
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Can Large Language Models Reason on Dynamic Graphs?
Anonymous Author(s)

Abstract
Graphs are essential tools for modeling complex relationships, and

recent work has shown that large language models (LLMs) have

grown increasingly powerful at reasoning over graph-structured

data. This existing work has focused primarily on static graphs that
do not change over time. In any many applications, however, the

underlying graph is dynamic, in that it changes over time. In this

work, we address the capabilities of LLMs for reasoning on dynamic

graphs, focusing on a number of challenging aspects of the prob-

lem: the fully dynamic case in which both nodes and edges can be

added or deleted, and in multiple settings where the graph may be

implicitly described in natural-language text or may be represented

as structured data. To explore these dimensions of the problem, we

introduce DyGraphQA, a new benchmark dataset for dynamic

graph reasoning by LLMs. The benchmark contains prompts speci-

fying graphs both in natural language (DyGraphQA-Real) and as

structured data (DyGraphQA-Synth). We find that current LLMs

struggle with dynamic graph data in both these forms, and analyze

how graph structure, size, edge density, and prompting strategies

impact performance, finding that each factor significantly shapes

model accuracy and reasoning behavior. Our findings highlight a

critical gap in current LLM capabilities regarding dynamic graph

reasoning tasks and underscore the potential of techniques like

MaP to mitigate these challenges.

CCS Concepts
• Computing methodologies→ Natural language generation.

Keywords
Dyanamic Graph Reasoning, Benchmarks, Large Language Models

ACM Reference Format:
Anonymous Author(s). 2025. Can Large Language Models Reason on Dy-

namic Graphs?. In Proceedings of Make sure to enter the correct conference
title from your rights confirmation email (Conference acronym ’XX). ACM,

New York, NY, USA, 19 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Large Language Models (LLMs) have revolutionized not just the

area of natural language processing, but also a wide range of do-

mains that benefit from their abilities in reasoning and problem-

solving. In particular, recent work has shown that LLMs display

strong reasoning capabilities in domains such as math [1, 5, 13,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, Woodstock, NY
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/2018/06

https://doi.org/XXXXXXX.XXXXXXX

27, 34, 42], coding [18, 28, 31, 36], and common-sense reasoning

[3, 4, 6, 8, 21, 38].

As a result, an important ongoing project for the field is to under-

stand LLMs’ relative strengths and weaknesses in reasoning over

different kinds of data. Exploring this requires careful evaluation

on a range of fundamental types of data, ranging from unstructured

data to different forms of structured data. While much research has

explored LLMs’ ability to reason over unstructured data like text,

relatively little is known about their reasoning on structured data.

Graphs are a central type of structured data that appears fre-

quently in real-world problems, whenever the goal is to represent

relationships and connections between entities. Given that graphs

are a common and fundamental structured representation, recent

work has begun to investigate LLMs’ ability to reason over them.

For example, [30] introduced a benchmark with textual graph de-

scriptions followed by queries like shortest path, evaluating LLM

performance. Similarly, [10] expanded this work by posing more

fundamental questions and varying graph representations in text

from natural language to data structures. Overall, these studies

show that LLM performance varies across graph-based reasoning

tasks, with some proving significantly more challenging than oth-

ers.

Prior research has investigated the graph reasoning abilities of

LLMs, specifically their ability to extract properties of input graphs

represented either as structured data (such as adjacency matrices or

edge lists) [30] or in natural language [10]. These studies primarily

focus on static graphs, where the structure is fixed and presented as
a single snapshot in time. However, in many real-world applications,

graphs are rarely static; they evolve over time with the addition or

removal of nodes and edges. Such dynamic graphs appear frequently
in domains such as social network analysis, where relationships and

interactions constantly change ([17]), and in evolving knowledge

bases that must adapt to new information ([25, 29]).

Despite the prevalence of dynamic graphs, far less research has

explored how well LLMs handle them. To fully assess the graph

reasoning capabilities of modern LLMs and ensure applicability

to real-world situations, it is essential to evaluate their ability to

understand and manipulate graphs that change over time. In this

paper, we address the capabilities of LLMs for reasoning on dynamic

graphs, exploring multiple dimensions of the problem. In particular,

we study the fully dynamic setting, in which both nodes and edges

can be added or deleted; and we study dynamic graphs presented

both through natural language descriptions and through structured

data. Both of these modalities are important for understanding

the problem: while evaluating on structured data is important for

isolating graph reasoning from language understanding biases,

dynamic graphs frequently appear in natural language as well.

Many NLP tasks inherently involve dynamic graph reasoning, as

implicit dynamic graphs emerge in text. For instance, tracking

whether two characters in a story remain connected by its end

requires identifying their initial relationships, following changes

over time, and verifying a persistent link.

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

We can therefore summarize our central research question as

follows:

Can LLMs reason on fully dynamic graphs presented either in
natural language or as structured data?

To address this question, we introduce DyGraphQA, a novel and
challenging benchmark dataset containing over 160,000 question-

answer pairs pertaining to fully dynamic graph reasoning. Dy-

GraphQA consists of two component datasets: DyGraphQA-Real,
featuring real-world prompts in natural language, andDyGraphQA-
Synth, containing synthetic graph prompts as structured data. By

evaluating both representations, we provide a comprehensive as-

sessment of LLMs’ ability to reason over fully dynamic graphs.

The work closest to ours is a recent study that explored LLMs’

spatial-temporal understanding of dynamic graphs presented as

timestamped edge lists [41]. A key distinction between our work

and theirs is that the core problems are formulated very differently,

enabling us to explore a number of dimensions that are not present

in their work. Specifically, their work only considers partially dy-

namic graphs in which the node set remains constant, while edges

can only be added. Also, their work used only structured data for

representing graphs, whereas we consider both structured data

and natural language. Finally, we ask about a much wider range of

graph properties, whereas [41] focuses on basic retrieval questions

such as when two nodes become connected or retrieving the list

of neighbors of a node. As discussed above, many of the key appli-

cations of graph reasoning by LLMs involve fully dynamic graphs

represented in natural language (for example, any textual data that

describes changing relationships among entities over time), and

evaluating this setting is a distinctive feature of our approach.

In this paper, we first use DyGraphQA-Real to evaluate LLMs’

reasoning over fully dynamic graphs presented in natural language.

Since many real-world dynamic graph tasks naturally appear in

text, we constructed prompts based on real-world fully dynamic

graph data. However, publicly available datasets are limited, as most

dynamic graph datasets are only partially dynamic, tracking only

edge additions while keeping the node set fixed. To address this gap,

we created coauth-DBLP-fully, a dataset of 750 real-world fully

dynamic ego-networks extracted from the coauth-DBLP coauthor-

ship dataset. Each ego-network’s first five years of collaborations

is presented as a chronologically ordered edge list. We then iterate

over the network’s remaining history, adding and removing both

nodes and edges over time. At the end of the sequence, we pose

a follow-up question to form the prompt. Our results show that

SOTA LLMs vary significantly in their ability to answer these ques-

tions, with performance generally declining as the number of graph

modifications increases. Advanced reasoning models like o1-mini

and o3-mini outperformed others but still exhibited performance

gaps on more challenging questions.

To assess LLMs’ reasoning on fully dynamic graphs from struc-

tured data, we use DyGraphQA-Synth, which includes 250 gener-

ated Erdős-Rényi (ER) graphs. Each prompt included (1) an adja-

cency matrix representation of the graph, (2) a sequence of modi-

fications to be performed, and (3) a final query. Our results show

that state-of-the-art (SOTA) LLMs struggle with dynamic graph

reasoning over adjacency matrices, even after a minimal number of

modifications. To address this, we explore techniques to improve

LLM performance on fully dynamic graphs. We find that Chain-

of-Thought (CoT) prompting enhances performance for Claude

3.5 Sonnet and Llama 3.1 405B, though additional CoT examples

provide diminishing returns. More notably, prompting models to

output intermediate graphs leads to significant improvements. We

introduceModify-and-Print (MaP) prompting, a simple yet effective

technique where models explicitly print the adjacency matrix af-

ter each modification step. We additionally investigate how graph

structure, size, and edge density impact performance.

Overall, LLMs are still not proficient in reasoning on fully dy-

namic graphs presented in either natural language or as structured

data. The observed difficulties with graph modifications and the

adjacency matrix underscore the need for improved models or

training strategies that can handle dynamic, structured data more

effectively. These results call for a shift in benchmarking prac-

tices toward tasks that require reasoning over evolving graph data,

thereby better aligning evaluations with real-world applications in

dynamic networks and systems.

In summary, this work makes the following contributions:

• Introduction of DyGraphQA: We present a novel benchmark

dataset that provides a rigorous testbed for dynamic graph rea-

soning across graphs presented in either natural language or as

structured data.

• Analysis of LLM Performance on Graph Modifications:
We reveal that SOTA LLMs experience significant performance

degradation on graph modification tasks, especially with increas-

ing numbers of modifications.

• Exploration of factors affecting LLM performance on dy-
namic graphs: We analyze how graph structure, size, edge den-

sity, and prompting strategies—including in-context learning and

our MaP method—impact performance, finding that each factor

significantly shapes model accuracy and reasoning behavior.

By addressing the challenges identified in this study, we aim to ad-

vance the development of LLMs capable of sophisticated reasoning

over dynamic and structured data, thereby expanding their applica-

bility in complex, real-world scenarios. Our code and datasets are

openly accessible.
1

2 Related Works
[30] explores the capability of LLMs to tackle various graph-based

tasks. This study evaluates tasks such as topological sort, maxi-

mum flow, and bipartite graph matching. [10] delves into different

methods for encoding graphs as text, with a particular focus on

evaluating different encodings of graphs as text. This work builds

upon [30] by introducing more interpretable, straightforward, and

fundamental tasks, focusing on fundamental graph properties. Fol-

lowing [10] and [30], we freeze the parameters of the LLM, and

the model operates in a black box setup, consuming and producing

text. Both sets of tasks found in [30] and [10] are applied only for

static graphs, whereas we focus on the fully dynamic case to assess

multi-step dynamic graph reasoning [35, 37].

