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Abstract

We present a novel visual instruction tuning
strategy to improve the zero-shot task gener-
alization of multimodal large language mod-
els by building a firm text-only knowledge
base. Existing work lacks sufficient experimen-
tation on the importance of each modality in
the instruction tuning stage, often using a ma-
jority of vision-language data while keeping
text-only data limited and fixing mixtures of
modalities. By incorporating diverse text-only
data in the visual instruction tuning stage, we
vary vision-language data in various controlled
experiments to investigate the importance of
modality in visual instruction tuning. Our com-
prehensive evaluation shows that the text-heavy
instruction tuning approach is able to perform
on-par with traditional vision-heavy mixtures
on both modalities across 12 general datasets
while using as low as half the total training
tokens. We find that simply increasing suf-
ficiently diverse text-only data enables trans-
fer of instruction following ability and domain
knowledge across modalities while being more
efficient than the vision-language approach.

1 Introduction

Multimodal large language models (MLLMs)
have advanced and enabled a wide range of
vision-language tasks such as visual question an-
swering and image captioning (Liu et al., 2023b;
Alayrac et al., 2022; Li et al., 2023b; Lin et al.,
2023; Bai et al., 2025). Their zero-shot general-
ization ability to unseen tasks has the potential to
further revolutionize broader real-world applica-
tions (Driess et al., 2023; Zhu et al., 2023; Li et al.,
2023a). To construct MLLMs, vision-language pre-
training is performed on a large scale with image-
text data, aligning the modalities before visual in-
struction tuning aligns the model with human pref-
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erences (Liu et al., 2023a; Dai et al., 2024; Lin et al.,
2023). The importance of strong vision-language
pretraining is established, with more data resulting
in greater improvements in instruction-following
abilities and downstream performance (McKinzie
et al., 2024; Zhang et al., 2024a). However, current
visual instruction tuning practices overwhelmingly
rely on image-text pairs and large-scale vision-
language datasets. This emphasis introduces a sig-
nificant distributional shift from the language-rich
corpora used during pretraining, often degrading
the model’s general language understanding and
leading to catastrophic forgetting of core knowl-
edge (Zhang et al., 2024b). Given the similarity in
instruction tuning data across modalities and the
strong modality alignment achieved with vision-
language pretraining, we believe text-only data is
underutilized in existing training mixtures. Addi-
tionally, various design choices regarding the in-
struction tuning dataset composition with respect
to modalities are underexplored.

In this work, we introduce MLAN
(Multimodal LANguage-based instruction tuning),
a new perspective in vision instruction tuning
that treats language as the primary way to unlock
knowledge during instruction tuning (Figure 1).
Our key insight is that instruction-following abili-
ties and domain knowledge, once acquired through
diverse language-only tasks, can generalize
across modalities with minimal vision-language
supervision. By grounding vision capabilities in
a small number of targeted image-text examples,
we maintain high performance across both vision
and text tasks while significantly reducing training
costs. Specifically, with MLAN we unlock vision
instruction following abilities by teaching a pre-
trained model to execute text-only instructions and
then complementing the dataset with a relatively
small portion of vision-language examples in a
domain adaptation fashion.

To demonstrate MLAN’s effectiveness, we pre-
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(a) Comparison of MLAN with standard visual instruc-
tion tuning.
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(b) Main results on evaluation tasks, averaged over text-only and
vision-language performance.

Figure 1: Overview of MLAN. (a) MLAN represents a shift in perspective towards text during instruction tuning.
After vision-language pretraining, we include diverse text-only data in our instruction tuning mixture spanning many
tasks. We emphasize including text-only data to show the transferability of instruction tuning across modalities.
For evaluation, we select ample text-only and vision-language datasets, allowing us to compare performance
changes across modalities. (b) We evaluate MLAN on two pretrained multimodal models based on Llama-3.2-3B
and Llama-3.1-8B across unseen language and vision benchmarks, achieving comparable performance at higher
training efficiency (up to almost 2x as efficient compared to standard vision-heavy instruction tuning) with our

language-based approach.

train MLLMs over a variety of settings based on
Llama-3.2-3B (Meta Al, 2024) and Llama-3.1-
8B (Dubey et al., 2024), following the state of
the art multimodal training mechanism (Liu et al.,
2023b,a), varying only the dataset. We then ap-
ply MLAN to the MLLMs and observe the follow-
ing key insights over both models on average dur-
ing evaluation on 12 comprehensive benchmarks
across language and vision modalities. (1) Com-
pared with the traditional vision-heavy finetun-
ing approaches of LLaVA (Liu et al., 2023a) and
Cambrian-1 (Tong et al., 2024), our models fine-
tuned with MLAN demonstrate a matching or better
performance on downstream vision-language tasks
while seeing less than half of the images and consis-
tently showing better text-only performance. We
show that text-only data is imperative to obtain
world knowledge and understanding of complex in-
structions, even in the vision domain. (2) Text-only
instruction tuning is more cost-effective. The rich
and dense information compensates for the lim-
ited diversity in public vision datasets, allowing
for superior performance while reducing the total
number of processed training tokens by half. (3)
Neither language nor vision alone is enough for
a generalist MLLM. Our experiments show that
while instruction following abilities may transfer

across modalities, their impact on the other modal-
ity is limited: certain vision-language tasks do not
benefit from text-only tuning and vision-language
tuning can result in severe degradation of language
abilities. However, mixing bi-modal data, even
at a small percentage, leads to surprising perfor-
mance boosts and achieves the best results in both
modalities. We hope our findings will foster fu-
ture research on language-centered training and
instruction tuning, paving the way for fundamental
advancements in large MLLMs.

