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Can Large Language Models Reason on Dynamic Graphs?
Anonymous Author(s)

Abstract
Graphs are essential tools for modeling complex relationships, and

recent work has shown that large language models (LLMs) have

grown increasingly powerful at reasoning over graph-structured

data. This existing work has focused primarily on static graphs that
do not change over time. In any many applications, however, the

underlying graph is dynamic, in that it changes over time. In this

work, we address the capabilities of LLMs for reasoning on dynamic

graphs, focusing on a number of challenging aspects of the prob-

lem: the fully dynamic case in which both nodes and edges can be

added or deleted, and in multiple settings where the graph may be

implicitly described in natural-language text or may be represented

as structured data. To explore these dimensions of the problem, we

introduce DyGraphQA, a new benchmark dataset for dynamic

graph reasoning by LLMs. The benchmark contains prompts speci-

fying graphs both in natural language (DyGraphQA-Real) and as

structured data (DyGraphQA-Synth). We find that current LLMs

struggle with dynamic graph data in both these forms, and analyze

how graph structure, size, edge density, and prompting strategies

impact performance, finding that each factor significantly shapes

model accuracy and reasoning behavior. Our findings highlight a

critical gap in current LLM capabilities regarding dynamic graph

reasoning tasks and underscore the potential of techniques like

MaP to mitigate these challenges.
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1 Introduction
Large Language Models (LLMs) have revolutionized not just the

area of natural language processing, but also a wide range of do-

mains that benefit from their abilities in reasoning and problem-

solving. In particular, recent work has shown that LLMs display

strong reasoning capabilities in domains such as math [1, 5, 13,
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27, 34, 42], coding [18, 28, 31, 36], and common-sense reasoning

[3, 4, 6, 8, 21, 38].

As a result, an important ongoing project for the field is to under-

stand LLMs’ relative strengths and weaknesses in reasoning over

different kinds of data. Exploring this requires careful evaluation

on a range of fundamental types of data, ranging from unstructured

data to different forms of structured data. While much research has

explored LLMs’ ability to reason over unstructured data like text,

relatively little is known about their reasoning on structured data.

Graphs are a central type of structured data that appears fre-

quently in real-world problems, whenever the goal is to represent

relationships and connections between entities. Given that graphs

are a common and fundamental structured representation, recent

work has begun to investigate LLMs’ ability to reason over them.

For example, [30] introduced a benchmark with textual graph de-

scriptions followed by queries like shortest path, evaluating LLM

performance. Similarly, [10] expanded this work by posing more

fundamental questions and varying graph representations in text

from natural language to data structures. Overall, these studies

show that LLM performance varies across graph-based reasoning

tasks, with some proving significantly more challenging than oth-

ers.

Prior research has investigated the graph reasoning abilities of

LLMs, specifically their ability to extract properties of input graphs

represented either as structured data (such as adjacency matrices or

edge lists) [30] or in natural language [10]. These studies primarily

focus on static graphs, where the structure is fixed and presented as
a single snapshot in time. However, in many real-world applications,

graphs are rarely static; they evolve over time with the addition or

removal of nodes and edges. Such dynamic graphs appear frequently
in domains such as social network analysis, where relationships and

interactions constantly change ([17]), and in evolving knowledge

bases that must adapt to new information ([25, 29]).

Despite the prevalence of dynamic graphs, far less research has

explored how well LLMs handle them. To fully assess the graph

reasoning capabilities of modern LLMs and ensure applicability

to real-world situations, it is essential to evaluate their ability to

understand and manipulate graphs that change over time. In this

paper, we address the capabilities of LLMs for reasoning on dynamic

graphs, exploring multiple dimensions of the problem. In particular,

we study the fully dynamic setting, in which both nodes and edges

can be added or deleted; and we study dynamic graphs presented

both through natural language descriptions and through structured

data. Both of these modalities are important for understanding

the problem: while evaluating on structured data is important for

isolating graph reasoning from language understanding biases,

dynamic graphs frequently appear in natural language as well.

Many NLP tasks inherently involve dynamic graph reasoning, as

implicit dynamic graphs emerge in text. For instance, tracking

whether two characters in a story remain connected by its end

requires identifying their initial relationships, following changes

over time, and verifying a persistent link.

1
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We can therefore summarize our central research question as

follows:

Can LLMs reason on fully dynamic graphs presented either in
natural language or as structured data?

To address this question, we introduce DyGraphQA, a novel and
challenging benchmark dataset containing over 160,000 question-

answer pairs pertaining to fully dynamic graph reasoning. Dy-

GraphQA consists of two component datasets: DyGraphQA-Real,
featuring real-world prompts in natural language, andDyGraphQA-
Synth, containing synthetic graph prompts as structured data. By

evaluating both representations, we provide a comprehensive as-

sessment of LLMs’ ability to reason over fully dynamic graphs.

The work closest to ours is a recent study that explored LLMs’

spatial-temporal understanding of dynamic graphs presented as

timestamped edge lists [41]. A key distinction between our work

and theirs is that the core problems are formulated very differently,

enabling us to explore a number of dimensions that are not present

in their work. Specifically, their work only considers partially dy-

namic graphs in which the node set remains constant, while edges

can only be added. Also, their work used only structured data for

representing graphs, whereas we consider both structured data

and natural language. Finally, we ask about a much wider range of

graph properties, whereas [41] focuses on basic retrieval questions

such as when two nodes become connected or retrieving the list

of neighbors of a node. As discussed above, many of the key appli-

cations of graph reasoning by LLMs involve fully dynamic graphs

represented in natural language (for example, any textual data that

describes changing relationships among entities over time), and

evaluating this setting is a distinctive feature of our approach.

In this paper, we first use DyGraphQA-Real to evaluate LLMs’

reasoning over fully dynamic graphs presented in natural language.

Since many real-world dynamic graph tasks naturally appear in

text, we constructed prompts based on real-world fully dynamic

graph data. However, publicly available datasets are limited, as most

dynamic graph datasets are only partially dynamic, tracking only

edge additions while keeping the node set fixed. To address this gap,

we created coauth-DBLP-fully, a dataset of 750 real-world fully

dynamic ego-networks extracted from the coauth-DBLP coauthor-

ship dataset. Each ego-network’s first five years of collaborations

is presented as a chronologically ordered edge list. We then iterate

over the network’s remaining history, adding and removing both

nodes and edges over time. At the end of the sequence, we pose

a follow-up question to form the prompt. Our results show that

SOTA LLMs vary significantly in their ability to answer these ques-

tions, with performance generally declining as the number of graph

modifications increases. Advanced reasoning models like o1-mini

and o3-mini outperformed others but still exhibited performance

gaps on more challenging questions.

To assess LLMs’ reasoning on fully dynamic graphs from struc-

tured data, we use DyGraphQA-Synth, which includes 250 gener-

ated Erdős-Rényi (ER) graphs. Each prompt included (1) an adja-

cency matrix representation of the graph, (2) a sequence of modi-

fications to be performed, and (3) a final query. Our results show

that state-of-the-art (SOTA) LLMs struggle with dynamic graph

reasoning over adjacency matrices, even after a minimal number of

modifications. To address this, we explore techniques to improve

LLM performance on fully dynamic graphs. We find that Chain-

of-Thought (CoT) prompting enhances performance for Claude

3.5 Sonnet and Llama 3.1 405B, though additional CoT examples

provide diminishing returns. More notably, prompting models to

output intermediate graphs leads to significant improvements. We

introduceModify-and-Print (MaP) prompting, a simple yet effective

technique where models explicitly print the adjacency matrix af-

ter each modification step. We additionally investigate how graph

structure, size, and edge density impact performance.

Overall, LLMs are still not proficient in reasoning on fully dy-

namic graphs presented in either natural language or as structured

data. The observed difficulties with graph modifications and the

adjacency matrix underscore the need for improved models or

training strategies that can handle dynamic, structured data more

effectively. These results call for a shift in benchmarking prac-

tices toward tasks that require reasoning over evolving graph data,

thereby better aligning evaluations with real-world applications in

dynamic networks and systems.

In summary, this work makes the following contributions:

• Introduction of DyGraphQA: We present a novel benchmark

dataset that provides a rigorous testbed for dynamic graph rea-

soning across graphs presented in either natural language or as

structured data.

