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ABSTRACT

Large language models (LLMs) excel at reasoning when fine-tuned on curated text
corpora, but many domains, such as medicine, primarily store knowledge in struc-
tured tabular data. Despite its richness, tabular data has been largely overlooked
as a source of reasoning supervision. Interpreting such data requires structured,
relational reasoning across features and outcomes, not just surface-level pattern
matching. In practice, this mirrors clinical decision making, where doctors often
compare patients with similar characteristics and reason about why their outcomes
diverge. We introduce Tables2Traces, the first framework to enable improved
reasoning from raw tabular data by generating contrastive, case-based reason-
ing traces for model fine-tuning. This establishes a new supervision paradigm:
converting tabular records, traditionally used only for prediction, into structured
reasoning signals that can serve as an effective new source of supervision for LLMs.
Crucially, this paradigm is orthogonal to text-based QA supervision: rather than
competing with curated corpora, it unlocks an abundant and low-cost modality
that complements existing approaches. Using only cardiovascular patient records,
Tables2Traces yields relative gains of 17.2% on in-domain MedQA questions and
8.4% out-of-domain, improving accuracy in 15 of 17 clinical categories. On MedM-
CQA, it achieves a 7.2% relative improvement and outperforms the base model
in 17 of 21 specialties. These gains are driven by a lightweight, domain-agnostic
pipeline that elicits structured reasoning via contrastive and counterfactual prompts.
Compared to training on narrative patient descriptions, Tables2Traces generalizes
more effectively across question types and medical specialties, showing that even
limited tabular data can serve as a scalable and complementary source of reasoning
supervision for LLMs.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable performance across reasoning tasks, from
multi-step mathematics (Cobbe et al., [2021]) to medical question answering (Singhal et al.| [2023)).
These advances are typically attributed to large-scale pretraining followed by supervised fine-tuning
on datasets already structured as text-based reasoning tasks (Ouyang et al., [2022} |Wei et al., [2022al).

In many domains, however, knowledge is stored in structured, non-linguistic formats such as elec-
tronic health records, lab results, insurance claims, finance spreadsheets, or scientific measurements.
Such datasets encode complex relationships and decision logic but lack the textual form required for
LLM fine-tuning (Yin et al., [2020; [Liu et al., 2021)). Closing this modality gap would unlock the
reasoning signals latent in these data sources.

Consider a clinician assessing cardiovascular risk from patient records. A row of clinical features
(e.g, age, LDL, diabetes, blood pressure) supports reasoning such as: “patients over 60 with high
LDL and diabetes are at elevated risk, even if blood pressure is normal.” Clinicians perform this
reasoning intuitively, yet there is currently no systematic way to pass this knowledge to an LLM.
Existing strategies rely on curated QA corpora (Puri et al.| 2020), table-embedding models (e.g.,
TaBERT (Yin et al., [2020), TAPEX (Liu et al.| 2021))), or lightweight adapters (L1 & Liang} 2021} |Hu
et al.,[2022)), but none directly translate raw tabular data into reasoning supervision.

This raises two challenges. (C1) Representation: how to represent each row of features into a
coherent format suitable for reasoning while preserving feature relationships.
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(C2) Trace elicitation: how to automatically generate reasoning traces that capture the latent
knowledge contained in the structured data.

To address C1-C2, we introduce Tables2Traces, the first end-to-end framework to transform the
latent knowledge embedded in tabular data to reasoning traces that can then be used to fine-tune and
improve an LLM. More specifically, Tables2Traces addresses the following key research question:

Can the latent knowledge embedded in structured tabular data be reformulated into reasoning tasks
that LLMs can learn from—and does fine-tuning on such synthetic examples improve reasoning
in both in-domain and out-of-domain settings?

Addressing this question offers dual benefits. For domain experts, it offers a path to adapt LLMs
using structured datasets to which they already have access. This is especially valuable in fields like
medicine, where data privacy and regulatory constraints often prevent data sharing. Practitioners can
extract reasoning supervision directly from their own tabular data, effectively imbuing LLMs with
local contextual knowledge.

For the LLM research community, this approach provides a new and complementary modality
that contains rich domain knowledge for supervision. Although most fine-tuning datasets are human-
annotated or LLM-synthesized from existing text corpora (Gururajan et al.l|2024), we demonstrate
that abundant tabular data can also provide useful reasoning supervision. This reframes tabular data
as a rich and domain-specific supervision source and contributes to the growing data-centric shift in
LLM development. Crucially, to the best of our knowledge, we are the first to demonstrate that latent
knowledge encoded in tabular datasets can be reformulated into reasoning tasks that improve LLMs.

In doing so, we make the following contributions:

Contributions. (D Conceptually: We introduce a novel LLM supervision paradigm of transforming
tabular datasets into structured reasoning traces. This introduces a new pathway for domain adaptation
using data that has traditionally been excluded from LLM training pipelines. (2) Methodologically:
We present Tables2Traces, a lightweight and modular pipeline that generates contrastive questions
and multi-step reasoning traces from labeled tabular data without requiring QA corpora, human
annotation, or task-specific templates. (3) Empirically: We evaluate on MedQA and MedMCQA,
using 105k synthetic traces and 10k QA examples. Tables2Traces yields strong in-domain gains
(+17.2%) and generalizes out-of-domain (+8.4% on MedQA, +7.2% on MedMCQA), showcasing the
effectiveness of tabular supervision. () Analytically: We find that Tables2Traces closes part of the
gap to a state-of-the-art model, Aloe, despite using only 2% of its QA data. We show how contrastive
supervision improves generalization across question types and embedding space regions.

2 RELATED WORK

This work engages with works on LLM fine-tuning and LLMs for tabular data.

LLM Fine-Tuning. Prior work demonstrates that fine-tuning LLMs on structured reasoning datasets
(e.g. GSMSK) can significantly improve problem-solving capabilities, which can then be enhanced
via chain-of-thought prompting (Wei et al.l [2022b). Instruction-tuning (e.g. Self-Instruct (Wang
et al.|2023b))) further show that training with human-style prompts and reasoning traces enhances
generalization across unseen tasks. More recently, DeepSeek-R1 (Guo et al.| 2025) introduced
a large-scale framework for fine-tuning LLMS on curated reasoning traces using the Generalized
Reinforcement Preference Optimization (GRPO). By combining diverse, high-quality reasoning
traces with fine-tuning, DeepSeek-R1 demonstrated strong improvements. Our work builds on this
paradigm by generating structured reasoning traces not from existing text corpora, but from raw
tabular datasets, enabling fine-tuning in domain-specific settings.

In parallel, alignment methods such as reinforcement learning from human feedback (RLHF) (Ouyang
et al., [2022)), direct preference optimization (DPO) (Rafailov et al., 2023)), and reward modeling
(Christiano et al.,2017) have shown that models benefit from being tuned on outputs aligned with
human preferences. However, all of these methods assume access to a large corpus of natural
language examples. In contrast, we synthesize supervision from structured data, which is abundant
but underutilized in current LLM pipelines. Our work is orthogonal to these and serves to highlight
the potential of structured tabular data as a new source of supervision.
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LLMs for tabular data. Research on modeling structured tables with language models has largely
focused on two paradigms: semantic table understanding and supervised prediction. For the former,
models like TaABERT (Yin et al., [2020), TAPEX (Liu et al., 2021)), and TURL (Deng et al., [2022)
learn joint text—table representations for question answering and schema reasoning. For the latter task
of prediction, architectures such as TabNet (Arik & Pfister, 2021)) and FT-Transformer (Gorishniy,
et al.| 2021)) are optimized for predictive modeling over tabular features.

More recent methods, such as TabLLM (Hegselmann et al., [2023) and UniPredict (Wang et al.,
2023a)), explore using general-purpose LLMs with serialized tabular input, enabling LLMs to perform
tabular prediction (in particular, highlighting their zero-shot classification capabilities).

However, these methods tackle the fundamentally different problem of LLMs understanding tables or
LLMs being used as tabular predictors. In contrast, we focus on answering the question of how to use
tabular structured data (and the knowledge contained therein) to enhance the reasoning capabilities
of LLMs within the relevant problem domain. i.e. how can we use tabular data on cardiovascular
patients to improve an LLMs capabilities to reason about cardiovascular problems or even more
general medical questions.

3 METHOD

3.1 PROBLEM FORMULATION

We assume a tabular dataset D = {x1, ...,z } where each row z; € R is a structured record (e.g.,
a clinical case) and is associated with a binary label y; € {0, 1}. While such tabular datasets encode
rich domain knowledge, they do not naturally align with the data formats LLMs are typically trained
on. We hence seek a mapping that converts this structure into contrastive prompts and structured
reasoning traces suitable for supervised fine-tuning of LLMs:

I:D = {(s,y:) e, — C={(P, R}, (1)

where each prompt P; describes a clinical scenario in natural language and each trace R; is a
structured reasoning trace generated by an LLM.

Ultimately, the goal is that fine-tuning a target LLM with parameters © on C (derived from tabular
data), can teach the model to learn high-level reasoning behaviors from the structure of the data, with-
out requiring domain-specific logic or annotation. In doing so, this can improve LLM performance
on related text-based tasks such as Q&A. To anchor ideas, we hypothesize that eliciting reasoning
traces from tabular medical data and then fine-tuning an LLM on these traces should improve an
LLM’s capabilities on medical Q&A tasks.

In this work, we primarily focus on the role of medical tabular data, hence our focus is on eliciting
clinical reasoning capabilities from a structured medical dataset.

3.2 TABLES2TRACES

We propose Tables2Traces as a framework that realizes this mapping function II. The underlying
algorithm is outlined in Algorithm[I] In particular, it allows us to provide solutions to overcome the
challenges of (C1) Representation and (C2) Trace elicitation.

(C1) Representation. Our first challenge is how to represent the tabular data in a suitable format,
prior to eliciting reasoning traces. A deterministic encoder ¢ translates each tabular row z; into a
compact textual patient description. Column headers are normalized into human-interpretable phrases
(e.g. 1dl_chol—low—density lipoprotein cholesterol), numerical values are rendered with units, and
missing entries are declared explicitly. Ultimately, ¢ (operationalized with an LLM), transforms
tabular rows into fluent text-based summaries. The result is a corpus of textual case descriptions
Csimple = {&(2;)}Y1, which we use as training data for the Tables2Traces (simple) variant.

(C2) Trace Elicitation. Once we have the data in a suitable, represented textual format, we wish to
elicit the appropriate knowledge and reasoning from the data. We do so as follows:

» Contrastive Neighbor Selection. Clinical reasoning frequently involves comparative analysis, i.e.,
why did this patient die, whereas a similar patient survived? To elicit a similar contrastive reasoning
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L . 0 1
for each anchor example x;, we retrieve its nearest survivor J;§ ) and nearest deceased xE ) based

on the Gower distance EL as it respects heterogeneous feature types. We use this to form a narrative
triplet 7; = (3(0) @)

i »Si,S; ), which corresponds to a contrastive decision used as supervision for the
LLM.

» Reasoning extraction via prompt design. We wrap 7; in a fixed prompt template P; (see Ap-
pendix [C.3) that explicitly outlines the reasoning competencies we want the model to learn:

1. Differential reasoning. Compare the TARGET to each neighbour and list decisive feature
differences. This elicits differential reasoning.

2. Label Plausibility. State whether the recorded outcome is clinically plausible. By evaluating
the ground-truth label, this elicits reasoning to recognise spurious or noisy supervision.

3. Counterfactual Planning. We prompt the model to suggest one minimal feature edit
that would reverse the outcome and justify why. This injects a causal inductive bias: the
model must isolate an actionable feature (e.g. reduce LDL to < 100 mg/dL) and explain
its physiological effect. This mirrors clinical reasoning in which a clinician asks, “What
intervention would have saved this patient?”

» Trace Extraction and Corpus Assembly. We pass the constructed prompt P; to the frozen LLM L
(e.g. Deepseek-R1) and extract the generated reasoning trace R;. Collecting every pair yields the
corpus C, wherein we have converted the tabular data into structured reasoning traces.

Supervised Fine-tuning. We then fine-tune a downstream target LLM using standard supervised
learning on the dataset {(P;, R;)}. Each training example consists of: Input: the contrastive prompt
P; (including the three case descriptions) and Qutput: the generated reasoning trace R;.

We fine-tune the model on a dataset ~ Algorithm 1 TABLES2TRACES: From Tabular Data to
R' = {(P;, R;)};Z, consisting of M Reasoning Corpus

i=1
prompt-response pairs, where cach £ is Require: Tabular dataset D, frozen LLM £
1: Output: Reasoning corpus C

a contrastive input prompt and R; is the
corresponding reasoning trace. 90% of
P & & N 2: for each (z;,y;) € D do
3: 8+ P(x;) > Representation

these samples are synthetic traces gen-
erated from tabular data and 10% are

multiple-choice QA-format examples 4 for y(e) {0,1} do

(e.g., MedQA). The QA examples were ~ 5: z;" — arg ming., -, Gower(z, z;)

not contained in the evaluation datasets. 6 end for

Training on the QA subset alone per- 7: Ti (qﬁ(x,go)), S, QS(xz(-l))) > Contrastive triple
form§ on par with the base model (Ap- . P, < 7(mi) > Compose prompt
pendix[L). 9:  R; < POSTPROCESS (£(P;)) > Trace elicitation

We hold out 5% of the overall dataset 10:  C < CU{(F;, i)}
for evaluation. Prompt templates and 11: end for
representative traces are shown in Ap- 12: return ¢

pendices [Cland D]

Let L1 denote the language modeling loss. The fine-tuning objective is then:

min Z Lim(R | P;6),
(P,R)eR’

where 6 are the parameters of the language model.