2 Approach

MLAN views vision instruction following abilities
as a natural extension of text-only abilities, a trans-
fer that can occur due to the extensive multimodal
pretraining used in MLLMs.

We begin by motivating our method through
an empirical analysis of similarities in text-only
and vision-language instruction tuning data, which
leads to our hypothesis that text-only data can
largely replace vision-language data to improve
performance on general tasks. Then, we detail our
training, following the standard design of existing
instruction tuning methods (Wei et al., 2022; Xu
et al., 2023; Dai et al., 2023; Liu et al., 2023b)
in four stages: selecting training data, format-
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with a non-negative mean by z-test (p < 0.001).
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Vision-Language Instructions

INSTR 1: Your task involves classifying object images into their
respective categories like Bed, Sink, Sneakers, Table, TV and so on...

INSTR N: Each image has someth'ing going on. Carefully analyze the
image and generate 5 captions for each image.

CONTEXT: <image>
OUTPUT: <text>

Text-Only Instructions

INSTR 1: Given a text passage... your task is to classifY the item
being sold into exactly one of these categories: 'housing', 'furniture’,
'bike’, 'phone’, 'car', 'electronics'....

INSTR N: In this task, you are gi\fen a conversation, and your task is
to generate a summary from the information present in the given
conversation...

CONTEXT: <text>

OUTPUT: <text>

0.6

(b) Examples of instructions across modalities that
share similar goals.

Figure 2: Similarity between text-only and vision-language instruction tuning data shown both (a) quantita-

tively with similarity scores and (b) qualitatively with examples.

100k instructions are sampled from the

Super-Naturallnstructions (Wang et al., 2022b) and Vision-Flan (Xu et al., 2024) datasets and embedded by a
pretrained sentenceTransformer, all-mpnet-base-v2 (Song et al., 2020). The red vertical line denotes the mean score.
We then randomly sample and display two instructions with high cosine similarities (0.53 & 0.38).

ting the data with instructions, fine-tuning a pre-
trained MLLM on the training set (Sec. 2.2), and
evaluating the instruction tuned model on stan-
dard academic benchmarks in the zero-shot setting
(Sec. 2.3).

2.1 Natural Correspondence between
Text-Only and Vision-Language
Instructions

While the image-text and the text-only distribu-
tion of instructions significantly differ from each
other, we observe shared semantics and structure
on the task level when comparing wild instruction-
response pairs in both modalities.

Semantic Similarity We study two com-
prehensive  large-scale  instruction  tuning
datasets with one from each modality, namely
Super-Naturallnstructions (Wang et al., 2022b)
and Vision-Flan (Xu et al., 2024), which are
representative of common structures and tasks.
We show vision-language and text-only tasks are
similar by randomly sampling 100k instances from
each dataset and examining the distribution of the
cosine similarities between embedded instructions
as shown in Figure 2(a). A significantly non-
negative mean cosine distance provides evidence
that the tasks performed in either domain are
somewhat similar, based on the belief that tasks
are defined by the instructions. Additionally, there
is a small yet nonzero chance to even see a pair of
tasks that are comparable with high similarities
(>0.3) in the language and vision domain. To

qualitatively demonstrate this, in Figure 2(b) we
show two pairs of semantically similar instructions
from each datasets with a similarity score of 0.53
and 0.38, respectively. While the first example is
a classical classification task, the second requests
a concise representation of the context, where
the context may be a text paragraph or an image.
We reason that if the ability to describe a casual
conversation is acquired, the ability to caption an
image can be readily obtained.

Structural Similarity The well-established prob-
lem of solving zero-shot tasks can be split into
a user prompt followed by a model’s response
for both modalities. While some text-only tasks
appeal to a model’s internal knowledge, such as
ARC (Bhakthavatsalam et al., 2021), the task of
open-book question answering is analogous to vi-
sion question answering in the sense that additional
inputs are provided to serve as the reference where
the final answer is derived. If the vision and the
text modalities are well aligned, it makes sense for
a model to easily refer to the details in an image
as the image tokens are no different than the native
word tokens in its embedding space.

2.2 Training Details

Our approach, MLAN, is simple, changing the
dataset composition across modalities compared
to traditional MLLM instruction tuning. We fine-
tune a multimodal pretrained LLM in the FLAN-
style (Wei et al., 2022) and further train on a small
portion of vision instruction data (compared to the



number of text-only instances) to adapt the model
to vision-language queries. While mainstream
methods, including LLaVA (Liu et al., 2023b) and
Cambrian-1 (Tong et al., 2024), also include some
text-only examples in their vision instruction tuning
dataset, their primary goal has been providing lan-
guage as a form of regularization to prevent catas-
trophic forgetting. Our method differs by approach-
ing vision instruction tuning from the other way
around: we build strong language-only instruction-
following abilities to build a robust knowledge base,
and then introduce a small number of vision in-
stances solely for grounding and domain adapta-
tion. To demonstrate that adjusting the data compo-
sition alone is a viable substitute for vision-heavy
instruction tuning, we use a fixed size budget and
shared data sources for all our experiments, thus
controlling the effect of longer training sessions
and variable data quality.

