8), the term (bs(x) · ∇Xs,t(x))i =
∑d

j=1[bs(x)]j∂xj [Xs,t(x)]i = [∇Xs,t(x) · bs(x)]i corresponds to a Jacobian-vector
product that can be computed efficiently using forward-mode automatic differentiation.
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Algorithm 2 Eulerian map distillation (EMD)
1: Input: Interpolant coefficients αt, βt, γt; velocity model bt; weight function ws,t; batch size M .
2: repeat
3: Draw batch (si, ti, Isi)M

i=1.
4: Compute L̂EMD = 1

M

∑M
i=1 wsi,ti |∂sX̂si,ti(Isi) + ∇X̂si,ti(Isi)bti(Isi)|2.

5: Take gradient step on L̂EMD to update X̂.
6: until converged
7: Return: Flow map X̂.

imply a bound on the Wasserstein distance between the target density and the pushforward density for the
learned flow map in the case where b is a pre-trained stochastic interpolant or diffusion model. We begin by
stating our result for Lagrangian distillation.

Proposition 3.7 (Lagrangian error bound). Let Xs,t : Rd → Rd denote the flow map for b, and let
X̂s,t : Rd → Rd denote an approximate flow map. Let ρ̂1 = X̂0,1]ρ0 and ρb

1 = X0,1]ρ0. Then,

W 2
2 (ρb

1, ρ̂1) 6 e
1+2

∫ 1

0
|Ct|dt

∫ 1

0
E

[∣∣bt(X̂0,t(x0)) − ∂tX̂0,t(x0)
∣∣2]

dt 6 e
1+2

∫ 1

0
|Ct|dtLLMD(X̂). (3.10)

where Ct is the constant appearing in Assumption 3.1.

The proof is given in Appendix A. We now state an analogous result for the Eulerian case.

Proposition 3.8 (Eulerian error bound). Let Xs,t : Rd → Rd denote the flow map for b, and let X̂s,t : Rd →
Rd denote an approximate flow map. Denote by ρ̂1 = X̂0,1]ρ0 and ρb

1 = X0,1]ρ0. Then,

W 2
2 (ρb

1, ρ̂1) 6 e

∫ 1

0
E

[∣∣∣∂sX̂s,1(Is) + bs(Is) · ∇X̂s,1(Is)
∣∣∣2

]
ds 6 eLEMD(X̂). (3.11)

The proof is also given in Appendix A. The result in Proposition 3.8 appears stronger than the result
in Proposition 3.7, because it is independent of any Lipschitz constant. Nevertheless, in our numerical
experiments we find best performance when using the Lagrangian distillation loss, rather than the Eulerian
distillation loss. We hypothesize and provide numerical evidence that this originates due to the spatial
gradient present in the Eulerian distillation loss; in several cases of interest, the learned map can be singular or
nearly singular, so that the spatial gradient is not well-defined everywhere. This leads to training difficulties
that manifest as fuzzy boundaries on the checkerboard dataset and blurry images on image datasets.

3.4 Direct training with stochastic interpolants
The stochastic interpolant framework leads to a new loss function for direct training of flow maps that does
not require a pre-trained b. We first give the definition of a stochastic interpolant.

Definition 3.9 (Stochastic Interpolant). The stochastic interpolant It between probability densities ρ0 and
ρ1 is the stochastic process given by

It = αtx0 + βtx1 + γtz, (3.12)

where α, β, γ2 ∈ C1([0, 1]) satisfy α0 = β1 = 1, α1 = β0 = 0, and γ0 = γ1 = 0. In (3.12), (x0, x1) is drawn
from the coupling (x0, x1) ∼ ρ(x0, x1) satisfying the marginal constraints

∫
Rd ρ(x0, x1)dx0 = ρ1(x1) and∫

Rd ρ(x0, x1)dx1 = ρ0(x0). Moreover, z ∼ N(0, Id) with z ⊥ (x0, x1).

Theorem 3.6 of (Albergo et al., 2023a) shows that the stochastic interpolant given in Definition 3.9 specifies
an underlying probability flow, as we now recall.

Proposition 3.10 (Probability flow). The probability density function ρt = Law(It) satisfies the transport
equation (3.3) with velocity field given by

bt(x) = E[İt|It = x]. (3.13)
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Algorithm 3 Flow map matching (FMM)
1: Input: Interpolant coefficients αt, βt, γt; weight function ws,t; batch size M .
2: repeat
3: Draw batch (si, ti, Iti , İti)M

i=1.
4: Compute the loss function

L̂FMM = 1
M

∑M
i=1 wsi,ti

(
|∂tX̂si,ti

(X̂ti,si
(Iti

)) − İti
|2 + |X̂si,ti

(X̂ti,si
(Iti

)) − Iti
|2

)
.

5: Take gradient step on L̂FMM to update X̂.
6: until converged
7: Return: Flow map X̂.

Algorithm 4 Progressive flow map matching (PFMM)

1: Input: Interpolant coefficients αt, βt, γt; weight ws,t; K-step flow map X̂; batch size M .
2: repeat
3: Draw batch (si, ti, Isi

)M
i=1 and compute ti

k = si + (k − 1)(ti − si) for k = 1, . . . , K.
4: Compute L̂PFMM = 1

M

∑M
i=1 wsi,ti

(
|X̌si,ti

(Isi
) −

(
X̂ti

K−1,ti
K

◦ · · · ◦ X̂ti
1,ti

2

)
(Isi

)|2
)

.
5: Take gradient step on L̂PFMM to update X̌.
6: until converged
7: Return: One-step flow map X̌.

In (3.13), E[ · |It = x] denotes an expectation over the coupling (x0, x1) ∼ ρ(x0, x1) and z ∼ N(0, I) conditioned
on the event It = x.

The stochastic interpolant in Definition 3.9 defines a path in the space of measures between an arbitrary
base density ρ0 (which may be a simple Gaussian) and a target density ρ1 for which there is an underlying
well-defined transport. Moreover, the corresponding drift field b can be learned efficiently in practice by
solving a square loss regression problem (Albergo et al., 2023a)

b = argmin
b̂

∫ 1

0
E

[
|b̂t(It) − İt|2

]
dt, (3.14)

where E denotes an expectation over the coupling (x0, x1) ∼ ρ(x0, x1) and z ∼ N(0, Id).

A canonical choice when ρ0 = N(0, Id) considered in (Albergo and Vanden-Eijnden, 2022) corresponds to
αt = 1 − t, βt = t, and γt = 0, which recovers flow matching (Lipman et al., 2022) and rectified flow (Liu
et al., 2022a). The choice αt = 0, βt = t and γt =

√
1 − t2 corresponds to a variance-preserving diffusion

model with the identification t = − log τ where τ ∈ [0, ∞) is the usual diffusion time3. A variance-exploding
diffusion model may be obtained by taking αt = 0, βt = 1, and γt = T − t with t ∈ [0, T ] and where τ = T − t
is the usual diffusion time, though this violates the boundary conditions in Definition 3.9.

Given a pre-trained b, we can use the stochastic interpolant framework to evaluate the expectations in the
losses (3.7) and (3.9) by leveraging the fact that It ∼ ρt. Alternatively, the following result shows how a flow
map may be learned directly from It without the need of a pre-trained model.