Extensibility. Although we apply the method in a clinical setting using binary outcomes, the
framework is not domain-specific. The key requirement is the ability to construct meaningful
contrastive pairs from structured data. In principle, the approach can be extended to non-clinical
domains (e.g., finance, education) and to non-binary targets, by adapting the neighborhood selection
strategy (e.g., through clustering or label binning). Exploring these extensions remains an important
direction for future work.

! Alternative distance metrics are possible - see Appendix@
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4 EXPERIMENTS

We evaluate Tables2Traces as a mechanism for transforming structured tabular data into effective
reasoning supervision for LLMs. Our goal is to assess whether this supervision improves medical QA
performance, and to analyze where performance differences across question types, medical domains,
and benchmarks.

Data. We use a subset of the UK Biobank (Sudlow et al.,[2015)) comprising 105,299 individuals
aged 40 and above, all diagnosed with cardiovascular disease. Each patient is represented by 32
variables spanning demographics, medication usage, lab results, and comorbidities. All data were
collected under appropriate ethical approvals and informed consent (Palmer, [2007).

Setup. We evaluate two tabular supervision variants: (1) Tables2Traces (simple), which converts
each row into a standalone patient narrative; and (2) Tables2Traces, which adds contrastive prompts
using nearest-neighbor pairs. Each variant includes 90% synthetic traces and 10% QA-format
examples from HPAT-BSC/MedQA-Mixtral-CoT (Gururajan et al.| 2024]).

We fine-tune both 8 billion parameter (8B) (DeepSeek-R1-Distill-LLaMA-8B) and 7 billion
(7B) parameter (DeepSeek-R1-Distill-Qwen-7B) modelsE] using the Open-R1 framework
(Facel [2025). Training configurations are detailed in Appendix [B|and results for 7B models are
provided separately in Appendix [H]

Evaluation. We evaluate on two medical QA benchmarks: MedQA (Jin et al., 2021) and
MedMCOQA (Pal et al.,|2022). Accuracy is reported under four aggregation schemes (average, best-
of-n, majority vote, worst-of-n). Results are averaged over 10 stochastic runs; error bars show the
standard error of the mean. We compare both fine-tuned variants against a Base model without
fine-tuning.

We also report Aloe (Gururajan et al.| |[2024), a strong medical QA system trained with resource-
intensive, manually curated supervision across more than twenty datasets (e.g., synthetic chain-of-
thought, guideline-based answers, adversarial/preference tuning). Importantly, Aloe is not a reasoning
model, so it is not aligned with our supervision signal. Our approach is orthogonal: Tables2Traces
derives reasoning supervision automatically from structured tabular data without manual labels. For
completeness, we fine-tuned Aloe with Tables2Traces; performance did not improve (Appendix [G),
consistent with this misalignment.

All 8B models use the same LLaMA-8B backbone and identical inference settings, and we apply
identical chain-of-thought prompts at test time (Appendix [C.7}{C.8). Differences therefore reflect
supervision rather than prompting. As a qualitative sanity check of the supervision signal, two
cardiologists independently reviewed 10 randomly sampled traces and confirmed that none received a
Concerning safety rating (Appendix [O} protocol in Appendix [N)).

We assess performance across the following dimensions:

1. Performance: Are gains consistent across clinical subdomains and benchmarks?
Section[4.T|evaluates performance across 18 clinical categories in MedQA and 21 in MedM-
CQA to identify where training is most effective and whether performance generalizes.

2. Domain generalization: What types of questions benefit from tabular supervision?
Section 4.2 examines both domain transfer (e.g., cardiovascular — neurology) and format
transfer (e.g., patient-specific — abstract) to determine what kinds of questions benefit most.

3. Locating successes and failures: Where do models succeed or fail in embedding space?
Section uses UMAP visualizations to localize model performance across semantic
regions of the question embedding space.

4. Upper bound comparison: How does performance compare to a QA-optimized model?
Sec.[4.4)compares our method to Aloe, a model trained on large-scale QA data, including the
training set from both MedQA and MedMCQA. This contextualizes how far Tables2Traces
can go with primarily tabular supervision compared to a task-optimized upper bound.

2We consider these smaller model sizes as these are realistic LLM sizes for fine-tuning in clinical settings
given compute limitations.
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Table 1: Per-category evaluation metrics on the MedQA benchmark for Base and Tables2Traces.

Category Model Type Avg Accuracy Best-of-n Majority Vote Worst-of-n % Change
Cardiovascular Base 0.40 £0.03 0.86 = 0.03 0.31 £0.04 0.06 = 0.02
(N =130) Tables2Traces 0.47 +£0.03 0.914+0.03 0.424+0.04 0.06 £0.02 +1721% 1
Dermatologic Base 0.59 £0.08 0.94+0.06 0.534+0.12 0.06 & 0.06
(N=17) Tables2Traces 0.60 +0.08 0.88+0.08 0.59+0.12 0.12 + 0.08 +0.99% 1
Endocrine/Metabolic Base 0.49 £0.03 0.89 +0.02 0.45+0.04 0.13+0.03
(N=179) Tables2Traces 0.51 +0.02 0.91 +0.02 0.46 +0.04 0.10 £+ 0.02 +4.71% 1
Gastrointestinal Base 0.47£0.04 0.874+0.04 0.40+£0.05 0.124+0.04
(N = 86) Tables2Traces 0.50 +£0.04 0.914+0.03 0.47 4+0.05 0.08 £0.03  +6.72% 1
Hematologic Base 0.40 £0.04 0.84+0.04 0.34+0.06 0.04 +0.03
(N =68) Tables2Traces 0.48 +0.04 0.91 +0.04 0.43 +0.06 0.07 +£0.03 +18.98% 1
Immunologic Base 0.514+0.04 0.85+0.04 0.47+0.06 0.22+0.05
(N=381) Tables2Traces 0.54 +0.04 0.94 +0.03 0.46 +0.06 0.17 £+ 0.04 +6.80% 1
Infectious Base 0.48 £0.03 0.92 +0.02 0.41 £0.04 0.11 +0.02
(N =176) Tables2Traces 0.53 +£0.02 0.944+0.02 0.454+0.04 0.11+0.02 +9.73% 1
Musculoskeletal Base 0.49 £0.05 0.89+0.05 0.49+£0.07 0.04 +0.03
(N =45) Tables2Traces 0.51 +0.04 0.96 +£0.03 0.40 +0.07 0.07 +£0.04 +4.07% 1T
Neurological Base 0.47+£0.04 0.86+0.04 0.42+£0.06 0.09+0.03
(N=77) Tables2Traces 0.54 + 0.04 0.95+0.03 0.48 +0.06 0.14 +£0.04 +15.15% 7
Obstetrics/Gynecology  Base 0.46 £0.04 0.90+0.04 0.39+0.06 0.09+0.03
(N =70) Tables2Traces 0.47 +0.03 0.94 +0.03 0.404+0.06 0.03 £0.02  +2.80% 1
Oncology Base 0.53 £0.04 0.9240.03 0.47 £0.06 0.11 +0.04
(N=72) Tables2Traces 0.56 +£0.04 0.93 +0.03 0.534+0.06 0.14+0.04 +5.82% 1
Other Base 0.534+0.07 0.77+£0.08 0.454+0.09 0.23 4+0.08
(N=31) Tables2Traces 0.50 + 0.07 0.87 +0.06 0.42+0.09 0.19 +0.07 -4.88% |
Pediatric Base 0.839+0.09 0.77+0.12 0.39+0.14 0.00+ 0.00
(N=13) Tables2Traces 0.39 +0.05 1.00£0.00 0.31+0.13 0.00+0.00 -1.96% |
Psychiatric Base 0.59 £0.05 0.944+0.03 0.54+0.07 0.23 +0.06
(N =52) Tables2Traces 0.62 £0.05 0.904+0.04 0.614+0.07 0.21+£0.06 +5.57% 1
Renal/Genitourinary ~ Base 0.37+0.04 0.85+0.05 0.26+0.06 0.04 +0.03
(N=54) Tables2Traces 0.48 +0.04 0.96 +£0.03 0.41 +0.07 0.09 £0.04 +29.65% 1
Respiratory Base 0.494+0.04 0.914+0.04 0.434+0.07 0.09 + 0.04
(N=54) Tables2Traces 0.50 = 0.04 0.94 +0.03 0.46 +0.07 0.11 +0.04 +2.28% 1
Toxicology Base 0.43£0.04 0.79+0.05 0.41 £0.06 0.06 + 0.03
(N =68) Tables2Traces 0.52 +£0.04 0.914+0.04 0.47 +0.06 0.09 +0.04 +20.68% 1
Overall Base 0.47 £0.01 0.88 + 0.01 0.41 £ 0.01 0.11 £ 0.01
(N =1273) Tables2Traces 0.51 +0.01 0.93 £0.01 0.46 +=0.01 0.10+0.01 +9.19% 1

4.1 ARE GAINS CONSISTENT ACROSS CLINICAL SUBDOMAINS AND BENCHMARKS?

Goal. Assess whether improvements from tabular supervision generalize across diverse clinical
categories, and whether these gains hold across both MedQA and MedMCQA benchmarks.

Setup. For MedQA, we assign each question to one of 18 clinical categories using DeepSeek—R1.
For MedMCQA, we use the dataset assigned category labels and evaluate on the public validation set
(as the test set is not accessible). We restrict evaluation to questions with a single correct answer
to ensure consistency with the MedQA setup and to allow for accurate, per-question performance
analysis.

Results. As shown in Table T[] and Appendix [E| Tables2Traces consistently outperforms the base
model across a majority of clinical categories in both datasets. On MedQA, we observe improvements
in 16 out of 18 categories (89%), with the largest relative gains in Renal/Genitourinary (+29.65%),
Hematologic (+18.98%), and Cardiovascular (+17.21%). On MedMCQA, Tables2Traces improves
performance in 17 out of 21 categories (81%), including strong gains in Psychiatry (+31.71%), ENT
(+16.56%), and Anatomy (+11.91%). Categories showing drops in performance e.g., Skin (-24.39%)
and Orthopaedics (—15.00%) have very few test samples (N = 11 and N = 15), making these
estimates statistically unreliable.

Takeaway. Tables2Traces yields robust, cross-domain improvements on both benchmarks, improving
in over 80% of clinical categories. The few observed declines are isolated to small and noisy subsets.
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Figure 1: Accuracy comparison across model variants. Subplots show mean accuracy on MedQA
and MedMCQA, with error bars for standard error. Percentages indicate improvement over the Base
model. Top row: in-domain (cardiovascular, patient-specific); bottom row: out-of-domain (non-
cardiovascular, abstract).

4.2 WHAT TYPES OF QUESTIONS BENEFIT FROM TABULAR SUPERVISION?

Goal. To assess whether supervision derived from a single clinical domain (cardiovascular) and a
single input style (patient-specific reasoning traces) can improve performance on both out-of-domain
specialties and abstract medical knowledge.

Setup. We assess generalization along two axes: (1) Domain—partitioning questions into cardiovas-
cular vs. non-cardiovascular using model-inferred labels; and (2) Format—classifying questions as
patient-specific or abstract, based on whether they describe concrete cases (e.g., 45-year-old
man) or general concepts. MedQA is predominantly patient-specific (92.3%), while MedMCQA is
mostly abstract (83.7%) (see Appendix [F).

Results. In MedQA, Tables2Traces shows strong gains on in-domain (cardiovascular, +17.2%) and
patient-specific questions (+10.0%), with smaller gains on abstract questions (+1.8%) (Figure [I)).
However, Tables2Traces (simple) performs worse on abstract questions (—15.3%), possibly suggesting
overfitting to training format. In MedMCOQA, we observe broader generalization: Tables2Traces
improves both patient-specific (+6.8%) and abstract (+7.6%) subsets.

Takeaway. Tabular supervision supports generalization beyond its source domain and format. Without
counterfactual reasoning, tabular supervision can overfit to its patient-specific training data, resulting
in performance degradation in out-of-domain tasks. With counterfactual reasoning, Tables2Traces
improves performance even on abstract, unfamiliar questions.

4.3 WHERE DO MODELS SUCCEED OR FAIL IN EMBEDDING SPACE?

Goal. Visualize how supervision strategies impact the semantic generalization of medical questions.

Setup. We embed all MedQA and MedMCQA questions using text —embedding-3-large
and reduce dimensionality via UMAP. Each point corresponds to a question, colored by
clinical category. Background shading shows smoothed relative accuracy of the fine-tuned model
compared to the Base model. Figure|Z| shows two panels: (a) Tables2Traces, and (b) Tables2Traces
(simple). A complementary plot for MedMCQA is provided in Appendix [E}
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Figure 2: UMAP visualization of MedQA test questions comparing model performance to the Base
model. Each point is a question, embedded using text -embedding-3-large (OpenAl, 2023),
and annotated by medical category using distinct marker shapes and colors. Accuracy is smoothed
using a Gaussian filter (c = 1.5). The background heatmap shows relative performance: red indicates
improvement, blue indicates degradation. Cluster labels mark category centroids. (a) Tables2Traces
achieves broad gains across much of the question space. (b) Tables2Traces (simple) yields localized
improvements, but also shows notable drops in performance in several regions.

Results. Both models show localized gains within the cardiovascular region. However, only
Tables2Traces generalizes effectively across distant clusters whereas the patient-style model (b)
overfits to regions that closely resemble its training format. Peripheral zones, often containing
abstract or non-patient-centered questions (e.g., Biochemistry, Social Medicine), show degradation
under the simple model but improved performance under Tables2Traces. These patterns mirror our
quantitative results and extend to the MedMCOQA visualization, where we observe similar trends in
spatial generalization behavior.