Dataset Selection Inspired by the similarity in
instruction tuning across modalities, we use the
same two diverse datasets to train with, encom-
passing a multitude of tasks in each modality.
For text-only data we sample from the over 1600
tasks in Super-Naturallnstructions (Wang et al.,
2022b), while for vision-language data we sam-
ple from the 187 tasks in Vision-Flan (Xu et al.,
2024). This gives us ample coverage across many
text-only and vision-language tasks. For all of
our experiments, we use a fixed data budget of
186,000 instances, which can come from either
Super-Naturallnstructions or Vision-Flan depend-
ing on the setting.

Models and Multimodal Pretraining We fol-
low the architecture design of LLaVA (Liu et al.,
2023a) that connects a visual encoder with a projec-
tor that enables the LLM to use the outputs of the
visual encoder to process image inputs in addition
to texts. We choose CLIP-ViT-L/14@336 (Rad-
ford et al., 2021) and a two-layer MLP with GELU
activation as the visual encoder and the projector,
respectively. We select the base LLMs as Llama-
3.2-3B (Meta Al, 2024) and Llama-3.1-8B (Dubey
et al., 2024), both the non instruct versions. We
conduct multimodal pretraining for both models
on LLaVA-Pretrain-558K using the same hyper-
parameters as in Liu et al. (2023a). These models
are then finetuned on our language-heavy training
dataset for one epoch using a global batch size of
128, a cosine learning schedule, a learning rate of
2e-5, a warm-up ratio of 0.03, and no weight de-

cay. Both the visual encoder and LLM are frozen
throughout the pretraining session while the pa-
rameters in the MLP projector are updated. After
pretraining, the visual encoder and the projector
function as a visual tokenizer that turns an image
into tokens compatible with the LLM.

Instruction Tuning To test our instruction tun-
ing methodology, we finetune MLLM check-
points using a controlled mixture of text-only and
vision-language data, focusing on the former. This
is because language, rather than vision, remains the
primary medium for users to interact with models
when they specify their needs. In contrast, most ex-
isting multimodal instruction tuning approaches pri-
oritize vision-language data and include language-
only tasks merely to mitigate forgetting. (Liu et al.,
2023a; Bai et al., 2023; Ye et al., 2023; Luo et al.,
2024; Tong et al., 2024). These approaches require
many more training tokens and rely on a greater
number of vision-language datasets. See Table 8
in Appendix D.1 for the percentage of text-only
data included during instruction tuning for various
state of the art MLLMs. Current instruction tuning
mixtures across models vary substantially in lan-
guage content, yet few of these design choices are
grounded in systematic empirical comparison. Our
method systematically tests the effectiveness of the
composition of instruction tuning data by modal-
ity, then anchors in a shift in perspective, treating
language as the foundation in instruction tuning.

2.3 Evaluation Tasks

Our evaluation suite covers diverse text-only and
vision-language tasks for zero-shot evaluation that
are not seen during training. The text-only bench-
marks include Commonsense understanding,
Reasoning, Reading comprehension and Scien-
tific knowledge testing. Similarly, the selected
vision-language benchmarks primarily test Scene
Understanding and Image Reasoning. Notably,
MMLU (Hendrycks et al., 2020), MMMU (Yue
et al., 2024), and MME (Fu et al., 2023) are large
multidisciplinary benchmarks covering wide do-
mains. We craft suitable instruction templates for
each dataset in the same way as for the training
datasets, using the same collection of instruction
prompts. The final evaluation collection includes 7
text-only datasets and 5 vision-language datasets.
The answer types cover short-response, multiple-
choice, and true/false questions. Appendix C pro-
vides a brief description of each dataset.



Vision Benchmarks

Models Method POPE ScienceQA-IMG MMMU MME MMBench Avg.
Pretrain 66.67* 43.73 26.44 700* 51.10 42.59
Llama-3.2-3B  MIX-LLaVA-1.5 | 80.10 64.65 29.00  1293.56 67.71 57.53
MIX-Cambrian-1 | 81.90 65.94 28.67  1367.38 67.48 58.57
MLAN 83.17 65.94 29.33  1405.53 67.01 59.13
Pretrain 66.67* 63.81 27.67 700* 62.81 49.61
Llama-3.1-8B  MIX-LLaVA-1.5 | 79.90 67.97 30.89  1354.52 70.29 59.49
MIX-Cambrian-1 | 82.57 70.55 36.00 1408.02 73.50 62.58
MLAN 81.84 71.15 3444  1436.83 72.51 62.25

Table 1: Zero-shot results on the held-out vision-language datasets for Llama-3.2-3B and Llama-3.1-8B. We
compare Pretrain, MIX-LLaVA-1.5, MIX-Cambrian-1, and MLAN (ours). * denotes that the pre-trained models
fail to generate meaningful responses other than all "yes" or "no". ScienceQA (Lu et al., 2022) is included in
Vision-Flan but excluded in experiments. The MME scores are normalized by dividing by the maximum value

(2800) when computing the average.