Proposition 3.11 (Flow map matching). The flow map is the global minimizer over X̂ of the loss

LFMM[X̂] =
∫

[0,1]2
ws,t

(
E

[
|∂tX̂s,t(X̂t,s(It)) − İt|2

]
+ E

[
|X̂s,t(X̂t,s(It)) − It|2

])
dsdt. (3.15)

In (3.15), ws,t > 0 and E is taken over the coupling (x0, x1) ∼ ρ(x0, x1) and z ∼ N(0, Id).

In the loss (3.15), we are free to adjust the weight factor ws,t. However, since we need to learn both the map
Xs,t and its inverse Xt,s, it is necessary to enforce the symmetry property wt,s = ws,t. If we learn the map for

3Note that γ0 = 1 in this case, so that I0 = z
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all (s, t) ∈ [0, 1]2 using, for example, ws,t = 1, then we can generate samples from ρ1 in one step via X0,1(x0)
with x0 ∼ ρ0. We note that the second term enforcing invertibility comes at no additional cost, because
X̂s,t(X̂t,s(It)) can be computed at the same time as ∂tX̂s,t(X̂t,s(It)) with standard Jacobian-vector product
functionality in modern deep learning packages. A summary of the flow map matching procedure is given
in Algorithm 3. Empirically, we found learning a one-step map to be challenging in practice. Convergence was
significantly improved by taking ws,t = wt,s = I (|t − s| 6 1/K) for some K ∈ N where I denotes an indicator
function. Given such a K-step model, it can be converted into a one-step model using a map distillation loss
that is similar to progressive distillation (Salimans and Ho, 2022) and neural operator approaches (Zheng
et al., 2023).

Lemma 3.12 (Progressive flow map matching). The unique minimizer over X̌ of the loss

LPFMM[X̌] =
∫

[0,1]2
ws,tE

[∣∣X̌s,t(Is) −
(
X̂tK−1,tK

◦ · · · ◦ X̂t1,t2

)
(Is)

∣∣2
]
dsdt, (3.16)

produces the same output in one step as the K-step iterated map X̂. In (3.16), ws,t > 0, E is taken over the
coupling (x0, x1) ∼ ρ(x0, x1) and z ∼ N(0, Id), and tk = s + (k − 1)(t − s) for k = 1, . . . , K.

t

s
0

0 1

1

δ
=

1/
K X0,δ

Xδ,2δ ∘ X0,δ

…

w s,t
>

0

Figure 2: Schematic illustrating the
weight ws,t in the FMM loss. The
resulting map needs at least K steps,
but trains faster and can be distilled
into a one-step map via PFMM.

We note that X̂ is fixed in (3.16) and serves as the teacher, so we only
need to compute the gradient with respect to the parameters of X̌. In
practice, we may train X̂ using (3.15) over a class of neural networks
and then freeze its parameters. We may then use (3.16) to distill X̂ into
a more efficient model X̌, which can be initialized from the parameters
of X̂ for an efficient warm start.

If the K evaluations of X̂ are expensive, we may iteratively mini-
mize (3.16) with some number M < K evaluations of X̂ and then
replace X̂ by X̌, similar to progressive distillation (Salimans and Ho,
2022). For example, we may take M = 2 and then minimize (3.16)
dlog2 Ke times to obtain a one-step map. Alternatively, we can first
generate a dataset of (s, t, Is, (X̂tK−1,tK

◦ · · · ◦ X̂t1,t2)(Is)) in a parallel
offline phase, which converts (3.16) into a simple least-squares problem.
Finally, if we are only interested in using the map forward in time, we
can set ws,t = 1 if s 6 t and ws,t = 0 otherwise. The resulting procedure
is summarized in Algorithm 4.

4 Numerical Realizations
In this section, we study the efficacy of the four methods introduced in Section 3: the Lagrangian map
distillation discussed in Corollary 3.4, the Eulerian map distillation discussed in Corollary 3.6, the direct
training approach of Proposition 3.11, and the progressive flow map matching approach of Lemma 3.12. We
consider their performance on a two-dimensional checkerboard dataset, as well as in the high-dimensional
setting of image generation, to highlight differences in their training efficiency and performance.

To ensure that the boundary conditions on the flow map X̂s,t defined in (3.5) are enforced, in all experiments,
we parameterize the map using the ansatz

X̂s,t(x) = (1 − t + s)x + (t − s)fθ
s,t(x), (4.1)

where fθ
s,t(x) : [0, T ]2 × Rd → Rd is a neural network with parameters θ.

4.1 2D Illustration
As a simple illustration of our method, we consider learning the flow map connecting a two-dimensional
Gaussian distribution to the checkerboard distribution presented in Figure 3. Note that this example is
challenging because the target density is supported on a compact set, and it is discontinuous at the edge
of this set. This mapping can be achieved, as discussed in Section 3, in various ways: (a) implicitly, by
solving (3.1) with a learned velocity field using stochastic interpolants (or a diffusion model), (b) directly,
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Figure 3: Two-dimensional results. Comparison of the various map-matching procedures on the 2D checkerboard
dataset, with the results from the probability flow ODE of a stochastic interpolant as reference (top, first panel from
left). The one-step map obtained by FMM when learning on (s, t) = [0, 1]2 (top, second panel) performs less well
than the FMM map learned on |t − s| < 0.25 iterated 4 times (top, third panel); this 4-step map can be accurately
distilled into a one-step map via PFMM (top, fourth panel). The one-step map obtained by distilling the pre-trained
b via LMD (top, fifth panel) also performs better than the one-step map obtained by distilling the same b via EMD
(top, sixth panel). A KL-divergence between the model distributions and the target are provided to quantify the
performance, indicating that FMM, its progressive distillation, and LMD are the closest performers to the probability
flow ODE baseline. The bottom row indicates, by color, how points from the Gaussian base are assigned by each of
the respective maps. The yellow dots are points that mistakenly land outside the checkerboard. These results indicate
that the primary source of error in each case is handling the discontinuity of the optimal map at the edges of the
checker. See Appendix D for more details.

using the flow map matching objective in (3.15), (c) progressively matching the flow map using (3.16), or
(d/e) distilling the map using the Eulerian (3.9) or Lagrangian (3.7) losses. In each case, we use a fully
connected neural network with 512 neurons per hidden layer and 6 layers to parameterize either a velocity
field b̂t(x) or a flow map X̂s,t(x). We optimize each loss using the Adam (Kingma and Ba, 2017) optimizer for
5 × 104 training iterations. The results are presented in Figure 3, where we observe that using the one-step
X̂0,1(x) directly learned by minimizing (3.15) over the entire interval (s, t) ∈ [0, 1]2 performs worse than
learning with |t − s| < 0.25 and sampling with 4 steps. With this in mind, we use the 4-step map as a teacher
to minimize the PFMM loss, which produces a performant distilled one-step map. We also note that the
EMD loss performs worse than the LMD loss when distilling the map from a learned velocity field for a
stochastic interpolant.

4.2 Image Generation
Motivated by the above results, we consider a series of image generation experiments on the CIFAR-10 and
ImageNet-32 × 32 datasets. For comparison, we benchmark the method against alternative techniques that
seek to lower the number of steps needed to produce samples with stochastic interpolant models, e.g. by
straightening the ODE trajectories using minibatch OT (Pooladian et al., 2023; Tong et al., 2023). We train
all of our models from scratch, so as to control the design space of the comparison. For clarity, we label when
benchmark numbers are quoted from the literature.