Takeaway. Contrastive reasoning traces lead to broader semantic generalization, increasing perfor-
mance across diverse question types and topics. In contrast, models trained only on patient description
data tend to overfit and struggle in abstract or semantically distant regions of the question space.

4.4 HOW DOES PERFORMANCE COMPARE TO A QA-OPTIMIZED MODEL?

Goal. To benchmark Tables2Traces against a strong QA-tuned model, we compare it to Aloe—a
state-of-the-art medical LLM trained on over 750,000 QA pairs from datasets including MedQA and
MedMCOQA, and further optimized through preference and adversarial feedback tuning (Gururajan
et al.,[2024). Rather than a direct competitor, Aloe represents a task-optimized upper bound built
from large-scale QA supervision. Our comparison asks how far Tables2Traces can go using primarily
tabular reasoning traces and only a small amount of QA data.

Setup. We evaluate Base, Tables2Traces, and Aloe across four subsets: cardiovascular, non-
cardiovascular, patient-specific, and abstract, using both MedQA and MedMCQA (Figure[3). Aloe is
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Figure 3: Accuracy comparison between Base, Tables2Traces, and Aloe across question categories,
grouped by benchmark (MedMCQA, MedQA). Each subplot reports mean accuracy with standard
error bars. Percentage improvements are relative to the Base model. Top row: in-domain categories.
Bottom row: out-of-domain generalization.

trained with 750k QA-format samples, while Tables2Traces uses only 10k QA-format examples (for
alignment), relying primarily on 105k reasoning traces generated from tabular data.

Results. As expected, Aloe achieves the highest accuracy in all categories. However, Tables2Traces
closes a substantial portion of the gap despite using only 1.3% of the QA supervision data used by
Aloe. On MedQA, Tables2Traces improves +17.2% on cardiovascular questions (vs. Aloe’s +26.0%)
and +9.6% on patient-specific questions (vs. +25.3%). In MedMCOQA, Tables2Traces achieves +10.6%
and +6.8% improvements on cardiovascular and patient-specific questions respectively. Notably,
even Aloe shows limited gains on abstract, non-patient-specific questions across both benchmarks,
suggesting these are structurally more challenging and underrepresented during training.

Takeaway. Tables2Traces achieves strong generalization with minimal QA supervision. Despite
being trained using 75x fewer QA samples compared to Aloe, our approach closes a substantial
portion of the performance gap. This highlights the value of clinical reasoning traces from tabular
data as a scalable, interpretable, and cost-effective alternative to large-scale QA corpora.

5 DISCUSSION

Tables2Traces offers a scalable approach for converting tabular data into contrastive reasoning traces,
improving LLM performance on medical QA even when trained on a single clinical domain. Trace
generation is a one-time preprocessing step; once the corpus is produced, it can be reused across
models, and in practice fine-tuning dominates the total compute. By leveraging structured tabular
medical data, the method introduces a new and broadly applicable source of supervision that promotes
causal and actionable reasoning.

While our focus is on binary outcomes and cardiovascular data, the approach is modular and adaptable
to other settings. Generalization to multi-class labels or other data types may require modest
adjustments to the contrastive sampling process. Our evaluation is based on two established medical
QA benchmarks and a large-scale clinical dataset; assessing performance in other domains or
institutions is a natural next step. Finally, while we observe consistent improvements, evaluating
trace fidelity in real-world settings remains an important direction for future work. More broadly,
while tabular supervision can improve access to data used for domain adaptation, it also raises risks if
synthetic traces reflect dataset bias or are applied without validation.
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ETHICS STATEMENT

This work uses de-identified UK Biobank data accessed under approved use; all participants provided
informed consent and data collection was overseen by the UK Biobank ethics framework. Our
method, Tables2Traces, generates synthetic reasoning traces from structured records to fine-tune
language models for research purposes only. The models and traces are not clinical devices and
must not be used for diagnosis or treatment. To gauge plausibility and safety, two cardiologists
qualitatively reviewed 10 randomly sampled traces independently using a structured rubric. Clinician
review confirmed no safety concerns but did note overconfidence by the model, reflecting the inherent
limitations of synthetic data. The cardiology experts noted that outcomes may depend on factors not
present in the tabular snapshot; our traces are therefore positioned as research-only supervision signals,
not calibrated risk assessments or clinical guidance. We provide an overview of their comments in
Appendix [O} We release prompts and code to support auditability. Finally, our evaluation is restricted
to public medical QA benchmarks and does not involve individual-level deployment or decision
support.

REPRODUCIBILITY STATEMENT

All implementation details, prompts, hyperparameters, and evaluation procedures are documented
in the Appendix. Upon acceptance we will release the full codebase and configs to reproduce
preprocessing, trace generation, fine-tuning, and evaluation, together with exact seeds and scripts that
render all tables and figures. Results on public benchmarks (MedQA, MedMCQA) are reproducible
with our released scripts and seeds. UK Biobank data cannot be shared; researchers with approved
access can regenerate the training traces using our scripts and instructions.
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APPENDIX

A  EVALUATION SETUP

We use a standardized evaluation pipeline across all models and benchmarks.  Each
multiple-choice question is formatted using the appropriate chat template (e.g., using stan-
dard templates like AutoTokenizer.apply_chat_template) and fed into the model
for completion.  Evaluation is performed using the vLLM framework with sampling-
based generation (temperature=0.6, top_p=0.85, n=3 completions per prompt,
frequency_penalty=1.5, presence_penalty=0.9, max_tokens=32768). We ex-
tract the final answer (A-D) from the generated output using robust regex-based parsing, and fall
back to the reasoning text if a clean answer is not present after multiple attempts.

We stop generation using model-specific stop tokens (e.g., </ s> for LLaMA, <|EOT | > for Qwen),
as well as answer-format strings (e.g., "Answer: A"). All completions are post-processed using a
training-aware cleaner to remove template artifacts (e.g., "Assistant: " headers). For models
fine-tuned on structured reasoning traces, we additionally parse the <think>...</think> block
and extract the final prediction from the trailing answer segment.

The pipeline includes automatic retries for failed generations, and safely extracts answers even under
high sampling variability. This setup ensures consistent evaluation across all models and supports
multi-sample decoding strategies such as best-of-n, majority vote, and worst-of-n.

A.1 EVALUATION METRICS

All performance metrics are aggregated from 10 independent inference runs per model. For each test
question, we collect a binary correctness label (extracted using a robust regex-based parsing) for each
of the 10 completions and compute the following evaluation metrics:

* Average Accuracy: The average correctness across the 10 runs for each question.
* Best-of-n: The question is marked correct if at least one of the 10 completions is correct.

* Majority Vote: The question is marked correct if a majority of the 10 completions are
correct. In the case of a tie, the outcome defaults to incorrect.

* Worst-of-n: The question is marked correct only if all 10 completions are correct.

Category-level and overall scores are computed by averaging across all test questions per category.
Error bars represent the standard error of the mean (SEM) across test examples. Additionally, we
report the relative percent change in average accuracy compared with the Base model. In all results
tables, the best-performing model is shown in bold for each metric within each category. If multiple
models have the same value after rounding, all are shown in bold.

12
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B TRAINING CONFIGURATION DETAILS

All models are fine-tuned using Open-R1’s supervised fine-tuning pipeline (Face} [2025)), with a single
epoch of training on 4xA 100 80GB GPUs. Weuse FlashAttention—-2 and bfloatl6 precision
for all experiments. Below, we describe shared configurations and model-specific differences.

B.1 SHARED CONFIGURATION

Precision: bfloat16 with FlashAttention-2
Epochs: 1 full pass over the training set
Batch Size: 2 per device, 8 gradient accumulation steps

Optimizer: AdamW with learning rate = 5e—6, cosine decay (min LR ratio = 0.1), weight
decay = 0.0001

Max Sequence Length: 32,768 tokens

Evaluation: Every 500 steps on the test split
Checkpointing: Saved every 500 steps, keep only latest
Logging: Via wandb, every 5 steps

Seed: 42

Gradient Checkpointing: Enabled (non-reentrant)
System Prompt:

You are a helpful AI Assistant that provides

well-reasoned and detailed responses.

You first think about the reasoning process as an internal monologue
and then provide the user with the answer.

Respond in the following format:

<think> ... </think>

<answer> ... </answer>

Chat Template: Modified to include reasoning tags (<think>...</think>) in the
completion and exclude them from the prefill.

13
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B.2 MODEL VARIANTS

We fine-tune two architectures on two dataset variants, resulting in four total models:

Model Architecture

Training Data

DeepSeek-R1-Distill-Qwen-7B
DeepSeek-R1-Distill-Qwen-7B
DeepSeek-R1-Distill-Llama-8B
DeepSeek-R1-Distill-Llama-8B

Patient Descriptions (Tables2Traces (simple))
Counterfactual Traces (Tables2Traces)
Patient Descriptions (Tables2Traces (simple))
Counterfactual Traces (Tables2Traces)

The patient descriptions dataset consists of direct narrative renderings of individual tabular rows,
while the counterfactual traces dataset includes contrastive triplets with structured reasoning (as
described in Section[3). All datasets are processed using 48 parallel workers.

Table 2: Training runtimes for each model variant.

Model Variant Architecture Runtime
Tables2Traces 8B (LLaMA) 20h 37m
Tables2Traces (simple) 8B (LLaMA)  9h 24m
Tables2Traces 7B (Qwen) 19h 52m
Tables2Traces (simple) 7B (Qwen) 9h 18m

C PROMPT TEMPLATES

This section documents all prompt templates used during dataset construction, training, and evalua-
tion. Strings enclosed in curly brackets (e.g., { column_names }) represent placeholders that are
dynamically replaced with instance-specific values at runtime, similar to Python f-strings.

C.1 CoLUMN NAME MAPPING (TABLE REPRESENTATION)

Purpose: Transform raw or abbreviated column headers into clinically accurate feature names.

Placeholders: column_names is replaced with a list of all columns of the dataset.

You are a powerful AI with expertise in medicine.
You are given a dataset with columns that relate to patients where each patient is a row
and each column contains different information pertaining to the patient.

As your first task, you are tasked with converting a list of column names that are
possibly abbreviated or not easy to understand into a fully understandable name for
medical professionals.

Please provide the output as a Python dictionary.

The list of column names is: {column_names}

C.2 PATIENT DESCRIPTION GENERATION

Purpose: Convert structured patient rows into fluent narrative case descriptions.

Placeholders: json_file is replaced with a json-file containing the column names as keys and
the values of columns as values.

14
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756 : o :
- Patient Description Generation

758 You are a powerful AI with expertise in medicine.
759 Your task is to generate a detailed and exhaustive text description for a patient.
You are given all the patient information in a Jjson-format, which contains the clinical attiributes
760 and the results from laboratory tests from real world patients.
761 The patients in question are patients with cardiovascular disease.
The reader of the description is an expert within this particular medical domain.
762 The language used in the description should reflect your domain expertise
763 and your medical reasoning capabilities.
Please provide as many details as possible.
764 You should ONLY include the patient description!
765
766 The json-file containing the information from the patient: {Jjson_file}
767
768
o9 C.3 CONTRASTIVE REASONING AND COUNTERFACTUAL TRACES
770
m Purpose: Generate reasoning traces comparing a target patient to contrasting neighbors.
772
773 Placeholders: target_outcome is the outcome (Alive / Dead) for the target patient.
774 survivor_description is the text description of the nearest neighbor to the target patient
775 who had the outcome "Alive". survivor_description is the text description of the nearest
e neighbor to the target patient who had the outcome "Dead". target_description is the text

description target patient. All text descriptions are derived using the Patient Description Generation
777 : e
prompt in Appendix

778
779 :
Counterfactual Task Generation
780
781 ##4# Role ###
782 Clinical AI analyzing patient outcomes using contrastive case pairs.
783 ### Input Data ###
1) Target patient (labeled {target_outcome})
784 2) Nearest neighbor who survived
785 3) Nearest neighbor who died
786 === CLOSEST SURVIVOR ===
787 {survivor_description}
=== CLOSEST DEATH ===
788

{death_description}
789 === TARGET PATIENT ===
{target_description}

790
791 ### Required Analysis ###
792 1. Comparison:

a) Identify 1-3 decisive differences between target and NNs
793 b) Focus on features present in ALL THREE cases
c) Flag any conflicting evidence

794
795 2. Label Evaluation:
a) Assess if {target_outcome} is correct
796 b) Confidence score (1-5)
797
3. Counterfactual:
798

a) Modify one feature present in NNs
799 b) Predict outcome change
c) Justify using specific NN evidence

800
801 ### Response Format ###
1. Comparison:
802 1) Outcome alignment: <...>
803 2) Decisive factors:
804 2. Label assessment:
805 1) Correctness: <...>
2) Confidence: <...>
806
807 3. Counterfactual:
1) Modification: <...>
808 2) Outcome: <...>
809 3) Evidence: <...>
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C.4 CATEGORIZATION: PATIENT-SPECIFIC VS. ABSTRACT

Purpose: Categorize questions as either patient-specific or abstract.

Placeholders: question is the specific question to be categorized.

Patient-specific Categorization

You are a clinical reasoning expert.
Your task is to determine whether a multiple-choice medical question is xpatient-specificx

Definitions:
- A question is x*patient-specific*x if it describes
a particular patient case —-- including their symptoms, medical history, age, lab results, €

These questions simulate real-life clinical decision-making.