Outside of [10] and [30], there exists an emerging body of work

at the intersection of LLMs and graph reasoning [7, 9, 11, 12, 22, 23].

[24] directly follows up on [10] by utilizing and finetuning soft-

token prompts to better encode graphs for LLMs. [41] addresses

1
https://anonymous.4open.science/r/DyGraphQA-7394/

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Can Large Language Models Reason on Dynamic Graphs? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 1: Previous work ([10]) focus their effort on evaluating LLMs on static graphs (top), whereas this work focuses on fully
dynamic graph tasks (bottom).

the challenges of solving spatial-temporal problems on partially

dynamic graphs using LLMs, evaluating various LLMs’ abilities

to solve various spatio-temporal graph property tasks. [16] uti-

lizes retrieval-augmented generation techniques to improve LLM

performance on graph understanding. [2, 14, 19, 20, 26, 33, 40] pro-

vide broad empirical evaluation of LLMs’ understanding of graph-

structured data. [39] focuses on the generation of graphs from

scratch by LLMs, exploring the potential of LLMs to create coher-

ent graph structures. [32] examines howwell LLMs can recall graph

structures from text.

3 DyGraphQA
In this section, we introduce DyGraphQA, a dataset for evaluat-
ing the fully dynamic graph reasoning capabilities of LLMs. Dy-

GraphQA consists of two subsets: DyGraphQA-Real (𝐷
Real

) and

DyGraphQA-Synth (𝐷
Synth

), each composed of 4-tuples:

(𝑔(𝐺),𝑚(𝑚1,𝑚2, . . . ,𝑚𝑘), 𝑞(𝑄), 𝑆)

Here, 𝐺 is the graph, 𝑔(𝐺) is the graph encoding function (e.g., ad-

jacency matrix or descriptive text), 𝑞(𝑄) is the question rephrasing

function (e.g., zero-shot or chain-of-thought prompting [34]), and

𝑆 is the ground-truth answer.

We define 𝑚(𝑚1,𝑚2, . . . ,𝑚𝑘) as the modification sequence
function, which lists in text a sequence of 𝑘 modification events

𝑚1,𝑚2, . . . ,𝑚𝑘 to be applied to𝐺 , resulting in a final graph𝐺𝑘 . Each

modification event𝑚𝑖 is drawn from a set of possible modification

types𝑀 , where:

𝑚𝑖 ∈ 𝑀 = {AddEdge, RemoveEdge,AddNode, RemoveNode},∀𝑖

Here,AddEdge(u, v) adds an edge between two unconnected nodes
u and v,RemoveEdge(u, v) removes an existing edge,AddNode(u)
introduces a new node u into the graph, and RemoveNode(u)
deletes an existing node and all its associated edges.

The LLM 𝑓 ’s output 𝐴 = 𝑓 (𝑔(𝐺), 𝑞(𝑄)) is evaluated against 𝑆 ,

with performance measured by the proportion of matches across

all tuples in both 𝐷
Real

and 𝐷
Synth

.

The following sections detail the construction of both datasets.

3.1 DyGraphQA-Real
The graphs in DyGraphQA-Real are derived from coauth-DBLP,
a coauthorship dataset with over 1.4 million nodes and 10.5 million

edges. This dataset is structured as a timestamped edge list, where

each edge is represented as a (Author A,Author B, year) triple, cor-
responding to a paper written between Author A and Author B

at a particular year. To construct DyGraphQA-Real, we sampled

750 nodes and built their ego-networks, the subgraph of all edges

including the ego (the sampled node) and all edges between the

ego’s neighbors. Each ego-network was formed by chronologically

sorting its corresponding edge list. We preprocess the dataset so

that any two authors can only share at most one paper together.

3.1.1 Ego-Network Construction as a Sequence of Modification
Events. Our goal is to use coauth-DBLP as the basis for a dataset

that is fully dynamic in the sense that edges and nodes can be

both added and deleted. Edge addition corresponds naturally to the

authoring of a new paper. Similarly, nodes would be added when

an author writes their first paper in the ego-network. However,

since coauthorship ego-networks are inherently cumulative, defin-

ing edge and node deletion events in this context is non-trivial.

In practice, many coauthorship datasets include edge and node

deletions–for example, during data cleaning or when users remove

their papers or delete their accounts on platforms like arXiv or

Google Scholar. Modeling such deletions in coauth-DBLP is there-

fore both a practical necessity and a challenge that tests how well

LLMs handle fully dynamic graphs. For edge removal, we add a

further dimension for purposes of constructing the dataset: for a

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

parameter 𝑡 , we declare that each edge corresponding to a paper is

deleted again from the graph 𝑡 years after the paper is written. Here

we will use 𝑡 = 5. Thus, in the most straightforward formulation

of the dataset, we add each edge when its corresponding paper is

published and remove it 𝑡 = 5 years later. Additionally, we remove

nodes from an ego-network when their last remaining paper in the

ego-network is removed. In this way, every edge and node would

have both an addition and a removal event.

However, this approach would result in each ego-network start-

ing and ending with an empty graph, whereas we prefer to start

with an initial graph and end with some non-trivial final graph.

As a result, we introduce an initial graph 𝐺 , which includes all

papers published in the first five years of the ego-network. Any

subsequent paper adds an edge via an Add Edge event. Edges in
both the initial graph and those that are later added are removed

from the ego-network five years after they are added, except
those introduced in the last five years of the ego-network, which

remain in the final graph, allowing for a partially full final graph.

Authors are included in the initial graph if they wrote their first-

ever paper—whether inside the ego-network with another member

of the ego-network or outside it—within or before the initial five-

year window. Otherwise, they are added via an Add Node event
when they publish their first paper (again, even if this paper was

published inside our outside the ego-network). A Remove Node
event is triggered when an author writes their final-ever paper be-

fore the end of the ego-network, regardless of whether that paper is

inside or outside the ego-network. Authors who continue publish-

ing beyond the ego-network’s duration remain in the final graph.

In this way, nodes can be added or removed from the graph. This

ensures that the ego-network starts with an informative subgraph

and maintains a non-trivial structure at the end. Finally, in order

to construct the full sequence of modification events, we first note

the timestamp where each modification event occurred, and then

chronologically sort the set of all timestamped modification events.

3.1.2 Graph Encoding Function 𝑔(𝐺). The next challenge is de-

termining how to present the initial graph 𝐺 in natural language

within the prompt. One approach is to explicitly describe it as an

ego-network: "The following graph is a coauthorship ego-network",
encoding each edge (Author A,Author B, year) ∈ 𝐺 as a times-

tamped paper written between two authors: "(Author A) wrote a
paper with (Author B) in year (year)."

However, to ensure a more natural presentation of the prompt,

we instead frame the graph as a research group, where each edge

represents a collaboration between two researchers. This framing

better aligns with the dynamics of a fully dynamic graph, where

both nodes and edges can be added or removed. It is more intuitive

to describe researchers joining or leaving a group and collabora-

tions forming or dissolving than to describe papers being added or

removed from a coauthorship network.

Thus, we begin each prompt with the textual introduction of the

initial graph 𝐺 found in Figure 1, which begins as follows:

"We are going to use a graph to..."

Additionally, each edge in 𝐺 is encoded as:

"Author A is working on a project with Author B."

We omit collaboration years, as the chronological order of edges

already reflects the graph’s temporal evolution.

3.1.3 Modification Sequence Function𝑚(·). After generating the
modification sequence (𝑚1,𝑚2, . . . ,𝑚𝑘) as described in Section

3.1.1, we introduce it in the prompt with:

"The following events then occur in order:"

Each modification𝑚𝑖 is expressed in natural language as:

• 𝑚𝑖 = Add Edge(u, v): "i) u starts a project with v"
• 𝑚𝑖 = Remove Edge(u, v): "i) The project between u and v comes to

an end"
• 𝑚𝑖 = Add Node(u): "i) u joins the group"
• 𝑚𝑖 = Remove Node(u): "i) u leaves the group"

Applying this sequence to 𝐺 returns a final modified graph 𝐺𝑘 .

Note that, in this process, both the total number of modifications

and the type of each modification event are directly derived from

the dataset. We sample ego-networks across a range of 𝑘 values to

ensure coverage of both short and long modification sequences.

3.1.4 Final Question 𝑄 and Question Rephrasing 𝑞(𝑄). We finally

append a Final Question 𝑄 to be asked to the model. We include

the following graph property questions from [10]: Node Count
(calculating the total number of nodes in the modified graph 𝐺𝑘),

Edge Count (calculating the total number of edges present in the

𝐺𝑘), Node Degree (calculating the degree of a uniformly sampled

node in𝐺𝑘), and Connected Nodes (returning the set of all nodes

that are directly connected to a uniformly sampled node in 𝐺𝑘).

In addition to these property tasks, we introduce five new final

questions: Print Graph (returning the entire𝐺𝑘 in the same format

as the graph encoding function 𝑔(𝐺)), Isolated Nodes (returning
the set of isolated nodes who have no neighbors in 𝐺𝑘), Overlap-
ping Nodes (determining if two sampled nodes were part of the

graph at the same), Overlapping Edges (determining if two sam-

pled edges were part of the graph at the same), andTriangle Count
(counting the total number of triangles that formed throughout the

entire history of the graph as modifications were applied).