• Analysis of LLM Performance on Graph Modifications:
We reveal that SOTA LLMs experience significant performance

degradation on graph modification tasks, especially with increas-

ing numbers of modifications.

• Exploration of factors affecting LLM performance on dy-
namic graphs: We analyze how graph structure, size, edge den-

sity, and prompting strategies—including in-context learning and

our MaP method—impact performance, finding that each factor

significantly shapes model accuracy and reasoning behavior.

By addressing the challenges identified in this study, we aim to ad-

vance the development of LLMs capable of sophisticated reasoning

over dynamic and structured data, thereby expanding their applica-

bility in complex, real-world scenarios. Our code and datasets are

openly accessible.
1

2 Related Works
[30] explores the capability of LLMs to tackle various graph-based

tasks. This study evaluates tasks such as topological sort, maxi-

mum flow, and bipartite graph matching. [10] delves into different

methods for encoding graphs as text, with a particular focus on

evaluating different encodings of graphs as text. This work builds

upon [30] by introducing more interpretable, straightforward, and

fundamental tasks, focusing on fundamental graph properties. Fol-

lowing [10] and [30], we freeze the parameters of the LLM, and

the model operates in a black box setup, consuming and producing

text. Both sets of tasks found in [30] and [10] are applied only for

static graphs, whereas we focus on the fully dynamic case to assess

multi-step dynamic graph reasoning [35, 37].

Outside of [10] and [30], there exists an emerging body of work

at the intersection of LLMs and graph reasoning [7, 9, 11, 12, 22, 23].

[24] directly follows up on [10] by utilizing and finetuning soft-

token prompts to better encode graphs for LLMs. [41] addresses

1
https://anonymous.4open.science/r/DyGraphQA-7394/
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Figure 1: Previous work ([10]) focus their effort on evaluating LLMs on static graphs (top), whereas this work focuses on fully
dynamic graph tasks (bottom).

the challenges of solving spatial-temporal problems on partially

dynamic graphs using LLMs, evaluating various LLMs’ abilities

to solve various spatio-temporal graph property tasks. [16] uti-

lizes retrieval-augmented generation techniques to improve LLM

performance on graph understanding. [2, 14, 19, 20, 26, 33, 40] pro-

vide broad empirical evaluation of LLMs’ understanding of graph-

structured data. [39] focuses on the generation of graphs from

scratch by LLMs, exploring the potential of LLMs to create coher-

ent graph structures. [32] examines howwell LLMs can recall graph

structures from text.

3 DyGraphQA
In this section, we introduce DyGraphQA, a dataset for evaluat-
ing the fully dynamic graph reasoning capabilities of LLMs. Dy-

GraphQA consists of two subsets: DyGraphQA-Real (𝐷
Real

) and

DyGraphQA-Synth (𝐷
Synth

), each composed of 4-tuples:

(𝑔(𝐺),𝑚(𝑚1,𝑚2, . . . ,𝑚𝑘 ), 𝑞(𝑄), 𝑆)

Here, 𝐺 is the graph, 𝑔(𝐺) is the graph encoding function (e.g., ad-

jacency matrix or descriptive text), 𝑞(𝑄) is the question rephrasing

function (e.g., zero-shot or chain-of-thought prompting [34]), and

𝑆 is the ground-truth answer.

We define 𝑚(𝑚1,𝑚2, . . . ,𝑚𝑘 ) as the modification sequence
function, which lists in text a sequence of 𝑘 modification events

𝑚1,𝑚2, . . . ,𝑚𝑘 to be applied to𝐺 , resulting in a final graph𝐺𝑘 . Each

modification event𝑚𝑖 is drawn from a set of possible modification

types𝑀 , where:

𝑚𝑖 ∈ 𝑀 = {AddEdge, RemoveEdge,AddNode, RemoveNode},∀𝑖

Here,AddEdge(u, v) adds an edge between two unconnected nodes
u and v,RemoveEdge(u, v) removes an existing edge,AddNode(u)
introduces a new node u into the graph, and RemoveNode(u)
deletes an existing node and all its associated edges.

The LLM 𝑓 ’s output 𝐴 = 𝑓 (𝑔(𝐺), 𝑞(𝑄)) is evaluated against 𝑆 ,

with performance measured by the proportion of matches across

all tuples in both 𝐷
Real

and 𝐷
Synth

.

The following sections detail the construction of both datasets.

3.1 DyGraphQA-Real
The graphs in DyGraphQA-Real are derived from coauth-DBLP,
a coauthorship dataset with over 1.4 million nodes and 10.5 million

edges. This dataset is structured as a timestamped edge list, where

each edge is represented as a (Author A,Author B, year) triple, cor-
responding to a paper written between Author A and Author B

at a particular year. To construct DyGraphQA-Real, we sampled

750 nodes and built their ego-networks, the subgraph of all edges

including the ego (the sampled node) and all edges between the

ego’s neighbors. Each ego-network was formed by chronologically

sorting its corresponding edge list. We preprocess the dataset so

that any two authors can only share at most one paper together.

3.1.1 Ego-Network Construction as a Sequence of Modification
Events. Our goal is to use coauth-DBLP as the basis for a dataset

that is fully dynamic in the sense that edges and nodes can be

both added and deleted. Edge addition corresponds naturally to the

authoring of a new paper. Similarly, nodes would be added when

an author writes their first paper in the ego-network. However,

since coauthorship ego-networks are inherently cumulative, defin-

ing edge and node deletion events in this context is non-trivial.

In practice, many coauthorship datasets include edge and node

deletions–for example, during data cleaning or when users remove

their papers or delete their accounts on platforms like arXiv or

Google Scholar. Modeling such deletions in coauth-DBLP is there-

fore both a practical necessity and a challenge that tests how well

LLMs handle fully dynamic graphs. For edge removal, we add a

further dimension for purposes of constructing the dataset: for a

3
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parameter 𝑡 , we declare that each edge corresponding to a paper is

deleted again from the graph 𝑡 years after the paper is written. Here

we will use 𝑡 = 5. Thus, in the most straightforward formulation

of the dataset, we add each edge when its corresponding paper is

published and remove it 𝑡 = 5 years later. Additionally, we remove

nodes from an ego-network when their last remaining paper in the

ego-network is removed. In this way, every edge and node would

have both an addition and a removal event.

However, this approach would result in each ego-network start-

ing and ending with an empty graph, whereas we prefer to start

with an initial graph and end with some non-trivial final graph.

As a result, we introduce an initial graph 𝐺 , which includes all

papers published in the first five years of the ego-network. Any

subsequent paper adds an edge via an Add Edge event. Edges in
both the initial graph and those that are later added are removed

from the ego-network five years after they are added, except
those introduced in the last five years of the ego-network, which

remain in the final graph, allowing for a partially full final graph.

Authors are included in the initial graph if they wrote their first-

ever paper—whether inside the ego-network with another member

of the ego-network or outside it—within or before the initial five-

year window. Otherwise, they are added via an Add Node event
when they publish their first paper (again, even if this paper was

published inside our outside the ego-network). A Remove Node
event is triggered when an author writes their final-ever paper be-

fore the end of the ego-network, regardless of whether that paper is

inside or outside the ego-network. Authors who continue publish-

ing beyond the ego-network’s duration remain in the final graph.

In this way, nodes can be added or removed from the graph. This

ensures that the ego-network starts with an informative subgraph

and maintains a non-trivial structure at the end. Finally, in order

to construct the full sequence of modification events, we first note

the timestamp where each modification event occurred, and then

chronologically sort the set of all timestamped modification events.

3.1.2 Graph Encoding Function 𝑔(𝐺). The next challenge is de-

termining how to present the initial graph 𝐺 in natural language

within the prompt. One approach is to explicitly describe it as an

ego-network: "The following graph is a coauthorship ego-network",
encoding each edge (Author A,Author B, year) ∈ 𝐺 as a times-

tamped paper written between two authors: "(Author A) wrote a
paper with (Author B) in year (year)."

However, to ensure a more natural presentation of the prompt,

we instead frame the graph as a research group, where each edge

represents a collaboration between two researchers. This framing

better aligns with the dynamics of a fully dynamic graph, where

both nodes and edges can be added or removed. It is more intuitive

to describe researchers joining or leaving a group and collabora-

tions forming or dissolving than to describe papers being added or

removed from a coauthorship network.