— A question is *xnot patient-specific*x if it

asks about general medical knowledge or includes references to people (e.g., doctors, nurse
but *not to a patient’s condition=.

Return: {{"patient_specific": true}} or {{"patient_specific": false}}
Examples:

Example 1:

Question: A 67-year-old man presents with sudden chest pain and shortness of breath.
Which of the following is the most likely diagnosis?

Answer: {{"patient_specific": true}}

Example 2:
Question: What is the most common cause of mitral stenosis worldwide?
Answer: {{"patient_specific": false}}

Example 3:

Question: A physician enters the operating room without washing his hands.
What is the correct protocol in this situation?

Answer: {{"patient_specific": false}}

Now classify the following question:

Question: {question}
Answer:

C.5 CATEGORIZATION: CARDIOVASCULAR VS. NON-CARDIOVASCULAR (MEDMCQA)

Purpose: Categorize MedMCQA questions as either cardiovascular related or not.

Placeholders: question is the specific question to be categorized.

Cardiovascular Categorization

You are a medical assistant helping categorize medical questions.
Given a question, determine whether it pertains to cardiovascular diseases or not.

Only answer ‘true' or ‘false‘ depending on whether the core topic of the question
involves cardiovascular systems, diseases, symptoms, diagnostics, or treatment.
Cardiovascular topics include (but are not limited to) conditions such as: hypertension,

myocardial infarction, arrhythmias, heart failure, atherosclerosis, angina, or cardiac arre

Avoid false positives: questions mentioning blood pressure, heart rate, or medications like
beta-blockers must still be relevant to cardiovascular context to count.

Output your answer in the following JSON format:
{{"cardiovascular_related": true}}

Question:
{question}

C.6 CATEGORIZATION: MEDICAL DOMAIN (MEDQA)

Purpose: Categorize the medical domain of MedQA questions.
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Placeholders: question is the specific question to be categorized.

Medical Domain Categorization

Analyze the medical question and respond EXACTLY as follows:

—-—-STRICT RULES---—
1. SINGLE HIGH-CONFIDENCE CATEGORY (>=0.7):
- If ONE category scores >=0.7:
"Category = Score"
« If MULTIPLE categories score >=0.7:
Choose ONLY THE HIGHEST SCORE (if tie, pick first alphabetically)

2. MULTIPLE LOW-CONFIDENCE CATEGORIES (all <0.7):
« "Primary: Categoryl = Scorel, Secondary: Category2 = Score2, Tertiary: Category3 = Sc

3. IRRELEVANT:
-« "None of the above = 1.0"

—-—-—-VALID EXAMPLES—--—

« "Cardiovascular = 0.85"

« "Primary: Infectious = 0.6, Secondary: Hematologic = 0.3, Tertiary: Renal = 0.1"
« "None of the above = 1.0"

——-CATEGORIES (ALPHABETICAL ORDER)---

Cardiovascular, Dermatologic, Endocrine/Metabolic, Gastrointestinal, Hematologic,
Immunologic, Infectious, Musculoskeletal, Neurological, Obstetrics/Gynecology,
Oncology, Pediatric, Psychiatric, Renal/Genitourinary, Respiratory, Toxicology

-——QUESTION---
{question}

———YOUR RESPONSE (MUST MATCH EXACTLY ONE FORMAT ABOVE)---—

17
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C.7 EVALUATION PROMPTS: MEDQA

Purpose: Evaluate model on MedQA using reasoning-aware prompting.

MedQA Evaluation Prompt

*xRolex*: You are a medical knowledge expert.

*xTaskx*: Analyze the following multiple-choice medical question by following these steps:
1. First, use critical clinical reasoning to think about the question

step-by-step before giving a final answer.

2. After completing your reasoning, directly provide your final answer.

3. **IMPORTANTx*: Do not provide any explanation beyond your answer in the final output.

**Response Formatxx:
[Your step-by-step reasoning goes here]
Answer: [Your final choice: A, B, C, or D]

C.8 EVALUATION PROMPTS: MEDMCQA

Purpose: Evaluate model on MedMCQA using structured reasoning steps.

MedMCQA Evaluation Prompt

**xRolex*: You are a medical knowledge expert.
*xTask**: Analyze the following multiple-choice medical question by reasoning
step-by-step before selecting the best answer.

Follow these steps:

1. Identify the topic and relevant concepts.

2. Recall or infer medical knowledge needed to solve the question.
3. Eliminate incorrect options and justify your final choice.

4. Provide your answer clearly and concisely.

**Response Format#x:
[Step-by-step reasoning]
Answer: [A, B, C, or D]

*xConstraintsxx:
— Do not explain anything after giving your final answer.
— Only choose a single option from A-D.
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D QUALITATIVE EXAMPLES

This section provides representative examples of reasoning traces generated during training and
evaluation. These examples illustrate the structure, fluency, and clinical plausibility of model outputs
for both Tables2Traces and Tables2Traces (simple). All examples are drawn directly from the training
data without curation or filtering. Specifically, the example shown here (both the patient description
task and the counterfactual task) corresponds to the first available row in the dataset and is included
with minimal editing beyond redaction for privacy.

D.1 QUALITATIVE EXAMPLE: PATIENT DESCRIPTION REASONING (REDACTED)

We include a representative example of a reasoning trace generated from a single patient description
prompt. The input data has been redacted for privacy, but the structure of the trace is preserved. The
resulting model response corresponds to the training data used for the Tables2Traces (simple) variant
and as the generated patient descriptions used for generating the counterfactual tasks.

Patient JSON Input (Redacted)

You are a powerful AI with expertise in medicine. Your task is to generate a detailed and exhaustive text description for a patient.
You are given all the patient information in a json-format, which contains the clinical attributes and the results from laboratory tests
from real world patients. The patients in question are patients with cardiovascular disease. The reader of the description is an expert
within this particular medical domain. The language used in the description should reflect your domain expertise and your medical
reasoning capabilities. Please provide as many details as possible. You should ONLY include the patient description!

The json-file containing the information from the patient:
Sex
Age (Years)
Weight (Kilograms)
Height (Centimeters)
Smoking Amount (Cigarettes per Day)
Atrial Fibrillation Diagnosis
Chronic Kidney Disease Diagnosis
Rheumatoid Arthritis Diagnosis
Anti-diabetic Medication Use
Anti-hypertensive Medication Use
Diabetes History
Lipid-lowering Medication Use
Oral Contraceptive Use
Blood Glucose Level (mmol/L)
Hemoglobin Alc (HbAlc) Percentage
White Blood Cell Count (x1079/L)
Serum Creatinine (pmol/L)
Triglyceride Level (mmol/L)
Uric Acid Level (pumol/L)
Cystatin C Level (mg/L)
Systolic Blood Pressure (mmHg)
Urine Microalbumin Concentration (mg/L)
C-Reactive Protein (CRP) Level (mg/L)
Family History of Cardiovascular Disease (CVD)
Atypical Antipsychotic Medication Use
Corticosteroid Medication Use
Migraine History
Severe Mental Illness Diagnosis
Systemic Lupus Erythematosus (SLE) Diagnosis
Total Cholesterol Level (mmol/L)
High-Density Lipoprotein (HDL) Cholesterol Level (mmol/L)
Ethnicity
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Model Reasoning (Redacted)

<think> Okay, let’s start by going through all the patient data provided. The patient is a [...]-year-old [...] [...] with a height of [...] cm
and weight of [...] kg. Calculating his BMI: weight divided by height squared in meters. So [...] kg / ([...] m)? =1[..] kg/mQ. That
puts him in the overweight category, which is a risk factor for cardiovascular issues.

He’s a smoker, [...] cigarettes per day. That’s significant. Smoking is a major risk factor for cardiovascular diseases, including
atherosclerosis and hypertension. His systolic blood pressure is [...] mmHg, which is way above the normal range. Stage 2
hypertension. But he’s not on anti-hypertensive meds, which is concerning. Uncontrolled hypertension can lead to heart failure,
stroke, etc.

Looking at his lab results. Blood glucose is [...] mmol/L, which is within normal fasting levels. HbAlc is [...]%, also normal, so no
indication of diabetes. No history of diabetes either. So glucose metabolism seems okay. But his lipid profile: total cholesterol [...]
mmol/L, which is a bit elevated. Triglycerides at [...] mmol/L, which is borderline high. HDL is [...] mmol/L, which is on the lower
side for males. Low HDL and elevated triglycerides could contribute to atherosclerosis. But he’s not on lipid-lowering meds, so
that’s another risk factor not being managed.

Serum creatinine is [...] pmol/L. Using the CKD-EPI equation for eGFR. For a [...]-year-old [...], serum creatinine of [...] converts to
an eGFR around [...] mL/min/[...Jm2, which is normal. Cystatin C is [...] mg/L, which also correlates with normal kidney function.
Urine microalbumin is [...] mg/L, which is within normal range. So no signs of chronic kidney disease, which aligns with the CKD
diagnosis being [...].

CRP is [...] mg/L, which is normal. Low CRP suggests no significant inflammation. No rheumatoid arthritis, SLE, or other
inflammatory conditions. Uric acid is [...] umol/L. Normal range for males is around 416, so his is within normal. Not a
hyperuricemia case, so less concern for gout.

He has atrial fibrillation (diagnosis 1), which is a major risk for stroke and heart failure. Given his age and hypertension, that’s a
critical factor. No family history of CVD, so maybe environmental factors like smoking and hypertension are the main contributors
here. No other comorbidities like severe mental illness or migraines.

Other meds: Not on anti-diabetics, lipid-lowering, or antihypertensives. So his AFib and hypertension are untreated, which is
alarming. His high systolic BP could be exacerbating the atrial fibrillation, increasing stroke risk. The CHA2DS2-VASc score would
be [...], indicating anticoagulation should be considered.

In summary, this patient has multiple modifiable risk factors: smoking, obesity, uncontrolled hypertension, dyslipidemia. The
presence of atrial fibrillation without anticoagulation or rate control meds significantly elevates his thromboembolic risk. The absence
of diabetes or kidney disease is a positive note, but the untreated hypertension and smoking are critical areas needing intervention.
His elevated systolic BP is a key driver for cardiovascular events. Management should focus on smoking cessation, initiating
antihypertensive therapy, lipid management, and evaluating for anticoagulation given his AFib. </think>

Model Response (Redacted)

The patient is a [...]-year-old [...] [...] with a body mass index (BMI) of [...] kg/m? (height: [...] cm; weight: [...] kg), categorizing
him as overweight. He reports a significant smoking history of [...] cigarettes/day, a critical modifiable cardiovascular risk factor. Key
clinical findings include **stage [...] hypertension** (systolic blood pressure: [...] mmHg) without current anti-hypertensive therapy,
**atrial fibrillation** (diagnosis confirmed), and a lipid profile suggestive of mixed dyslipidemia (total cholesterol: [...] mmol/L,
triglycerides: [...] mmol/L, HDL-C: [...] mmol/L). Notably, his LDL-C (calculated via Friedewald equation: [...] mmol/L) exceeds
optimal targets, yet he is not on lipid-lowering therapy.

Metabolically, he exhibits normoglycemia (fasting glucose: [...] mmol/L; HbAlc: [...]%) without evidence of diabetes or anti-diabetic
medication use. Renal function is preserved (serum creatinine: [...] pmol/L; eGFR >[...] mL/min/[.“]m2 by CKD-EPI; cystatin C:
[...] mg/L; urine microalbumin: [...] mg/L), ruling out chronic kidney disease. Inflammatory markers are unremarkable (CRP: [...]
mg/L), with no history of autoimmune or systemic inflammatory conditions. Uric acid levels ([...] umol/L) are within normal limits,
mitigating concern for gout-related contributions.

The absence of anti-hypertensive or anticoagulant therapy in the setting of atrial fibrillation and severe hypertension raises im-
mediate concern for thromboembolic risk (CHA2DS2-VASc score < [...]) and hypertensive end-organ damage. His lipid ab-
normalities—elevated triglycerides, low HDL-C, and borderline-high LDL-C—suggest residual atherogenic risk despite normal
BMI-adjusted adiposity metrics. The combination of smoking, untreated hypertension, and dyslipidemia synergistically amplifies his
cardiovascular risk profile, warranting aggressive risk factor modification.

No family history of CVD or secondary causes of hypertension (e.g., renal, endocrine) is documented. The absence of diabetes,
chronic kidney disease, or inflammatory comorbidities narrows the primary drivers of his cardiovascular pathology to lifestyle factors
(smoking, diet) and age-related vascular stiffening. Urgent interventions should prioritize smoking cessation, BP control (target
<130/80 mmHg per ACC/AHA guidelines), statin initiation, and atrial fibrillation management with anticoagulation and rhythm
control strategies.

D.2 QUALITATIVE EXAMPLE: COUNTERFACTUAL REASONING (REDACTED)

We include a representative example of a reasoning trace generated from a counterfactual reasoning
trace for the first row of the dataset. The input data has been redacted for privacy, but the structure
of the trace is preserved. This format corresponds to the Tables2Traces variant. For readability, the
input to the counterfactual task is shown in three parts. In practice, the full prompt is passed to the
LLM as a single string. The split here is purely for presentation purposes.
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Counterfactual Input (Redacted) - Part 1

### Role ###
Clinical AI analyzing patient outcomes using contrastive case pairs.

### Input Data ###

1) Target patient (labeled Dead)
2) Nearest neighbor who survived
3) Nearest neighbor who died

=== CLOSEST SURVIVOR ===

*xPatient Descriptionx

The patient is a x*[...]-year-old [...] malexx

with a body mass index (BMI) of *x[...] kg/m"2x* (weight: [...] kg,

height: [...] cm)), categorizing him as x*overweightxx,

a significant modifiable risk factor for cardiovascular disease (CVD).