Language Benchmarks
Models Method ARC-E  ARC-C CommensenseQA PIQA RACE BoolQ CosmosQA MMLU Avg.
Pretrain 62.42 42.41 63.72 76.77 7037 6291 67.77 24.09 58.81
Llama-3.2-3B  MIX-LLaVA-1.5 69.40 43.34 58.39 78.40 58.57 68.93 47.57 44.65 58.66
MIX-Cambrian-1 | 71.68 46.25 60.85 79.27 6798 71.59 59.40 48.39  63.18
MLAN 71.30 46.93 66.18 79.11 7027 68.44 64.76 49.03 64.50
Pretrain 71.09 50.00 70.19 80.14 7941 64.89 76.65 39.79  66.52
Llama-3.1-8B  MIX-LLaVA-1.5 72.60 48.81 66.20 79.43 7144 7538 59.53 50.51  65.49
MIX-Cambrian-1 | 72.80 48.81 68.88 80.03 7422 7722 64.42 55.69  67.76
MLAN 74.79 50.17 73.05 81.23 7991 78.53 76.68 58.18 71.57

Table 2: Zero-shot results on the held-out text-only datasets for Llama-3.2-3B and Llama-3.1-8B. We compare
Pretrain, MIX-LLaVA-1.5, MIX-Cambrian-1, and MLAN (ours).

3 Experiments

In this section, we show that MLAN is both more
effective and training efficient compared to the pre-
trained MLLMs as well as state of the art multi-
modal instruction tuning mixtures across all the
tasks we evaluate. Additional details of the train-
ing and experimental setup are described in Ap-
pendix B.

3.1 Main Results

We compare various instruction tuning methods
built upon our multimodal pretrained Llama-3.2-
3B and Llama-3.1-8B. We include the following
settings, all using our specified training method-
ology, only varying composition: (1) Pretrain:
The MLLM after multimodal pretraining with
no instruction tuning. (2) MIX-LLaVA-1.5 and
MIX-Cambrian-1: We use our training dataset
along with the multimodal instruction tuning
mixture recipes of LLaVA (Liu et al., 2023a)
and Cambrian-1 (Tong et al., 2024), i.e., with
6% and 25% text-only instruction data, respec-
tively. (3) MLAN: Our text-first instruction tuning
method with a composition heavily favoring (75%)

text-only data.

Cross-Task Generalization We report the scores
of pretrained MLLM and instruction tuned mod-
els on 12 benchmarks in Tables 1 and 2, respec-
tively. Compared with MIX-Cambrian-1, MLAN
yields the best performance in the 3B setting and
matches the best score in the 8B setting, only
falling behind by 0.33%, despite being trained on
less than half of the images. The competitive vision
performance shows effective cross-modal trans-
fer. MLAN consistently improves performance
on knowledge-intensive tasks such as MMLU, Cos-
mosQA, and ARC-C, demonstrating stronger inter-
nal knowledge retention compared to vision-heavy
baselines.

Knowledge Erosion We note that both
MIX-LLaVA-1.5 and MIX-Cambrian-1 suffer
from catastrophic forgetting, especially on
CommonsenseQA (Talmor et al., 2019) and Cos-
mosQA (Huang et al., 2019), showing performance
degradations up to 5.3% and 20.2%. However,
MLAN is more resilient against forgetting. In
the only case where its performance decreases in
CosmosQA, the decline is significantly smaller



than other models (3.1% vs. 20.2% & 8.37%). On
all other benchmarks, including vision, our method
shows a solid positive gain. Such an observation
unveils an asymmetrical interaction between vision
and text modalities, where the text ability is more
susceptible to forgetting, but the vision ability
generally benefits from language-based tuning.
This trend is explored again in Section 3.2.

Method Number of Tokens
Text-Only IT 37,906,142
MLAN 60,112,680
MIX-Cambrian-1 101,480,339768.8%
MIX-LLaVA-1.5 117,220,955195.0%

Full Vision-Language IT 122,054,7581103.0%

Table 3: All token counts for various training settings
with 186,000 total instances. The percentage score indi-
cates the size increase relative to the MLAN setting.

3.2 Training Efficiency

A major advantage of our method is that it signifi-
cantly reduces the computational cost measured by
the number of training tokens processed by the base
LLM compared to vision-based instruction tuning.
Table 3 details the number of training tokens, in-
cluding those in the visual prefix. Visual inputs
drastically increase the training burden as an image
is converted to hundreds of visual tokens (576 to-
kens with CLIP-ViT-Large-patch14 @336 (Radford
et al., 2021)) before being processed along with
regular text tokens. Therefore, MLAN stands out as
a more efficient vision instruction-tuning approach
that avoids excessive instruction tuning on images.