Thus, we begin each prompt with the textual introduction of the

initial graph 𝐺 found in Figure 1, which begins as follows:

"We are going to use a graph to..."

Additionally, each edge in 𝐺 is encoded as:

"Author A is working on a project with Author B."

We omit collaboration years, as the chronological order of edges

already reflects the graph’s temporal evolution.

3.1.3 Modification Sequence Function𝑚(·). After generating the
modification sequence (𝑚1,𝑚2, . . . ,𝑚𝑘 ) as described in Section

3.1.1, we introduce it in the prompt with:

"The following events then occur in order:"

Each modification𝑚𝑖 is expressed in natural language as:

• 𝑚𝑖 = Add Edge(u, v): "i) u starts a project with v"
• 𝑚𝑖 = Remove Edge(u, v): "i) The project between u and v comes to

an end"
• 𝑚𝑖 = Add Node(u): "i) u joins the group"
• 𝑚𝑖 = Remove Node(u): "i) u leaves the group"

Applying this sequence to 𝐺 returns a final modified graph 𝐺𝑘 .

Note that, in this process, both the total number of modifications

and the type of each modification event are directly derived from

the dataset. We sample ego-networks across a range of 𝑘 values to

ensure coverage of both short and long modification sequences.

3.1.4 Final Question 𝑄 and Question Rephrasing 𝑞(𝑄). We finally

append a Final Question 𝑄 to be asked to the model. We include

the following graph property questions from [10]: Node Count
(calculating the total number of nodes in the modified graph 𝐺𝑘 ),

Edge Count (calculating the total number of edges present in the

𝐺𝑘 ), Node Degree (calculating the degree of a uniformly sampled

node in𝐺𝑘 ), and Connected Nodes (returning the set of all nodes

that are directly connected to a uniformly sampled node in 𝐺𝑘 ).

In addition to these property tasks, we introduce five new final

questions: Print Graph (returning the entire𝐺𝑘 in the same format

as the graph encoding function 𝑔(𝐺)), Isolated Nodes (returning
the set of isolated nodes who have no neighbors in 𝐺𝑘 ), Overlap-
ping Nodes (determining if two sampled nodes were part of the

graph at the same), Overlapping Edges (determining if two sam-

pled edges were part of the graph at the same), andTriangle Count
(counting the total number of triangles that formed throughout the

entire history of the graph as modifications were applied).

For the question rephrasing function 𝑞(𝑄), DyGraphQA-Real
uses only zero-shot prompting due to the large number of modi-

fication steps, which often exhausts the context window, allowing

us to evaluate models’ innate reasoning abilities.

3.1.5 Additional Details. coauth-DBLP-fully consists of 750 ego-

networks, each pairedwith a sequence ofmodification events. These

are used to construct natural language prompts in DyGraphQA-
Real, ending with a final question 𝑄 . Further dataset generation

details, along with a summary table of key dataset statistics, are

provided in the accompanying code repository.
2

We define the size of each ego-network as the sum of its initial

edge count (which we ensure is at least 10) and the number of ap-

plied modifications. Ego-networks are grouped into small (10–24),
medium (25–49), and large (50–75) sizes, with 250 samples per

group. To ensure diversity, each ego-network contains 7-20 nodes

and includes at least one Add Node event and one Remove Node
event. Each ego-network is paired with one of 9 final questions,

resulting in 750 × 9 = 6,750 evaluation prompts.

2
https://anonymous.4open.science/r/DyGraphQA-7394/
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3.2 DyGraphQA-Synth
DyGraphQA-Synth consists of synthetic prompts based on fully

dynamic graphs presented as structured data.

3.2.1 Generation of 𝐺 . Following [30] and [10], we generate 250

undirected Erdős-Rényi (ER) graphs. Each graph has 𝑛 nodes, with

𝑛 sampled from a uniform distribution on a finite interval, and

edges are added independently with 𝑝 ∼ 𝑈 (0, 1). This variation
in size and density ensures broad coverage of graph structures to

evaluate LLM reasoning under diverse structural conditions.

3.2.2 Graph Encoding Function 𝑔(𝐺). We introduce and use the

Adjacency Matrix encoding for all DyGraphQA-Synth prompts

due to its difficulty for LLMs. Each entry 𝐴𝑖 𝑗 indicates the presence

(1) or absence (0) of an edge between nodes 𝑖 and 𝑗 . This encoding

has yet to be explored as a graph encoding function in previous

studies. Effectively manipulating adjacency matrices is important

for LLMs because they are fundamental to many modern graph

algorithms and applications.

This encoding challenges LLMs due to its lack of natural language

cues, the need to reason about both edge presence and absence, and

notably its reliance on an implicit numbering scheme for nodes,

where node identifiers correspond directly to the indices of the

matrix. When nodes are removed, nodes in the resulting graph

must be renumbered to maintain a contiguous matrix structure. For

example, if an adjacencymatrix represents nodes 0 to 4 and node 2 is

removed, the third row and column are eliminated, and subsequent

nodes are renumbered—node 3 becomes node 2, node 4 becomes

node 3. This renumbering adds an extra layer of complexity for the

LLM to manage during reasoning and updates.

3.2.3 Modification Sequence Function𝑚(·). In DyGraphQA-
Synth, each modification sequence contains a single modification

type, allowing us to isolate the effects of each of the four core

operations on performance.We also include a fifth type,Mix, which
samples uniformly from the four base modifications at each step 𝑘 ,

introducing modification diversity similar to DyGraphQA-Real.
We set 𝑘 to 1-5 as adjacency matrices scale quadratically with graph

size, keeping evaluation tractable while still capturing the impact

of dynamic modifications.

3.2.4 FinalQuestion𝑄 andQuestion Rephrasing𝑞(𝑄). In DyGraph-
QA-Synth, we include 5 final questions:Node Count, Edge Count,
Node Degree, Connected Nodes, and Print Graph. We omit

Isolated Nodes, Overlapping Nodes, and Overlapping Edges as
values of the solutions of these questions changed minimally over

few modifications, and omit Triangle Count as the high density of

larger ER graphs tend to produce excessively high triangle counts.

We use three question rephrasing functions: zero-shot, Chain-
of-Thought (CoT)with 1–3 reasoning examples, and our proposed

Modify-and-Print (MaP) technique (Section 4.2.3), which encour-

ages state tracking through explicit intermediate outputs.

3.2.5 Additional Details. To illustrate the dataset construction pro-

cess, we include Algorithm 6 in Section A, which describes how

DyGraphQA-Synth entries are generated in order to create 156250
unique example prompts.

4 Experiments
In this section, we summarize the results of our experiments on both

DyGraphQA-Real and DyGraphQA-Synth. We evaluated four SOTA

LLMs on both datasets: o1-mini, GPT 4o-mini, Claude 3.5 Sonnet,

Llama 3.1 405B, using the OpenAI, Anthropic, and Fireworks AI

APIs. We set the decoding temperature of all models to zero. We

used the NetworkX library [15] to generate all graphs, as well as

the solutions to each final question.

4.1 DyGraphQA-Real
We first evaluate LLM performance on DyGraphQA-Real, assess-
ing their ability to reason over fully dynamic ego-networks pre-

sented in natural language.

4.1.1 Experimental Setup. For DyGraphQA-Real, we assess re-

cently released models, namely o3-mini and Claude 3.7 Sonnet,
only on Triangle Count, as it is the most challenging task.

4.1.2 Findings. Table 1 presents the results. We observe significant

variation in LLMs’ ability to reason over fully dynamic graphs in

natural language, with performance generally decreasing as the

number of modifications to the graph increases. Most models strug-

gle with counting tasks such as Node Count and Edge Count.
The exception is o1-mini, which only struggles on Edge Count
for large graphs. This difficulty suggests that LLMs face challenges

in tracking simple dynamic properties of the graph over time. In-

terestingly, models perform better on the Print Graph task than

on these counting tasks, highlighting a discrepancy between their

ability to reconstruct the final graph and their ability to reason over

the final graph and derive properties from it.

Performance is notably strong on overlap-based tasks, involving

determining whether two authors (Overlapping Nodes) or col-
laborations (Overlapping Edges) exist at the same point in time.

Models tend to perform better on node-level tasks, such as Node
Degree and Connected Nodes, compared to tasks requiring a

more global understanding of the graph.