For the question rephrasing function 𝑞(𝑄), DyGraphQA-Real
uses only zero-shot prompting due to the large number of modi-

fication steps, which often exhausts the context window, allowing

us to evaluate models’ innate reasoning abilities.

3.1.5 Additional Details. coauth-DBLP-fully consists of 750 ego-

networks, each pairedwith a sequence ofmodification events. These

are used to construct natural language prompts in DyGraphQA-
Real, ending with a final question 𝑄 . Further dataset generation

details, along with a summary table of key dataset statistics, are

provided in the accompanying code repository.
2

We define the size of each ego-network as the sum of its initial

edge count (which we ensure is at least 10) and the number of ap-

plied modifications. Ego-networks are grouped into small (10–24),
medium (25–49), and large (50–75) sizes, with 250 samples per

group. To ensure diversity, each ego-network contains 7-20 nodes

and includes at least one Add Node event and one Remove Node
event. Each ego-network is paired with one of 9 final questions,

resulting in 750 × 9 = 6,750 evaluation prompts.

2
https://anonymous.4open.science/r/DyGraphQA-7394/

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Can Large Language Models Reason on Dynamic Graphs? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

3.2 DyGraphQA-Synth
DyGraphQA-Synth consists of synthetic prompts based on fully

dynamic graphs presented as structured data.

3.2.1 Generation of 𝐺 . Following [30] and [10], we generate 250

undirected Erdős-Rényi (ER) graphs. Each graph has 𝑛 nodes, with

𝑛 sampled from a uniform distribution on a finite interval, and

edges are added independently with 𝑝 ∼ 𝑈 (0, 1). This variation
in size and density ensures broad coverage of graph structures to

evaluate LLM reasoning under diverse structural conditions.

3.2.2 Graph Encoding Function 𝑔(𝐺). We introduce and use the

Adjacency Matrix encoding for all DyGraphQA-Synth prompts

due to its difficulty for LLMs. Each entry 𝐴𝑖 𝑗 indicates the presence

(1) or absence (0) of an edge between nodes 𝑖 and 𝑗 . This encoding

has yet to be explored as a graph encoding function in previous

studies. Effectively manipulating adjacency matrices is important

for LLMs because they are fundamental to many modern graph

algorithms and applications.

This encoding challenges LLMs due to its lack of natural language

cues, the need to reason about both edge presence and absence, and

notably its reliance on an implicit numbering scheme for nodes,

where node identifiers correspond directly to the indices of the

matrix. When nodes are removed, nodes in the resulting graph

must be renumbered to maintain a contiguous matrix structure. For

example, if an adjacencymatrix represents nodes 0 to 4 and node 2 is

removed, the third row and column are eliminated, and subsequent

nodes are renumbered—node 3 becomes node 2, node 4 becomes

node 3. This renumbering adds an extra layer of complexity for the

LLM to manage during reasoning and updates.

3.2.3 Modification Sequence Function𝑚(·). In DyGraphQA-
Synth, each modification sequence contains a single modification

type, allowing us to isolate the effects of each of the four core

operations on performance.We also include a fifth type,Mix, which
samples uniformly from the four base modifications at each step 𝑘 ,

introducing modification diversity similar to DyGraphQA-Real.
We set 𝑘 to 1-5 as adjacency matrices scale quadratically with graph

size, keeping evaluation tractable while still capturing the impact

of dynamic modifications.

3.2.4 FinalQuestion𝑄 andQuestion Rephrasing𝑞(𝑄). In DyGraph-
QA-Synth, we include 5 final questions:Node Count, Edge Count,
Node Degree, Connected Nodes, and Print Graph. We omit

Isolated Nodes, Overlapping Nodes, and Overlapping Edges as
values of the solutions of these questions changed minimally over

few modifications, and omit Triangle Count as the high density of

larger ER graphs tend to produce excessively high triangle counts.

We use three question rephrasing functions: zero-shot, Chain-
of-Thought (CoT)with 1–3 reasoning examples, and our proposed

Modify-and-Print (MaP) technique (Section 4.2.3), which encour-

ages state tracking through explicit intermediate outputs.

3.2.5 Additional Details. To illustrate the dataset construction pro-

cess, we include Algorithm 6 in Section A, which describes how

DyGraphQA-Synth entries are generated in order to create 156250
unique example prompts.

4 Experiments
In this section, we summarize the results of our experiments on both

DyGraphQA-Real and DyGraphQA-Synth. We evaluated four SOTA

LLMs on both datasets: o1-mini, GPT 4o-mini, Claude 3.5 Sonnet,

Llama 3.1 405B, using the OpenAI, Anthropic, and Fireworks AI

APIs. We set the decoding temperature of all models to zero. We

used the NetworkX library [15] to generate all graphs, as well as

the solutions to each final question.

4.1 DyGraphQA-Real
We first evaluate LLM performance on DyGraphQA-Real, assess-
ing their ability to reason over fully dynamic ego-networks pre-

sented in natural language.

4.1.1 Experimental Setup. For DyGraphQA-Real, we assess re-

cently released models, namely o3-mini and Claude 3.7 Sonnet,
only on Triangle Count, as it is the most challenging task.

4.1.2 Findings. Table 1 presents the results. We observe significant

variation in LLMs’ ability to reason over fully dynamic graphs in

natural language, with performance generally decreasing as the

number of modifications to the graph increases. Most models strug-

gle with counting tasks such as Node Count and Edge Count.
The exception is o1-mini, which only struggles on Edge Count
for large graphs. This difficulty suggests that LLMs face challenges

in tracking simple dynamic properties of the graph over time. In-

terestingly, models perform better on the Print Graph task than

on these counting tasks, highlighting a discrepancy between their

ability to reconstruct the final graph and their ability to reason over

the final graph and derive properties from it.

Performance is notably strong on overlap-based tasks, involving

determining whether two authors (Overlapping Nodes) or col-
laborations (Overlapping Edges) exist at the same point in time.

Models tend to perform better on node-level tasks, such as Node
Degree and Connected Nodes, compared to tasks requiring a

more global understanding of the graph.

Larger and more advanced models, including Llama 3.1 405B
and Claude 3.5 Sonnet, consistently outperform the smaller GPT-
4o mini, which performs poorly across the majority of tasks. Rea-

soning models, such as o1-mini, show notable performance gains

over non-reasoning models, particularly on challenging tasks such

as Triangle Count, suggesting the importance of internal reason-

ing capabilities for stronger performance onmore complex dynamic

graph reasoning tasks. However, despite these improvements, the

Triangle Count task remains difficult for all models, demonstrating

substantial limitations in complex fully dynamic graph reasoning in

natural language. While o3-mini significantly outperforms other

models on this task for small and medium graphs, its performance

drops sharply on large graphs. Overall, these findings suggest that

while SOTA LLMs demonstrate an preliminary ability to reason

over fully dynamic graphs presented in natural language, they still

face significant challenges, particularly in accurately tracking and

counting both simple and complex graph properties as they evolve.

4.2 DyGraphQA-Synth
With DyGraphQA-Synth, we evaluated the ability of SOTA LLMs to

reason over fully dynamic graphs presented as structured data. Due

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Node Count Edge Count Node Degree Connected Nodes Print Graph Isolated Nodes Overlapping Nodes Overlapping Edges Triangle Count

Model S M L S M L S M L S M L S M L S M L S M L S M L S M L

o1-mini 99.2 98.0 95.6 98.8 93.2 68.8 99.6 97.6 92.4 88.8 91.6 87.2 91.6 74.8 56.8 92.0 87.2 87.6 99.2 100.0 98.8 99.6 100.0 99.2 81.2 40.4 7.6

Llama3.1 87.6 78.8 67.6 67.8 45.6 24.4 97.6 90.8 88.0 92.4 95.2 90.0 90.8 71.6 51.3 54.2 62.5 66.7 98.8 99.6 95.6 94.8 92.4 94.8 30.0 20.9 3.2

Claude 3.5 94.0 90.0 79.2 81.2 45.2 32.8 97.6 98.4 96.8 97.6 99.6 96.4 87.2 75.6 62.8 86.4 91.6 88.0 99.2 100.0 98.4 98.0 99.6 99.2 28.0 6.4 0.4

GPT-4o-mini 55.6 55.6 53.6 66.4 31.6 7.2 88.4 70.0 58.0 82.8 68.4 44.4 70.0 38.8 12.0 60.4 56.8 39.6 85.2 84.8 82.8 74.0 79.2 75.2 13.2 2.8 0.4

Claude 3.7 - 44.8 16.4 5.2

o3-mini - 98.0 79.6 42.0

Table 1: Mean accuracy %s of LLMs on DyGraphQA-Real, with the best result in each column shown in bold.

Figure 2: Performance (mean accuracy %s) of LLMs on DyGraphQA-Synth on the Print Graph task.

to monetary constraints, we limited evaluation to o1-mini, GPT-

4o-mini, Claude 3.5 Sonnet, and LLaMA 3.1 405B, and encourage

future work to extend this benchmarking. DyGraphQA-Synth offers

fine-grained control over graph and prompt generation, enabling

us to isolate the impact of various components and their interaction

with the four core modification types. We therefore perform further

ablations, which can be found from Sections 4.2.3 to 4.2.5. For

comparison with static prompts (as in [10]), we report results in

Tables 2 and 3 in the Appendix.