He reports a *x[...]-cigarette/day smoking history**, a major independent risk factor
for atherosclerotic CVD and thromboembolic events.

*xCardiovascular and Comorbidity Profilexx:
- xxAtrial fibrillation (AF)x* is confirmed (diagnosis code present),
elevating his risk of thromboembolic complications, including stroke.

- xxNo diabetes mellitusx* (HbAlc: [...]%, fasting glucose: [...] mmol/L)

or chronic kidney disease (CKD) (serum creatinine: [...] mumol/L,

cystatin C: [...] mg/L, urine microalbumin: [...] mg/L).

— x*xUncontrolled hypertension*x (systolic BP: [...] mmHg) is evident, with no current use
of anti-hypertensive medications, suggesting suboptimal risk factor management.

- *«xHyperlipidemiax* is present (total cholesterol: [...] mmol/L, HDL: [...] mmol/L,
triglycerides: [...] mmol/L), with an estimated LDL-C of *x~[...]

mmol/L*x (Friedewald equation), indicative of significant dyslipidemia.
Despite this, no lipid-lowering therapy is documented.

*xInflammatory and Metabolic Markersxx:

- *«xC-reactive protein (CRP)#** is within normal limits ([...] mg/L),
suggesting no acute systemic inflammation.

— xxUric acid+** levels are borderline elevated ([...] mumol/L)
though below the threshold for clinical hyperuricemia.

*xAdditional Risk Stratificationxx:

- xxNo family history of CVDx%, autoimmune disease (e.g., rheumatoid arthritis, SLE),
or severe mental illness.

- *xAbsence of diabetic, antihypertensive, or lipid-lowering pharmacotherapyxx*
highlights potential undertreatment of modifiable CVD risk factors.

*xClinical Synthesisxx:

This patient presents with *xhigh-risk cardiovascular profilexx driven by =*xage,
smoking, untreated hypertension, and significant hypercholesterolemiaxx,
compounded by *xAF-related thromboembolic riskx*x.

The absence of diabetes or CKD does not mitigate his overall risk,

as his ASCVD (atherosclerotic cardiovascular disease)

risk score would likely place him in a high-risk category.

Urgent interventions should prioritize xxsmoking cessation, BP control

(target <130/80 mmHg per guidelines), and statin therapyx*x

(high-intensity statin indicated for LDL-C reduction >50%).

*xAnticoagulation for AF+x (CHA_2DS_2-VASc score >=2 given age >=[...] and hypertension)
should be evaluated to mitigate stroke risk.

Close monitoring of renal function (cystatin C-based eGFR) and

lipid profiles is warranted to guide therapeutic efficacy and adherence.
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unterfactual Input (Redacted) - Part 2

=== CLOSEST DEATH ===

The patient is a [...]-year-old [...] male with a body mass index (BMI) of
[...] kg/m"2 (weight: [...] kg, height: [...] cm), categorizing him as overweight.
He is an active smoker with a significant tobacco exposure of [...] cigarettes/day,

a major independent risk factor for atherosclerotic cardiovascular disease (ASCVD).
His medical history is notable for atrial fibrillation (AFib),

a critical arrhythmia conferring a 5-fold increased risk of thromboembolic events,
but no evidence of chronic kidney disease (CKD),

diabetes mellitus (DM), or autoimmune disorders.

*xCardiometabolic Profile:xx*

- xxHypertension:x* Uncontrolled stage 2 hypertension (systolic BP: [...] mmHg)
without current antihypertensive therapy. This elevates his 10-year ASCVD risk
substantially, particularly when combined with smoking.

- *xLipid Abnormalities:x* Borderline-high total cholesterol ([...] mmol/L) with
elevated calculated LDL-C (~[...] mmol/L via Friedewald equation) and suboptimal
HDL-C ([...] mmol/L), consistent with atherogenic dyslipidemia.

Triglycerides are within normal limits ([...] mmol/L).

- *xGlycemic Status:*x Normoglycemic (fasting glucose: [...] mmol/L;

HbAlc: [...]1%), excluding DM.

*xRenal & Inflammatory Markers:xx

- Preserved renal function: Serum creatinine [...] mumol/L (eGFR ~[...] mL/min/[...]m"2
by CKD-EPI), cystatin C [...] mg/L, and normoalbuminuria (urine microalbumin: [...] mg/L).
- Mild systemic inflammation: CRP [...] mg/L, potentially reflecting endothelial

dysfunction from smoking or subclinical atherosclerosis.

*xAdditional Risk Stratification:xx

— Absence of protective factors: No lipid-lowering, antihypertensive,
or anticoagulant use despite AFib and ASCVD risk factors.

— No familial predisposition to CVD or contributory medication use
(e.g., corticosteroids, antipsychotics).

*xClinical Implications:*x

This patient exhibits a high-risk phenotype for ASCVD

and thromboembolism due to the confluence of modifiable factors: smoking,
untreated hypertension, dyslipidemia, and AFib. The absence of diabetes

or CKD does not mitigate this risk, as his SCORE2-Diabetes equation-adjusted
10-year CVD risk likely exceeds 10%. Urgent interventions should include
smoking cessation, BP control (target <130/80 mmHg per ACC/AHA guidelines),
high-intensity statin therapy (e.g., atorvastatin 40-80 mg),

and CHA_2DS_2-VASc-guided anticoagulation for AFib. Weight optimization and
serial monitoring of inflammatory markers (e.g., CRP)

and cardiac troponins could further refine prognostication.

=== TARGET PATIENT ===

The patient is a [...]-year-old [...] male with a body mass index (BMI) of
[...] kg/m*2 (height: [...] cm; weight: [...] kg), categorizing him as overweight.
He reports a significant smoking history of [...]

cigarettes/day, a critical modifiable cardiovascular risk factor.

Key clinical findings include xxstage 2 hypertensionxx

(systolic blood pressure: [...] mmHg) without current anti-hypertensive
therapy, **atrial fibrillation** (diagnosis confirmed), and a lipid profile
suggestive of mixed dyslipidemia (total cholesterol:

[...] mmol/L, triglycerides: [...] mmol/L, HDL-C: [...] mmol/L).

Notably, his LDL-C (calculated via Friedewald equation: [...] mmol/L) exceeds
optimal targets, yet he is not on lipid-lowering therapy.

Metabolically, he exhibits normoglycemia (fasting glucose: [...] mmol/L; HbAlc: [...]1%)
without evidence of diabetes or anti-diabetic medication use. Renal function is
preserved (serum creatinine: [...] mumol/L; eGFR >[...] mL/min/[...] by CKD-EPI;
cystatin C: [...] mg/L; urine microalbumin: [...] mg/L), ruling out chronic kidney
disease. Inflammatory markers are unremarkable (CRP: [...] mg/L), with no history of
autoimmune or systemic inflammatory conditions. Uric acid levels ([...] mumol/L)

are within normal limits, mitigating concern for gout-related contributions.

The absence of anti-hypertensive or anticoagulant therapy in the setting of atrial
fibrillation and severe hypertension raises immediate concern for

thromboembolic risk (CHA_2DS_2-VASc score >=2) and hypertensive end-organ damage.
His lipid abnormalities--elevated triglycerides,

low HDL-C, and borderline-high LDL-C--suggest

residual atherogenic risk despite normal BMI-adjusted adiposity metrics.

The combination of smoking, untreated hypertension, and dyslipidemia
synergistically amplifies his cardiovascular risk profile,

warranting aggressive risk factor modification.
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Counterfactual Input (Redacted) - Part 3

No family history of CVD or secondary

causes of hypertension (e.g., renal, endocrine) is documented.

The absence of diabetes, chronic kidney disease, or inflammatory comorbidities
narrows the primary drivers of his cardiovascular pathology to lifestyle factors
(smoking, diet) and age-related vascular stiffening. Urgent interventions

should prioritize smoking cessation, BP control (target <130/80 mmHg per
ACC/AHA guidelines), statin initiation, and atrial fibrillation management with
anticoagulation and rhythm control strategies.

### Required Analysis ###
1. Comparison:
a) Identify 1-3 decisive differences between target and NNs
b) Focus on features present in ALL THREE cases
c) Flag any conflicting evidence (e.g., "Target aligns with NN1 in [X] but NN2 in

2. Label Evaluation:

a) Assess if Dead is correct

b) Confidence score (1-5):

5 = All evidence strongly agrees

= Most evidence agrees
= Mixed evidence
Minimal supporting evidence
= No discernible pattern

=N W
I

3. Counterfactual:
a) Modify one feature present in NNs
b) Predict outcome change
c) Justify using specific NN evidence

### Response Format ###
1. Comparison:
1) Outcome alignment: <Matches Survivor/Matches Death/Uncertain>
2) Decisive factors:
1) <Feature>: Target vs NN1 vs NN2
2) <Feature>: Target vs NN1 vs NN2

2. Label assessment:
1) Correctness: <Correct/Incorrect/Edge Case>
2) Confidence: <1-5 with brief rationale>

3. Counterfactual:
1) Modification: <Feature + change>
2) Outcome: <Survived/Died>
3) Evidence: <"Matches [NN] where [feature]=[value]">

### Quality Rules ###

- If confidence =<2, state: "Uncertain because [reason]"

— Counterfactuals must reference features actually present in NNs
— Use original feature names from input data

[yrm
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Model Reasoning (Redacted)

<think> Okay, let’s start by looking at the three patients: the target who died, the closest survivor (NN1), and the closest death
(NN2). All three are [...] males in their [...], overweight, with a [...]-cigarette/day smoking history, atrial fibrillation, uncontrolled
hypertension, and untreated hyperlipidemia. They also don’t have diabetes or CKD.

First, comparing the target to the survivor and the other deceased. The target’s systolic BP is [...] mmHg, which is higher than both
NNI ([...]) and NN2 ([...]). That’s a big difference. High BP is a major risk factor, so maybe the target’s much higher BP contributed
to his death.

Next, looking at LDL-C levels. The target’s LDL is [...] mmol/L, which is lower than NN1’s [...] but higher than NN2’s [...]. Wait,
NN2’s LDL was [...], so the target is actually lower than NN2. Hmm, but the survivor had the highest LDL. That’s conflicting. Maybe
LDL isn’t the decisive factor here.

Triglycerides: Target has [...], which is higher than both NN1 ([...]) and NN2 ([...]). Elevated triglycerides can contribute to
cardiovascular risk, so this might be a key difference. The target’s higher triglycerides could have increased his risk compared to the
other two.

So the main differences are systolic BP and triglycerides. The target’s BP is the highest, and his triglycerides are higher than both
NNs. Even though his LDL is in between, the other factors might be more critical.

For the label assessment, the target died. Both NNs had similar profiles but the target’s BP and triglycerides are worse. The survivor
had lower BP and lower triglycerides, while the deceased had lower BP than the target. So the higher BP in the target might explain
the death. The confidence is high because BP and triglycerides are significant risk factors, and the target’s values are worse.

For the counterfactual, if we lower the target’s systolic BP to [...] mmHg (like NN 1), maybe he would have survived. NN1 had lower
BP and survived, so reducing BP to that level might change the outcome. Alternatively, lowering triglycerides to match NN1 or NN2
could also help, but BP seems more directly impactful. The evidence from NN1 shows that with lower BP, survival occurred despite
other risks. </think>

Model Response (Redacted)

### 1. Comparison:
1) *xOutcome alignmentxx: Matches Death
2) *xDecisive factorsx*x:
1) x*Systolic BPx*: Target ([...] mmHg) > NN1 ([...] mmHg) > NN2 ([...] mmHg)
— Target’s severe hypertension (stage 2) exceeds both NNs,
increasing acute cardiovascular event risk (e.g., stroke, myocardial infarction).
2) *xTriglycerides*x: Target ([...] mmol/L) > NN2 ([...] mmol/L) > NN1 ([...] mmol/L)
- Elevated triglycerides in the target suggest greater
residual atherogenic risk despite comparable LDL-C levels.

### 2. Label assessment:
1) xxCorrectness=**: Correct
2) *xConfidencex*: 4/5
— Rationale: The target’s xxhigher systolic BPxx and xxtriglyceridesxx align
with worse outcomes. Both NNs had lower BP and triglycerides, yet the target died.
However, conflicting evidence exists in LDL-C
(target: [...] mmol/L vs. NN1l: [...] mmol/L),
where the survivor paradoxically had higher LDL-C. This reduces confidence to 4.

### 3. Counterfactual:

1) xxModificationx*: Reduce systolic BP to [...] mmHg (NN1’s level)

2) *xOutcomex*: Survived

3) xxEvidence*x: Matches x*NNlxx where systolic BP=[...] mmHg (untreated but lower
than target’s [...] mmHg). NN1 survived despite similar AFib, smoking, and untreated

hyperlipidemia, suggesting BP control is a pivotal survivability factor.
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Table 3: Per-category evaluation metrics on MedMCQA for Base and Tables2Trace (8B).