Larger and more advanced models, including Llama 3.1 405B
and Claude 3.5 Sonnet, consistently outperform the smaller GPT-
4o mini, which performs poorly across the majority of tasks. Rea-

soning models, such as o1-mini, show notable performance gains

over non-reasoning models, particularly on challenging tasks such

as Triangle Count, suggesting the importance of internal reason-

ing capabilities for stronger performance onmore complex dynamic

graph reasoning tasks. However, despite these improvements, the

Triangle Count task remains difficult for all models, demonstrating

substantial limitations in complex fully dynamic graph reasoning in

natural language. While o3-mini significantly outperforms other

models on this task for small and medium graphs, its performance

drops sharply on large graphs. Overall, these findings suggest that

while SOTA LLMs demonstrate an preliminary ability to reason

over fully dynamic graphs presented in natural language, they still

face significant challenges, particularly in accurately tracking and

counting both simple and complex graph properties as they evolve.

4.2 DyGraphQA-Synth
With DyGraphQA-Synth, we evaluated the ability of SOTA LLMs to

reason over fully dynamic graphs presented as structured data. Due
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Node Count Edge Count Node Degree Connected Nodes Print Graph Isolated Nodes Overlapping Nodes Overlapping Edges Triangle Count

Model S M L S M L S M L S M L S M L S M L S M L S M L S M L

o1-mini 99.2 98.0 95.6 98.8 93.2 68.8 99.6 97.6 92.4 88.8 91.6 87.2 91.6 74.8 56.8 92.0 87.2 87.6 99.2 100.0 98.8 99.6 100.0 99.2 81.2 40.4 7.6

Llama3.1 87.6 78.8 67.6 67.8 45.6 24.4 97.6 90.8 88.0 92.4 95.2 90.0 90.8 71.6 51.3 54.2 62.5 66.7 98.8 99.6 95.6 94.8 92.4 94.8 30.0 20.9 3.2

Claude 3.5 94.0 90.0 79.2 81.2 45.2 32.8 97.6 98.4 96.8 97.6 99.6 96.4 87.2 75.6 62.8 86.4 91.6 88.0 99.2 100.0 98.4 98.0 99.6 99.2 28.0 6.4 0.4

GPT-4o-mini 55.6 55.6 53.6 66.4 31.6 7.2 88.4 70.0 58.0 82.8 68.4 44.4 70.0 38.8 12.0 60.4 56.8 39.6 85.2 84.8 82.8 74.0 79.2 75.2 13.2 2.8 0.4

Claude 3.7 - - - - - - - - - - - - - - - - - - - - - - - - 44.8 16.4 5.2

o3-mini - - - - - - - - - - - - - - - - - - - - - - - - 98.0 79.6 42.0

Table 1: Mean accuracy %s of LLMs on DyGraphQA-Real, with the best result in each column shown in bold.

Figure 2: Performance (mean accuracy %s) of LLMs on DyGraphQA-Synth on the Print Graph task.

to monetary constraints, we limited evaluation to o1-mini, GPT-

4o-mini, Claude 3.5 Sonnet, and LLaMA 3.1 405B, and encourage

future work to extend this benchmarking. DyGraphQA-Synth offers

fine-grained control over graph and prompt generation, enabling

us to isolate the impact of various components and their interaction

with the four core modification types. We therefore perform further

ablations, which can be found from Sections 4.2.3 to 4.2.5. For

comparison with static prompts (as in [10]), we report results in

Tables 2 and 3 in the Appendix.

4.2.1 Experimental Setup. DyGraphQA-Synth contains 250 initial

graphs where the size of each graph 𝑛 is drawn from 𝑈 (7, 20),
and for each pair of nodes (𝑖, 𝑗), the probability 𝑝 that an edge

exists between them is also sampled from a uniform distribution

𝑈 (0, 1). We encoded each of these graphs as adjacency matrices,

and applied 1 to 5 modifications for each of the five modification

types—Add Edge, Remove Edge, Add Node, Remove Node, and
Mix—resulting in multiple sets of modified graphs. After applying

the specified modifications to each initial graph, we posed the Print
Graph final question to the LLMs, instructing them to output the

resulting modified graph in the form of an adjacency matrix. This

comprehensive approach allows us to systematically evaluate the

models’ capabilities in maintaining and updating internal repre-

sentations of structured data across varying levels of complexity.

Results for the remaining final questions can be found in Section B

in the Appendix. Additionally, we selected Print Graph as it pro-

vides a clear means to track modification errors, which we analyze

further in Section C.

4.2.2 Findings. Figure 2 illustrates LLM performance on Print
Graph. Our results indicate that across all modification types, mod-

els generally perform worse as the number of modifications in-

creases, which suggests challenges in maintaining and updating

an internal graph representation over a small number of modifi-

cation steps. Notably, the models perform the worst on the Re-
move Node and Mix modifications. Remove Node is challenging

due to required row/column deletion and index renumbering in

the adjacency matrix. With Mix modifications, the models face

the compounded challenge of handling a variety of modification

types within a sequence. The necessity to adapt to different oper-

ations—such as adding an edge in one step and removing a node

in the next—requires flexible reasoning and robust state tracking,

which LLMs struggle to perform with the adjacency matrix. Over-

all, while Claude 3.5 Sonnet outperforms other models across all

modification types, o1-mini demonstrates superior performance on

the two most challenging modifications, Remove Node and Mix,
at higher modification steps. This suggests that o1-mini’s internal

reasoning capabilities becomes effective as the complexity of the

modification sequence grows.

Overall, our findings indicate that fully dynamic graph reason-

ing on structured data, specifically adjacency matrices, remains a

significant challenge. These results highlight the need for improved

models and prompting techniques to enhance LLMs’ graph rea-

soning capabilities in real-world dynamic networks represented as

structured data.

4.2.3 Ablation: In-context Learning and MaP Prompting. We ex-

plore potential methods for increasing the performance of LLMs

on DyGraphQA-Synth. We track the performance of various in-

context learning methods across 1 to 5 modification steps for the

same 250 graphs, and compare the performance of these methods to

the previously reported zero-shot performance. Results are shown

in Figure 3.

Chain-of-thought (CoT) prompting ([34]) guides the model

to generate intermediate reasoning steps by including examples

of detailed reasoning in the prompt. We evaluated the effect of

including 1, 2, and 3 CoT examples on performance. Models varied

significantly in their response to CoT prompting. For Claude 3.5

Sonnet (Figure 3b) and Llama 3.1 405B (Figure 3c), CoT consistently

improved performance across all five modification types. In con-

trast, GPT-4o-mini showed either no improvement or a decline in
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Figure 3: In-context learning results with a) o1-mini, b) Claude 3.5 Sonnet, c) Llama 3.1 405B, and d) GPT-4o-mini.

(a) o1-mini. (b) Claude 3.5.
(c) Percentage of total errors by o1-mini involv-
ing connecting to newly-added node.

Figure 4: Performance across different graph types.

performance with CoT prompting (Figure 3d). o1-mini exhibited a

significant drop in performance with CoT prompting (Figure 3a),

performing worse than in the zero-shot setting across all modifi-

cation types. This decline in performance is likely due to the fact

that o1-mini reasons internally, and external CoT prompting does

not complement its internal reasoning processes. Across all models,

performance remained stable regardless of the number of exam-

ples, suggesting limited marginal benefit from additional reasoning

steps.
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Figure 5: Performance of Claude 3.5 Sonnet on edge density
and graph size ablation.

We introduceModify-and-Print (MaP) prompting, a simple

yet effective strategy for improving performance on fully dynamic

graph reasoning tasks on structured data. In MaP prompting, the

model is instructed to output the intermediate graph after each

modification. This encourages explicit state tracking and helps the

model maintain a coherent internal representation of the evolving

graph.

MaP is especially effective for edge-related modifications (Add
Edge, Remove Edge), consistently outperforming both zero-shot

and CoT prompting. The gains are particularly pronounced for

o1-mini, highlighting MaP’s strength in reinforcing state tracking

through explicit intermediate graph outputs. For other operations

(Add Node and Remove Node), MaP remains competitive with

CoT. Interestingly, MaP also improves performance on the first

modification step, where it should behave similarly to zero-shot

prompting. This suggests that the mere instruction to output in-

termediate graphs boosts model performance, even when the state

tracking demand is minimal.

Overall, MaP prompting enhances dynamic graph reasoning by

aligning the prompting strategy with the task’s structural require-

ments, especially where fine-grained state tracking is critical.