4.2.1 Experimental Setup. DyGraphQA-Synth contains 250 initial

graphs where the size of each graph 𝑛 is drawn from 𝑈 (7, 20),
and for each pair of nodes (𝑖, 𝑗), the probability 𝑝 that an edge

exists between them is also sampled from a uniform distribution

𝑈 (0, 1). We encoded each of these graphs as adjacency matrices,

and applied 1 to 5 modifications for each of the five modification

types—Add Edge, Remove Edge, Add Node, Remove Node, and
Mix—resulting in multiple sets of modified graphs. After applying

the specified modifications to each initial graph, we posed the Print
Graph final question to the LLMs, instructing them to output the

resulting modified graph in the form of an adjacency matrix. This

comprehensive approach allows us to systematically evaluate the

models’ capabilities in maintaining and updating internal repre-

sentations of structured data across varying levels of complexity.

Results for the remaining final questions can be found in Section B

in the Appendix. Additionally, we selected Print Graph as it pro-

vides a clear means to track modification errors, which we analyze

further in Section C.

4.2.2 Findings. Figure 2 illustrates LLM performance on Print
Graph. Our results indicate that across all modification types, mod-

els generally perform worse as the number of modifications in-

creases, which suggests challenges in maintaining and updating

an internal graph representation over a small number of modifi-

cation steps. Notably, the models perform the worst on the Re-
move Node and Mix modifications. Remove Node is challenging

due to required row/column deletion and index renumbering in

the adjacency matrix. With Mix modifications, the models face

the compounded challenge of handling a variety of modification

types within a sequence. The necessity to adapt to different oper-

ations—such as adding an edge in one step and removing a node

in the next—requires flexible reasoning and robust state tracking,

which LLMs struggle to perform with the adjacency matrix. Over-

all, while Claude 3.5 Sonnet outperforms other models across all

modification types, o1-mini demonstrates superior performance on

the two most challenging modifications, Remove Node and Mix,
at higher modification steps. This suggests that o1-mini’s internal

reasoning capabilities becomes effective as the complexity of the

modification sequence grows.

Overall, our findings indicate that fully dynamic graph reason-

ing on structured data, specifically adjacency matrices, remains a

significant challenge. These results highlight the need for improved

models and prompting techniques to enhance LLMs’ graph rea-

soning capabilities in real-world dynamic networks represented as

structured data.

4.2.3 Ablation: In-context Learning and MaP Prompting. We ex-

plore potential methods for increasing the performance of LLMs

on DyGraphQA-Synth. We track the performance of various in-

context learning methods across 1 to 5 modification steps for the

same 250 graphs, and compare the performance of these methods to

the previously reported zero-shot performance. Results are shown

in Figure 3.

Chain-of-thought (CoT) prompting ([34]) guides the model

to generate intermediate reasoning steps by including examples

of detailed reasoning in the prompt. We evaluated the effect of

including 1, 2, and 3 CoT examples on performance. Models varied

significantly in their response to CoT prompting. For Claude 3.5

Sonnet (Figure 3b) and Llama 3.1 405B (Figure 3c), CoT consistently

improved performance across all five modification types. In con-

trast, GPT-4o-mini showed either no improvement or a decline in

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Can Large Language Models Reason on Dynamic Graphs? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 3: In-context learning results with a) o1-mini, b) Claude 3.5 Sonnet, c) Llama 3.1 405B, and d) GPT-4o-mini.

(a) o1-mini. (b) Claude 3.5.
(c) Percentage of total errors by o1-mini involv-
ing connecting to newly-added node.

Figure 4: Performance across different graph types.

performance with CoT prompting (Figure 3d). o1-mini exhibited a

significant drop in performance with CoT prompting (Figure 3a),

performing worse than in the zero-shot setting across all modifi-

cation types. This decline in performance is likely due to the fact

that o1-mini reasons internally, and external CoT prompting does

not complement its internal reasoning processes. Across all models,

performance remained stable regardless of the number of exam-

ples, suggesting limited marginal benefit from additional reasoning

steps.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 5: Performance of Claude 3.5 Sonnet on edge density
and graph size ablation.

We introduceModify-and-Print (MaP) prompting, a simple

yet effective strategy for improving performance on fully dynamic

graph reasoning tasks on structured data. In MaP prompting, the

model is instructed to output the intermediate graph after each

modification. This encourages explicit state tracking and helps the

model maintain a coherent internal representation of the evolving

graph.

MaP is especially effective for edge-related modifications (Add
Edge, Remove Edge), consistently outperforming both zero-shot

and CoT prompting. The gains are particularly pronounced for

o1-mini, highlighting MaP’s strength in reinforcing state tracking

through explicit intermediate graph outputs. For other operations

(Add Node and Remove Node), MaP remains competitive with

CoT. Interestingly, MaP also improves performance on the first

modification step, where it should behave similarly to zero-shot

prompting. This suggests that the mere instruction to output in-

termediate graphs boosts model performance, even when the state

tracking demand is minimal.

Overall, MaP prompting enhances dynamic graph reasoning by

aligning the prompting strategy with the task’s structural require-

ments, especially where fine-grained state tracking is critical.

4.2.4 Ablation: Graph Types & The Preservation of Graph Struc-
ture. We further evaluate Claude 3.5 Sonnet and o1-mini, the two

strongest models, on Print Graph across 3 modification steps of

different graph types, including: 1) star graphs, 2) path graphs,
3) complete graphs, and 4) empty graphs. Each model is tested

on 250 instances per graph type.

Figures 4a and 4b highlight the models’ varying strengths across

these structured graphs. Performance on edge-related tasks is largely

consistent with previous results on ER graphs. Notably, both mod-

els improve on Remove Node for structured graphs compared

to ER, suggesting that clearer initial structure aids node removal

reasoning. However, o1-mini performs poorly on Add Node across
all types, with sharp performance drops across modification steps.

To investigate, we analyze o1-mini’s errors by tracking how of-

ten it connects the newly added node to specific targets: the central

node (star), the final node in the path at the bottom row of the

adjacency matrix (path), all nodes (complete), or any node (empty).

Results in Figure 4c reveal a strong bias: o1-mini frequently con-

nects the new node in a way that preserves the original graph’s
structure, suggesting an intrinsic tendency of reasoning mod-
els to maintain topological patterns, even when incorrect.

4.2.5 Ablation: Edge Density and Graph Size. We analyze how

graph size and edge density affect model performance inDyGraph-
QA-Synth by evaluating graphs with 𝑛 ∈ {10, 20} nodes and edge

densities 𝑝 ∈ {0.1, 0.5, 0.9}. For each configuration, we generate

100 graphs, focusing on the Print Graph task, and evaluate with

Claude 3.5 Sonnet. Results are show in Figure 5.

For Add Edge, the model performs well overall but struggles on

low-density graphs when only a single edge is added—likely due

to difficulty identifying the correct 0 entry to update. In contrast,

Remove Edge reveals the opposite pattern: accuracy drops with

density, suggesting difficulty identifying the correct 1 entry in

dense matrices. For Add Node, performance declines with graph

size and sparsity, contrasting with Claude 3.5 Sonnet’s strong base

performance from Section 4.2.2 and indicating new errors—such as

dimensionmismatches or adding too few/many nodes—discussed in

Section C. Finally, Remove Node is most sensitive to both size and

sparsity, with the worst performance on large and sparse graphs,

reflecting the general difficulty of the modification.

5 Conclusion
In this paper, we introduce DyGraphQA, a challenging benchmark

dataset designed to evaluate LLMs’ ability to reason over fully dy-

namic graphs. DyGraphQA consists of two datasets: DyGraphQA-
Real, featuring real-world dynamic graphs in natural language, and

DyGraphQA-Synth, containing synthetic graphs as structured

data. Capturing both representations enables a comprehensive as-

sessment of LLMs’ reasoning capabilities across modalities. Our

results show that SOTA LLMs struggle significantly with fully dy-

namic graph reasoning, particularly as the number of modifications

increases. Extensive ablations show how graph structure, size, edge

density, and prompting strategies impact performance. Future work

will explore fine-tuning models on dynamic graph reasoning
tasks and developing more robust prompting strategies to
further enhance LLMs’ ability to process evolving graph structures.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Can Large Language Models Reason on Dynamic Graphs? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal

Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[2] Palaash Agrawal, Shavak Vasania, and Cheston Tan. 2025. Can LLMs Perform

Structured Graph Reasoning Tasks?. In International Conference on Pattern Recog-
nition. Springer, 287–308.

[3] Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin,

Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen,

et al. 2023. Palm 2 technical report. arXiv preprint arXiv:2305.10403 (2023).
[4] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan,

Wenbin Ge, Yu Han, Fei Huang, et al. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609 (2023).

[5] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski,

Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr

Nyczyk, et al. 2024. Graph of thoughts: Solving elaborate problems with large

language models. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 38. 17682–17690.

[6] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,

Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin

Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya

Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.

arXiv:2005.14165 [cs.CL]

[7] Serina Chang, Alicja Chaszczewicz, Emma Wang, Maya Josifovska, Emma Pier-

son, and Jure Leskovec. 2024. LLMs generate structurally realistic social networks

but overestimate political homophily. arXiv preprint arXiv:2408.16629 (2024).
[8] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav

Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se-

bastian Gehrmann, et al. 2023. Palm: Scaling language modeling with pathways.

Journal of Machine Learning Research 24, 240 (2023), 1–113.

[9] Xinnan Dai, Haohao Qu, Yifen Shen, Bohang Zhang, Qihao Wen, Wenqi Fan,

Dongsheng Li, Jiliang Tang, and Caihua Shan. 2024. How Do Large Language

Models Understand Graph Patterns? A Benchmark for Graph Pattern Compre-

hension. arXiv preprint arXiv:2410.05298 (2024).
[10] Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. 2023. Talk like a graph:

Encoding graphs for large language models. arXiv preprint arXiv:2310.04560
(2023).