Category Model Type Avg Accuracy Best-of-n Majority Vote Worst-of-n % Change
Anaesthesia Base 0.36 £ 0.07 0.88+0.07 0.29+0.09 0.08 +0.06
(N=24) Tables2Traces 0.36 +£0.07 0.83 £0.08 0.29 +0.09 0.08 + 0.06 -1.15% |
Anatomy Base 0.36 £ 0.02 0.86+0.03 0.26+0.04 0.024+0.01
(N=147) Tables2Traces 0.40 +£0.02 0.88 £0.03 0.31+0.04 0.07+£0.02 +1191% 7T
Biochemistry Base 0.574£0.03 0.904+0.03 0.58+0.04 0.1140.03
(N =122) Tables2Traces 0.59 +£0.03 0.95+0.02 0.56 +0.05 0.17+0.03 +3.62% T
Dental Base 0.35+0.01 0.82+£0.01 0.26£0.02 0.0540.01
(N = 845) Tables2Traces 0.39 +£0.01 0.88 £0.01 0.28 +0.02 0.06 + 0.01 +9.24% 71
ENT Base 0.39+0.05 0.92+0.04 0.26£0.07 0.08 +0.04
(N=39) Tables2Traces 0.45 +£0.05 0.92+0.04 0.36 +0.08 0.08+0.04 +16.56% T
Forensic Medicine Base 0.41 £0.05 0.89+0.05 0.32+0.07 0.09+0.04
(N=44) Tables2Traces 0.41 +0.05 0.89 £0.05 0.30+0.07 0.14 + 0.05 -1.10% |
Gynaecology & Obstetrics Base 0.40+0.03 0.81+£0.03 0.32£0.04 0.09+0.02
(N =154) Tables2Traces 0.42 +0.03 0.82+0.03 0.38+0.04 0.08+0.02 +4.03% 1
Medicine Base 0.44+0.03 0.84+0.03 0.39£0.04 0.124+0.02
(N =185) Tables2Traces 0.50 +£0.03 0.88 £0.02 0.45+0.04 0.15+0.03 +12.17% T
Microbiology Base 0.45 + 0.04 0.84 +0.04 0.35+0.06 0.11+0.04
(N=74) Tables2Traces 0.48 +0.04 0.91 +£0.03 0.35+0.06 0.15+ 0.04 +7.55% 1
Ophthalmology Base 0.40 £ 0.05 0.91+£0.04 0.30£0.07 0.144+0.05
(N=43) Tables2Traces 0.41 +0.05 0.88 £0.05 0.30+ 0.07 0.16 + 0.06 +1.72% 1
Orthopaedics Base 0.40 £ 0.08 0.87+0.09 0.53+0.13 0.00 %+ 0.00
(N=15) Tables2Traces 0.34 £ 0.08 0.80 £ 0.11 0.27 +£0.12 0.00 £0.00 -15.00% |
Pathology Base 0.51+0.02 0.89+0.02 0.44+£0.03 0.1140.02
(N =259) Tables2Traces 0.54 +£0.02 0.92+0.02 0.53 +0.03 0.16 +0.04 +5.82% T
Pediatrics Base 0.44+0.03 0.82+0.03 0.39£0.04 0.09+0.02
(N=133) Tables2Traces 0.47 +0.03 0.86 £0.03 0.384+0.04 0.12+0.03 +6.52% T
Pharmacology Base 0.52 + 0.03 0.90 + 0.02 0.46 +£0.04 0.17+0.03
(N=179) Tables2Traces 0.56 +£0.02 0.93 £0.02 0.55+0.04 0.14 +0.03 +8.30% 1
Physiology Base 0.46 £ 0.03 0.86+0.03 0.38+0.04 0.16 +0.03
(N=133) Tables2Traces 0.47 +£0.03 0.86 £0.03 0.38 +-0.04 0.14 +0.03 +2.30% T
Psychiatry Base 0.41+0.10 0.80+£0.13 0.30£0.15 0.00 £ 0.00
(N=10) Tables2Traces 0.54 £0.09 0.90+0.10 0.50+0.17 0.00+0.00 +31.71% T
Radiology Base 0.49+0.04 0.93+0.03 0.40+0.07 0.05+ 0.03
(N=57) Tables2Traces 0.45 +£0.04 0.89 £0.04 0.39+0.07 0.04 + 0.02 -8.54% |
Skin Base 0.37 £0.08 0.91+0.09 0.27+0.14 0.00+ 0.00
(N=11) Tables2Traces 0.28 £ 0.10 0.73 +0.14 0.18 £0.12 0.09 +£0.09 -2439% |
Social & Preventive Medicine Base 0.444+0.04 0.81+0.04 0.34£0.05 0.10+0.03
(N=91) Tables2Traces 0.47 +£0.04 0.87 £0.04 0.43 £0.05 0.09 + 0.03 +7.30% 1
Surgery Base 0.41+0.02 0.86+0.02 0.35+£0.03 0.08+0.02
(N =249) Tables2Traces 0.46 +0.02 0.86 £0.02 0.40+0.03 0.08 +£0.02 +12.12% T
Unknown Base 0.30 £ 0.30 0.50+0.50 0.50+0.50 0.00+ 0.00
(N=2) Tables2Traces 0.35 +0.35 0.50 +£0.50 0.50 4+ 0.50 0.00+ 0.00 +16.67% T
Overall Base 0.42+0.01 0.85+0.01 0.354+0.01 0.09+0.01
(N =2816) Tables2Traces 0.45 +0.01 0.88+0.01 0.38 +0.01 0.10+ 0.01 +7.49% 1T

E MEDMCQA CATEGORY-LEVEL RESULTS

To further evaluate generalization, we analyze performance across medical specialties on the MedM-
CQA benchmark. As shown in Table [3] Tables2Traces improves performance across 17 of 21
categories, despite being fine-tuned exclusively on tabular data from a single clinical domain (car-
diovascular). Notable gains appear in ENT (+16.56%), Social & Preventive Medicine (+16.67%),
and Medicine (+12.71%), among others. While a few categories see drops (e.g., Skin, Orthopaedics),
the overall gain is +7.49%. These results demonstrate that contrastive supervision derived from
structured data can support generalization even to out-of-domain medical topics.
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Table 4: Distribution of question types in MedQA and MedMCQA using LLM-based classification.
Values are shown as raw counts and percentages of each dataset.

Benchmark Patient-Specific Abstract Cardiovascular Non-Cardiovascular
MedQA 1175 (92.3%) 98 (7.7%) 130 (10.2%) 1143 (89.8%)
MedMCQA 460 (16.3%) 2356 (83.7%) 226 (8.0%) 2590 (92.0%)

F QUESTION TYPE DISTRIBUTIONS

To better understand the nature of the questions in each benchmark, we classify them along two axes
using an LLM-based approach: whether a question is patient-specific (referring to a concrete clinical
case) or abstract (testing general medical knowledge), and whether it falls within the cardiovascular
domain. As shown in Table 4 MedQA is overwhelmingly patient-specific (92.3%) and contains
a small cardiovascular subset (10.2%). In contrast, MedMCQA is largely abstract (83.7%) and
similarly skewed toward non-cardiovascular questions. This highlights the generalization challenge:
our fine-tuned models, trained only on cardiovascular tabular data, are evaluated on questions that are
mostly out-of-domain and structurally distinct.
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Table 5: Aloe fine-tuning with Tables2Traces supervision. Means and standard error estimates over
10 inference runs.

Model Avg Accuracy
Aloe 0.58 + 0.01
Aloe + Tables2Traces 0.56 £+ 0.01

G ALOE FINE-TUNING RESULTS

Aloe is a strong medical QA system trained on many curated datasets with synthetic chain-of-thought,
guideline-based answers, and adversarial supervision. It is optimized for direct question answering
rather than multi-step or counterfactual reasoning. We include Aloe as a point of contrast and test
alignment: does reasoning supervision from Tables2Traces improve a QA-oriented model? We
fine-tuned Aloe on the same Tables2Traces prompt—trace pairs and evaluated under identical test-time
prompts and decoding settings as in the main experiments. Average accuracy decreases from 0.58
to 0.56 with the same standard error, indicating no benefit from reasoning-based supervision. This
supports the claim that Tables2Traces is orthogonal to expensive QA curation and that QA-specific
training is misaligned with reasoning traces.
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Figure 4: Accuracy on different question types in the MedQA benchmark across model sizes (7B and
8B) and fine-tuning methods. Tables2Traces yields large gains on cardiovascular and more modest
gains patient-specific questions. On both cardiovascular and patient-specific questions both 7B and
8B models show consistent improvement. Minor gains are observed for non-cardiovascular questions
except for the 8B Tables2Traces model. On abstract questions, all models underperform compared to
the base model, except for the 8B Tables2Traces model. Values reflect relative improvement over the
base model, with error bars denoting standard error across inference runs.

H RESULTS FROM QWEN-7B MODELS

To assess whether the benefits of Tables2Traces generalize across model scales, we replicate our main
experiments using Qwen models with 7 billion parameters. These models are evaluated on the same
MedQA and MedMCQA benchmarks, using identical training procedures as the 8B counterparts.
Unlike the 8B results, however, we observe that Tables2Traces provides less consistent improvements
at this smaller scale—particularly on out-of-domain or abstract questions. In some cases, performance
even degrades relative to the base model.

It is important to note that this comparison involves both a change in model size (§B — 7B) and
architecture (LLaMA — Qwen), so the effects cannot be attributed to scaling alone. These results
suggest that both model capacity and architecture may influence the effectiveness of structured,
trace-based supervision.

H.1 MEDQA

Figure ] shows performance on the MedQA benchmark, stratified by question type and model size
(7B vs. 8B). Tables2Traces yields substantial improvements on cardiovascular questions (up to
+17.2%) and consistent gains on patient-specific questions, especially at the 8B scale. This suggests
that structured reasoning supervision is particularly effective for case-based clinical reasoning tasks.

Performance on non-cardiovascular questions improves only modestly, and the Tables2Traces (simple)
variant offers little benefit over the base model. For abstract questions, all 7B models underperform,
and only Tables2Traces 8B retains accuracy. These results highlight the importance of contrastive,
trace-based supervision for enabling models to generalize beyond narrowly defined training inputs.
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Figure 5: Accuracy on different question types in the MedMCQA benchmark across model sizes
(7B and 8B) and fine-tuning methods. At 8B, Tables2Traces improves performance on all question
types, including abstract and non-cardiovascular questions. In contrast, 7B models show inconsistent
or negative gains, particularly for out-of-domain categories. These results suggest that contrastive
supervision derived from tabular data is more effective at scale, and can generalize beyond the source
domain when model capacity is sufficient. Values show relative accuracy improvements over the base
model, with error bars denoting standard error across inference runs.

H.2 MEDMCQA

Figure [5]shows model performance on the MedMCQA benchmark, stratified by question type and
model size. Tables2Traces yields gains at the 8B scale, improving accuracy on cardiovascular,
abstract, and non-cardiovascular questions. Relative gains reach +10.6% on cardiovascular questions
and +7.6% on abstract ones.

At the 7B scale, results are more mixed. Both Tables2Traces and Tables2Traces (simple) under-
perform the base model on most question types, suggesting that smaller models struggle to benefit
from structured supervision alone. These findings reinforce the idea that contrastive, trace-based
supervision is especially valuable when paired with sufficient model capacity.
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Table 6: Per-category evaluation metrics on MedQA for Tables2Traces (simple) and Tables2Traces
(8B). % Change refers to change in performance relative to the Base model.