For learning of the flow map, we use a U-Net architecture following (Dhariwal and Nichol, 2021). For LMD
and EMD that require a pre-trained velocity field to distill, we also use a U-Net architecture for b. Because the
flow map Xs,t is a function of two times, we modify the architecture. Both s and t are embedded identically
to t in the original architecture. The result is concatenated and treated like t in the original architecture for
downstream layers. We benchmark the performance of the methods using the Frechet Inception Distance
(FID), which computes a measure of similarity between real images from the dataset and those generated by
our models. In addition, we compute what we denote the Teacher-FID (T-FID), which computes a measure
of similarity between images generated by the teacher model and those generated by the distilled model.
This measure allows us to directly benchmark the convergence of the distillation method, as it captures
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Method N=2 N=4 Baseline
FID T-FID FID T-FID

SI 112.42 - 34.84 - 5.53
EMD 48.32 34.19 44.35 30.74 5.53
LMD 7.13 1.27 6.04 1.05 5.53
PFMM 18.35 7.02 11.14 1.52 8.44

Table 1: Comparison of various distillation methods using FID and Teacher-FID metrics on the CIFAR-10 dataset.
Note that for PFMM, no velocity model (e.g. from a stochastic interpolant) is needed. It relies solely on the
minimization of (3.15) and (3.16). Baseline indicates the FID of the teacher model (a velocity field for EMD and
LMD, and a flow map for PFMM) against the true data.

discrepancies between the distribution of samples generated by the teacher and the distribution of samples
generated by the student. In addition, this allows us to benchmark accuracy independent of the overall
performance of the teacher, as our teacher models were trained with limited compute.

N DDPM BatchOT FMM (Ours)
20 63.08 7.71 9.68
8 232.97 15.64 12.61
6 275.28 22.08 14.48
4 362.37 38.86 16.90

Table 2: FID scaling with number of function evaluations
N to produce a sample on ImageNet-32 × 32. Compares
DDPM (Ho et al., 2020) and multi-sample Flow Matching
using the BatchOT method (Pooladian et al., 2023) to
flow map matching. The first two columns are quoted
from Pooladian et al. (2023). Note that no distillation is
used here, but rather direct minimization of (3.15), using
|t − s| < 0.25.

Sampling efficiency In Table 1, we compute
the FID and T-FID for the stochastic interpolant,
Eulerian, Lagrangian, and progressive distillation
models on 2 and 4-step generation for CIFAR-10.
The stochastic interpolant was trained to a baseline
FID (sampling with an adaptive solver) of 5.53, and
was used as the teacher for EMD and LMD. The
teacher for PFMM was an FMM model trained with
|t − s| < 0.25 to an FID of 8.44 using 8-step sam-
pling. We observe that LMD and EMD methods
can effectively distill their teachers and obtain low
T-FID scores. In addition, the 2 and 4-step samples
from these methods far outperform the stochastic
interpolant. This sampling efficiency is also apparent
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Figure 4: (A) Qualitative comparison between the standard stochastic interpolant approach (SI), Lagrangian map
distillation (LMD), Eulerian map distillation (EMD), and progressive flow map matching (PFMM). SI produces good
images for a sufficiently large number of steps, but performs poorly for few steps. LMD performs well in the very-few
step regime, and outperforms EMD significantly. PFMM performs well at any number of steps, though performs
slightly worse than LMD in the very-few step regime. (B) Quantitative comparison between EMD and LMD on both
CIFAR-10 and ImageNet 32 × 32. Despite both having the same minimizer, LMD trains faster, and attains a lower
loss value and a lower FID for a fixed number of training steps.
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in the left side of Figure 4, in which with just 1 to 4 steps, the LMD and PFMM methods can produce
effective samples, particularly when compared to the flow matching approach.

Without any distillation, FMM can also produce effective few-step maps. Training an FMM model on the
ImageNet-32×32 dataset, we observe (Table 2) that FMM achieves much better few-step FID when compared
to denoising diffusion models (DDPM), and better FID than mini-batch OT interpolant methods (Pooladian
et al., 2023). In the higher-step regime, the interpolant methods perform marginally better.

Eulerian vs Lagrangian distillation Remarkably, we find a stark performance gap between the Eulerian
and Lagrangian distillation schemes. This is evident in both parts of Figure 4, where we see that higher-step
sampling with EMD only marginally improves image quality, and where the LMD loss for both CIFAR10 and
ImageNet-32 × 32 converges an order of magnitude faster than the EMD loss. The same holds for FIDs over
training, given in the right-most plot in the figure. Note that both LMD and EMD loss functions have a
global minimum at 0, so that the loss plots suggest continued training will improve distillation quality, but at
very different rates.

5 Conclusion
In this work, we developed several ways to learn a two-time flow map for generative modeling: either by
distilling a pre-trained velocity model with Eulerian or Lagrangian losses, or by directly training with the
stochastic interpolant framework. We empirically observe that while using more steps with the learned map
improves sample quality, a substantially lower number is needed when compared to other generative models
built on dynamical transport. Future work will investigate how to improve the training and the neural
network architecture so as to further reduce the number of steps without sacrificing accuracy, and to improve
convergence for direct training of one-step maps.

References
Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.

Score-based generative modeling through stochastic differential equations. arXiv:2011.13456, 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in neural
information processing systems, volume 33, pages 6840–6851, 2020.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. arXiv:1503.03585, 2015.

Yang Song and Stefano Ermon. Improved Techniques for Training Score-Based Generative Models.
arXiv:2006.09011, October 2020a.

Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients of the Data Distribution.
arXiv:1907.05600, 2020b.

Prafulla Dhariwal and Alex Nichol. Diffusion Models Beat GANs on Image Synthesis. arXiv:2105.05233,
2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10684–10695, 2022.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi,
Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English, Kyle Lacey,
Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow transformers for high-resolution
image synthesis. arXiv:2403.03206, 2024.

Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and Mikhail Kudinov. Grad-TTS: A
Diffusion Probabilistic Model for Text-to-Speech. In Proceedings of the 38th International Conference on
Machine Learning, pages 8599–8608. PMLR, July 2021.

11



Under review as submission to TMLR

Myeonghun Jeong, Hyeongju Kim, Sung Jun Cheon, Byoung Jin Choi, and Nam Soo Kim. Diff-TTS: A
Denoising Diffusion Model for Text-to-Speech. arXiv:2104.01409, 2021.

Rongjie Huang, Zhou Zhao, Huadai Liu, Jinglin Liu, Chenye Cui, and Yi Ren. ProDiff: Progressive Fast
Diffusion Model for High-Quality Text-to-Speech. In Proceedings of the 30th ACM International Conference
on Multimedia, MM ’22, pages 2595–2605, New York, NY, USA, October 2022. Association for Computing
Machinery.

Yen-Ju Lu, Zhong-Qiu Wang, Shinji Watanabe, Alexander Richard, Cheng Yu, and Yu Tsao. Conditional
Diffusion Probabilistic Model for Speech Enhancement. In ICASSP 2022 - 2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7402–7406, May 2022a.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P. Kingma,
Ben Poole, Mohammad Norouzi, David J. Fleet, and Tim Salimans. Imagen Video: High Definition Video
Generation with Diffusion Models. arXiv:2210.02303, 2022a.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J. Fleet.
Video Diffusion Models. Advances in Neural Information Processing Systems, 35:8633–8646, December
2022b.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
Karsten Kreis. Align Your Latents: High-Resolution Video Synthesis With Latent Diffusion Models.
arXiv:2304.08818, 2023.

Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu, Ying
Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-A-Video: One-Shot Tuning of Image Diffusion Models for
Text-to-Video Generation. arXiv:2212.11565, 2023.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching for
generative modeling. In The Eleventh International Conference on Learning Representations, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer
data with rectified flow. In The Eleventh International Conference on Learning Representations, 2022a.

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants. In The
Eleventh International Conference on Learning Representations, 2022.

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying framework
for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023a.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake, and
Shuran Song. Diffusion Policy: Visuomotor Policy Learning via Action Diffusion. arXiv:2303.04137, 2024.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative Adversarial Nets. In Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc., 2014.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the ACM, 63(11):
139–144, October 2020.

Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, and Anil A. Bharath.
Generative Adversarial Networks: An Overview. IEEE Signal Processing Magazine, 35(1):53–65, January
2018.

Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled Generative Adversarial Networks.
arXiv:1611.02163, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. arXiv:1701.07875, 2017.

12



Under review as submission to TMLR

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the Design Space of Diffusion-Based
Generative Models. arXiv:2206.00364, 2022.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency Models. arXiv:2303.01469, 2023.

Yang Song and Prafulla Dhariwal. Improved Techniques for Training Consistency Models. arXiv:2310.14189,
2023.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka, Yutong
He, Yuki Mitsufuji, and Stefano Ermon. Consistency Trajectory Models: Learning Probability Flow ODE
Trajectory of Diffusion. arXiv:2310.02279, 2024.

Tim Salimans and Jonathan Ho. Progressive Distillation for Fast Sampling of Diffusion Models.
arXiv:2202.00512, 2022.

Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzadenesheli, and Anima Anandkumar. Fast Sampling
of Diffusion Models via Operator Learning. arXiv:2211.13449, 2023.

Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

Jean-David Benamou and Yann Brenier. A computational fluid mechanics solution to the monge-kantorovich
mass transfer problem. Numerische Mathematik, 84(3):375–393, 2000.

Filippo Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55(58-63):94, 2015.

Esteban G. Tabak and Eric Vanden-Eijnden. Density estimation by dual ascent of the log-likelihood.
Communications in Mathematical Sciences, 8(1):217–233, 2010.

E. G. Tabak and Cristina V. Turner. A family of nonparametric density estimation algorithms. Communications
on Pure and Applied Mathematics, 66(2):145–164, 2013.

Danilo Rezende and Shakir Mohamed. Variational Inference with Normalizing Flows. In International
Conference on Machine Learning, pages 1530–1538. PMLR, June 2015.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density Estimation Using Real NVP. In International
Conference on Learning Representations, page 32, 2017.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. FFJORD:
Free-form Continuous Dynamics for Scalable Reversible Generative Models. arXiv:1810.01367, 2018.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural Ordinary Differential
Equations. arXiv:1806.07366, 2019.

Xingchao Liu, Lemeng Wu, Mao Ye, and Qiang Liu. Let us build bridges: Understanding and extending
diffusion generative models. arXiv preprint arXiv:2208.14699, 2022b.

Nanye Ma, Mark Goldstein, Michael S. Albergo, Nicholas M. Boffi, Eric Vanden-Eijnden, and Saining
Xie. SiT: Exploring Flow and Diffusion-based Generative Models with Scalable Interpolant Transformers.
arXiv:2401.08740, 2024.

Yifan Chen, Mark Goldstein, Mengjian Hua, Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden.
Probabilistic Forecasting with Stochastic Interpolants and Föllmer Processes. arXiv:2403.13724, 2024.

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman, and
Ricky Chen. Multisample flow matching: Straightening flows with minibatch couplings. arXiv preprint
arXiv:2304.14772, 2023.

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks,
Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models with minibatch
optimal transport. Transactions on Machine Learning Research, 2023.

13



Under review as submission to TMLR

Michael S. Albergo, Mark Goldstein, Nicholas M. Boffi, Rajesh Ranganath, and Eric Vanden-Eijnden.
Stochastic interpolants with data-dependent couplings. arXiv:2310.03725, 2023b.

Qinsheng Zhang and Yongxin Chen. Fast Sampling of Diffusion Models with Exponential Integrator.
arXiv:2204.13902, 2023.

Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis Mitliagkas. Gotta Go
Fast When Generating Data with Score-Based Models. arXiv:2105.14080, 2021.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo Numerical Methods for Diffusion Models on Manifolds.
arXiv:2202.09778, 2022c.

Cheng Lu, Yuhao Zhou, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver: A Fast ODE Solver for
Diffusion Probabilistic Model Sampling in Around 10 Steps. arXiv:2206.00927, 2022b.

Daniel Watson, Jonathan Ho, Mohammad Norouzi, and William Chan. Learning to Efficiently Sample from
Diffusion Probabilistic Models. arXiv:2106.03802, 2021.

Daniel Watson, William Chan, Jonathan Ho, and Mohammad Norouzi. Learning Fast Samplers for Diffusion
Models by Differentiating Through Sample Quality. arXiv:2202.05830, 2022.

Alex Nichol and Prafulla Dhariwal. Improved Denoising Diffusion Probabilistic Models. arXiv:2102.09672,
2021.

Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Naoki Murata, Yuki Mitsufuji, and Stefano Ermon.
On the Equivalence of Consistency-Type Models: Consistency Models, Consistent Diffusion Models, and
Fokker-Planck Regularization. arXiv:2306.00367, 2023a.

Chieh-Hsin Lai, Yuhta Takida, Naoki Murata, Toshimitsu Uesaka, Yuki Mitsufuji, and Stefano Ermon.
Improving Score-based Diffusion Models by Enforcing the Underlying Score Fokker-Planck Equation.
arXiv:2210.04296, 2023b.

Zebang Shen, Zhenfu Wang, Satyen Kale, Alejandro Ribeiro, Aim Karbasi, and Hamed Hassani. Self-
Consistency of the Fokker-Planck Equation. arXiv:2206.00860, 2022.

Nicholas M. Boffi and Eric Vanden-Eijnden. Probability flow solution of the Fokker–Planck equation. Machine
Learning: Science and Technology, 4(3):035012, July 2023.

Giannis Daras, Yuval Dagan, Alexandros G. Dimakis, and Constantinos Daskalakis. Consistent Diffusion
Models: Mitigating Sampling Drift by Learning to be Consistent. arXiv:2302.09057, 2023.

Eric Luhman and Troy Luhman. Knowledge Distillation in Iterative Generative Models for Improved Sampling
Speed. arXiv:2101.02388, January 2021.

Philip Hartman. Ordinary Differential Equations. Society for Industrial and Applied Mathematics, second
edition, 2002. doi: 10.1137/1.9780898719222.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv:1412.6980, 2017.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework
for solving forward and inverse problems involving nonlinear partial differential equations. Journal of
Computational Physics, 378:686–707, 2019.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models. arXiv:2010.02502,
2022.

14



Under review as submission to TMLR

A Proofs for Section 3
Proposition 3.3. The flow map Xs,t(x) is the unique solution to the Lagrangian equation

∂tXs,t(x) = bt(Xs,t(x)), Xs,s(x) = x, (3.5)

for all (s, t, x) ∈ [0, T ]2 × Rd. In addition, it satisfies

Xt,τ (Xs,t(x)) = Xs,τ (x) (3.6)

for all (s, t, τ, x) ∈ [0, T ]3 × Rd; in particular Xs,t(Xt,s(x)) = x for all (s, t, x) ∈ [0, T ]2 × Rd, i.e. the flow
map is invertible.