[11] Yifan Feng, Chengwu Yang, Xingliang Hou, Shaoyi Du, Shihui Ying, Zongze Wu,

and Yue Gao. 2024. Beyond Graphs: Can Large Language Models Comprehend

Hypergraphs? arXiv preprint arXiv:2410.10083 (2024).
[12] Hamed Firooz, Maziar Sanjabi, Wenlong Jiang, and Xiaoling Zhai. 2024. Lost-

in-distance: Impact of contextual proximity on llm performance in graph tasks.

arXiv preprint arXiv:2410.01985 (2024).
[13] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Ab-

hishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-

ten, Alex Vaughan, et al. 2024. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783 (2024).

[14] Jiayan Guo, Lun Du, and Hengyu Liu. 2023. Gpt4graph: Can large language mod-

els understand graph structured data? an empirical evaluation and benchmarking.

arXiv preprint arXiv:2305.15066 (2023).
[15] Aric Hagberg, Pieter J Swart, and Daniel A Schult. 2008. Exploring network

structure, dynamics, and function using NetworkX. Technical Report. Los Alamos

National Laboratory (LANL), Los Alamos, NM (United States).

[16] Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V Chawla, Thomas Laurent, Yann

LeCun, Xavier Bresson, and Bryan Hooi. 2024. G-Retriever: Retrieval-Augmented

Generation for Textual Graph Understanding and Question Answering. arXiv
preprint arXiv:2402.07630 (2024).

[17] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi,

Peter Forsyth, and Pascal Poupart. 2020. Representation learning for dynamic

graphs: A survey. Journal of Machine Learning Research 21, 70 (2020), 1–73.

[18] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke

Iwasawa. 2022. Large language models are zero-shot reasoners. Advances in
neural information processing systems 35 (2022), 22199–22213.

[19] Yuhan Li, Peisong Wang, Xiao Zhu, Aochuan Chen, Haiyun Jiang, Deng Cai,

Victor W Chan, and Jia Li. 2024. Glbench: A comprehensive benchmark for

graph with large language models. Advances in Neural Information Processing
Systems 37 (2024), 42349–42368.

[20] Elan Markowitz, Krupa Galiya, Greg Ver Steeg, and Aram Galstyan. 2025. KG-

LLM-Bench: A Scalable Benchmark for Evaluating LLMReasoning on Textualized

Knowledge Graphs. arXiv preprint arXiv:2504.07087 (2025).

[21] Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora,

Akshita Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2024. 2 OLMo 2

Furious. arXiv preprint arXiv:2501.00656 (2024).

[22] Sheng Ouyang, Yulan Hu, Ge Chen, and Yong Liu. 2024. GUNDAM: Align-

ing Large Language Models with Graph Understanding. arXiv preprint
arXiv:2409.20053 (2024).

[23] Marios Papachristou and Yuan Yuan. 2024. Network formation and dynamics

among multi-llms. arXiv preprint arXiv:2402.10659 (2024).
[24] Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi,

Rami Al-Rfou, and Jonathan Halcrow. 2024. Let Your Graph Do the Talking:

Encoding Structured Data for LLMs. arXiv preprint arXiv:2402.05862 (2024).
[25] Phillip Schneider, Tim Schopf, Juraj Vladika, Mikhail Galkin, Elena Simperl, and

Florian Matthes. 2022. A Decade of Knowledge Graphs in Natural Language

Processing: A Survey. arXiv:2210.00105 [cs.CL]

[26] Jianheng Tang, Qifan Zhang, Yuhan Li, Nuo Chen, and Jia Li. 2025. Grapharena:

Evaluating and exploring large language models on graph computation. In The
Thirteenth International Conference on Learning Representations.

[27] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui

Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican,

et al. 2023. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805 (2023).

[28] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy

Hardin, Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahri-

ari, Alexandre Ramé, et al. 2024. Gemma 2: Improving open language models at

a practical size. arXiv preprint arXiv:2408.00118 (2024).
[29] Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. 2017. Know-evolve:

Deep temporal reasoning for dynamic knowledge graphs. In international con-
ference on machine learning. PMLR, 3462–3471.

[30] Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and

Yulia Tsvetkov. 2024. Can language models solve graph problems in natural

language? Advances in Neural Information Processing Systems 36 (2024).
[31] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang,

Aakanksha Chowdhery, and Denny Zhou. 2022. Self-consistency improves chain

of thought reasoning in language models. arXiv preprint arXiv:2203.11171 (2022).
[32] YanbangWang, Hejie Cui, and Jon Kleinberg. 2024. Microstructures andAccuracy

of Graph Recall by Large Language Models. arXiv preprint arXiv:2402.11821
(2024).

[33] Yuxiang Wang, Xinnan Dai, Wenqi Fan, and Yao Ma. 2025. Exploring Graph

Tasks with Pure LLMs: A Comprehensive Benchmark and Investigation. arXiv
preprint arXiv:2502.18771 (2025).

[34] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,

Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reason-

ing in large language models. Advances in neural information processing systems
35 (2022), 24824–24837.

[35] Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart Van Mer-

riënboer, Armand Joulin, and Tomas Mikolov. 2015. Towards ai-complete ques-

tion answering: A set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698
(2015).

[36] Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha

Jain, Ravid Shwartz-Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, Chin-

may Hegde, Yann LeCun, Tom Goldstein, Willie Neiswanger, and Micah Gold-

blum. 2024. LiveBench: A Challenging, Contamination-Free LLM Benchmark.

arXiv:2406.19314 [cs.CL] https://arxiv.org/abs/2406.19314

[37] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, WilliamW Cohen, Ruslan

Salakhutdinov, and Christopher D Manning. 2018. HotpotQA: A dataset for di-

verse, explainable multi-hop question answering. arXiv preprint arXiv:1809.09600
(2018).

[38] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and

Karthik Narasimhan. 2023. Tree of thoughts: Deliberate problem solving with

large language models. Advances in neural information processing systems 36
(2023), 11809–11822.

[39] Yang Yao, Xin Wang, Zeyang Zhang, Yijian Qin, Ziwei Zhang, Xu Chu, Yuekui

Yang, Wenwu Zhu, and Hong Mei. 2024. Exploring the Potential of Large Lan-

guage Models in Graph Generation. arXiv preprint arXiv:2403.14358 (2024).
[40] Yizhuo Zhang, Heng Wang, Shangbin Feng, Zhaoxuan Tan, Xiaochuang Han,

Tianxing He, and Yulia Tsvetkov. 2024. Can LLM Graph Reasoning Generalize

beyond Pattern Memorization? arXiv preprint arXiv:2406.15992 (2024).
[41] Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Yijian Qin, Simin Wu, and

Wenwu Zhu. 2023. LLM4DyG: Can Large Language Models Solve Problems on

Dynamic Graphs? arXiv preprint arXiv:2310.17110 (2023).
[42] Denny Zhou, Nathanael Schärli, Le Hou, JasonWei, Nathan Scales, Xuezhi Wang,

Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022. Least-to-

most prompting enables complex reasoning in large language models. arXiv
preprint arXiv:2205.10625 (2022).

9

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2210.00105
https://arxiv.org/abs/2406.19314
https://arxiv.org/abs/2406.19314

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A Dataset Generation Algorithm
In this section, we provide the pseudocode for the algorithms neces-

sary for generating the DyGraphQA-Synth dataset. The algorithm

assumes fixed graph encoding and question rephrasing functions.

For each of the 250 initial graphs, the algorithm performs five modi-

fication rounds. In each round, five different modification types are

applied, generating five modified graphs. Each of these is paired

with five final questions, resulting in 5 × 5 × 5 = 125 examples per

graph. Accounting for five question rephrasings, the total dataset

size is: 250 graphs × 125 examples per graph × 5 rephrasings =

156,250 examples. More details can be found at our code reposi-

tory.
3

During evaluation, we found that all LLMs performed poorly on

theRemoveNodemodification until the instruction “and renumber
the nodes accordingly” was added to “Remove node 𝑣 from the graph”
in Algorithm 4. This highlights the importance of providing explicit

instructions when tasks depend on implicit node indexing and

renumbering.

3
https://anonymous.4open.science/r/DyGraphQA-7394/

Algorithm 1 AddEdge

Require: Graph 𝐺

Ensure: Modified Graph 𝐺 ′

1: 𝐺 ′ ← 𝐺

2: (𝑖, 𝑗) ∼ U(𝑉𝐺 ′ ×𝑉𝐺 ′ \ 𝐸𝐺 ′)
3: 𝐸𝐺 ′ ← 𝐸𝐺 ′ ∪ {(𝑖, 𝑗)}
4: return 𝐺 ′, “Add an edge between nodes 𝑖 and 𝑗 ."

Algorithm 2 RemoveEdge

Require: Graph 𝐺

Ensure: Modified Graph 𝐺 ′

1: 𝐺 ′ ← 𝐺

2: (𝑖, 𝑗) ∼ U(𝐸𝐺 ′)
3: 𝐸𝐺 ′ ← 𝐸𝐺 ′ \ {(𝑖, 𝑗)}
4: return 𝐺 ′, “Remove the edge between nodes 𝑖 and 𝑗 ."

Algorithm 3 AddNode

Require: Graph 𝐺

Ensure: Modified Graph 𝐺 ′

1: 𝐺 ′ ← 𝐺

2: 𝑉𝐺 ′ ← 𝑉𝐺 ′ ∪ {𝑣}, 𝐸𝐺 ′ ← 𝐸𝐺 ′

3: return 𝐺 ′, “Add a node 𝑣 to the graph."