4.2.4 Ablation: Graph Types & The Preservation of Graph Struc-
ture. We further evaluate Claude 3.5 Sonnet and o1-mini, the two

strongest models, on Print Graph across 3 modification steps of

different graph types, including: 1) star graphs, 2) path graphs,
3) complete graphs, and 4) empty graphs. Each model is tested

on 250 instances per graph type.

Figures 4a and 4b highlight the models’ varying strengths across

these structured graphs. Performance on edge-related tasks is largely

consistent with previous results on ER graphs. Notably, both mod-

els improve on Remove Node for structured graphs compared

to ER, suggesting that clearer initial structure aids node removal

reasoning. However, o1-mini performs poorly on Add Node across
all types, with sharp performance drops across modification steps.

To investigate, we analyze o1-mini’s errors by tracking how of-

ten it connects the newly added node to specific targets: the central

node (star), the final node in the path at the bottom row of the

adjacency matrix (path), all nodes (complete), or any node (empty).

Results in Figure 4c reveal a strong bias: o1-mini frequently con-

nects the new node in a way that preserves the original graph’s
structure, suggesting an intrinsic tendency of reasoning mod-
els to maintain topological patterns, even when incorrect.

4.2.5 Ablation: Edge Density and Graph Size. We analyze how

graph size and edge density affect model performance inDyGraph-
QA-Synth by evaluating graphs with 𝑛 ∈ {10, 20} nodes and edge

densities 𝑝 ∈ {0.1, 0.5, 0.9}. For each configuration, we generate

100 graphs, focusing on the Print Graph task, and evaluate with

Claude 3.5 Sonnet. Results are show in Figure 5.

For Add Edge, the model performs well overall but struggles on

low-density graphs when only a single edge is added—likely due

to difficulty identifying the correct 0 entry to update. In contrast,

Remove Edge reveals the opposite pattern: accuracy drops with

density, suggesting difficulty identifying the correct 1 entry in

dense matrices. For Add Node, performance declines with graph

size and sparsity, contrasting with Claude 3.5 Sonnet’s strong base

performance from Section 4.2.2 and indicating new errors—such as

dimensionmismatches or adding too few/many nodes—discussed in

Section C. Finally, Remove Node is most sensitive to both size and

sparsity, with the worst performance on large and sparse graphs,

reflecting the general difficulty of the modification.

5 Conclusion
In this paper, we introduce DyGraphQA, a challenging benchmark

dataset designed to evaluate LLMs’ ability to reason over fully dy-

namic graphs. DyGraphQA consists of two datasets: DyGraphQA-
Real, featuring real-world dynamic graphs in natural language, and

DyGraphQA-Synth, containing synthetic graphs as structured

data. Capturing both representations enables a comprehensive as-

sessment of LLMs’ reasoning capabilities across modalities. Our

results show that SOTA LLMs struggle significantly with fully dy-

namic graph reasoning, particularly as the number of modifications

increases. Extensive ablations show how graph structure, size, edge

density, and prompting strategies impact performance. Future work

will explore fine-tuning models on dynamic graph reasoning
tasks and developing more robust prompting strategies to
further enhance LLMs’ ability to process evolving graph structures.
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A Dataset Generation Algorithm
In this section, we provide the pseudocode for the algorithms neces-

sary for generating the DyGraphQA-Synth dataset. The algorithm

assumes fixed graph encoding and question rephrasing functions.

For each of the 250 initial graphs, the algorithm performs five modi-

fication rounds. In each round, five different modification types are

applied, generating five modified graphs. Each of these is paired

with five final questions, resulting in 5 × 5 × 5 = 125 examples per

graph. Accounting for five question rephrasings, the total dataset

size is: 250 graphs × 125 examples per graph × 5 rephrasings =

156,250 examples. More details can be found at our code reposi-

tory.
3

During evaluation, we found that all LLMs performed poorly on

theRemoveNodemodification until the instruction “and renumber
the nodes accordingly” was added to “Remove node 𝑣 from the graph”
in Algorithm 4. This highlights the importance of providing explicit

instructions when tasks depend on implicit node indexing and

renumbering.

3
https://anonymous.4open.science/r/DyGraphQA-7394/

Algorithm 1 AddEdge

Require: Graph 𝐺

Ensure: Modified Graph 𝐺 ′

1: 𝐺 ′ ← 𝐺

2: (𝑖, 𝑗) ∼ U(𝑉𝐺 ′ ×𝑉𝐺 ′ \ 𝐸𝐺 ′ )
3: 𝐸𝐺 ′ ← 𝐸𝐺 ′ ∪ {(𝑖, 𝑗)}
4: return 𝐺 ′, “Add an edge between nodes 𝑖 and 𝑗 ."

Algorithm 2 RemoveEdge

Require: Graph 𝐺

Ensure: Modified Graph 𝐺 ′

1: 𝐺 ′ ← 𝐺

2: (𝑖, 𝑗) ∼ U(𝐸𝐺 ′ )
3: 𝐸𝐺 ′ ← 𝐸𝐺 ′ \ {(𝑖, 𝑗)}
4: return 𝐺 ′, “Remove the edge between nodes 𝑖 and 𝑗 ."

Algorithm 3 AddNode

Require: Graph 𝐺

Ensure: Modified Graph 𝐺 ′

1: 𝐺 ′ ← 𝐺

2: 𝑉𝐺 ′ ← 𝑉𝐺 ′ ∪ {𝑣}, 𝐸𝐺 ′ ← 𝐸𝐺 ′

3: return 𝐺 ′, “Add a node 𝑣 to the graph."

Algorithm 4 RemoveNode

Require: Graph 𝐺

Ensure: Modified Graph 𝐺 ′

1: 𝐺 ′ ← 𝐺

2: 𝑣 ∼ U(𝑉𝐺 ′ )
3: 𝑉𝐺 ′ ← 𝑉𝐺 ′ \ {𝑣}, 𝐸𝐺 ′ ← 𝐸𝐺 ′ \ {(𝑣,𝑢) | 𝑢 ∈ 𝑉𝐺 ′ }
4: return 𝐺 ′, “Remove node 𝑣 from the graph."

Algorithm 5 Mix

Require: Graph 𝐺

Ensure: Modified Graph 𝐺 ′

1: 𝐺 ′ ← 𝐺

2: M ∼ U({AddEdge, RemoveEdge,AddNode, RemoveNode})

3: return M(𝐺 ′)
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Algorithm 6 ConstructDyGraphQA-Synth

Require: Number of graphs to generate 𝑁

Ensure: Dataset 𝐷 containing multi-step tasks for all final queries

and 𝑘 values

1: Initialize an empty dataset 𝐷

2: Define the set of possible final questions

Q = {Node Count, Edge Count,Node Degree,
Connected Nodes, Print Graph}

3: Define the maximum number of modifications 𝑘𝑚𝑎𝑥 = 5

4: Define 𝑉𝐺 as the set of nodes in any graph 𝐺 , and 𝐸𝐺 as the

set of edges in any graph 𝐺

5: for 𝑖 = 1 to 𝑁 do
6: Sample 𝑛 ∼ U(7, 20)
7: Generate an undirected Erdős-Rényi graph 𝐺 = (𝑉 , 𝐸) with

|𝑉 | = 𝑛 and sample edge probability 𝑝 ∼ U(0, 1)
8: Initialize graphs 𝐺𝐴𝐸 , 𝐺𝑅𝐸 , 𝐺𝐴𝑁 , 𝐺𝑅𝑁 , 𝐺𝑀𝑋 ← 𝐺

9: Initialize𝑀𝐴𝐸 , 𝑀𝑅𝐸 , 𝑀𝐴𝑁 , 𝑀𝑅𝑁 , 𝑀𝑀𝑋 ← []
10: for 𝑘 = 1 to 𝑘𝑚𝑎𝑥 do
11: 𝐺𝐴𝐸 ,𝑚𝐴𝐸 ← AddEdge(𝐺𝐴𝐸 ) 1