3.3 Knowledge Transfer Curve

To better understand the role of language, we per-
form a controlled study by varying the proportion
of language-only data in the instruction tuning mix-
ture, increasing it in 12.5% increments. We show
the performance of Llama-3.2-3B-based MLLMs
with different amounts of language instruction data
in Figure 3. Notably, we observe that even a
small amount of language data (12.5%) leads to a
sharp increase in both text and vision performance,
suggesting that foundational knowledge acquired
through language tuning quickly transfers across
modalities. As the proportion of language data
increases further, text performance continues to
improve, whereas vision performance peaks and
then slightly declines. Full vision-language tun-
ing fails to match the peak vision performance

achieved with a balanced mix, indicating that
language-based knowledge is not only transferable
but also essential for efficient vision instruction tun-
ing. This analysis reinforces our central claim: lan-
guage acts as a scaffold for multimodal reasoning,
and a moderate inclusion of vision data is sufficient
for grounding.
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Figure 3: Average scores on Llama-3.2-3B based
MLLMs with respect to the percentage of language
data mixed in. The percentage denotes the amount of
language data.

Base LLM Variant Text Avg.  Vision Avg.
Llama-3.2-3B° +MLAN 64.50 59.13
+Instruct LLM 67.74 60.98
-25% tasks 65.68 55.71
-50% tasks 65.98 55.73
-75% tasks 66.35 56.79

Table 4: Ablation study on Llama-3.2-3B with different
instruction tuning variants and fewer tasks.

3.4 Additional Instruction Tuning Factors

Instruction Tuned Base Models We use base
(non instruction tuned) models in our experiments
to show the impact of text-only data while control-
ling the amount of text instruction tuning. How-
ever, mainstream vision instruction tuning methods
mostly choose instruction-tuned (chat) models as
the default LLM backbone (Liu et al., 2023b; Dai
et al., 2024; Lin et al., 2023). Table 4 shows that
finetuning the instruction tuned variant instead of
the pretrained model readily boosts both text and vi-
sion performance by 2-3%, even when we continue
to emphasize text-only data in the visual instruc-
tion tuning phase. This provides more evidence
that the text-first approach throughout training is
beneficial. A possible explanation for this is that
the model adapts to the instruction following for-
mat and eliminates the distributional shift from the
pretraining to the instruction tuning corpus.

Task Diversity within Datasets Prior work has
emphasized the importance of diversity within in-



struction tuning datasets (Li et al.; Xu et al., 2024;
Wei et al., 2022). We conduct a controlled fine-
tuning experiment by reducing the proportion of
included tasks (25%, 50%, 75%, 100%) while keep-
ing the total number of training instances fixed.
Surprisingly, text performance slightly improves
with fewer tasks, peaking at 25%, while vision per-
formance only improves with full task coverage.
This suggests that task diversity does not uniformly
benefit all modalities: some tasks may be less help-
ful, and that over-diversification may dilute useful
supervision, especially for language.

Base LLM PT IT Text Avg.  Vision Avg.
LLaVA Vision-Flan 55.14 57.61
- Super-Natural ~ 64.89 46.95
Llama-3.23B  qpareGPTAV  VisionFlan  58.05 58.26
Super-Natural ~ 64.48 50.20
LLaVA Vision Flan 63.08 54.77
. Super-Natural ~ 72.05 52.55
Llama-3.1-8B  qp0eGPTAV  Vision Flan 58.27 56.84
Super-Natural ~ 71.76 50.76

Table 5: Average performance across different vision
pretraining (PT) and instruction tuning (IT) strategies.

3.5 Interaction between Pretraining and
Single-Modal Instruction Tuning

Before visual instruction tuning, the vision pretrain-
ing step aims to align the text and vision modali-
ties. Increasing pretraining data has been shown
to increase post instruction tuning performance
given the same corpus (McKinzie et al., 2024), but
changes in pretraining data have been shown to
have minimal effects (Cocchi et al., 2025). To
investigate how the pretraining dataset affects in-
struction tuning on various modalities, we conduct
experiments using single-modality instruction tun-
ing datasets on another pretraining dataset (Table 5).
Although we expect models to benefit from higher
quality samples and longer training sessions due
to ShareGPT4V (Chen et al., 2023a), the results
demonstrate that this is only consistently true when
the model is finetuned with vision-text instruction
data. More vision pretraining has a mixed effect on
the text performance, boosting the 3B model’s text
score while hurting the 8B model’s performance.
Additionally, scaling up the model size effectively
increases the text scores but leaves the vision scores
roughly on the same level.

Diversity in Training Data In Section 2.1, we
explored the similarity between instruction tun-
ing using text-only and vision-language data. We
now compare the mean cosine distances in two
intra-dataset and one inter-datasets settings. Fig-

ure 4 reports the mean cosine similarities. The
vision-language appears more homogeneous, with
a higher mean, while the language data is more
diverse. This observation aligns with the fact that
vision-language datasets typically contain fewer
distinct task types and tend to emphasize perceptual
grounding, whereas language-only corpora encom-
pass a broader spectrum. Importantly, the similarity
scores between language-only and vision-language
instructions are comparable to those within the
language-only set, suggesting that diverse lin-
guistic tasks inherently support better generaliza-
tion—even across modalities. This could imply
that language data, at least in our training data, bet-
ter generalizes to vision datasets thanks to greater
heterogeneity. Notably, though we use a diverse set
of text-only and vision-language data, there is still
a gap between the similarities, meaning text-only
data that aligns better with vision-language can
likely be constructed, which may improve perfor-
mance even more.
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Figure 4: Distribution of the cosine similarity of
random question pairs sampled in the language and
vision-language settings. The stars (***) indicate sig-
nificant differences (p < 0.001) between the mean sim-
ilarity supported by the t-test.