Algorithm 4 RemoveNode

Require: Graph 𝐺

Ensure: Modified Graph 𝐺 ′

1: 𝐺 ′ ← 𝐺

2: 𝑣 ∼ U(𝑉𝐺 ′)
3: 𝑉𝐺 ′ ← 𝑉𝐺 ′ \ {𝑣}, 𝐸𝐺 ′ ← 𝐸𝐺 ′ \ {(𝑣,𝑢) | 𝑢 ∈ 𝑉𝐺 ′ }
4: return 𝐺 ′, “Remove node 𝑣 from the graph."

Algorithm 5 Mix

Require: Graph 𝐺

Ensure: Modified Graph 𝐺 ′

1: 𝐺 ′ ← 𝐺

2: M ∼ U({AddEdge, RemoveEdge,AddNode, RemoveNode})

3: return M(𝐺 ′)

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Can Large Language Models Reason on Dynamic Graphs? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Algorithm 6 ConstructDyGraphQA-Synth

Require: Number of graphs to generate 𝑁

Ensure: Dataset 𝐷 containing multi-step tasks for all final queries

and 𝑘 values

1: Initialize an empty dataset 𝐷

2: Define the set of possible final questions

Q = {Node Count, Edge Count,Node Degree,
Connected Nodes, Print Graph}

3: Define the maximum number of modifications 𝑘𝑚𝑎𝑥 = 5

4: Define 𝑉𝐺 as the set of nodes in any graph 𝐺 , and 𝐸𝐺 as the

set of edges in any graph 𝐺

5: for 𝑖 = 1 to 𝑁 do
6: Sample 𝑛 ∼ U(7, 20)
7: Generate an undirected Erdős-Rényi graph 𝐺 = (𝑉 , 𝐸) with

|𝑉 | = 𝑛 and sample edge probability 𝑝 ∼ U(0, 1)
8: Initialize graphs 𝐺𝐴𝐸 , 𝐺𝑅𝐸 , 𝐺𝐴𝑁 , 𝐺𝑅𝑁 , 𝐺𝑀𝑋 ← 𝐺

9: Initialize𝑀𝐴𝐸 , 𝑀𝑅𝐸 , 𝑀𝐴𝑁 , 𝑀𝑅𝑁 , 𝑀𝑀𝑋 ← []
10: for 𝑘 = 1 to 𝑘𝑚𝑎𝑥 do
11: 𝐺𝐴𝐸 ,𝑚𝐴𝐸 ← AddEdge(𝐺𝐴𝐸) 1

12: 𝑀𝐴𝐸 ← 𝑀𝐴𝐸 ∥𝑚𝐴𝐸

13: 𝐺𝑅𝐸 ,𝑚𝑅𝐸 ← RemoveEdge(𝐺𝑅𝐸) 2

14: 𝑀𝑅𝐸 ← 𝑀𝑅𝐸 ∥𝑚𝑅𝐸

15: 𝐺𝐴𝑁 ,𝑚𝐴𝑁 ← AddNode(𝐺𝐴𝑁) 3

16: 𝑀𝐴𝑁 ← 𝑀𝐴𝑁 ∥𝑚𝐴𝑁

17: 𝐺𝑅𝑁 ,𝑚𝑅𝑁 ← RemoveNode(𝐺𝑅𝑁) 4

18: 𝑀𝑅𝑁 ← 𝑀𝑅𝑁 ∥𝑚𝑅𝑁

19: 𝐺𝑀𝑋 ,𝑚𝑀𝑋 ←Mix(𝐺𝑀𝑋) 5

20: 𝑀𝑀𝑋 ← 𝑀𝑀𝑋 ∥𝑚𝑀𝑋

21: 𝑀𝑜𝑑𝑠 = {(𝐺𝐴𝐸 , 𝑀𝐴𝐸), (𝐺𝑅𝐸 , 𝑀𝑅𝐸), (𝐺𝐴𝑁 , 𝑀𝐴𝑁),
(𝐺𝑅𝑁 , 𝑀𝑅𝑁), (𝐺𝑀𝑋 , 𝑀𝑀𝑋)}

22: for 𝑄 ∈ Q do
23: for (𝐺𝑀𝑜𝑑 , 𝑀𝑀𝑜𝑑) ∈ 𝑀𝑜𝑑𝑠 do
24: if 𝑄 = Node Count then
25: 𝑆 ← |𝑉𝐺𝑀𝑜𝑑

|
26: else if 𝑄 = Edge Count then
27: 𝑆 ← |𝐸𝐺𝑀𝑜𝑑

|
28: else if 𝑄 = Node Degree then
29: 𝑣 ∼ U(𝑉𝐺𝑀𝑜𝑑

)
30: 𝑆 ← |{𝑢 ∈ 𝑉𝐺𝑀𝑜𝑑

| (𝑣,𝑢) ∈ 𝐸𝐺𝑀𝑜𝑑
}|

31: else if 𝑄 = Connected Nodes then
32: 𝑣 ∼ U(𝑉𝐺𝑀𝑜𝑑

)
33: 𝑆 ← {𝑢 ∈ 𝑉𝐺𝑀𝑜𝑑

| (𝑣,𝑢) ∈ 𝐸𝐺𝑀𝑜𝑑
}

34: else if 𝑄 = Print Graph then
35: 𝑆 ← 𝐺𝑀𝑜𝑑

36: end if
37: 𝐷 ← 𝐷 ∪ (𝐺,𝑀𝑀𝑜𝑑 , 𝑄, 𝑆)
38: end for
39: end for
40: end for
41: end for
42: return 𝐷

B Results on Varying Final Questions and
Graph Encoders

Within DyGraphQA-Synth, in addition to the Print Graph ques-

tion, we evaluated model performance on other final questions,

including Node Count, Edge Count, Node Degree, and Con-
nected Nodes. Detailed results for these tasks are provided in

Figure 6 respectively. Our analysis reveals that models consistently

perform poorly on the Print Graph task when compared to other

graph property tasks. This finding is significant because it illus-

trates the challenges with maintaining the modified structure, as

outputting the entire adjacency matrix requires carefully managing

the structured data it contains.

B.1 Node Count
o1-mini demonstrates slight drops in performance on all modifi-

cation types compared to Claude 3.5 Sonnet and Llama 3.1 405B.

This observation follows from Table 3, which also indicates that

even in the static case, o1-mini lags slightly behind both Claude 3.5

Sonnet and Llama 3.1 405B on counting the number of nodes in an

adjacency matrix.

B.2 Edge Count
o1-mini consistently outperforms all other models, aligning with

the trends observed in Table 2.

B.3 Node Degree
o1-mini again outperforms others for all modification types except

Add Node. Models show significant drops in performance on the

Remove Node operation, an inherently more error-prone operation

due to the renumbering and recalibration of indices. Interestingly,

Claude 3.5 Sonnet’s performance increases slightly on the Add

Node modification as the number of modifications increase.

B.4 Connected Nodes
The Connected Nodes task mirrors the patterns found in Node

Degree. o1-mini outperforms all other models. As with Node De-

gree, the Remove Node modification introduces the most notable

performance drop for all models. Llama 3.1 405B shows slight im-

provement in accuracy for Add Node modifications as the number

of modifications increases.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

a) Node Count

b) Edge Count

c) Node Degree

d) Connected Nodes

Figure 6: Performance of models on the following Final Questions: a) Node Count, b) Edge Count, Node Degree, and Connected
Nodes.

C Error Analysis
We analyze error types and frequencies for all baseline models on

the Print Graph task, illuminating where LLMs falter in dynamic

graph reasoning on structured data.

For Add Edge, Figure 7a shows the different types of errors

models make. We observe the following error types:

• Altered correct index and adjacent index: The model cor-

rectly modifies the target index but also adds an edge to an

adjacent one. This is the most frequent error for all models. Both

Llama 3.1 405B and GPT-4o mini exhibit an increase in this error

type as the number of modifications grows, indicating potential

scaling issues. For both o1-mini and Claude 3.5 Sonnet, this error

overwhelmingly dominates their performance, as they bothmake

few other types of errors. Claude 3.5 Sonnet reduces this error

with more modifications, aligning with improved performance

in Figure 2.

• Altered adjacent index: The model modifies only an adjacent

(incorrect) index. This error remains low and stable for o1-mini

and Claude 3.5 Sonnet, whereas it becomes more common for

Llama 3.1 405B and GPT-4o mini with an increasing number of

modifications.

• Altered non-adjacent index: A rare error for most models,

where a non-relevant index is modified. The error is more promi-

nent in GPT-4o mini, suggesting that this error decreases with

larger model sizes and improved reasoning capabilities. Interest-

ingly, GPT-4o mini makes this error less often as the number of

modifications increases. As shown by Figure 2, GPT-4o mini’s

performance on theAdd Edgemodification still decreases across

the number of modifications, suggesting that themodel’s edits be-

come increasingly closer to the correct indices as the complexity

of the problem increases.

• No modification made: The model outputs the original matrix

unchanged. Rare overall and absent in o1-mini.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Can Large Language Models Reason on Dynamic Graphs? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

a) Add Edge

b) Remove Edge

c) Add Node

d) Remove Node

Figure 7: Errors made by models on the Print Graph task, with the following modifications: a) Add Edge, b) Remove Edge, c)
Add Node, d) Remove Node.

• Dimension error: The output is not a valid matrix—typically

due to inconsistent row lengths, never occuring for Claude 3.5

Sonnet.

• Changed dimensionality: The model outputs a matrix of incor-

rect dimensions. Seen occasionally in o1-mini and GPT-4o-mini,

and never in Claude 3.5 Sonnet and Llama 3.1 405B.

For Remove Edge, Figure 7b shows that the error distribution
closely mirrors that of Add Edge:

• Altered correct and adjacent index: This remains the most

frequent error across models, dominating overall error rates.