12: 𝑀𝐴𝐸 ← 𝑀𝐴𝐸 ∥𝑚𝐴𝐸

13: 𝐺𝑅𝐸 ,𝑚𝑅𝐸 ← RemoveEdge(𝐺𝑅𝐸 ) 2

14: 𝑀𝑅𝐸 ← 𝑀𝑅𝐸 ∥𝑚𝑅𝐸

15: 𝐺𝐴𝑁 ,𝑚𝐴𝑁 ← AddNode(𝐺𝐴𝑁 ) 3

16: 𝑀𝐴𝑁 ← 𝑀𝐴𝑁 ∥𝑚𝐴𝑁

17: 𝐺𝑅𝑁 ,𝑚𝑅𝑁 ← RemoveNode(𝐺𝑅𝑁 ) 4

18: 𝑀𝑅𝑁 ← 𝑀𝑅𝑁 ∥𝑚𝑅𝑁

19: 𝐺𝑀𝑋 ,𝑚𝑀𝑋 ←Mix(𝐺𝑀𝑋 ) 5

20: 𝑀𝑀𝑋 ← 𝑀𝑀𝑋 ∥𝑚𝑀𝑋

21: 𝑀𝑜𝑑𝑠 = {(𝐺𝐴𝐸 , 𝑀𝐴𝐸 ), (𝐺𝑅𝐸 , 𝑀𝑅𝐸 ), (𝐺𝐴𝑁 , 𝑀𝐴𝑁 ),
(𝐺𝑅𝑁 , 𝑀𝑅𝑁 ), (𝐺𝑀𝑋 , 𝑀𝑀𝑋 )}

22: for 𝑄 ∈ Q do
23: for (𝐺𝑀𝑜𝑑 , 𝑀𝑀𝑜𝑑 ) ∈ 𝑀𝑜𝑑𝑠 do
24: if 𝑄 = Node Count then
25: 𝑆 ← |𝑉𝐺𝑀𝑜𝑑

|
26: else if 𝑄 = Edge Count then
27: 𝑆 ← |𝐸𝐺𝑀𝑜𝑑

|
28: else if 𝑄 = Node Degree then
29: 𝑣 ∼ U(𝑉𝐺𝑀𝑜𝑑

)
30: 𝑆 ← |{𝑢 ∈ 𝑉𝐺𝑀𝑜𝑑

| (𝑣,𝑢) ∈ 𝐸𝐺𝑀𝑜𝑑
}|

31: else if 𝑄 = Connected Nodes then
32: 𝑣 ∼ U(𝑉𝐺𝑀𝑜𝑑

)
33: 𝑆 ← {𝑢 ∈ 𝑉𝐺𝑀𝑜𝑑

| (𝑣,𝑢) ∈ 𝐸𝐺𝑀𝑜𝑑
}

34: else if 𝑄 = Print Graph then
35: 𝑆 ← 𝐺𝑀𝑜𝑑

36: end if
37: 𝐷 ← 𝐷 ∪ (𝐺,𝑀𝑀𝑜𝑑 , 𝑄, 𝑆)
38: end for
39: end for
40: end for
41: end for
42: return 𝐷

B Results on Varying Final Questions and
Graph Encoders

Within DyGraphQA-Synth, in addition to the Print Graph ques-

tion, we evaluated model performance on other final questions,

including Node Count, Edge Count, Node Degree, and Con-
nected Nodes. Detailed results for these tasks are provided in

Figure 6 respectively. Our analysis reveals that models consistently

perform poorly on the Print Graph task when compared to other

graph property tasks. This finding is significant because it illus-

trates the challenges with maintaining the modified structure, as

outputting the entire adjacency matrix requires carefully managing

the structured data it contains.

B.1 Node Count
o1-mini demonstrates slight drops in performance on all modifi-

cation types compared to Claude 3.5 Sonnet and Llama 3.1 405B.

This observation follows from Table 3, which also indicates that

even in the static case, o1-mini lags slightly behind both Claude 3.5

Sonnet and Llama 3.1 405B on counting the number of nodes in an

adjacency matrix.

B.2 Edge Count
o1-mini consistently outperforms all other models, aligning with

the trends observed in Table 2.

B.3 Node Degree
o1-mini again outperforms others for all modification types except

Add Node. Models show significant drops in performance on the

Remove Node operation, an inherently more error-prone operation

due to the renumbering and recalibration of indices. Interestingly,

Claude 3.5 Sonnet’s performance increases slightly on the Add

Node modification as the number of modifications increase.

B.4 Connected Nodes
The Connected Nodes task mirrors the patterns found in Node

Degree. o1-mini outperforms all other models. As with Node De-

gree, the Remove Node modification introduces the most notable

performance drop for all models. Llama 3.1 405B shows slight im-

provement in accuracy for Add Node modifications as the number

of modifications increases.

11



1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

a) Node Count

b) Edge Count

c) Node Degree

d) Connected Nodes

Figure 6: Performance of models on the following Final Questions: a) Node Count, b) Edge Count, Node Degree, and Connected
Nodes.

C Error Analysis
We analyze error types and frequencies for all baseline models on

the Print Graph task, illuminating where LLMs falter in dynamic

graph reasoning on structured data.

For Add Edge, Figure 7a shows the different types of errors

models make. We observe the following error types:

• Altered correct index and adjacent index: The model cor-

rectly modifies the target index but also adds an edge to an

adjacent one. This is the most frequent error for all models. Both

Llama 3.1 405B and GPT-4o mini exhibit an increase in this error

type as the number of modifications grows, indicating potential

scaling issues. For both o1-mini and Claude 3.5 Sonnet, this error

overwhelmingly dominates their performance, as they bothmake

few other types of errors. Claude 3.5 Sonnet reduces this error

with more modifications, aligning with improved performance

in Figure 2.

• Altered adjacent index: The model modifies only an adjacent

(incorrect) index. This error remains low and stable for o1-mini

and Claude 3.5 Sonnet, whereas it becomes more common for

Llama 3.1 405B and GPT-4o mini with an increasing number of

modifications.

• Altered non-adjacent index: A rare error for most models,

where a non-relevant index is modified. The error is more promi-

nent in GPT-4o mini, suggesting that this error decreases with

larger model sizes and improved reasoning capabilities. Interest-

ingly, GPT-4o mini makes this error less often as the number of

modifications increases. As shown by Figure 2, GPT-4o mini’s

performance on theAdd Edgemodification still decreases across

the number of modifications, suggesting that themodel’s edits be-

come increasingly closer to the correct indices as the complexity

of the problem increases.

• No modification made: The model outputs the original matrix

unchanged. Rare overall and absent in o1-mini.
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Figure 7: Errors made by models on the Print Graph task, with the following modifications: a) Add Edge, b) Remove Edge, c)
Add Node, d) Remove Node.

• Dimension error: The output is not a valid matrix—typically

due to inconsistent row lengths, never occuring for Claude 3.5

Sonnet.

• Changed dimensionality: The model outputs a matrix of incor-

rect dimensions. Seen occasionally in o1-mini and GPT-4o-mini,

and never in Claude 3.5 Sonnet and Llama 3.1 405B.

For Remove Edge, Figure 7b shows that the error distribution
closely mirrors that of Add Edge:

• Altered correct and adjacent index: This remains the most

frequent error across models, dominating overall error rates.

Both Llama 3.1 405B and GPT-4o mini exhibit an increase in

this error as the number of modifications grows, reflecting a

recurring challenge with hallucinating adjacent edges.

• Previously defined errors: As in Add Edge, the following

errors follow similar trends—Altered adjacent index, Altered
non-adjacent index,Nomodification,Dimension error, and
Changed dimensionality (only seen occasionally in o1-mini).

For Add Node, Figure 7c highlights the strong performance of

Claude 3.5 Sonnet and Llama 3.1 405B:

• Connected added node: The newly added node is incorrectly

connected to existing nodes. Rare overall, with Claude 3.5 Sonnet
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making this error once; o1-mini shows a higher rate, consistent

with its bias toward preserving graph structure (Section 4.2.4).

• Dimension error: Occurs frequently for o1-mini and GPT-4o-

mini. Interestingly, dimension errors are less common at extreme

values of 𝑘 for o1-mini, with GPT-4o-mini showing the opposite

trend.

• Other rare errors: Miscopy errors (modifying existing edges),

Added too few nodes, and Added too many nodes (occurring
only for GPT-4o-mini).

For Remove Node, Figure 7d shows error types for the most

challenging modification in DyGraphQA-Synth:

• Removed too many nodes: This error arises when the model

removes more than the required 𝑘 nodes. It is less frequent in

o1-mini and Llama 3.1 405B but occurs at a high frequency in

GPT-4o mini and Claude 3.5 Sonnet, with Claude 3.5 Sonnet

exhibiting an increase in this error as 𝑘 grows.