Proof. Taking the derivative with respect to t of Xs,t(xs) = xt, we deduce

∂tXs,t(xs) = ẋt = bt(xt) = bt(Xs,t(xs)) (A.1)

where we used the ODE (3.1) to obtain the second equality. Evaluating this expression at xs = x gives Equa-
tion (3.5). Also, for all (s, τ, t) ∈ [0, T ]3, we have

Xτ,t(Xs,τ (xs)) = Xτ,t(xτ ) = xt = Xs,t(xs). (A.2)

Evaluating this expression at xs = x gives Equation (3.6).

Corollary 3.4 (Lagrangian map distillation). The flow map is the global minimizer over X̂ of the loss

LLMD(X̂) =
∫

[0,T ]2

∫
Rd

ws,t

∣∣∂tX̂s,t(x) − bt(X̂s,t(x))
∣∣2

ρs(x)dxdsdt, (3.7)

subject to the boundary condition that X̂s,s(x) = x for all x ∈ Rd and s ∈ [0, T ]. In (3.7), ws,t > 0 is a weight
function and ρs is the solution to (3.3).

Proof. Equation (3.7) is a physics-informed neural network (PINN) (Raissi et al., 2019) loss that is minimized
only when the integrand is zero, i.e., when (3.5) holds.

Proposition 3.5. The flow map Xs,t is the unique solution of the Eulerian equation

∂sXs,t(x) + bs(x) · ∇Xs,t(x) = 0, Xt,t(x) = x, (3.8)

for all (s, t, x) ∈ [0, T ]2 × Rd.

Proof. Taking the derivative with respect to s of Xs,t(Xt,s(x)) = x and using the chain rule, we deduce that

0 = d

ds
Xs,t(Xt,s(x)) = ∂sXs,t(Xt,s(x)) + ∂sXt,s(x) · ∇Xs,t(Xt,s(x))

= ∂sXs,t(Xt,s(x)) + bs(Xt,s(x)) · ∇Xs,t(Xt,s(x))
(A.3)

where we used Equation (3.5) to get the last equality. Evaluating this expression at Xt,s(x) = y, then
changing y into x, gives Equation (3.8).

Corollary 3.6 (Eulerian map distillation). The flow map is the global minimizer over X̂ of the loss

LEMD(X̂) =
∫

[0,T ]2

∫
Rd

ws,t

∣∣∂sX̂s,t(x) + bs(x) · ∇X̂s,t(x)
∣∣2

ρs(x)dxdsdt, (3.9)

subject to the boundary condition X̂s,s(x) = x for all x ∈ Rd and for all s ∈ R. In (3.9), ws,t > 0 is a weight
function and ρs is the solution to (3.3).
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Proof. Equation (3.9) is a PINN loss that is minimized only when the integrand is zero, i.e, when (3.8)
holds.

Proposition 3.11 (Flow map matching). The flow map is the global minimizer over X̂ of the loss

LFMM[X̂] =
∫

[0,1]2
ws,t

(
E

[
|∂tX̂s,t(X̂t,s(It)) − İt|2

]
+ E

[
|X̂s,t(X̂t,s(It)) − It|2

])
dsdt. (3.15)

In (3.15), ws,t > 0 and E is taken over the coupling (x0, x1) ∼ ρ(x0, x1) and z ∼ N(0, Id).

Proof. We start by noticing that

E
[
|∂tX̂s,t(X̂t,s(It)) − İt|2,

= E
[
|∂tX̂s,t(X̂t,s(It))|2 − 2İt · ∂tX̂s,t(X̂t,s(It)) + |İt|2

]
,

= E
[
|∂tX̂s,t(X̂t,s(It))|2 − 2E[İt|It] · ∂tX̂s,t(X̂t,s(It)) + |İt|2

]
,

= E
[
|∂tX̂s,t(X̂t,s(It))|2 − 2bt(It) · ∂tX̂s,t(X̂t,s(It)) + |İt|2

]
,

(A.4)

where we used the tower property of the conditional expectation to get the third equality and the definition
of bt(x) in (3.13) to get the last. This means that the loss (3.15) can be written as

LFMM[X̂]

=
∫

[0,1]2

∫
Rd

ws,t

[
|∂tX̂s,t(X̂t,s(x)) − bt(x)|2 + |X̂s,t(X̂t,s(x)) − x|2

]
ρt(x)dxdsdt

+
∫

[0,1]2
ws,tE

[
|İt|2 − |bt(It)|2

]
dsdt,

(A.5)

where ρt = Law(It). The second integral does not depend on X̂, so it does not affect the minimization of
LFMM[X̂]. Assuming that ws,t > 0, the first integral is minimized if and only if we have

∀ (s, t, x) ∈ [0, 1]2 × Rd : ∂tX̂s,t(X̂t,s(x)) = bt(x) and X̂s,t(X̂t,s(x)) = x. (A.6)

From the second of these equations it follows that: (i) X̂s,s(x) = x, and (ii) if we evaluate the first equation
at y = X̂t,s(x), this equation reduces to

∀ (s, t, y) ∈ [0, 1]2 × Rd : ∂tX̂s,t(y) = bt(X̂s,t(y)) (A.7)

which recovers (3.5).

Lemma 3.12 (Progressive flow map matching). The unique minimizer over X̌ of the loss

LPFMM[X̌] =
∫

[0,1]2
ws,tE

[∣∣X̌s,t(Is) −
(
X̂tK−1,tK

◦ · · · ◦ X̂t1,t2

)
(Is)

∣∣2
]
dsdt, (3.16)

produces the same output in one step as the K-step iterated map X̂. In (3.16), ws,t > 0, E is taken over the
coupling (x0, x1) ∼ ρ(x0, x1) and z ∼ N(0, Id), and tk = s + (k − 1)(t − s) for k = 1, . . . , K.

Proof. Equation (3.16) is a PINN loss whose unique minimizer satisfies

∀ (s, t, x) ∈ [0, T ]2 × Rd : X̌s,t(x) =
(
X̂tK−1,tK

◦ · · · ◦ X̂t1,t2

)
(x), (A.8)

which establishes the claim.
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Proposition 3.7 (Lagrangian error bound). Let Xs,t : Rd → Rd denote the flow map for b, and let
X̂s,t : Rd → Rd denote an approximate flow map. Let ρ̂1 = X̂0,1]ρ0 and ρb

1 = X0,1]ρ0. Then,

W 2
2 (ρb

1, ρ̂1) 6 e
1+2

∫ 1

0
|Ct|dt

∫ 1

0
E

[∣∣bt(X̂0,t(x0)) − ∂tX̂0,t(x0)
∣∣2]

dt 6 e
1+2

∫ 1

0
|Ct|dtLLMD(X̂). (3.10)

where Ct is the constant appearing in Assumption 3.1.

Proof. First observe that, by the one-sided Lipschitz condition (3.2),

∂t|Xs,t(x) − Xs,t(y)|2 = 2(Xs,t(x) − Xs,t(y)) · (bt(Xs,t(x)) − bt(Xs,t(y))),
6 2Ct|Xs,t(x) − Xs,t(y)|2.