Both Llama 3.1 405B and GPT-4o mini exhibit an increase in

this error as the number of modifications grows, reflecting a

recurring challenge with hallucinating adjacent edges.

• Previously defined errors: As in Add Edge, the following

errors follow similar trends—Altered adjacent index, Altered
non-adjacent index,Nomodification,Dimension error, and
Changed dimensionality (only seen occasionally in o1-mini).

For Add Node, Figure 7c highlights the strong performance of

Claude 3.5 Sonnet and Llama 3.1 405B:

• Connected added node: The newly added node is incorrectly

connected to existing nodes. Rare overall, with Claude 3.5 Sonnet

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

making this error once; o1-mini shows a higher rate, consistent

with its bias toward preserving graph structure (Section 4.2.4).

• Dimension error: Occurs frequently for o1-mini and GPT-4o-

mini. Interestingly, dimension errors are less common at extreme

values of 𝑘 for o1-mini, with GPT-4o-mini showing the opposite

trend.

• Other rare errors: Miscopy errors (modifying existing edges),

Added too few nodes, and Added too many nodes (occurring
only for GPT-4o-mini).

For Remove Node, Figure 7d shows error types for the most

challenging modification in DyGraphQA-Synth:

• Removed too many nodes: This error arises when the model

removes more than the required 𝑘 nodes. It is less frequent in

o1-mini and Llama 3.1 405B but occurs at a high frequency in

GPT-4o mini and Claude 3.5 Sonnet, with Claude 3.5 Sonnet

exhibiting an increase in this error as 𝑘 grows.

• Removed too few nodes: This error occurs when the model

removes fewer than 𝑘 nodes. It is generally infrequent, though

Llama 3.1 405B makes this error slightly more often than the

other models.

• No modification made: Only Llama 3.1 405B produces this

error, and produces it very rarely.

• Dimension error: This error is made by Claude 3.5 Sonnet

and o1-mini, while Llama 3.1 405B produces it slightly more

often. However, this is the most frequent error for GPT-4o mini,

indicating that it struggles significantly with maintaining a valid

matrix structure and returning a mathematically well-defined

object.

• Incorrect implementation: This error occurs when the model

removes the correct number of rows and columns, but the inter-

nal connections of the resulting matrix deviate substantially from

the solution matrix. This is the most common error type across

all models except GPT-4o mini, which struggles to produce valid

outputs at all due to frequent dimension errors. o1-mini makes

this error less frequently than Claude 3.5 Sonnet and Llama 3.1

405B, contributing to its superior overall performance on the

Remove Node modification as seen in Figure 2.

D Illustrating Prompts and Model Outputs
In this section, we show example input prompts and model outputs

from the three in-context methods we evaluate on DyGraphQA-

Synth. We evaluated Claude 3.5 Sonnet on a single example, involv-

ing three Add Edge modifications followed by a Print Graph task.

Figure 8 show the input prompt and model output using zero-shot

prompting, Figure 9 show the input prompt and model output using

CoT prompting with one example, and Figure 10 show the input

prompt and model output using MaP prompting

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Can Large Language Models Reason on Dynamic Graphs? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Zero-shot Prompt

The f o l l ow i n g mat r i x r e p r e s e n t s the ad j a c ency

mat r i x o f an und i r e c t e d graph , where the f i r s t

row co r r e spond s to node 0 , the second row

co r r e spond s to node 1 , and so on :

[[0 1 0 0 0 0 0 0 0 1 0 0 0 0 0]

[1 0 1 1 0 0 1 0 1 0 1 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0 1 0 1 0 0]

[0 1 0 0 0 0 0 0 0 0 0 0 1 0 0]

[0 0 0 0 0 1 0 0 0 0 0 0 0 1 0]

[0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]

[0 1 0 0 0 0 0 0 1 0 0 1 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1]

[0 1 0 0 0 0 1 0 0 1 0 0 0 0 0]

[1 0 0 0 0 1 0 0 1 0 0 0 0 0 1]

[0 1 1 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0 0 0 0 1]

[0 0 1 1 0 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 1 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 0 1 0 1 0 1 0 1 0 0 0]]

Perform the f o l l ow i n g op e r a t i o n s on the graph :

1 : Add an edge between node 14 and node 8 .

2 : Add an edge between node 8 and node 3 in

the r e s u l t i n g graph o f o p e r a t i o n 1 .

3 : Add an edge between node 2 and node 8 in

the r e s u l t i n g graph o f o p e r a t i o n 2 .

Q : What i s the f i n a l r e s u l t i n g ad j a c ency

mat r i x ?

A :

LLM Output on Zero-shot Prompt

To answer this question , I'll start with the

given adjacency matrix and perform the

requested operations one by one. After each

operation , I'll update the matrix.

Here 's the process:

1. Add an edge between node 14 and node 8:

This adds a 1 in position (14,8) and (8,14)

of the matrix.

2. Add an edge between node 8 and node 3:

This adds a 1 in position (8,3) and (3,8)

of the matrix.

3. Add an edge between node 2 and node 8:

This adds a 1 in position (2,8) and (8,2)

of the matrix.

After performing these operations , the final

resulting adjacency matrix is:

[[0 1 0 0 0 0 0 0 0 1 0 0 0 0 0]

[1 0 1 1 0 0 1 0 1 0 1 0 0 0 0]

[0 1 0 0 0 0 0 1 0 0 1 0 1 0 0]

[0 1 0 0 0 0 0 1 0 0 0 0 1 0 0]

[0 0 0 0 0 1 0 0 0 0 0 0 0 1 0]

[0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]

[0 1 0 0 0 0 0 0 1 0 0 1 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1]

[0 1 1 1 0 0 1 0 0 1 0 0 0 0 1]

[1 0 0 0 0 1 0 0 1 0 0 0 0 0 1]

[0 1 1 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0 0 0 0 1]

[0 0 1 1 0 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 1 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 0 1 0 1 1 1 0 1 0 0 0]]

This matrix represents the final state of the

graph after all the requested operations

have been performed.

Incorrect!

Figure 8: (a) An example zero-shot prompt. The prompt consists of three Add Edge modifications, followed by the Print Graph
task. (b) The output of Claude 3.5 Sonnet on the example prompt. Here, the model answered the question incorrectly, as
it modified positions (2,7) and (3,7) instead of (2,8) and (3,8), despite modifying positions (8,2) and (8,3) correctly. Correctly
modified indices are highlighted in green, while incorrectly modified indices are highlighted in red.

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

CoT Prompt with one example

The f o l l ow i n g mat r i x r e p r e s e n t s the ad j a c ency

mat r i x o f an und i r e c t e d graph , where the f i r s t

row co r r e spond s to node 0 , the second row

co r r e spond s to node 1 , and so on :

[[0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0]

[1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0]

. . .

[0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0]

[0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0]]

Perform the f o l l ow i n g op e r a t i o n s on the graph :

1 : Add an edge between node 15 and node 1 3 .

2 : Add an edge between node 15 and node 3 in

the r e s u l t i n g graph o f o p e r a t i o n 1 .

3 : Add an edge between node 10 and node 7 in

the r e s u l t i n g graph o f o p e r a t i o n 2 .

Q : What i s the f i n a l r e s u l t i n g ad j a c ency

mat r i x ?

A : A f t e r changing both e n t r i e s [1 5 , 13] and

[1 3 , 15] from 0 to 1 , both e n t r i e s [1 5 , 3] and

[3 , 15] from 0 to 1 , and both e n t r i e s [1 0 , 7]

and [7 , 10] from 0 to 1 , the r e s u l t i n g

ad j a c ency mat r i x i s as d e f i n e d below :

[[0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0]

[1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0]

. . .

[0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0]

[0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0]]

The f o l l ow i n g mat r i x r e p r e s e n t s the ad j a c ency

mat r i x o f an und i r e c t e d graph , where the f i r s t

row co r r e spond s to node 0 , the second row

co r r e spond s to node 1 , and so on :

. . .

Q : What i s the f i n a l r e s u l t i n g ad j a c ency

mat r i x ?

A :

LLM Output on CoT Prompt

To solve this problem , we 'll perform the

operations one by one and update the adjacency

matrix accordingly. Remember that for an

undirected graph , when we add an edge between

two nodes , we need to update both corresponding

entries in the matrix.

Let 's perform the operations:

1. Add an edge between node 14 and node 8:

Update [14][8] and [8][14] from 0 to 1

2. Add an edge between node 8 and node 3:

Update [8][3] and [3][8] from 0 to 1

3. Add an edge between node 2 and node 8:

Update [2][8] and [8][2] from 0 to 1

After applying these changes , the final

resulting adjacency matrix is:

[[0 1 0 0 0 0 0 0 0 1 0 0 0 0 0]

[1 0 1 1 0 0 1 0 1 0 1 0 0 0 0]

[0 1 0 0 0 0 0 0 1 0 1 0 1 0 0]

[0 1 0 0 0 0 0 0 1 0 0 0 1 0 0]

[0 0 0 0 0 1 0 0 0 0 0 0 0 1 0]

[0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]

[0 1 0 0 0 0 0 0 1 0 0 1 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1]

[0 1 1 1 0 0 1 0 0 1 0 0 0 0 1]

[1 0 0 0 0 1 0 0 1 0 0 0 0 0 1]

[0 1 1 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0 0 0 0 1]

[0 0 1 1 0 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 1 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 0 1 0 1 1 1 0 1 0 0 0]]

This is the final resulting adjacency matrix

after performing all the specified operations.

Correct!

Figure 9: (a) An example CoT prompt with one example, created by adding the example before the prompt from Figure 8(a) We
truncate all matrices in the prompt for space reasons. (b) The output of Claude 3.5 Sonnet on the CoT prompt from Figure
9(a). Here, the model answered the question correctly, and the correctly modified indicies are highlighted in green in the final
matrix.