• Removed too few nodes: This error occurs when the model

removes fewer than 𝑘 nodes. It is generally infrequent, though

Llama 3.1 405B makes this error slightly more often than the

other models.

• No modification made: Only Llama 3.1 405B produces this

error, and produces it very rarely.

• Dimension error: This error is made by Claude 3.5 Sonnet

and o1-mini, while Llama 3.1 405B produces it slightly more

often. However, this is the most frequent error for GPT-4o mini,

indicating that it struggles significantly with maintaining a valid

matrix structure and returning a mathematically well-defined

object.

• Incorrect implementation: This error occurs when the model

removes the correct number of rows and columns, but the inter-

nal connections of the resulting matrix deviate substantially from

the solution matrix. This is the most common error type across

all models except GPT-4o mini, which struggles to produce valid

outputs at all due to frequent dimension errors. o1-mini makes

this error less frequently than Claude 3.5 Sonnet and Llama 3.1

405B, contributing to its superior overall performance on the

Remove Node modification as seen in Figure 2.

D Illustrating Prompts and Model Outputs
In this section, we show example input prompts and model outputs

from the three in-context methods we evaluate on DyGraphQA-

Synth. We evaluated Claude 3.5 Sonnet on a single example, involv-

ing three Add Edge modifications followed by a Print Graph task.

Figure 8 show the input prompt and model output using zero-shot

prompting, Figure 9 show the input prompt and model output using

CoT prompting with one example, and Figure 10 show the input

prompt and model output using MaP prompting
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Zero-shot Prompt

The f o l l ow i n g mat r i x r e p r e s e n t s the ad j a c ency

mat r i x o f an und i r e c t e d graph , where the f i r s t

row co r r e spond s to node 0 , the second row

co r r e spond s to node 1 , and so on :

[ [ 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 ]

[1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 ]

[0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 ]

[0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 ]

[0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 ]

[0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ]

[0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 ]

[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 ]

[0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 ]

[1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 ]

[0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 ]

[0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 ]

[0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 ]

[0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 ]

[0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 ] ]

Perform the f o l l ow i n g op e r a t i o n s on the graph :

1 : Add an edge between node 14 and node 8 .

2 : Add an edge between node 8 and node 3 in

the r e s u l t i n g graph o f o p e r a t i o n 1 .

3 : Add an edge between node 2 and node 8 in

the r e s u l t i n g graph o f o p e r a t i o n 2 .

Q : What i s the f i n a l r e s u l t i n g ad j a c ency

mat r i x ?

A :

LLM Output on Zero-shot Prompt

To answer this question , I'll start with the

given adjacency matrix and perform the

requested operations one by one. After each

operation , I'll update the matrix.

Here 's the process:

1. Add an edge between node 14 and node 8:

This adds a 1 in position (14,8) and (8,14)

of the matrix.

2. Add an edge between node 8 and node 3:

This adds a 1 in position (8,3) and (3,8)

of the matrix.

3. Add an edge between node 2 and node 8:

This adds a 1 in position (2,8) and (8,2)

of the matrix.

After performing these operations , the final

resulting adjacency matrix is:

[[0 1 0 0 0 0 0 0 0 1 0 0 0 0 0]

[1 0 1 1 0 0 1 0 1 0 1 0 0 0 0]

[0 1 0 0 0 0 0 1 0 0 1 0 1 0 0]

[0 1 0 0 0 0 0 1 0 0 0 0 1 0 0]

[0 0 0 0 0 1 0 0 0 0 0 0 0 1 0]

[0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]

[0 1 0 0 0 0 0 0 1 0 0 1 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1]

[0 1 1 1 0 0 1 0 0 1 0 0 0 0 1]

[1 0 0 0 0 1 0 0 1 0 0 0 0 0 1]

[0 1 1 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0 0 0 0 1]

[0 0 1 1 0 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 1 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 0 1 0 1 1 1 0 1 0 0 0]]

This matrix represents the final state of the

graph after all the requested operations

have been performed.

Incorrect!

Figure 8: (a) An example zero-shot prompt. The prompt consists of three Add Edge modifications, followed by the Print Graph
task. (b) The output of Claude 3.5 Sonnet on the example prompt. Here, the model answered the question incorrectly, as
it modified positions (2,7) and (3,7) instead of (2,8) and (3,8), despite modifying positions (8,2) and (8,3) correctly. Correctly
modified indices are highlighted in green, while incorrectly modified indices are highlighted in red.
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CoT Prompt with one example

The f o l l ow i n g mat r i x r e p r e s e n t s the ad j a c ency

mat r i x o f an und i r e c t e d graph , where the f i r s t

row co r r e spond s to node 0 , the second row

co r r e spond s to node 1 , and so on :

[ [ 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 ]

[1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 ]

. . .

[ 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 ]

[0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 ] ]

Perform the f o l l ow i n g op e r a t i o n s on the graph :

1 : Add an edge between node 15 and node 1 3 .

2 : Add an edge between node 15 and node 3 in

the r e s u l t i n g graph o f o p e r a t i o n 1 .

3 : Add an edge between node 10 and node 7 in

the r e s u l t i n g graph o f o p e r a t i o n 2 .

Q : What i s the f i n a l r e s u l t i n g ad j a c ency

mat r i x ?

A : A f t e r changing both e n t r i e s [ 1 5 , 13 ] and

[ 1 3 , 15 ] from 0 to 1 , both e n t r i e s [ 1 5 , 3 ] and

[ 3 , 15 ] from 0 to 1 , and both e n t r i e s [ 1 0 , 7 ]

and [ 7 , 10 ] from 0 to 1 , the r e s u l t i n g

ad j a c ency mat r i x i s as d e f i n e d below :

[ [ 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 ]

[1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 ]

. . .

[ 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 ]

[0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 ] ]

The f o l l ow i n g mat r i x r e p r e s e n t s the ad j a c ency

mat r i x o f an und i r e c t e d graph , where the f i r s t

row co r r e spond s to node 0 , the second row

co r r e spond s to node 1 , and so on :

. . .

Q : What i s the f i n a l r e s u l t i n g ad j a c ency

mat r i x ?

A :

LLM Output on CoT Prompt

To solve this problem , we 'll perform the

operations one by one and update the adjacency

matrix accordingly. Remember that for an

undirected graph , when we add an edge between

two nodes , we need to update both corresponding

entries in the matrix.

Let 's perform the operations:

1. Add an edge between node 14 and node 8:

Update [14][8] and [8][14] from 0 to 1

2. Add an edge between node 8 and node 3:

Update [8][3] and [3][8] from 0 to 1

3. Add an edge between node 2 and node 8:

Update [2][8] and [8][2] from 0 to 1

After applying these changes , the final

resulting adjacency matrix is:

[[0 1 0 0 0 0 0 0 0 1 0 0 0 0 0]

[1 0 1 1 0 0 1 0 1 0 1 0 0 0 0]

[0 1 0 0 0 0 0 0 1 0 1 0 1 0 0]

[0 1 0 0 0 0 0 0 1 0 0 0 1 0 0]

[0 0 0 0 0 1 0 0 0 0 0 0 0 1 0]

[0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]

[0 1 0 0 0 0 0 0 1 0 0 1 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1]

[0 1 1 1 0 0 1 0 0 1 0 0 0 0 1]

[1 0 0 0 0 1 0 0 1 0 0 0 0 0 1]

[0 1 1 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0 0 0 0 1]

[0 0 1 1 0 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 1 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 0 1 0 1 1 1 0 1 0 0 0]]

This is the final resulting adjacency matrix

after performing all the specified operations.

Correct!

Figure 9: (a) An example CoT prompt with one example, created by adding the example before the prompt from Figure 8(a) We
truncate all matrices in the prompt for space reasons. (b) The output of Claude 3.5 Sonnet on the CoT prompt from Figure
9(a). Here, the model answered the question correctly, and the correctly modified indicies are highlighted in green in the final
matrix.
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MaP Prompt

The f o l l ow i n g mat r i x r e p r e s e n t s the ad j a c ency

mat r i x o f an und i r e c t e d graph , where the f i r s t

row co r r e spond s to node 0 , the second row

co r r e spond s to node 1 , and so on :

[ [ 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 ]

[1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 ]

[0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 ]

[0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 ]

[0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 ]

[0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ]

[0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 ]

[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 ]

[0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 ]

[1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 ]

[0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 ]

[0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 ]

[0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 ]

[0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 ]

[0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 ] ]

Perform the f o l l ow i n g op e r a t i o n s on the graph :

1 : Add an edge between node 14 and node 8 .