Category Model Type Avg Accuracy Best-of-n Majority Vote Worst-of-n % Change
Cardiovascular Tables2Traces (simple) 0.46 + 0.03 0.86 + 0.03 0.42 +0.04 0.06 +0.02 +13.19% T
(N=130) Tables2Traces 0.47 £0.03 0.91+0.03 0.42+0.04 0.06+0.02 +1721%7
Dermatologic Tables2Traces (simple) 0.714+0.09 0.944+0.06 0.76 +0.11 0.29+0.11 +1881% T
(N=17) Tables2Traces 0.60 + 0.08 0.88 £ 0.08 0.59 £0.12 0.12 £ 0.08 +0.99% 1
Endocrine/Metabolic Tables2Traces (simple) 0.52 +0.02 0.95 +0.02 0.47 +0.04 0.10 + 0.02 6.09% 1
(N=179) Tables2Traces 0.51 £+ 0.02 0.91 £ 0.02 0.46 £0.04 0.10 £ 0.02 4.71% T
Gastrointestinal Tables2Traces (simple) 0.44 +£0.04 0.88 +£0.04 0.38+0.05 0.09 +0.03 -5.72% |
(N=286) Tables2Traces 0.50 £0.04 0.91+£0.03 0.47+0.05 0.08=+0.03 +6.72% 1
Hematologic Tables2Traces (simple) 0.38 £0.03  0.90 £0.04 0.25+0.05 0.03 £ 0.02 -6.93% |
(N =68) Tables2Traces 0.48 +£0.04 0.91+0.04 0.43+0.06 0.07+0.03 +1898% 1
Immunologic Tables2Traces (simple) 0.50 £0.04 0.93 £0.03 0.44+0.06 0.09 £+ 0.03 -2.67% |
(N=381) Tables2Traces 0.544+0.04 0.94+0.03 0.46+0.06 0.17+0.04 +6.80% 7
Infectious Tables2Traces (simple) 0.46 +0.02  0.92+0.02 0.404+0.04 0.06 4+ 0.02 -3.44% |
(N=176) Tables2Traces 0.53+0.02 0.94+0.02 0.45+0.04 0.11+0.02 +9.73% 7
Musculoskeletal Tables2Traces (simple) 0.48 +0.05 0.89+0.05 0.42 4+ 0.07 0.04 +0.03 2.71% |
(N =45) Tables2Traces 0.51 +0.04 0.96 +£0.03 0.40+0.07 0.07+£0.04 +4.07% 1
Neurological Tables2Traces (simple) 0.47 £0.04 0.86 +£0.04 0.42+0.06 0.09+0.03 +6.89% 1
(N=77) Tables2Traces 0.50+0.04 0.90+0.04 0.43+0.06 0.05+0.02 +1515%7
Obstetrics/Gynecology  Tables2Traces (simple) 0.46 = 0.04 0.93 +0.03 0.434+0.06 0.07 £0.03 +0.93% 1
(N=70) Tables2Traces 0.47 £0.03 0.94+£0.03 0.40£0.06 0.03+£0.02 +2.80% T
Oncology Tables2Traces (simple) 0.50 +£0.04 0.86 +£0.04 0.47+0.06 0.15+ 0.04 -4.76% |
(N=72) Tables2Traces 0.56 £0.04 0.93+0.03 0.53+0.06 0.14+0.04 +5.82% 1
Other Tables2Traces (simple) 0.45 + 0.06 0.84 +0.07 0.45+0.09 0.10+0.05 -15.24% |
(N=231) Tables2Traces 0.50 £ 0.07 0.87+0.06 0.42+0.09 0.19+0.07 -4.88% |
Pediatric Tables2Traces (simple) 0.32 +0.07 0.92+0.08 0.23+0.12 0.00+0.00 -19.61% |
(N=13) Tables2Traces 0.39+£0.05 1.00+0.00 0.31+0.13 0.00+0.00 -1.96% |
Psychiatric Tables2Traces (simple) 0.60 +£0.05 0.94 +£0.083 0.58 +£0.07 0.21+0.06 +2.30% T
(N=52) Tables2Traces 0.62+0.05 0.90+0.04 0.61+0.07 0.21+0.06 +557%7
Renal/Genitourinary  Tables2Traces (simple) 0.42 4 0.04 0.93 £0.04 0.35+0.07 0.06 +0.03 +15.08% 1
(N =54) Tables2Traces 0.48 +£0.04 0.96+0.03 0.41 +£0.07 0.09 £0.04 +29.65% 1
Respiratory Tables2Traces (simple)  0.49 + 0.04 0.93 +£0.04 0.44 +£0.07 0.11 +0.04 +0.76% T
(N =54) Tables2Traces 0.50+0.04 0.94+0.03 0.46+0.07 0.11+0.04 +2.28% 7
Toxicology Tables2Traces (simple) 0.41 +0.04 0.93+0.03 0.354+0.06 0.03 4+ 0.02 -6.10% |
(N =68) Tables2Traces 0.524+0.04 0.91+0.04 0.47+0.06 0.09+0.04 +20.68% 1
Overall Tables2Traces (simple) 0.47 £0.01 0.91+£0.01 0.42+0.01 0.08+0.01 +0.82% T
(N =1273) Tables2Traces 0.51 +£0.01 0.93+0.01 0.46 +£0.01 0.10+0.01 +9.19% 1

I PER-CATEGORY RESULTS FROM TABLES2TRACES (SIMPLE)

Table[6]reports category-level results for both Tables2Traces and its ablated variant, Tables2Traces
(simple), on the MedQA benchmark. Across most categories, the full method consistently outper-
forms the simple variant, highlighting the added value of contrastive and counterfactual reasoning
supervision. However, the simple variant still delivers strong gains over the base model in several
categories, including Cardiovascular (+13.19%), Renal/Genitourinary (+15.08%) and Neurological
(+6.89%). This table complements the main figures by providing a more granular view of how each
model variant performs across medical specialties.
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Table 7: Per-category evaluation metrics on MedMCQA for Base and Aloe (8B).

Category Model Type Avg Accuracy Best-of-n Majority Vote Worst-of-n % Change
Anaesthesia Base 0.36 £ 0.07 0.88+0.07 0.29+0.09 0.08 £ 0.06
(N=24) Aloe 0.46 £0.07 0.79+0.08 0.46 +0.10 0.08 +0.06 +26.44%7
Anatomy Base 0.36 £ 0.02 0.86+0.03 0.26+0.04 0.02+0.01
(N =147) Aloe 0.49 +£0.03 0.86+0.03 0.42+0.04 0.14+0.03 +37.05%T
Biochemistry Base 0.57+£0.03 0.9040.03 0.58+£0.04 0.1140.03
(N=122) Aloe 0.69 £0.03 0.93+0.02 0.66+0.04 0.38+0.04 +21.59%7
Dental Base 0.35+0.01 0.82+0.01 0.26£0.02 0.05+0.01
(N = 845) Aloe 0.41 £0.01 0.84 +£0.01 0.34+0.02 0.11 +0.01 +1561%T
ENT Base 0.39+0.05 0.92+0.04 0.26+£0.07 0.08 £ 0.04
(N =39) Aloe 0.55+0.06 0.90£0.05 0.51+0.08 0.23+0.07 +41.06%7
Forensic Medicine Base 0.41 +0.05 0.89+0.05 0.32+£0.07 0.09+0.04
(N=44) Aloe 0.50 £ 0.05 0.89+0.05 0.43+0.08 0.20+0.06 +20.88%7
Gynaecology & Obstetrics Base 0.40+0.03 0.81+0.03 0.32+£0.04 0.09+0.02
(N =154) Aloe 0.53 +£0.03 0.89+0.03 0.46 +0.04 0.21 +0.03 +30.43%7
Medicine Base 0.44+0.03 0.84+0.03 0.39+£0.04 0.12+0.02
(N =185) Aloe 0.58 £0.03 0.90+0.02 0.544+0.04 0.26+0.03 +29.93%7
Microbiology Base 0.45+0.04 0.84 +£0.04 0.35 £+ 0.06 0.11 + 0.04
(N=174) Aloe 0.58 £0.04 0.89+0.04 0.55+0.06 0.24+0.05 +2931%7
Ophthalmology Base 0.40+0.05 0.91+0.04 0.30£0.07 0.14+0.05
(N=43) Aloe 0.54 £0.06 0.93+0.04 0.49 +0.08 0.23 +0.07 +34.48%7
Orthopaedics Base 0.40 £0.08 0.8740.09 0.53+£0.13 0.00 % 0.00
(N=15) Aloe 0.59 +£0.08 0.93+£0.07 0.60+0.13 0.13+0.09 +46.67%T
Pathology Base 0.51+0.02 0.89+0.02 0.44+£0.03 0.11+0.02
(N =259) Aloe 0.65+0.02 0.91+0.02 0.644+0.03 0.32+0.03 +27.73%7
Pediatrics Base 0.44+0.03 0.82+0.03 0.39+£0.04 0.09+0.02
(N=133) Aloe 0.57 +£0.03 0.90+0.03 0.51+0.04 0.19+0.03 +31.05%7
Pharmacology Base 0.524+0.03 0.90+0.02 0.46 £0.04 0.17 £ 0.03
(N=179) Aloe 0.72+£0.03 0.93+0.02 0.69+0.03 0.43+0.04 +38.04%7
Physiology Base 0.46 +£0.03 0.86+0.03 0.38+£0.04 0.16 +0.03
(N=133) Aloe 0.60+£0.03 0.89+0.03 0.58+0.04 0.29+0.04 +31.2%7
Psychiatry Base 0.414+0.10 0.80+0.13 0.30£0.15 0.00 =+ 0.00
(N=10) Aloe 0.60£0.13 0.90+0.10 0.60+0.16 0.30+0.15 +46.34%7
Radiology Base 0.49+£0.04 0.93+0.03 0.40+0.07 0.05%+0.03
(N=157) Aloe 0.51+£0.05 0.89+0.04 0.44+0.07 0.14+0.05 +2.85%7
Skin Base 0.37+0.08 0.91+0.09 0.27+0.14 0.00 + 0.00
(N=11) Aloe 0.47+0.12 0.73+£0.14 0.36+0.15 0.18 +0.12 +26.83%T
Social & Preventive Medicine Base 0.444+0.04 0.81+0.04 0.34+£0.05 0.10+0.03
(N=91) Aloe 0.52+0.04 0.88+0.03 0.47+0.05 0.20+0.04 +19.14%7
Surgery Base 0.414+0.02 0.86+0.02 0.35+0.03 0.08+0.02
(N =249) Aloe 0.51 +£0.02 0.86+0.02 0.47+0.03 0.17+0.02 +24.24%7
Unknown Base 0.30£0.30 0.50+0.50 0.50+0.50 0.00+0.00
(N=2) Aloe 0.20+0.20 0.50+0.50 0.00£0.00 0.004+0.00 -33.33%]
Overall Base 0.42+0.01 0.85+£0.01 0.354+0.01 0.09+0.01
(N =2816) Aloe 0.53 £0.01 0.88+0.01 0.48 +0.01 0.21 +0.01 +25.31%7

J PER-CATEGORY RESULTS FROM ALOE

For completeness, we report a category-level breakdown of Aloe’s performance on the MedMCQA
benchmark in Table[/| Aloe achieves consistent improvements over the base model across nearly all
medical specialties, with an overall relative gain of +25.31%. Gains are especially large in domains
such as Psychiatry (+46.34%), Orthopaedics (+46.67%), and Pharmacology (+38.04%). Only one
category (Unknown) shows a performance regression, but it notably only contains two questions.
These results align with Aloe’s strong overall performance and provide additional insight into which
specialties benefit most from its QA-style supervision. We note that Aloe is an upper-bound baseline
and that our work is best viewed as a complementary approach rather than a competing one.
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Figure 6: UMAP visualization of MedMCQA test questions, comparing model per-
formance to the Base model. Each point represents a question,
text-embedding-3-large [2023), and annotated by medical category using dis-
tinct marker shapes and colors. The background heatmap reflects smoothed relative accuracy: red
indicates improved performance, blue indicates degradation. (a) Tables2Traces shows consistent
gains across diverse medical categories. (b) Tables2Traces (simple) displays more variable patterns,
with several regions showing decreased performance. Cluster labels indicate category centroids.

K UMAP VISUALIZATION OF MEDMCQA

embedded using

Figure [6] shows a UMAP projection of MedMCQA test questions, colored by medical category
and overlaid with performance changes relative to the base model. As in MedQA, Tables2Traces
(Figure [6h) shows widespread gains across the space. Notable improvements appear in regions

corresponding to Anatomy, Dental, and Pathology.

In contrast, Tables2Traces (simple) (Figure |§b) demonstrates a more fragmented pattern. While
some clusters benefit (e.g., Dental, Anatomy), others experience performance drops, particularly
in Biochemistry and Pharmacology. These results further support the conclusion that structured
contrastive supervision is critical for consistent generalization beyond the source domain.
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Table 8: Per-category evaluation metrics on the MedQA benchmark for Base and QA-Finetuning
(8B).

Category Model Type Avg Accuracy Best-of-n Majority Vote Worst-of-n % Change
Cardiovascular Base 0.40 £0.03 0.86+0.03 0.31+0.04 0.06+0.02
(N =130) QA-Finetuning 0.39 +0.02 0.89+0.03 0.30£0.04 0.03+0.02 -3.63% |
Dermatologic Base 0.59 +£0.08 0.94+0.06 0.53+0.12 0.06 + 0.06
(N=17) QA-Finetuning 0.54 +£0.07 0.94 £0.06 0.53 +0.12 0.06 + 0.06 9.9% |
Endocrine/Metabolic Base 0.49 +£0.03 0.89+0.02 0.45+0.04 0.13+0.03
(N=179) QA-Finetuning 0.45 +0.02 0.91+£0.02 0.40 £+ 0.04 0.06 + 0.02 -6.55% |
Gastrointestinal Base 0.47+0.04 0.87+0.04 0.40+0.05 0.12+0.04
(N = 86) QA-Finetuning 0.45+0.03 0.88+0.03 0.374+0.05 0.07+0.03 -3.73% |
Hematologic Base 0.40+0.04 0.84+0.04 0.34+£0.06 0.04+0.03
(N =68) QA-Finetuning 0.42+0.04 0.87+£0.04 0.37+0.06 0.04+0.03 +5.11%7
Immunologic Base 0.51+£0.04 0.85+0.04 0.47+0.06 0.22+0.05
(N=381) QA-Finetuning 0.50 +0.03 0.94 +£0.03 0.43£0.06 0.1040.03 -2.43% |
Infectious Base 0.48 £0.03 0.92+0.02 0.41 +£0.04 0.11 +0.02
(N=176) QA-Finetuning  0.46 + 0.02 0.90 4 0.02 0.37 £ 0.04 0.07 & 0.02 -4.98% |
Musculoskeletal Base 0.49+£0.05 0.89+0.05 0.49+0.07 0.04 £0.03
(N =45) QA-Finetuning 0.45+0.04 0.98+0.02 0.334+0.07 0.02+0.02 -8.14% |
Neurological Base 0.47+0.04 0.86+0.04 0.424+0.06 0.09+ 0.03
(N=77) QA-Finetuning 0.51+0.03 0.96 £ 0.02 0.44 +0.06 0.06 + 0.03 +8.26% 1
Obstetrics/Gynecology  Base 0.46 +0.04 0.90+0.04 0.39+0.06 0.09+0.03
(N =70) QA-Finetuning 0.45+ 0.03 0.91+0.03 0.39£0.06 0.03+0.02 -1.86% |
Oncology Base 0.53 +£0.04 0.92+0.03 0.47 +0.06 0.11+0.04
(N=72) QA-Finetuning  0.46 + 0.04 0.90 4+ 0.04 0.44 4+ 0.06 0.06 + 0.03 -13.23% |
Other Base 0.53 +£0.07 0.77+0.08 0.45+0.09 0.23 +0.08
(N=31) QA-Finetuning 0.48 £0.06 0.90+£0.05 0.45+0.09 0.16 +0.07 -8.54% |
Pediatric Base 0.39+£0.09 0.77+0.12 0.394+0.14 0.00 %+ 0.00
(N=13) QA-Finetuning 0.43+0.09 0.85+0.10 0.384+0.14 0.08+ 0.08 +9.8% T
Psychiatric Base 0.59 +£0.05 0.94+0.03 0.54+0.07 0.23 +0.06
(N=52) QA-Finetuning 0.53 +£0.04 0.88+0.04 0.504+0.07 0.13+0.05 -8.85% |
Renal/Genitourinary Base 0.37 & 0.04 0.85 4+ 0.05 0.26 4+ 0.06 0.04 + 0.03
(N =54) QA-Finetuning 0.42 +0.04 0.93 +0.04 0.30£0.06 0.06 +0.03 +13.57% 1
Respiratory Base 0.494+0.04 0.91+0.04 0.43+£0.07 0.09+0.04
(N =54) QA-Finetuning 0.50 +0.04 0.91+0.04 0.48 £0.07 0.09 +0.04 +2.66% 1
Toxicology Base 0.43+0.04 0.794+0.05 0.41+0.06 0.06+0.03
(N =68) QA-Finetuning 0.43 +£0.03 0.93 £0.03 0.29 £0.06 0.03 £+ 0.02 -1.69% |
Overall Base 0.47 +£0.01 0.88+0.01 0.41+0.01 0.11 +0.01
(N =1273) QA-Finetuning 0.46 +0.01 0.91+0.01 0.39£0.01 0.06 4+ 0.01 3.17% |

L QA-ONLY ABLATION RESULTS

To assess whether standard QA-format supervision could account for the performance improvements
observed in our full method, we conduct an ablation where the model is fine-tuned exclusively on
the 10k QA-format examples used in the mixed setup. Importantly, these 10K QA-format examples
do not overlap with the questions used for evaluation. Results are shown in Table 8] (MedQA) and
Table O] (MedMCQA).