(A.9)

Equation (A.9) highlights that (3.2) gives a bound on the spread of trajectories. We note that we allow for
Ct < 0, which corresponds to globally contracting maps. Given (A.9), we now define

Es,t = E
[∣∣Xs,t(Is) − X̂s,t(Is)

∣∣2]
, (A.10)

where we recall that Xs,t(x) satisfies ∂tXs,t(x) = bt(Xs,t(x)) and Xs,s(x) = x. Taking the derivative with
respect to t of (A.10), we deduce

∂tEs,t = 2E
[(

Xs,t(Is) − X̂s,t(Is)
)

·
(
bt(Xs,t(Is)) − ∂tX̂s,t(Is)

)]
,

= 2E
[(

Xs,t(Is) − X̂s,t(Is)
)

·
(
bt(X̂s,t(Is)) − ∂tX̂s,t(Is)

)]
+ 2E

[(
Xs,t(Is) − X̂s,t(Is)

)
·
(
bt(Xs,t(Is)) − bt(X̂s,t(Is))

)]
,

6 E
[∣∣Xs,t(Is) − X̂s,t(Is)

∣∣2]
+ E

[∣∣bt(X̂s,t(Is)) − ∂tX̂s,t(Is)
∣∣2]

+ 2E
[(

Xs,t(Is) − X̂s,t(Is)
)

·
(
bt(Xs,t(Is)) − bt(X̂s,t(Is))

)]
,

≡ Es,t + δLMD
s,t + 2E

[(
Xs,t(Is) − X̂s,t(Is)

)
·
(
bt(Xs,t(Is)) − bt(X̂s,t(Is))

)]
.

(A.11)

Above, we defined the two-time Lagrangian distillation error,

δLMD
s,t = E

[∣∣bt(X̂s,t(Is)) − ∂tX̂s,t(Is)
∣∣2]

. (A.12)

By definition, the LMD loss can be expressed as LLMD(X̂) =
∫

[0,1]2 ws,tδ
LMD
s,t dsdt. Using (3.2) in (A.11), we

obtain the relation
∂tEs,t 6 (1 + 2Ct)Es,t + δLMD

s,t , (A.13)
which implies that

∂t

(
e

−t−2
∫ t

s
Cudu

Es,t

)
6 e

−t−2
∫ t

s
Cudu

δLMD
s,t . (A.14)

Since Es,s = 0 this implies that

Es,t 6
∫ t

s

e
(t−u)+2

∫ t

u
Cτ dτ

δLMD
s,u du 6 e

1+2
∫ t

s
|Cτ |dτ

∫ t

s

δLMD
s,u du. (A.15)

Above, we used that (t, u) ∈ [0, 1]2 so that (t−u) 6 1. This bound shows that E0,1 6 e
1+2

∫ 1

0
|Cτ |dτ ∫ 1

0 δLMD
0,u du,

which can be written explicitly as (using t instead of u as dummy integration variable)

E
[∣∣X0,1(x0) − X̂0,1(x0)

∣∣2]
6 e

1+2
∫ 1

0
|Cτ |dτ

∫ 1

0
E

[∣∣bt(X̂0,t(x0)) − ∂tX̂0,t(x0)
∣∣2]

dt, (A.16)

Now, observe that by definition,

W 2
2 (ρb, ρ̂) 6 E

[∣∣X0,1(x0) − X̂0,1(x0)
∣∣2]

, (A.17)

because the left-hand side is the infimum over all couplings and the right-hand side corresponds to a specific
coupling that pairs points from the same initial condition. This completes the proof.

17



Under review as submission to TMLR

Proposition 3.8 (Eulerian error bound). Let Xs,t : Rd → Rd denote the flow map for b, and let X̂s,t : Rd →
Rd denote an approximate flow map. Denote by ρ̂1 = X̂0,1]ρ0 and ρb

1 = X0,1]ρ0. Then,

W 2
2 (ρb

1, ρ̂1) 6 e

∫ 1

0
E

[∣∣∣∂sX̂s,1(Is) + bs(Is) · ∇X̂s,1(Is)
∣∣∣2

]
ds 6 eLEMD(X̂). (3.11)

Proof. We first define the error metric

Es,t = E
[∣∣Xs,t(Is) − X̂s,t(Is)

∣∣2
]

. (A.18)

It then follows by direct differentiation that

∂sEs,t = E
[
2

(
Xs,t(Is) − X̂s,t(Is)

)
·
(

∂sXs,t(Is) + İs · ∇Xs,t(Is) −
(

∂sX̂s,t(Is) + İs · ∇X̂s,t(Is)
))]

,

= E
[
2

(
Xs,t(Is) − X̂s,t(Is)

)
·
(

∂sXs,t(Is) + bs(Is) · ∇Xs,t(Is) −
(

∂sX̂s,t(Is) + bs(Is) · ∇X̂s,t(Is)
))]

,

> −Es,t − E
[∣∣∣∂sXs,t(Is) + bs(Is) · ∇Xs,t(Is) −

(
∂sX̂s,t(Is) + bs(Is) · ∇X̂s,t(Is)

)∣∣∣2
]

,

= −Es,t − δEMD
s,t .

Above, we used the tower property of the conditional expectation, the Eulerian equation ∂sXs,t(Is) + bs(Is) ·
∇Xs,t(Is) = 0, and defined the two-time Eulerian distillation error,

δEMD
s,t = E

[∣∣∣∂sX̂s,t(Is) + bs(Is) · ∇X̂s,t(Is)
∣∣∣2

]
. (A.19)

This implies that
∂s (−esEs,t) 6 esδEMD

st . (A.20)

Using that Et,t = 0 for any t ∈ [0, 1] and integrating with respect to s from s to t,

−etEt,t + esEs,t 6
∫ t

s

euδEMD
u,t du. (A.21)

It then follows that
Es,t 6

∫ t

s

eu−sδEMD
u,t du, (A.22)

and hence, using that u − s ∈ [0, 1] and that δEMD
u,t > 0,

E
[∣∣X0,1(x0) − X̂0,1(x0)

∣∣2]
6 e

∫ 1

0
E

[∣∣∣∂sX̂s,1(Is) + bs(Is) · ∇X̂s,1(Is)
∣∣∣2

]
ds. (A.23)

The proof is completed upon noting that

W 2
2 (ρ1, ρ̂1) 6 E

[∣∣X0,1(x0) − X̂0,1(x0)
∣∣2]

, (A.24)

because the left-hand side is the infimum over all couplings and the right-hand side corresponds to a particular
coupling.

B Additional theoretical results
B.1 Flow maps and denoisers
Since Law(Xt,s(It)) = Law(Is), it is tempting to replace Xt,s(It) by Is in the loss (3.15) and use instead

Ldenoise[X̂] =
∫

[0,1]2
ws,tE

[
|∂tX̂s,t(Is) − İt|2

]
dsdt, (B.1)
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minimized over all X̂ such that X̂s,s(x) = x. However, the minimizer of this objective is not the flow map
Xs,t, but rather the denoiser

Xdenoise
s,t (x) = E[It|Is = x]. (B.2)

This can be seen by noticing that the minimizer of (B.1) is the same as the minimizer of

L′
denoise[X̂] =

∫
[0,1]2

ws,tE
[∣∣∂tX̂s,t(Is) − E[İt|Is]

∣∣2
]
dsdt,

=
∫

[0,1]2

∫
Rd

ws,t

[∣∣∂tX̂s,t(x) − E[İt|Is = x]
∣∣2

]
ρs(x)dxdsdt,

(B.3)

which follows from an argument similar to the one used in the proof of Proposition 3.11. The minimizer
of (B.3) satifies

∂tX̂s,t(x) = E[İt|Is = x] = ∂tE[It|Is = x], (B.4)

which implies (B.2) by the boundary condition X̂s,s(x) = x. The denoiser (B.2) may be useful, but it is not
a consistent generative model. For instance, if x0 ∼ ρ0 and x1 ∼ ρ1 are independent in the definition of It,
since I0 = x0 and I1 = x1 by construction, for s = 0 and t = 1 we have

Xdenoise
0,1 (x) = E[x1] (B.5)

i.e. the one-step denoiser only recovers the mean of the target density ρ1.