4 Related Work

Multimodal large language models (MLLM) are
language models endowed with the ability to use
multiple modalities, such as images, videos, and
audio (OpenAl, 2024; Meta Al, 2024; Team et al.,
2023; OpenAl et al., 2024; Rubenstein et al., 2023;
Zhang et al., 2023a; Ataallah et al., 2024; Bai
et al., 2025; Li et al., 2024b; Liu et al., 2025b;
Agrawal et al., 2024; Deitke et al., 2024; Chen
et al., 2025). The most widely adopted are vision
enhanced LL.Ms, where many design choices are



already extensively studied (Liu et al., 2023a; McK-
inzie et al., 2024; Lin et al., 2023; Laurencon et al.,
2024; Tong et al., 2024; Karamcheti et al., 2024;
Cocchi et al., 2025; Li et al.). A prevalent approach
to building such MLLMs links pretrained visual
encoders (Radford et al., 2021; Oquab et al., 2023)
to LLMs (Touvron et al., 2023; Zheng et al., 2023;
Chiang et al., 2023) via an adapter, thus transform-
ing deep image features into soft prompts for the
base LLM. In our work, we focus on one of the
simplest yet high-performing and widely adopted
MLLMs, using only a multi-layer perceptron as the
adapter (Liu et al., 2023b,a, 2024a; Li et al., 2024a;
Driess et al., 2023; Lin et al., 2023; Zeng et al.,
2024).

Inspired by the success of instruction tuning
in LLMs in zero-shot generalization (Wei et al.,
2022; Wang et al., 2022a; Zhang et al., 2023c;
Ouyang et al., 2022), following a pretraining step
for vision-language feature alignment, there is a
multimodal instruction tuning step to improve zero-
shot performance on multimodal tasks (Xu et al.,
2023; Li et al., 2024c). Notably, InstructBLIP (Dai
et al., 2023) and LLaVA (Liu et al., 2023b) trans-
form existing datasets into multimodal instructions
using manual templates and synthetic data, a prac-
tice expanded upon in subsequent work (Tong et al.,
2024; Chen et al., 2024b; Lin et al., 2023). Fur-
ther work investigates how instruction tuning varies
under different settings, e.g., how different compo-
nents of the MLLM should learn differently dur-
ing instruction tuning (Wu et al., 2024) and how
instruction tuning works in a continual learning
setting with many new tasks (Chen et al., 2024a).
However, there lacks a comprehensive set of exper-
iments that varies the composition of each modality
in instruction tuning.

Though the primary goal of multimodal instruc-
tion tuning is to improve vision-language perfor-
mance, text-only data is often included in both pre-
training (McKinzie et al., 2024; Lin et al., 2023)
and finetuning (Liu et al., 2023a; Huang et al.,
2023; Bai et al., 2023; Ye et al., 2023, 2024; Luo
et al., 2024; Lin et al., 2023; Tong et al., 2024; Dai
et al., 2024; Bai et al., 2025; Li et al.; Zhang et al.,
2024a,b) to prevent catastrophic forgetting and im-
prove language performance. Many such papers
disregard the impact of finetuning with text-only
data on vision performance, focusing solely on lan-
guage performance when ablating text-only data
away, though there are notable exceptions (Huang
etal., 2023; Ye et al., 2023, 2024; Lin et al., 2023;

Dai et al., 2024; Zhang et al., 2024a). In these
cases, there is modest evidence of transferability
between modalities, where finetuning on both lan-
guage and vision data exhibits about equal or better
performance than training on one modality alone.
However, in each of the existing work that fine-
tune with text-only data alongside vision data, this
performance boost is achieved by increasing the
dataset size without consideration of how such data
will increase the training cost (with the exception
of Zhang et al. (2024a), which only tests with a
low amount of text-only data). Hence, even though
better performance is obtained when increasing the
dataset size to train on text-only data, the instruc-
tion tuning step is more costly.

Due to the general cost of instruction tuning a
MLLM, many approaches aims to decrease the
cost of instruction tuning in the multimodal setting.
These primarily include using lightweight adapters
to decrease the number of parameters (Luo et al.,
2024; Zhang et al., 2023b; Liu et al., 2025a) and
choosing a subset of the training data using the
MLLM itself or other methods (Chen et al., 2024c;
Wei et al., 2023; Lee et al., 2024; Liu et al., 2024c;
Safaei et al., 2025; Bi et al., 2025). A simpler
way to decrease the cost is to instruction tune with
a focus on text-only data. Since training on lan-
guage instruction data is cheaper than training on
the same number of vision instances, and language
is foundational to the functioning of MLLMs, we
focus on such a language-based approach.