2 : Add an edge between node 8 and node 3 in

the r e s u l t i n g graph o f o p e r a t i o n 1 .

3 : Add an edge between node 2 and node 8 in

the r e s u l t i n g graph o f o p e r a t i o n 2 .

Q : What i s the f i n a l r e s u l t i n g ad j a c ency

mat r i x ? For each ope r a t i on , w r i t e out the

e n t i r e r e s u l t i n g ad j a c ency mat r i x .

A :

LLM Output on MaP Prompt

I'll perform the operations step by step and

provide the resulting adjacency matrix

after each operation.

Operation 1: Add an edge between node 14 and

node 8

[[0 1 0 0 0 0 0 0 0 1 0 0 0 0 0]

[1 0 1 1 0 0 1 0 1 0 1 0 0 0 0]

...

[0 0 0 0 1 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 0 1 0 1 1 1 0 1 0 0 0]]

Operation 2: Add an edge between node 8 and

node 3

[[0 1 0 0 0 0 0 0 0 1 0 0 0 0 0]

[1 0 1 1 0 0 1 0 1 0 1 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0 1 0 1 0 0]

[0 1 0 0 0 0 0 0 1 0 0 0 1 0 0]

...

[0 0 1 1 0 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 1 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 0 1 0 1 1 1 0 1 0 0 0]]

Operation 3: Add an edge between node 2 and

node 8

Here 's the final resulting adjacency matrix:

[[0 1 0 0 0 0 0 0 0 1 0 0 0 0 0]

[1 0 1 1 0 0 1 0 1 0 1 0 0 0 0]

[0 1 0 0 0 0 0 0 1 0 1 0 1 0 0]

[0 1 0 0 0 0 0 0 1 0 0 0 1 0 0]

[0 0 0 0 0 1 0 0 0 0 0 0 0 1 0]

[0 0 0 0 1 0 0 0 0 1 0 0 0 0 1]

[0 1 0 0 0 0 0 0 1 0 0 1 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1]

[0 1 1 1 0 0 1 0 0 1 0 0 0 0 1]

[1 0 0 0 0 1 0 0 1 0 0 0 0 0 1]

[0 1 1 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 0 1 0 0 0 0 0 0 0 1]

[0 0 1 1 0 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 1 0 0 1 0 0 0 0 0 0 0]

[0 0 0 0 0 1 0 1 1 1 0 1 0 0 0]]

Correct!

Figure 10: (a) An example MaP prompt, created by appending the phrase For each operation, write out the entire resulting
adjacency matrix. to the prompt from Figure 8(a). (b) The output of Claude 3.5 Sonnet on the example MaP prompt from Figure
10(a). The first and second intermediate matrices are truncated in order to fit the entire output on the page. Here, the model
answered the question correctly, and the correctly modified indicies are highlighted in green in the final matrix.
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Table 2: Accuracy percentages (mean ± s.d) on graph property questions from [10].

Graph Encoder Final Task GPT-4o mini Llama 3.1 Claude 3.5 o1-mini

Adjacency List

Node Count 86.6 89.8 95.4 99.8

Edge Count 30.4 48.8 54.8 93.6

Node Degree 95.2 100.0 100.0 98.4

Edge Existence 71.8 70.6 86.8 66.0

Connected Nodes 97.8 100.0 100.0 98.2

Cycle 90.4 91.0 95.0 99.0

Average 78.7 ± 23.2 83.4 ± 18.3 88.7 ± 15.8 92.5 ± 12.02

Incident

Node Count 100.0 99.8 100.0 100.0

Edge Count 30.0 60.4 76.2 99.0

Node Degree 99.2 99.2 100.0 99.6

Edge Existence 95.2 91.0 99.8 66.6

Connected Nodes 99.8 100.0 100.0 100.0

Cycle 86.2 87.4 88.4 98.8

Average 85.1 ± 25.1 91.3 ± 14.2 94.1 ± 9.0 94.0 ± 12.3

Friendship

Node Count 99.6 98.8 100.0 100.0

Edge Count 27.6 49.2 57.0 86.8

Node Degree 91.6 98.2 100.0 98.0

Edge Existence 73.0 76.0 77.4 66.0

Connected Nodes 87.8 93.4 95.2 92.6

Cycle 91.6 91.8 95.6 99.8

Average 78.5 ± 24.1 84.6 ± 17.5 87.5 ± 15.7 90.5 ± 11.9

Coauthorship

Node Count 99.0 99.0 95.6 100.0

Edge Count 27.4 42.8 54.2 78.2

Node Degree 88.0 94.0 99.6 96.4

Edge Existence 85.6 84.2 88.6 65.0

Connected Nodes 75.2 91.6 98.2 93.4

Cycle 92.4 95.6 100.0 99.4

Average 77.9±23.7 84.5±19.2 89.4±16.2 88.7 ± 12.9

Expert

Node Count 87.4 82.8 79.2 99.4

Edge Count 35.2 52.2 62.8 95.0

Node Degree 95.8 99.8 100.0 99.4

Edge Existence 67.0 66.8 100.0 65.0

Connected Nodes 97.4 97.4 95.2 89.4

Cycle 86.2 85.8 96.0 98.0

Average 78.2±21.6 80.8±16.7 88.9±13.6 91.0 ± 12.1

Social Network

Node Count 99.6 99.4 100.0 100.0

Edge Count 26.4 48.0 57.8 81.8

Node Degree 94.0 97.4 100.0 97.2

Edge Existence 86.6 85.2 100.0 64.2

Connected Nodes 85.4 92.8 94.8 93.4

Cycle 91.8 90.4 93.6 98.6

Average 80.6±24.7 85.5±17.4 91.0±15.1 89.2 ± 12.7

Politician

Node Count 99.4 100 99.6 100.0

Edge Count 25.2 48.2 55.4 85.8

Node Degree 94.0 97.0 99.8 98.6

Edge Existence 88.8 81.6 71.0 66.0

Connected Nodes 79.6 79.4 100.0 97.2

Cycle 91.4 89.0 95.8 99.4

Average 79.7±25.1 82.5±17.1 86.9±17.4 91.2 ± 12.2

GoT

Node Count 100.0 100.0 99.0 100.0

Edge Count 26.8 46.0 57.4 84.8

Node Degree 93.2 95.2 100.0 96.8

Edge Existence 83.4 80.4 87.4 65.2

Connected Nodes 68.4 95.8 100.0 94.6

Cycle 91.4 95.6 94.8 100.0

Average 77.2±24.6 85.5±18.7 89.8±15.1 90.2 ± 12.3

SP

Node Count 99.4 99.8 99.2 100.0

Edge Count 26.0 44.4 59.2 86.0

Node Degree 94.4 96.4 100.0 98.2

Edge Existence 85.2 87.0 82.2 65.2

Connected Nodes 74.2 98.6 100.0 98.0

Cycle 91.4 93.0 95.0 99.6

Average 78.4±24.8 86.5±19.3 89.3±14.8 91.2 ± 12.618



2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107
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2154
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2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

Table 3: Accuracy percentages (mean ± s.d) on graph property questions from [10] for the adjacency matrix encoder. As this
work was being conducted, the PaLM API was deprecated, and fortunately we were able to evaluate PaLM 2 L on the adjacency
matrix encoder before this.

Graph Encoder Final Task PaLM 2 L GPT-4o mini Llama 3.1 Claude 3.5 o1-mini

Adjacency Matrix

Node Count 55.4 98.4 100.0 100.0 98.4

Edge Count 6.4 28.0 44.8 38.6 91.2

Node Degree 28.6 73.4 88.6 98.6 99.2

Edge Existence 70.3 85.0 93.8 99.2 68.2

Connected Nodes 8.4 84.8 98.2 99.0 98.8

Cycle 49.6 87.8 87.6 92.8 100.0

Average 36.5 ± 23.9 76.2 ± 22.8 85.5 ± 18.8 88.0 ± 22.2 92.6 ± 11.3
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