16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

Can Large Language Models Reason on Dynamic Graphs? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

MaP Prompt

The f o l l ow i n g mat r i x r e p r e s e n t s the ad j a c ency

mat r i x o f an und i r e c t e d graph , where the f i r s t

row co r r e spond s to node 0 , the second row

co r r e spond s to node 1 , and so on :

[[0 1 0 0 0 0 0 0 0 1 0 0 0 0 0]

[1 0 1 1 0 0 1 0 1 0 1 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0 1 0 1 0 0]

[0 1 0 0 0 0 0 0 0 0 0 0 1 0 0]

[0 0 0 0 0 1 0 0 0 0 0 0 0 1 0]

[0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]

[0 1 0 0 0 0 0 0 1 0 0 1 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1]

[0 1 0 0 0 0 1 0 0 1 0 0 0 0 0]

[1 0 0 0 0 1 0 0 1 0 0 0 0 0 1]

[0 1 1 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0 0 0 0 1]

[0 0 1 1 0 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 1 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 0 1 0 1 0 1 0 1 0 0 0]]

Perform the f o l l ow i n g op e r a t i o n s on the graph :

1 : Add an edge between node 14 and node 8 .

2 : Add an edge between node 8 and node 3 in

the r e s u l t i n g graph o f o p e r a t i o n 1 .

3 : Add an edge between node 2 and node 8 in

the r e s u l t i n g graph o f o p e r a t i o n 2 .

Q : What i s the f i n a l r e s u l t i n g ad j a c ency

mat r i x ? For each ope r a t i on , w r i t e out the

e n t i r e r e s u l t i n g ad j a c ency mat r i x .

A :

LLM Output on MaP Prompt

I'll perform the operations step by step and

provide the resulting adjacency matrix

after each operation.

Operation 1: Add an edge between node 14 and

node 8

[[0 1 0 0 0 0 0 0 0 1 0 0 0 0 0]

[1 0 1 1 0 0 1 0 1 0 1 0 0 0 0]

...

[0 0 0 0 1 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 0 1 0 1 1 1 0 1 0 0 0]]

Operation 2: Add an edge between node 8 and

node 3

[[0 1 0 0 0 0 0 0 0 1 0 0 0 0 0]

[1 0 1 1 0 0 1 0 1 0 1 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0 1 0 1 0 0]

[0 1 0 0 0 0 0 0 1 0 0 0 1 0 0]

...

[0 0 1 1 0 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 1 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 0 1 0 1 1 1 0 1 0 0 0]]

Operation 3: Add an edge between node 2 and

node 8

Here 's the final resulting adjacency matrix:

[[0 1 0 0 0 0 0 0 0 1 0 0 0 0 0]

[1 0 1 1 0 0 1 0 1 0 1 0 0 0 0]

[0 1 0 0 0 0 0 0 1 0 1 0 1 0 0]

[0 1 0 0 0 0 0 0 1 0 0 0 1 0 0]

[0 0 0 0 0 1 0 0 0 0 0 0 0 1 0]

[0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]

[0 1 0 0 0 0 0 0 1 0 0 1 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1]

[0 1 1 1 0 0 1 0 0 1 0 0 0 0 1]

[1 0 0 0 0 1 0 0 1 0 0 0 0 0 1]

[0 1 1 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0 0 0 0 1]

[0 0 1 1 0 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 1 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 0 1 0 1 1 1 0 1 0 0 0]]

Correct!

Figure 10: (a) An example MaP prompt, created by appending the phrase For each operation, write out the entire resulting
adjacency matrix. to the prompt from Figure 8(a). (b) The output of Claude 3.5 Sonnet on the example MaP prompt from Figure
10(a). The first and second intermediate matrices are truncated in order to fit the entire output on the page. Here, the model
answered the question correctly, and the correctly modified indicies are highlighted in green in the final matrix.

17

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

Table 2: Accuracy percentages (mean ± s.d) on graph property questions from [10].

Graph Encoder Final Task GPT-4o mini Llama 3.1 Claude 3.5 o1-mini

Adjacency List

Node Count 86.6 89.8 95.4 99.8

Edge Count 30.4 48.8 54.8 93.6

Node Degree 95.2 100.0 100.0 98.4

Edge Existence 71.8 70.6 86.8 66.0

Connected Nodes 97.8 100.0 100.0 98.2

Cycle 90.4 91.0 95.0 99.0

Average 78.7 ± 23.2 83.4 ± 18.3 88.7 ± 15.8 92.5 ± 12.02

Incident

Node Count 100.0 99.8 100.0 100.0

Edge Count 30.0 60.4 76.2 99.0

Node Degree 99.2 99.2 100.0 99.6

Edge Existence 95.2 91.0 99.8 66.6

Connected Nodes 99.8 100.0 100.0 100.0

Cycle 86.2 87.4 88.4 98.8

Average 85.1 ± 25.1 91.3 ± 14.2 94.1 ± 9.0 94.0 ± 12.3

Friendship

Node Count 99.6 98.8 100.0 100.0

Edge Count 27.6 49.2 57.0 86.8

Node Degree 91.6 98.2 100.0 98.0

Edge Existence 73.0 76.0 77.4 66.0

Connected Nodes 87.8 93.4 95.2 92.6

Cycle 91.6 91.8 95.6 99.8

Average 78.5 ± 24.1 84.6 ± 17.5 87.5 ± 15.7 90.5 ± 11.9

Coauthorship

Node Count 99.0 99.0 95.6 100.0

Edge Count 27.4 42.8 54.2 78.2

Node Degree 88.0 94.0 99.6 96.4

Edge Existence 85.6 84.2 88.6 65.0

Connected Nodes 75.2 91.6 98.2 93.4

Cycle 92.4 95.6 100.0 99.4

Average 77.9±23.7 84.5±19.2 89.4±16.2 88.7 ± 12.9

Expert

Node Count 87.4 82.8 79.2 99.4

Edge Count 35.2 52.2 62.8 95.0

Node Degree 95.8 99.8 100.0 99.4

Edge Existence 67.0 66.8 100.0 65.0

Connected Nodes 97.4 97.4 95.2 89.4

Cycle 86.2 85.8 96.0 98.0

Average 78.2±21.6 80.8±16.7 88.9±13.6 91.0 ± 12.1

Social Network

Node Count 99.6 99.4 100.0 100.0

Edge Count 26.4 48.0 57.8 81.8

Node Degree 94.0 97.4 100.0 97.2

Edge Existence 86.6 85.2 100.0 64.2

Connected Nodes 85.4 92.8 94.8 93.4

Cycle 91.8 90.4 93.6 98.6

Average 80.6±24.7 85.5±17.4 91.0±15.1 89.2 ± 12.7

Politician

Node Count 99.4 100 99.6 100.0

Edge Count 25.2 48.2 55.4 85.8

Node Degree 94.0 97.0 99.8 98.6

Edge Existence 88.8 81.6 71.0 66.0

Connected Nodes 79.6 79.4 100.0 97.2

Cycle 91.4 89.0 95.8 99.4

Average 79.7±25.1 82.5±17.1 86.9±17.4 91.2 ± 12.2

GoT

Node Count 100.0 100.0 99.0 100.0

Edge Count 26.8 46.0 57.4 84.8

Node Degree 93.2 95.2 100.0 96.8

Edge Existence 83.4 80.4 87.4 65.2

Connected Nodes 68.4 95.8 100.0 94.6

Cycle 91.4 95.6 94.8 100.0

Average 77.2±24.6 85.5±18.7 89.8±15.1 90.2 ± 12.3

SP

Node Count 99.4 99.8 99.2 100.0

Edge Count 26.0 44.4 59.2 86.0

Node Degree 94.4 96.4 100.0 98.2

Edge Existence 85.2 87.0 82.2 65.2

Connected Nodes 74.2 98.6 100.0 98.0

Cycle 91.4 93.0 95.0 99.6

Average 78.4±24.8 86.5±19.3 89.3±14.8 91.2 ± 12.618

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

Can Large Language Models Reason on Dynamic Graphs? Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

Table 3: Accuracy percentages (mean ± s.d) on graph property questions from [10] for the adjacency matrix encoder. As this
work was being conducted, the PaLM API was deprecated, and fortunately we were able to evaluate PaLM 2 L on the adjacency
matrix encoder before this.

Graph Encoder Final Task PaLM 2 L GPT-4o mini Llama 3.1 Claude 3.5 o1-mini

Adjacency Matrix

Node Count 55.4 98.4 100.0 100.0 98.4

Edge Count 6.4 28.0 44.8 38.6 91.2

Node Degree 28.6 73.4 88.6 98.6 99.2

Edge Existence 70.3 85.0 93.8 99.2 68.2

Connected Nodes 8.4 84.8 98.2 99.0 98.8

Cycle 49.6 87.8 87.6 92.8 100.0

Average 36.5 ± 23.9 76.2 ± 22.8 85.5 ± 18.8 88.0 ± 22.2 92.6 ± 11.3

19

	Abstract
	1 Introduction
	2 Related Works
	3 DyGraphQA
	3.1 DyGraphQA-Real
	3.2 DyGraphQA-Synth

	4 Experiments
	4.1 DyGraphQA-Real
	4.2 DyGraphQA-Synth

	5 Conclusion
	References
	A Dataset Generation Algorithm
	B Results on Varying Final Questions and Graph Encoders
	B.1 Node Count
	B.2 Edge Count
	B.3 Node Degree
	B.4 Connected Nodes

	C Error Analysis
	D Illustrating Prompts and Model Outputs