5 Conclusion

We present MLAN, a language-based multimodal
instruction tuning strategy for MLLMs that en-
hances zero-shot generalization and promotes ef-
fective knowledge transfer across modalities. We
demonstrate—through controlled ablations under
fixed training budgets—that language-based tuning
establishes a robust knowledge foundation, even
for tasks requiring visual understanding. Crucially,
MLAN achieves strong performance on both lan-
guage and vision benchmarks while significantly
reducing reliance on image supervision. Our re-
sults show that language is not only sufficient but
essential for efficient and generalizable multimodal
learning. With MLAN, we hope to bring attention
to the importance of language in MLLMs in visual
instruction tuning, which we believe can be used
in future work to improve training efficiency and
performance.



6 Limitations

Our experiments are performed on models with
the same multimodal architecture and pretrain-
ing procedure, not accounting for more advanced
architecture or large-scale multimodal pretrain-
ing. Though we evaluate on a comprehensive
set of vision-language benchmarks, we do not
evaluate on specialized out of distribution tasks
like OCR or captioning, focusing only on gen-
eral tasks where the transferability is motivated.
We invite future work to explore other methodolo-
gies to find where such specialized text-only and
vision-language tasks align. Our analysis could
also use experiments testing how instruction tuning
varies when different tasks are trained on versus
held-out, or on sequential finetuning versus sam-
pling text-only and vision-language data. Further-
more, the instruction tuning experiments have the
same data budget of 186,000 instances, while exist-
ing instruction tuning data may contain hundreds of
thousands or even multi-million instances, which
we leave to future work.
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A Additional Implementation Details

For language-based instruction tuning, we use our
carefully crafted dataset with tasks across modal-
ities. To avoid data contamination, only the train
split of each dataset is used for finetuning, and the
test split, or the validation split if the test split is
not publicly available, is reserved for evaluation.
Similar to various multimodal instruction tuning
work (Xu et al., 2023; Dai et al., 2023), we select
unseen datasets of both modalities for evaluation.
They are used to quantify performance in a general
setting.

We maintain a fixed data budget of 186,000
instances throughout the training sessions.
All training instances are sampled from
Super-Naturallnstructions ~ and  Vision-Flan,
according to the designated ratio. For the former,
to prevent overfitting to a specific task, we sample
an equal number of instances from every task.
For the latter, since ScienceQA (Lu et al., 2022)
is included in the training set, we manually
remove them for evaluation purposes so there is no
contamination. For finetuning, we apply the same
chat template to all models in the following format:
"USER:<query>ASSISTANT: <response>".
The same prompt is used to format inputs during
evaluation.

B Additional Training Details

We finetune pretrained MLLMs on the text-only
data and denote those with a 75% text-only/25%
vision-language split as MLAN. Acknowledging
the recent trend of including a small portion of
text-only data into vision instruction tuning data,
we establish two additional baselines by finetuning
on two separate versions of our training dataset that
contain only 6% and 25% language instruction data,
similar to the ratio in Liu et al. (2023a) and Tong
et al. (2024). For a fair comparison, we limit the
total number of training sequences in all settings to
186,000 samples from our training data.

C Dataset Summary

In Tables 6 and 7 we provide information about all
12 benchmarks used for evaluation. Note that in
the main body we present results on 13 datasets, as
we do not combine ARC-E and ARC-C.

D Additional Related Work

Our work focuses on choosing a simple multi-layer
perception as the adapter in LLaVA (Liu et al.,

2023b,a). In contrast, BLIP-2 (Li et al., 2023b) and
Flamingo (Alayrac et al., 2022) design attention-
based modules to attentively pool visual features,
among a variety of other choices that combine ex-
isting methods or create new ones (Zhu et al., 2023;
Chen et al., 2023b; Laurencon et al., 2024). To
train the model, most often there is a pretraining
step focusing on aligning the multimodal features
with a modality connector (Yin et al., 2023), though
some models are trained from scratch (Huang et al.,
2023; Xiao et al., 2024). A main design choice
in MLLMs is whether to freeze or unfreeze the
LLM during finetuning. Unfreezing the LLM ef-
fectively prevents catastrophic forgetting by main-
taining text-only performance (Meta Al, 2024;
Driess et al., 2023; Alayrac et al., 2022), but re-
sults in worse vision-language performance (Lin
et al., 2023; Dai et al., 2024). In our work, we
show that with an unfrozen LLM, training on
a strong language-based dataset on a fixed data
budget improves performance across modalities.
To evaluate MLLMs, there are a wide variety of
vision-language tasks (Xu et al., 2023; Dai et al.,
2023; Tong et al., 2024). However, Cambrian-
1 (Tong et al., 2024) demonstrate that certain
vision-language datasets, including some we used
(AI2D and RealWorldQA), exhibit only a minor
drop in performance of around 5% if vision is dis-
abled, suggesting that current vision-language eval-
uations may be more language-focused. Though
there is a need for more vision-centric analysis, this
emphasizes how important language is in many vi-
sion tasks, a fact central to our work.