B.2 Eulerian estimation or Eulerian distillation?
In light of the proof of Proposition 3.11, the reader may wonder whether we could also perform direct
estimation in the Eulerian setup, using as loss

LE(X̂) =
∫

[0,T ]2
ws,tE

[∣∣∂sX̂s,t(Is) + İs · ∇X̂s,t(Is)
∣∣2

]
dsdt. (B.6)

This loss is obtained from (3.9) by taking the expectation over Is, using Law(Is) = ρs, and replacing bs(Is)
by İs. Unfortunately, (B.6) is not equivalent to (3.9). To see why, we can expand the expectation in (B.6):

E
[∣∣∂sX̂s,t(Is) + İs · ∇X̂s,t(Is)

∣∣2
]

= E
[∣∣∂sX̂s,t(Is)

∣∣2 + 2(İs · ∇X̂s,t(Is)) · ∂sX̂s,t(Is) +
∣∣İs · ∇X̂s,t(Is)

∣∣2
]
.

(B.7)

For the cross term (which is linear in İs), we can use the tower property of the conditional expectation to see
that

E
[
(İs · ∇X̂s,t(Is)) · ∂sX̂s,t(Is)

]
= E

[
(E[İs|Is] · ∇X̂s,t(Is)) · ∂sX̂s,t(Is)

]
,

= E
[
(bs(Is) · ∇X̂s,t(Is)) · ∂sX̂s,t(Is)

]
.

(B.8)

However, the tower property cannot be applied to the last term in (B.7) since it is quadratic in İt, i.e.

E
[∣∣İs · ∇X̂s,t(Is)

∣∣2
]

6= E
[∣∣bs(Is) · ∇X̂s,t(Is)

∣∣2
]
. (B.9)

Since this term depends on X̂, it cannot be neglected in the minimization, and the minimizer of (B.6) is
not the same as that of (3.9). Recognizing this difficulty, consistency models (Song et al., 2023; Song and
Dhariwal, 2023; Kim et al., 2024) use a time-discretized variant of (B.6), and place a stopgrad on the term
İs · ∇X̂s,t(Is) when computing the gradient of the loss. The resulting iterative scheme used to update X̂

then has a fixed point at X̂ = X, but it is hard to guarantee that this fixed point is stable and attractive as
the iteration is not a gradient descent scheme.

C Relation to existing consistency and distillation techniques
In this section, we recast consistency models and several distillation techniques in the language of our two-time
flow map Xs,t to clarify their relation with our work.
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C.1 Relation to consistency models
Noising process. Following the recommendations in Karras et al. (2022) (which are followed by both Song
et al. (2023) and Song and Dhariwal (2023)), we consider the variance-exploding process4

x̃t = a + tz, t ∈ [0, tmax], (C.1)

where a ∼ ρ1 (data from the target density) and z ∼ N(0, I). In practice, practitioners often set tmax = 80.
In this section, because we follow the score-based diffusion convention, we set time so that t = 0 recovers ρ1
and so that a Gaussian is recovered as t → ∞. The corresponding probability flow ODE is given by

˙̃xt = −t∇ log ρt(x̃t), x̃t=0 = a ∼ ρ1 (C.2)

where ρt(x) = Law(x̃t). In practice, (C.2) is solved backwards in time from some terminal condition x̃tmax .
To make contact with our formulation where time goes forward, we define xt = x̃tmax−t, leading to

ẋt = (tmax − t)∇ log ρtmax−t(xt), xt=0 ∼ N(x0, t2
maxI). (C.3)

To make touch with our flow map notation, we then define

∂tXs,t(x) = (tmax − t)∇ log ρtmax−t(Xs,t(x)), Xs,s(x) = x. (C.4)

Consistency function. By definition (Song et al., 2023), the consistency function ft : Rd → Rd is such
that

ft(x̃t) = a, (C.5)

where x̃t denotes the solution of (C.2) and a ∼ ρ1. To make a connection with our flow map formulation, let
us consider (C.5) from the perspective of xt,

ft(xtmax−t) = xtmax , (C.6)

which is to say that
ft(x) = Xtmax−t,tmax(x). (C.7)

Note that only one time is varied here, i.e. ft(x), cannot be iterated upon: by its definition (C.5), it always
maps the observation x̃t onto a sample a ∼ ρ1.

Discrete-time loss function for distillation. In practice, consistency models are typically trained in
discrete-time, by discretizing [tmin, tmax] into a set of N points tmin = t1 < t2 < . . . < tN = tmax. According
to Karras et al. (2022), these points are chosen as

ti =
(

t
1/η
min + i − 1

N − 1

(
t1/η
max − t

1/η
min

))η

, (C.8)

with η = 7. Assuming that we have at our disposal a pre-trained estimate st(x) of the score ∇ log ρt(x), the
distillation loss for the consistency function ft(x) is then given by

LN
CD(f̂) =

N−1∑
i=1

E
[∣∣f̂ti+1(x̃ti+1) − f̂ti

(x̂ti
)
∣∣2

]
,

x̃ti+1 = a + ti+1z

x̂ti
= x̃ti+1 − (ti − ti+1) ti+1sti+1(xti+1),

(C.9)

where E is taken over the data a ∼ ρ1 and z ∼ N(0, I). The term x̂ti
is an approximation of x̃ti

computed by
taking a single step of (C.2) with the approximate score model st(x). In practice, the square loss in (C.9) can
be replaced by an arbitrary metric d : Rd → Rd → R>0, such as a learned metric like LPIPS or the Huber
loss.

4Oftentimes t = 0 is set to t = tmin > 0 for numerical stability, choosing e.g. tmin = 2 × 10−3.
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Continuous-time limit. In continuous-time, it is easy to see via Taylor expansion that the consistency
loss reduces to

L∞
CD(f̂) = lim

N→∞
NLN

CD(f̂) =
∫ tmax

tmin

∫
Rd

w2
t

∣∣∂tft(x) − tst(x) · ∇ft(x)
∣∣2

ρt(x)dxdt, (C.10)

where wt = η(t1/η
max − t

1/η
min)t1−1/η is a weight factor arising from the nonuniform time-grid. This is a

particular case of our Eulerian distillation loss (3.9) applied to the variance-exploding setting (C.1) with the
identification (C.7).

Estimation vs distillation of the consistency model. If we approximate the exact

∇ log ρt(x) = −E
[

x̃t − a

t2

∣∣∣x̃t = x

]
, (C.11)

by a single-point estimator

∇ log ρt(x) ≈ a − x̃t

t2 , (C.12)

we may use the expression
x̂ti

≈ a + tiz, (C.13)

in (C.9) to obtain the estimation loss,

LN
CT(f̂) =

N−1∑
i=1

E
[∣∣f̂ti+1(x̃ti+1) − f̂−

ti
(x̃ti

)
∣∣2

]
,

x̃ti = a + tiz.