On MedQA, the QA-only model performs comparably or slightly worse than the base model (0.46
vs. 0.47 average accuracy), with inconsistent effects across clinical categories. On MedMCQA,
the QA-only model performs worse than the base model overall (0.40 vs. 0.42 average accuracy)
and shows negative or negligible gains across most categories. These results indicate that the QA
examples alone do not explain the improvements observed in our main models.
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Table 9: Per-category evaluation metrics on MedMCQA for Base and QA-finetuning (8B).

Category Model Type Avg Accuracy Best-of-n Majority Vote ‘Worst-of-n % Change
Anaesthesia Base 0.36 £0.07 0.88+0.07 0.29+0.09 0.08+ 0.06
(N=24) QA-Finetuning ~ 0.2540.04  0.8340.08 0.04+£0.04 0.00 +0.00  -29.89%
Anatomy Base 0.36 £0.02 0.86+0.03 0.26+0.04 0.02+0.01
(N =147) QA-Finetuning  0.334+0.02 0.894+0.03 0.23+0.03 0.01 +0.01 -8.70%.,
Biochemistry Base 0.57+£0.03 0.90+0.03 0.58+0.04 0.11+0.03
(N=122) QA-Finetuning  0.514+0.03 0.90+0.03 0.49+0.05 0.124+0.03  -9.57%]
Dental Base 0.35+0.01 0.82+0.01 0.26+0.02 0.05+0.01
(N = 845) QA-Finetuning  0.3440.01 0.864+0.01 0.23+0.01 0.03 4+ 0.01 -4.90%.,
ENT Base 0.39+£0.05 0.92+0.04 0.26+0.07 0.08+0.04
(N =39) QA-Finetuning  0.42 4+ 0.05 0.904+0.05 0.28 +£0.07 0.08 +0.04  +7.28%7
Forensic Medicine Base 0.41+£0.05 0.89+0.05 0.32+0.07 0.09+0.04
(N=44) QA-Finetuning ~ 0.36 & 0.05  0.86 4+ 0.05 0.25+0.07 0.07 +0.04  -12.64%]
Gynaecology & Obstetrics Base 0.404+0.03 0.81+0.03 0.324+0.04 0.09 +0.02
(N = 154) QA-Finetuning ~ 0.37 +0.02 0.864+0.03 0.31 £0.04 0.03 4+ 0.01 1.41%)
Medicine Base 0.44+0.03 0.84+0.03 0.39+0.04 0.12+0.02
(N =185) QA-Finetuning 0.44 +0.02 0.874+0.02 0.36 +0.04  0.09 + 0.02 -0.73%,
Microbiology Base 0.45+0.04 0.84+0.04 0.354+0.06 0.11+0.04
(N=74) QA-Finetuning ~ 0.42+0.04 0.864+0.04 0.36 +0.06 0.04 %+ 0.02 -5.74%),
Ophthalmology Base 0.40 £0.05 0.914+0.04 0.304+0.07 0.14+0.05
(N=43) QA-Finetuning  0.41 4+ 0.05 0.934+0.04 0.33 £0.07 0.05+0.03  +0.57%7
Orthopaedics Base 0.40 £ 0.08 0.874+0.09 0.53+0.13 0.00 £ 0.00
(N=15) QA-Finetuning ~ 0.38 +0.07 0.874+0.09 0.27+0.12 0.07 +0.07  -5.00%
Pathology Base 0.51+0.02 0.894+0.02 0.44+0.03 0.11+0.02
(N =259) QA-Finetuning ~ 0.4540.02 0.90+0.02 0.37+0.03 0.06 +0.01  -10.92%
Pediatrics Base 0.44+0.03 0.82+0.03 0.394+0.04 0.09+0.02
(N=133) QA-Finetuning  0.44 + 0.03 0.874+0.03 0.37+0.04 0.0540.02  +0.86%7
Pharmacology Base 0.52+0.03 0.90+0.02 0.46+0.04 0.17 +0.03
(N =179) QA-Finetuning ~ 0.50 +0.02 0.904+0.02 0.44 +0.04 0.12 4 0.02 -3.13%1
Physiology Base 0.46 £0.03 0.86+0.03 0.38+0.04 0.16+0.03
(N=133) QA-Finetuning ~ 0.4540.03 0.874+0.03 0.38 £0.04 0.1240.03 2.79%1
Psychiatry Base 0.4140.10 0.80+0.13 0.30+0.15 0.00 £ 0.00
(N =10) QA-Finetuning 00.49 +0.10 0.804+0.13 0.504+0.17 0.00+0.00 +19.51%7
Radiology Base 0.494+0.04 0.93+0.03 0.40+0.07 0.05+0.03
(N=57) QA-Finetuning ~ 0.45+0.04 0.934+0.03 0.40 +0.07 0.04 + 0.02 -8.54%,
Skin Base 0.374£0.08 0.91+0.09 0.27+0.14 0.00 % 0.00
(N=11) QA-Finetuning 0.39+0.10 1.004+0.00 0.27+0.14 0.09+0.09  +4.88%7
Social & Preventive Medicine Base 0.44 +£0.04 0.81 +£0.04 0.34+0.05 0.10+0.03
(N=91) QA-Finetuning ~ 0.43 4+ 0.03 0.894+0.03 0.32+0.05 0.08 + 0.03 -2.52%),
Surgery Base 0.41+0.02 0.86+0.02 0.35+0.03 0.08+0.02
(N = 249) QA-Finetuning  0.40 +0.02 0.884+0.02 0.31+£0.03 0.05 #+ 0.01 -2.93%),
Unknown Base 0.30+£0.30 0.50+0.50 0.50+ 0.50 0.00 =+ 0.00
(N=2) QA-Finetuning  0.45 4+ 0.25 1.004+0.00 0.50 +0.50 0.00 +0.00 +50.00%7
Overall Base 0.42F£0.01 0.85+0.01 0.35+0.01 0.09 +0.01
(N = 2816) QA-Finetuning  0.40 +0.01 0.884+0.01 0.31+0.01 0.06 + 0.00 -5.10%

M DISTANCE METRIC CHOICE FOR CONTRASTIVE NEIGHBOR SELECTION

Rationale. We use the Gower distance because it is data-type agnostic and compares heterogeneous
features (numeric, binary, categorical) without domain-specific encodings. It provides a simple,
interpretable default for mixed clinical tables.

Alternatives. The pipeline is metric-agnostic. In principle, other choices can be substituted in the
neighbor retrieval step, for example: (i) scaled Euclidean on normalized numeric features with one-hot
categories, (ii) Hamming distance for categorical-only subsets, (iii) cosine distance on serialized or
embedded representations, or (iv) learned metrics (e.g., Mahalanobis) if one wishes to tune feature
weights.

Scope. A full comparison of distance functions is outside the scope of this paper. We adopt Gower
as a simple and effective default for mixed-type data, and future work could explore learned or
task-specific metrics.
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N CLINICIAN EVALUATION PROTOCOL AND RUBRIC

Protocol. We randomly sampled 10 supervision traces from the training corpus. Two independent
clinicians with cardiology expertise reviewed the same set, each completing a structured rubric for
every trace without seeing the other’s responses. Cases contained only de-identified, synthesized
patient descriptions derived from tabular rows (anchor and neighbors). The clinicians were asked
to rate each trace along five dimensions and optionally add a one-line comment. We report the
normalized tallies in Tables TOHTTL

Rubric (per trace). Each trace was rated on the following dimensions with the indicated discrete
scale.

. Overall clinical plausibility: Yes / Partially / No.

. Unsafe or inappropriate recommendations: None / Minor | Concerning.

. Appropriate weighting of key factors: Yes / Partially / No.

. Comparative reasoning quality (why target vs. neighbor): Clear / Partial | Superficial.
. Uncertainty expression: Understated / Appropriate | Overstated.

AN L AW N =

. One-line comment (optional): free-text note (e.g., phrasing, missing considerations).

Guidance provided to raters.

* Plausibility asks whether the narrative could reasonably reflect clinical reasoning given only
the provided variables.

» Unsafe/inappropriate flags any recommendation that would be clinically unsafe or clearly
inappropriate in context; “Minor” covers low-risk or borderline phrasing.

» Weighting assesses whether major risk factors are emphasized appropriately relative to minor
ones.

» Comparative reasoning evaluates whether differences between target and neighbors are
identified and used to justify outcomes.

* Uncertainty evaluates acknowledgment of limits of the available variables (avoid over-
confidence or implying hidden labels).

Limitations. This review is qualitative and small-scale (n=10 traces), with no rater training or
adjudication; results should be interpreted as a plausibility/safety check for research-only supervision
rather than clinical validation or calibrated risk assessment. Importantly, we also note the high
disagreement between the two clinicians.
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Table 10: Clinician (A): tally of ratings across 10 traces.

Positive Partial / Minor Negative
Plausibility 5 (Yes) 4 (Partially) 1 (No)
Unsafe / inappropriate 7 (None) 3 (Minor) 0 (Concerning)
Weighting 5 (Yes) 4 (Partially) 1 (No)
Reasoning 5 (Clear) 4 (Partial) 1 (Superficial)
Uncertainty 5 (Appropriate) - 5 (Overstated)

Table 11: Clinician (B): tally of ratings across 10 traces.

Positive Partial / Minor Negative
Plausibility 1 (Yes) 9 (Partially) 0 (No)
Unsafe / inappropriate 4 (None) 6 (Minor) 0 (Concerning)
Weighting 0 (Yes) 8 (Partially) 2 (No)
Reasoning 0 (Clear) 4 (Partial) 6 (Superficial)
Uncertainty 0 (Appropriate) - 10 (Overstated)

O CLINICIAN VALIDATION OF SUPERVISION TRACES

Out of the 10 randomly sampled traces, no trace received a '"Concerning'' safety rating, and only
one traces was judged to be implausible by Clinician (A). In addition to these discrete measures, we
also include a table containing the qualitative feedback from Clinician (B) on 10 randomly sampled
traces. Clinician (A) only had one comment, stating that "CRP should be acted on. Recommend
finding the cause of CRP 45, like cancer". We therefore only include a table for Clinician (B), who
had additional comments for all traces. Tags indicate recurring themes; comments are lightly abridged
for brevity.
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Table 12: Clinician (B) qualitative review of 10 traces.

Patient Issue tags Clinician comment (abridged)
1 Vague phrasing; overconfidence “BP ‘way above’ is not clinical phrasing—use concrete categories (e.g., stage 2
hypertension). Consider guideline scores (e.g., CHADS,-VASc).”

2 Overstates intervention benefit; “Hyperlipidemia not that serious for a non-smoking woman without diabetes, even
weighting with grade 2 hypertension.”

3 Speculative; conflicting factors; “Acknowledge conflict between anthropometric and biochemical factors; counterfac-
circular counterfactual tual goes in circles.”

4 Partial weighting; overconfi- “Reasoning partial; certainty overstated given available variables.”
dence

5 Baseline risk omitted “Age not addressed correctly—baseline mortality risk.”

6 Counterfactual  focus mis- “BG change not the primary modifiable variable in this context; reasoning superficial.”
aligned

7 Overconfidence; superficial “Reasoning superficial; certainty overstated.”

8 Misinterpretation of CRP “Elevated CRP may reflect infection—don’t treat as CVD risk alone.”

9 Lab inconsistency note “Glucose/HbA ¢ discrepancy is often seen (e.g., after a meal).”

10 Risk calibration; BP control “CVD risk overstated; emphasize blood-pressure control (cf. risk charts/guidelines).”

P LLM USAGE

In accordance with the ICLR 2026 Author Guide, we disclose that large language models (LLMs)
were used solely to assist with text polishing and minor formatting during paper preparation. LLMs
were not involved in research ideation, experiment design, or result interpretation. All scientific
contributions, methods, and conclusions are the work of the authors.
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