D.1 Text-Only Data in Existing Work

Table 8 lists dataset sizes as well as the splits be-
tween vision-language and text-only data in popu-
lar models that use both. We note that most models
instruction tune with a majority of vision-language
data, with the exception of Kosmos-1 (Huang et al.,
2023) being a model that uses language alone,
though it has an extensive pretraining step that
differs from the simple MLLM adapter paradigm.
Ultimately, many papers do not share their overall
composition, and the ones that do vary greatly. We
hope our work prompts the community to be more
open in sharing their results and to do more work
finding an effective and efficient ratio that can be
used successfully across models.



Dataset Modality | Split Answer Type Dataset Type | Size
ARC-Easy (Bhakthavatsalam et al., 2021) Text Test Multiple Choice | Held-out 2.2k
ARC-Challenge (Bhakthavatsalam et al., 2021) | Text Test Multiple Choice | Held-out 1.2k
BoolQ (Clark et al., 2019) Text Validation | True/False Held-out 3.2k
CommonsenseQA (Talmor et al., 2019) Text Validation | Multiple Choice | Held-out 9.7k
PIQA (Bisk et al., 2020) Text Validation | Multiple Choice | Held-out 16.1k
MMLU (Hendrycks et al., 2020) Text Test Multiple Choice | Held-out 14.0k
RACE (Lai et al., 2017) Text Test Multiple Choice | Held-out 1.05k
CosmosQA (Huang et al., 2019) Text Validation | Multiple Choice | Held-out 3.0k
POPE (Li et al., 2023c¢) Vision Test True/False Held-out 9.0k
ScienceQA-IMG (Lu et al., 2022) Vision Test Multiple Choice | Held-out 5.0k
MMMU (Yue et al., 2024) Vision Validation | Multiple Choice | Held-out 1.5k
MME (Fu et al., 2023) Vision Test True/False Held-out 2.8k
MMBench (Liu et al., 2024b) Vision Dev Multiple Choice | Held-out 5.2k

Table 6: Overview of evaluation datasets.

Dataset

Descriptions

CosmosQA (Huang et al., 2019)

Questions require reasoning based on people’s everyday narratives to deduce the causes and
effects of pertinent events.

CommonsenseQA (Talmor et al., 2019)

CommonsenseQA contains questions without context about understanding and relations
between common objects.

ARC (Bhakthavatsalam et al., 2021)

ARC consists of grade-school level multiple-choice questions about understanding scientific
concepts. Both easy and challenge splits are used.

RACE (Lai et al., 2017)

Race contains questions about long paragraphs collected from K12 English examinations in
China.

BoolQ (Clark et al., 2019)

BoolQ asks whether a statement about a given long context is correct.

MMLU (Hendrycks et al., 2020)

A benchmark testing multi-task language understanding across 57 subjects, assessing model
performance on expert-level multiple-choice questions.

PIQA (Bisk et al., 2020)

PIQA evaluates physical commonsense reasoning by selecting the most plausible solution to
everyday scenarios.

MME (Fu et al., 2023)

MME is a multimodal benchmark for assessing cognition and perception capabilities of
MLLMs across multiple domains with yes and no questions.

MMMU (Yue et al., 2024)

A multi-disciplinary benchmark testing on expert-level knowledge with vision and question
queries. Questions types contain short response and multiple choice.

MMBench (Liu et al., 2024b)

A comprehensive multimodal benchmark that evaluates scientific knowledge with multiple
choice questions.

POPE (Li et al., 2023c)

POPE asks to determine whether an object is present in the scene. We use adversarial,
popular, and random splits for evaluation.

ScienceQA (Lu et al., 2022)

ScienceQA contains both vision-language and text-only questions about scientific concepts.
We use all questions to test the overall ability of our models.

Table 7: Short descriptions for the evaluation benchmarks in our study.



Name Text-Only Size Total Size text-only (%)

LLaVA-1.5 (Liu et al., 2023a) 40k 665k 6.0%
QwenVL (Bai et al., 2023) N/A 350k N/A
QwenVL2.5 (Bai et al., 2025) ~1M ~2M 50%
NVLM (Dai et al., 2024) N/A N/A N/A
VILA (Lin et al., 2023) M N/A N/A
mPLUG-Owl (Ye et al., 2023) 242k 392k 61.7%
mPLUG-OwI2 (Ye et al., 2024) 558k 1.23M 45.4%
PrismaticVLM (Karamcheti et al., 2024) 40k 665k 6.0%
MMI1 (McKinzie et al., 2024) N/A 1.45M N/A
MM1.5 (Zhang et al., 2024a) - - 10%
Kosmos-1 (Huang et al., 2023) 122.5k 122.5k 100%
LaVIN (Luo et al., 2024) 52k 204k 25.5%
Cambrian-1 (Tong et al., 2024) — Cambrian-7M 1.68M ~TM 23.8%
Eagle 2 (Li et al.) — Stage 1.5 4.75M 21.6M 22.0%
LLaVA-OneVision (Li et al., 2024b) — Single-Image Data 457.6k 3.2M 14.3%

Table 8: Language instruction tuning dataset sizes in existing MLLMs. N/A means the number is either not presented
in the paper or is unclear. A dash means the size is unclear.
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