(C.14)

This expression does not require a previously-trained score model. Notice, however, that (C.14) must be used
with a stopgrad on f−

ti
(x̃ti

) so that the gradient is taken over only the first f̂ti+1(x̃ti+1). This is because (C.9)
and (C.14) are different objectives with different minimizers, even at leading order after expansion in 1/N ,
for the same reason that (3.9) differs from (B.6). To see this, observe that to leading order,

f̂−
ti

(x̃ti) = f̂−
ti+1

(x̃ti+1) +
(
∂tf̂

−
ti+1

(x̃ti+1) + z · ∇f−
ti+1

(x̃ti+1)
)
(ti − ti+1) + O

(
(ti − ti+1)2)

, (C.15)

which gives the continuous-time limit

L∞
CT(f̂) = lim

N→∞
LN

CD(f̂) =
∫ tmax

tmin

∫
Rd

wt

∣∣∂tft(x) + z · ∇f−
t (x)

∣∣2
ρt(x)dxdt. (C.16)

Observing that z = ∂tx̃t shows that (C.16) recovers the Eulerian estimator described in Appendix B.2, which
does not lead to a gradient descent iteration.

C.2 Relation to neural operators
In our notation, neural operator approaches for fast sampling of diffusion models (Zheng et al., 2023) also
estimate the flow map X0,t via the loss

LFNO(X̂) =
∫ 1

0

∫
Rd

∣∣X̂0,t(x) − X0,t(x)
∣∣2

ρ0(x)dxdt, (C.17)

where X̂0,t is parameterized by a Fourier Neural Operator and where X0,t is the flow map obtained by
simulating the probability flow ODE associated with a pre-trained (or given) bt(x). To avoid simulation at
learning time, they pre-generate a dataset of trajectories, giving access to X0,t(x) for many initial conditions
x ∼ ρ0. Much of the work focuses on the architecture of the FNO itself, which is combined with a U-Net.
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DKL(ρ1||ρ̂1) W 2
2 (ρ1, ρ̂1) W 2

2 (ρ̂b
1, ρ̂1) L2 error

SI 0.020 0.026 0.0 0.000
LMD 0.043 0.059 0.032 0.085
EMD 0.079 0.029 0.010 0.011
FMM, N = 1 0.104 0.021 – 0.026
FMM, N = 4 0.045 0.014 – 0.024
PFMM, N = 1 0.043 0.014 – 0.023

Table 3: Comparison of DKL(ρ||ρ̂) and W 2
2 (ρ, ρ̂), where ρ̂ is the pushforward density from the maps X̂0,1(x0) for

the methods listed above. Additionally included is a comparison of L2 expected error of the distillation methods
against their teacher X̂SI

0,1 given as E[|X̂SI
0,1(x) − X̂0,1(x)|2]. Intriguingly, LMD performs better in being distributionally

correct, as measured by the KL-divergence, but worse in preserving the coupling of the teacher model. The roles are
flipped for EMD. This may highlight KL as a more informative metric in our case, as our aims are to sample correctly
in distribution. See Figure 5 for a visualization.

C.3 Relation to progressive distillation
Progressive distillation (Salimans and Ho, 2022) takes a DDIM sampler (Song et al., 2022) and trains a new
model to approximate two steps of the old sampler with one step of the new model. This process is iterated
repeatedly to successively halve the number of steps required. In our notation, this corresponds to minimizing

L∆t
PD(X̂) =

∫ 1−2∆t

0

∫
Rd

∣∣X̂t,t+2∆t(x) −
(
Xt+∆t,t+2∆t ◦ Xt,t+∆t

)
(x)

∣∣2
ρt(x)dxdt (C.18)

where X is a pre-trained map from the previous iteration. This is then iterated upon, and ∆t is increased,
until what is left is a few-step model.

D Additional Experimental Details
D.1 2D checkerboard
Here, we provide further discussion and analysis of our results for generative modeling on the 2D checkerboard
distribution (Figure 3). Our KL-divergence estimates clearly highlight that there is a hierarchy of performance.
Of particular interest is the large discrepancy in performance between the Eulerian and Lagrangian distillation
techniques.

As noted in Figure 3 and Table 3, LMD substantially outperforms its Eulerian counterpart in terms of
minimizing the KL-divergence between the target checkerboard density ρ1 and model density ρ̂1 = X̂0,1]ρ0.
Interestingly, while LMD is more correct in distribution, EMD better preserves the original coupling
(x0, X̂SI

0,1(x0)) of the teacher model X̂SI
0,1, as measured by the W 2

2 distance and the expected L2 reconstruction
error, defined as E[|X̂SI

0,1(x) − X̂0,1(x)|2]. Where this coupling is significantly not preserved is visualized in
Figure 5. For each model, we color code points for which |X̂SI

0,1(x) − X̂0,1(x)|2 > 1.0, highlighting where the
student map differed from the teacher. We notice that the LMD map pushes initial conditions to an opposing
checker edge (purple) than where those initial conditions are pushed by the interpolant (blue). This is much
less common for the EMD map, but its performance is overall worse in matching the target distribution.

D.2 Image experiments
Here we include more experimental details for reproducing the results provided in Section 4. We use the U-Net
from the diffusion OpenAI paper (Dhariwal and Nichol, 2021) with code given at https://github.com/ope-
nai/guided-diffusion. We use the same architecture for both CIFAR10 and ImageNet-32 × 32 experiments.
The architecture is also the same for training a velocity field and for training a flow map, barring the
augmentation of the time-step embedding in the U-Net to handle two times (s, t) instead of one. Details of
the training conditions are presented in Table 4.
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SI, N = 80 FMM, N = 1 FMM, N = 4 PFMM, N = 1 LMD, N = 1 EMD, N = 1

Figure 5: Visualization of the difference in assignment of the maps X̂0,1(x0) for the various models as compared
to the teacher/ground truth model X̂SI

0,1(x0) for the same initial conditions from the base distribution x0. Points
that lie in the region |X̂SI

0,1(x0) − X̂0,1(x0)|2 > 1.0 are colored as compared to the blue points, which represent where
the stochastic interpolant teacher mapped the same red initial conditions. This gives us an intuition for how well
each method precisely maintains the coupling (x0, X̂SI

0,1(x0)) from the teacher. Note that we are treating XSI
0,1 as the

ground truth map here, as it is close to the exact map. The models based on FMM either don’t have a teacher or
have FMM, N = 4 as a teacher, but all should have the same coupling at the minimizer.

CIFAR-10 ImageNet 32×32
Dimension 32×32 32×32
# Training point 5 × 104 1,281,167
Batch Size 256 256
Training Steps (Lagrangian distillation) 1.5×105 2.5×105

Training Steps (Eulerian distillation) 1.2×105 2.5×105

Training Steps (Flow map matching) N/A 1×105

Training Steps (Progressive flow map matching) 1.3×105 N/A
U-Net channel dims 256 256
Learning Rate (LR) 0.0001 0.0001
LR decay (every 1k epochs) 0.992 0.992
U-Net dim mult [1,2,2,2] [1,2,2,2]
Learned time embedding Yes Yes
# GPUs 4 4

Table 4: Hyperparameters and architecture for image datasets.
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